
ar
X

iv
:1

01
2.

12
88

v5
 [

cs
.D

C
]

 1
1

Fe
b

20
16

This is an Accepted Manuscript of an article published by Taylor & Francis Group in
International Journal of Parallel, Emergent and Distributed Systems on 02/02/2015,
available online: http://dx.doi.org/10.1080/17445760.2014.997729

Representations of task assignments in distributed systems using

Young tableaux and symmetric groups

Dohan Kim∗

A.I. Research Co., 2537-1 Kyungwon Plaza 201, Sinheung-dong, Sujeong-gu, Seongnam-si,

Kyunggi-do, 461-811, South Korea

(Received 00 Month 201X; final version received 00 Month 201X)

This paper presents a novel approach to representing task assignments for partitioned agents (respec-
tively, tasks) in distributed systems. A partition of agents (respectively, tasks) is represented by a
Young tableau, which is one of the main tools in studying symmetric groups and combinatorics. In
this paper we propose a task, agent, and assignment tableau in order to represent a task assignment
for partitioned agents (respectively, tasks) in a distributed system. This paper is concerned with rep-
resentations of task assignments rather than finding approximate or near optimal solutions for task
assignments. A Young tableau approach allows us to raise the expressiveness of partitioned agents
(respectively, tasks) and their task assignments.

Keywords: Young tableau; task assignment; symmetric group; distributed agents

1. Introduction

A distributed system is defined to be a collection of independent nodes that appear
as a single coherent computer [42]. Parallel agents [8, 23, 44] in a distributed system
often take advantage of parallelism [11, 42] by dividing a job into many tasks that
execute on one or more agents. The primary purposes of task assignments in distributed
systems are to increase the system throughput and to improve resource utilization [10,
27, 36, 38, 47]. A subclass of task assignment problems involves an equal number of
tasks and agents, where the mapping between a set of tasks and a set of agents is
bijective. One of its fundamental form is represented by the linear assignment problem [4–
6, 29], which concerns how n tasks are assigned to n agents in the best possible way.
Meanwhile, if tasks have a precedence relationship, they can be expressed as a directed
acyclic graph (DAG), where each node represents a task and each edge represents a
precedence constraint [39]. We focus on the representation of n-task-n-agent assignments
for a given acyclic task graph G = (V, E) in a distributed system. In our approach
an n-task-n-agent assignment is represented by a Young tableau [15]. Our approach to
representing an n-task-n-agent assignment is quite general, aiming to apply for task
assignments involving the same number of tasks and agents in other disciplinary areas,
such as robotics [28] and operations research [4].
We also describe n-task-m-agent assignments (n > m) by using generalized Young

tableaux and discuss their task reassignments by means of a group action on a set of
generalized Young tableaux.

∗ Email: dkim@airesearch.kr

1

http://arxiv.org/abs/1012.1288v5

The remainder of this paper is organized as follows. We describe a task assignment
problem including the n-task-n-agent assignment problem in a distributed system in Sec-
tion 2. Section 3 provides an introduction to groups and Young tableaux. In Section 4 we
discuss how an n-task-n-agent assignment can be represented by an element of a symmet-
ric group Sn [33]. Section 5 presents our approach to representing task assignments for
agents in a distributed system using Young tableaux. We discuss an equivalence relation
on a set of Young tableaux for n-task-n-agent assignments in this section. We also discuss
generalized Young tableaux for n-task-m-agent assignments (n > m) and their equiv-
alence relation on a set of generalized Young tableaux in this section. In Section 6 we
discuss the counting aspect of the search space involving n-task-n-agent assignments and
their reassignments by using tabloids and symmetric groups [33]. Finally, we conclude in
Section 7.

2. Task assignments in distributed systems

2.1 Task assignment problem in a distributed system

A task assignment problem in a distributed system is found in [10, 27, 35, 36] and is
defined as follows:
Let T be a set of n tasks such that T = {t1, t2, . . . , tn} and let A be a set of m (m ≤ n)

agents1 such that A = {a1, a2, . . . , am}. Each task and agent is not necessarily homo-
geneous in a distributed system. A partial order relation ≺ can be defined on T , which
specifies a task precedence constraint. For any two tasks ti, tj ∈ T , ti ≺ tj denotes that
ti must be completed before tj can begin. Let M be a task assignment between T and
A. Let tea(M) be the total execution time of agent a for the task assignment M , and
tia(M) be the total idle time of agent a for the task assignment M . Agent a is idle before
the execution of its first task or between the executions of its two consecutive tasks for
the task assignment M . The turnaround time of agent a is the total time spent in agent
a for the task assignment M . Let ta(M) := tea(M) + tia(M) and t(M) := maxa ta(M),
where t(M) is called the task turnaround time of the task assignment M . In contrast,
let ua(M) := tea(M)/t(M), where ua(M) is the agent utilization of agent a for the task
assignment M . The average agent utilization for the task assignment M is defined to
be the average agent utilization for m agents, i.e., u(M) := (

∑m
k=1 uak

(M))/m. If the
performance metric for a task assignment is the task turnaround time, an optimal task
assignment is defined to be the task assignment M0 such that

t(M0) := min
M

t(M) = min
M

max
a

ta(M) .

If the performance metric for a task assignment is the average agent utilization, an
optimal task assignment is defined to be the task assignment M0 such that

u(M0) := max
M

u(M) .

Constraints and assumptions are as follows:

(1) Both tasks and distributed agents are not necessarily homogeneous and the in-
formation regarding their characteristics is available to a task assignment system.
Agents are dedicated to a task assignment in which no other task or job is involved
when a task assignment is executed.

1In this paper we use agent and processor interchangeably if parallel agents in a distributed system are considered
as simple computing entities [44].

2

(2) The network of distributed agents is fully-connected in which communication
links are identical with the same data transfer rate. Communications between
agents take place by message passing.

(3) Each task is assigned to exactly one agent in such a way that each agent is able to
process only single task at a time in a non-preemptive manner. It is also required
that at least one task is assigned to each agent.

(4) Precedence constraints can be imposed. A task tj can be executed if all its pre-
decessors ti with ti ≺ tj have completed. A task graph is directed and acyclic.

Traditional approaches to representing task assignments have limitations in some cases.
For instance, an assignment is often represented as a set of pairs (task ID, agent ID),
graphs, matrices, charts, or tables [4, 10, 36]. When we apply a logical partition to
agents (or tasks) and their task assignments, those approaches often lack a systematic
way of expressing a partition. Note that a partition in this paper refers to a logical
partition of tasks or agents, which is different from the partition used in the context
of grain packing [39] that concerns how to partition a job into subtasks in order to
improve the performance criteria. In our approach task assignments are represented by
Young tableaux or tabloids in which partitions are naturally expressed. In Section 2.2
we provide the definitions and terminology for task assignments used in this paper.

2.2 Definitions and terminology for task assignments

In this subsection we introduce definitions and terminology for task assignments in a
heterogeneous (agent-based) system. Definitions and terminology used in this subsection
are found in [2, 12, 22, 35, 39, 41, 47].
A task graph T = (V, E) is a directed acyclic graph, where each node in V =

{v1, v2, . . . , vn} denotes a task, and each edge (vi, vj) ∈ E ⊂ V × V denotes a prece-
dence relationship between tasks, i.e., vj cannot begin before vi completes. The positive
weight associated with each task v ∈ V represents a computation requirement. The
nonnegative weight associated with each edge (vi, vj) ∈ E represents a communication
requirement.
A fully-connected heterogeneous system A is a set A = {a1, a2, . . . , am} of m hetero-

geneous agents whose network topology is fully-connected. A heterogeneous system A is
called consistent if agent ai ∈ A executes a task n-times faster than agent aj ∈ A, then it
executes all other tasks n-times faster than agent aj . A heterogeneous system A is called
communication homogeneous if each communication link in A is identical.
Let T = (V, E) be a task graph and A = {a1, a2, . . . , am} be a fully-connected hetero-

geneous system. Assume that a startup cost of initiating a task on an agent is negligible.
In a consistent system, the computation cost of task vi on aj is ω(vi, aj) = r(vi)/e(aj),
where r(vi) is the computation requirement of task vi, and e(aj) is the execution rate
of agent aj. Meanwhile, in an inconsistent system, the computation cost of task vi on
aj is given by ω(vi, aj) = wij , where wij is the (i, j)th entry in a |V | × |A| cost matrix
W . Note that an inconsistent system model is a generalization of a consistent system
model. Now, the communication cost model of A is defined as follows. Let d(vi, vj) be
the amount of data to be transferred from task vi to task vj for each (vi, vj) ∈ E; let
t(as, at) be the data transfer rate between the communication link between agent as
and at in A. Let M be a task assignment between T and A such that M(vi) = as and
M(vj) = at for vi, vj ∈ T and as, at ∈ A. Assume that both local communication and
communication startup cost are negligible. If the communication of A has the linear cost
model [2], the communication cost between task vi on agent as and task vj on at is given
by c(M(vi),M(vj)) = d(vi, vj)/t(as, at) if as 6= at, and 0 otherwise. Furthermore, if A is
communication homogeneous such that the data transfer rate of each communication link

3

is 1, the communication requirement and the communication cost coincide for inter-agent
communication.
Let T = (V, E) be a task graph and A = {a1, a2, . . . , am} be a fully-connected hetero-

geneous system. Suppose task vi ∈ V is assigned to agent aj ∈ A, and a start time of
task vi is ts(vi, aj). Then, the finish time of task vi on agent aj is

tf (vi, aj) := ts(vi, aj) + ω(vi, aj).

Let T = (V, E) be a task graph and A = {a1, a2, . . . , am} be a fully-connected hetero-
geneous system. The earliest possible start time of task vj ∈ V on agent ak ∈ A is called
the data ready time, which is defined as

tdr(vj , ak) := max
vi∈pred(vj)

{tf (vi,M(vi)) + c(M(vi),M(vj))},

where pred(vj) denotes the set of all predecessors of task vj, and M(vi) denotes the agent
to which task vi is assigned by a task assignment M . If pred(vj) = ∅, then vj is called
an entry node, and it is assumed that tdr(vj , ak) = 0 for all ak ∈ A.

2.3 The n-task-n-agent assignment problem in a distributed system

The n-task-n-agent assignment problem is a task assignment problem in a distributed
system, which involves the same number of tasks and agents (cf. linear assignment prob-
lem [4–6]). In the remainder of this paper, a target heterogeneous system A for the
n-task-n-agent assignment problem is assumed to be fully-connected, consistent, and
communication homogeneous, where the communication requirement and the commu-
nication cost coincide. Figure 1 shows a task graph with eight tasks and examples of
8-task-8-agent assignments Ai for 1 ≤ i ≤ 3. The label next to each node in the task
graph denotes the computation requirement and the label next to each edge denotes the
communication requirement or communication cost. For instance, the communication
cost between task 1 and 2 is 5 time units.

(a) (b)
 T: Task, C: Computation requirements (✁)

 A: Agent, E: Execution rate (✁/u)

 Ai (i=1,2,3): Examples of the equivalent

 8-task-8-agent assignments

T C A E A1 A2 A3

1 10 1 10 (1,1) (1,2) (1,2)

2 10 2 10 (2,2) (2,1) (2,3)

3 30 3 10 (3,3) (3,3) (3,1)

4 50 4 5 (4,4) (4,5) (4,6)

5 20 5 5 (5,5) (5,4) (5,5)

6 20 6 5 (6,6) (6,6) (6,4)

7 30 7 2 (7,7) (7,7) (7,8)

8 10 8 2 (8,8) (8,8) (8,7)

10

10

20

10

50

30

30

20

1

5

8

3

6

4

7

2

5

5

15

5

15

10

15

15

5

10

Figure 1. (a) Task graph G = (V,E); (b) characteristics of tasks, agents, and examples of 8-task-
8-agent assignments.

Consider the task assignment A1 in Figure 1(b). Each (a, b) in Ak for 1 ≤ k ≤ 3 denotes
that task a is assigned to agent b. Task 1 is the entry node in the task graph G = (V,E),
so it starts at time 0. Since task 1 is assigned to agent 1 in A1, the computation cost of
task 1 is its computation requirement divided by the execution rate of agent 1. A possible
choice of units for τ and u in Figure 1(b) are Flop (Floating-point operation) [43] and

4

second, respectively. Note that each task is assigned to each agent in such a way that
their IDs are the same in A1 (see Figure 1(b)). Therefore, the computation cost of task
1 on agent 1 is 10/10 = 1 time unit in A1. Since each task is assigned to a distinct agent
for the n-task-n-agent assignment problem, each task starts at its data ready time. Thus,
task 2 on agent 2 starts its execution at 1 + 5 = 6 time units. Similarly, task 3 on agent
3 and task 4 on agent 4 start at 6 time units. Simple calculations show that task 5 on
agent 5 starts at 17, task 6 on agent 6 at 24, task 7 on agent 7 at 31, and task 8 on
agent 8 at 61 time units. Thus, the task turnaround time of A1 is 61 + 10/2 = 66 time
units, where 10/2 is a computation cost of task 8 on agent 8. Note that the execution
rate of agents 1, 2, and 3 are the same (see Figure 1(b)). Thus, it is indistinguishable
in terms of the task turnaround time if we swap agents with the same execution rate in
a given n-task-n-agent assignment. We see that the task turnaround time of A2 and A3

are the same with that of A1. Furthermore, once the spatial assignment of tasks (i.e.,
allocation of tasks to agents [39]) has been determined, the temporal assignment of tasks
(i.e., attribution of a start time to each task [39]) is deterministic for the n-task-n-agent
assignment problem, i.e., the start time of each task on an agent is always its unique
data ready time. Note also that if tasks in the n-task-n-agent assignment problem have
no precedence relationship, the start time of each task on an agent is simply 0.
Traditional methods [10, 27, 36, 47] to representing task assignments have some limi-

tations if task assignments involve the same number of tasks and agents. If we apply an
equivalence relation to tasks or agents, traditional approaches do not naturally express
those assignments that belong to an equivalence class. We partition the search space Sn

of n-task-n-agent assignments by using an equivalence relation of Young tableaux of a
given tableau shape. We introduce the necessary definitions and results of group theory
and Young tableaux in Section 3.

3. Groups and Young tableaux

Group theory is a branch of mathematics, which provides the methods, among other
things, to analyze symmetry in both abstract and physical systems [48]. In this section
we give definitions on groups and Young tableaux used in this paper. Definitions and
results in this section are found in [1, 9, 13, 15, 16, 21, 24, 33, 50].
A group (G, ·) is a nonempty set G, closed under a binary operation · , such that the

following axioms are satisfied: (i) (a · b) · c = a · (b · c) for all a, b, c ∈ G, (ii) there is an
identity element e ∈ G such that for all x ∈ G, e · x = x · e = x, (iii) for each element
a ∈ G, there is an element a−1 ∈ G such that a · a−1 = a−1 · a = e.
The order of a finite group G, denoted |G|, is the number of elements of G.
Let G be a group and H be a nonempty subset of a group G. If H itself is a group

under the restriction to H of the binary operation of G, then H is a subgroup of G,
denoted by H ≤ G. A subset H of a group G is a subgroup of G iff (i) H is closed under
the binary operation of G, (ii) the identity e of G is in H, (iii) h−1 ∈ H whenever h ∈ H.
Let In = {1, 2, . . . , n}. The group of all bijections In → In, whose binary operation is

function composition, is called the symmetric group on n letters and denoted Sn. Since
Sn is the group of all permutations of a set In = {1, 2, . . . , n}, the order of Sn, i.e., |Sn|,
is n!. A subgroup of a symmetric group is called a permutation group.

A permutation
(

1 2 · · · n
a1 a2 · · · an

)

∈ Sn is written in the two-line notation, while

a1 a2 · · · an∈ Sn is written in the one-line notation [33].
Let i1, i2, . . . , ir (r ≤ n) be distinct elements of In = {1, 2, . . . , n}. Then (i1 i2 · · · ir)

is defined to be the permutation that maps i1 7→ i2, i2 7→ i3, . . . , ir−1 7→ ir and ir 7→ i1,
and every other element of In maps onto itself. (i1 i2 · · · ir) is called a cycle of length r

5

or an r-cycle [21]. A 2-cycle is called a transposition [13, 21].
For instance, permutation p = 314 2 ∈ S4 is a 4-cycle such that (1 3 4 2) = (3 4 2 1) =

(4 2 1 3) = (2 1 3 4).
Every permutation of a finite set can be written as a product of disjoint cycles. Any

permutation of a finite set of at least of two elements can be written as a product of
transpositions. If p ∈ Sn is the product of disjoint cycles of lengths l1, l2, . . . , lr with
l1 ≤ l2 ≤ · · · ≤ lr (including its 1-cycles), the integers l1, l2, . . . , lr are called the cycle
type of p.
Let G be a group and let si ∈ G for i ∈ I. The subgroup generated by S = {si : i ∈ I}

is the smallest subgroup of G containing the set S. If this subgroup is all of G, then S is
called a generating set of G.
Let G be a group. For any H ≤ G and any g ∈ G, let gH = {gh : h ∈ H} and

Hg = {hg : h ∈ H}. The former is called the left coset of H in G and the latter is called
the right coset of H in G.
Let G be a group and let H ≤ G. A subset T = {ti} of G is called a (left) transversal

for H in G if the set T consists of precisely one element from each left coset of H in G.
Let G be a group and let H ≤ G. The number of left cosets of H in G is called the

index [G : H] of H in G. If G is a finite group, [G : H] = |G|/|H|.
LetG be a group whose identity element is e. A (left) action ofG on a setX is a function

G ×X → X such that for all x ∈ X and g1, g2 ∈ G: (i) ex = x, (ii) (g1g2)x = g1(g2x).
When such an action is given, we say that G acts (left) on the set X, and X is called a
G-set.
Let X be a set. A relation ∼R on X × X is called an equivalence relation on X

provided ∼R is: (i) reflexive: x ∼R x for all x ∈ X, (ii) symmetric: x ∼R y ⇒ y ∼R x,
(iii) transitive: x ∼R y and y ∼R z ⇒ x ∼R z. The equivalence class of x ∈ X under ∼R

is defined to be the set {y ∈ X : y ∼R x}.
Let X be a G-set. For x1, x2 ∈ X, let x1 ∼R x2 iff there exists g ∈ G such that gx1 = x2.

Then, ∼R is an equivalence relation on X. The equivalence classes with respect to ∼R

are called the orbits of G on X.
A partition of n is defined to be a sequence λ = (λ1, λ2, . . . , λi), where the λj are

weakly decreasing and
∑i

j=1 λj = n. If λ is a partition of n, then it is denoted λ ⊢ n.

Let λ = (λ1, λ2, . . . , λi) ⊢ n. A Young diagram (or Ferrers diagram) of shape λ is a
left-justified, finite collection of cells, or boxes, with row j containing λj cells for 1 ≤ j ≤ i.
Let λ ⊢ n. A Young tableau of shape λ is an array t, obtained by assigning numbers in

{1, 2, . . . , n} to the cells of the Young diagram of shape λ bijectively.
Let λ ⊢ n. A generalized Young tableau of shape λ is a filling of the Young diagram of

shape λ with positive integers (repetitions allowed).
For instance, let λ = (2, 1). The list of all Young tableau of the shape λ is as follows:

1 2
3

, 1 3
2

, 2 1
3

, 2 3
1

, 3 1
2

, 3 2
1

.

Two Young tableaux t1, t2 of the same shape λ are called row equivalent, denoted
t1 ∼ t2, if the corresponding rows of t1 and t2 contain the same elements. (The reader
is encouraged to verify that ∼ is an equivalence relation on the set of Young tableaux
of shape λ.) A tabloid of shape λ is an equivalence class, defined as {t} = {t1 : t1 ∼ t},
where the shape of t is λ.
To denote a tabloid {t}, only horizontal lines between rows are used. For instance,

t = 1 2
3

implies {t} =

{

1 2
3

, 2 1
3

}

= 1 2
3

.

Lemma 3.1 ([33]). Suppose λ = (λ1, λ2, . . . , λi) ⊢ n. For a given tabloid of shape λ, the
number of Young tableaux of shape λ in the tabloid is λ1!λ2! · · ·λi!.

6

Lemma 3.2 ([33]). Let λ = (λ1, λ2, . . . , λi) ⊢ n. The number of distinct tabloids of shape
λ is n!/(λ1!λ2! · · · λi!).

Lemmas 3.1 and 3.2 can be obtained by using simple combinatorial arguments. The
interested reader may refer to [33] for further details.

4. Representations of n-task-n-agent assignments using a symmetric group

Representations of bijective task assignments between tasks and agents (or processors)
using a group theory have already been researched in [24, 32]. In this section we summa-
rize how an n-task-n-agent assignment is represented by an element of Sn.
Let Un be a set of n tasks and Wn be a set of n distributed agents such that

Un = Wn = {1, 2, . . . , n}. Then the group of all bijections Un → Wn is Sn, where
each element of Sn denotes each n-task-n-agent assignment between Un and Wn. There-

fore, a permutation
(

1 2 · · · n
a1 a2 · · · an

)

def
= a1 a2 · · · an∈ Sn [33] can be used to denote an

n-task-n-agent assignment that maps 1 7→ a1, 2 7→ a2, . . . , n 7→ an, where 1, 2, . . . , n ∈ Un

and a1, a2, . . . , an ∈ Wn such that Un = Wn = {1, 2, . . . , n}.
Let U4 = W4 = {1, 2, 3, 4}. If permutation p = 314 2 = (1 3 4 2) ∈ S4 is used to

denote a n-task-n-agent assignment for n = 4, then it can be represented by the set
{(1 7→ 3), (2 7→ 1), (3 7→ 4), (4 7→ 2)}, where (a 7→ b) denotes that task a is assigned to
agent b for a ∈ U4 and b ∈ W4.
Although an n-task-n-agent assignment can be represented by the above manner, a

task assignment for partitioned agents (or tasks) is not naturally represented. We will
discuss this issue in the next section.
Meanwhile, a reassignment of an n-task-n-agent assignment can be represented by

using permutation multiplication. For instance, if permutation q = i1 i2 · · · in ∈ Sn

is used to denote an n-task-n-agent assignment, then the right multiplication of q by
transposition (i j) ∈ Sn may represent the swapping of the task in agent i and the task
in agent j [24]. Permutation multiplication is further discussed in [13, 24].

5. Assignment tableaux and tabloids

5.1 Assignment tableaux and tabloids for n-task-n-agent assignments

In this subsection we present our approach to representing n-task-n-agent assignments
by using Young tableaux and tabloids. We first introduce a task tableau and an agent
tableau. Then, we define an assignment tableau, which is a 2-tuple of a task and agent
tableau.

Definition 5.1. Suppose λ ⊢ n. A task tableau of shape λ, denoted tλ, is a Young tableau
of shape λ ⊢ n, obtained by assigning tasks (i.e., task IDs) in {1, 2, . . . , n} to the cells of
the Young diagram of shape λ bijectively. An agent tableau of shape λ, denoted aλ, is a
Young tableau of shape λ, obtained by assigning agents (i.e., agent IDs) in {1, 2, . . . , n}
to the cells of the Young diagram of shape λ bijectively.

Suppose fourteen agents are partitioned into {1, 3, 8, 14}, {2, 5, 6, 4}, {9, 7, 12}, and
{10, 13, 11}. It is naturally represented as an agent tableau in Figure 2(a). Suppose fur-
ther that the 14-task-14-agent assignment is given by {(1 7→ 1), (3 7→ 3), (5 7→ 8), (11 7→
14), (2 7→ 2), (4 7→ 5), (8 7→ 6), (6 7→ 4), (7 7→ 9), (9 7→ 7), (10 7→ 12), (13 7→ 10), (12 7→
13), (14 7→ 11)}, where (a 7→ b) means task a is assigned to agent b. This task assignment
may have a compact form of a representation as shown in Figure 2(b), where the entry in

7

(a)

1 3 8 14
2 5 6 4
9 7 12
10 13 11

(b)

1
1

3
3

5
8

11
14

2
2

4
5

8
6

6
4

7
9

9
7

10
12

13
10

12
13

14
11

(c)







1 3 5 11
2 4 8 6
7 9 10
13 12 14

,

1 3 8 14
2 5 6 4
9 7 12
10 13 11







Figure 2. (a) An agent tableau; (b) a compact form of an assignment; (c) an assignment tableau.

each cell represents a task and the label in the upper right corner of each cell represents
an agent. Since Figure 2(b) is not a standard form of a Young tableau, we describe this
task assignment as a 2-tuple of Young tableaux instead. We use the task tableau of the
same shape with that of the agent tableau as shown in Figure 2(c) in order to represent
the task assignment corresponding to Figure 2(b). Now we define an assignment tableau
to represent an n-task-n-agent assignment.

Definition 5.2. An assignment tableau of shape λ, denoted sλ, is a 2-tuple of Young

tableaux sλ
def
= (tλ, aλ), where tλ is a task tableau of shape λ and aλ is an agent tableau

of shape λ.

An assignment tableau sλ represents a task assignment, where each task in a cell (i, j)
of tλ is assigned to each agent in a cell (i, j) of aλ bijectively. Therefore, we also denote
sλ as the set of all (a 7→ b) [25], where a is a task in a cell (i, j) of tλ and b is an agent
in a cell (i, j) of aλ.

Definition 5.3. A standard agent tableau1 of shape λ, denoted Aλ, is an agent tableau
having the entries of agent IDs {1, 2, . . . , n} in a sequential order, starting from the top
left and ending at the bottom right. If an agent tableau is a standard agent tableau, then
we say that the associated assignment tableau is standard, denoted Sλ.

(a) sλ =

(

5 3 1
6 4
2

,
1 2 3
4 5
6

)

(b) Sλ =

(

5 3 1
6 4
2

)

(c) Sµ =
2 3 7 8
6 1
5 4

Figure 3. (a) Assignment tableau; (b),(c) standard assignment tableaux.

A simple renaming of agent IDs can be applied if necessary, in order to convert from an
existing agent tableau of shape λ ⊢ n to the standard agent tableau of the same shape.
Note that if an agent tableau is of shape λ = (λ1, λ2, . . . , λj), then the λi(1 ≤ i ≤ j) are
weakly decreasing by the partition constraint of Young tableau. The following algorithm
describes a simple renaming of agent IDs to convert from an existing agent tableau of
shape λ ⊢ n to the standard agent tableau of the same shape. (It is exactly the same
way to rename the task IDs in order to convert from an existing task tableau of shape
λ ⊢ n to the standard task tableau of the same shape. Note that this renaming process
has to be performed before task assignments.)

Algorithm 5.1. CONVERT-TABLEAU (t1, t2, p):
Input: an existing agent tableau t1 of shape λ ⊢ n, where λ = (λ1, λ2, . . . , λj).
Output: the standard agent tableau t2 of shape λ ⊢ n, where λ = (λ1, λ2, . . . , λj);
permutation p ∈ Sn.

1The reader is encouraged to compare the definition of a standard agent tableau with that of a standard Young
tableau [33]. The latter is defined to be a Young tableau whose entries increase in each row and each column [33].

8

• Write the entries of agent IDs in t1 in the one-line permutation notation that is obtained
by writing entries of t1 in a sequential order starting from the top left and ending
at the bottom right. Call the corresponding permutation for the obtained one-line
permutation notation as p ∈ Sn.

• Replace t1 with the standard agent tableau t2 of the same shape. Note that the cor-
responding permutation of t2 for the one-line permutation notation is the identity
permutation.

• Return t2 and permutation p ∈ Sn. (Permutation p ∈ Sn might be used for the later
purposes if the original agent IDs are not immaterial and need to be restored.)

Now, consider the assignment tableau sλ in Figure 3(a). Since the agent tableau in
sλ is a standard agent tableau, it follows that sλ is a standard assignment tableau, i.e.,

sλ = Sλ. Thus, we have Sλ = sλ
set
= {(5 7→ 1), (3 7→ 2), (1 7→ 3), (6 7→ 4), (4 7→ 5), (2 7→ 6)}

for λ = (3, 2, 1). For a standard assignment tableau, we simply denote Sλ as (tλ) rather
than denoting a 2-tuple (tλ, aλ). By a slight abuse of notation, if no confusion arises,
we simply denote Sλ as tλ without parentheses. For instance, Figure 3(c) represents a

task assignment Sµ
set
= {(2 7→ 1), (3 7→ 2), (7 7→ 3), (8 7→ 4), (6 7→ 5), (1 7→ 6), (5 7→

7), (4 7→ 8)} for µ = (4, 2, 2), where eight agents are partitioned into three agent groups
for µ = (4, 2, 2).
When we consider an assignment tableau, the partition constraints mandate that both

task and agent tableau have the same shape. Once the agent tableau has chosen for an as-
signment tableau of shape λ, we may fix the agent tableau and consider the permutations
of task tableaux of shape λ in order to find other n-task-n-agent assignments. A stan-
dard assignment tableau is the preferred form for an n-task-n-agent assignment because
a single tableau rather than a 2-tuple of Young tableaux represents an n-task-n-agent
assignment between tasks and agents.
We next describe a row-equivalence class of task, agent, and assignment tableaux.

Definition 5.4. An agent tabloid of shape λ, denoted {aλ}, is a row-equivalence class of
agent tableaux, i.e., {aλ} = {a′λ : a′λ ∼ aλ}, such that agents in the same row of aλ have
the same execution rate. A task tabloid of shape λ, denoted {tλ}, is a row-equivalence
class of task tableaux, i.e., {tλ} = {t′λ : t′λ ∼ tλ}.

Agents that have the same execution rate are equivalent up to the n-task-n-agent
assignment problem in terms of the task turnaround time. For instance, suppose that we
have two distinct tasks a and b, and two agents x and y that have the same execution
rate. Then, 2-task-2-agent assignments {(a 7→ x), (b 7→ y)}, and {(a 7→ y), (b 7→ x)} are
equivalent in terms of the task turnaround time and the average agent utilization. In
Figure 1(b), the execution rates of agents in each set {1, 2, 3}, {4, 5, 6}, and {7, 8} are
the same, respectively. In this case, we may represent them as an agent tabloid that has
the entries of the first row 1, 2, and 3, the entries of the second row 4, 5, and 6, and the
entries of the third row 7, and 8, respectively.

Definition 5.5. An assignment tabloid of shape λ, denoted {sλ}, is defined as a 2-

tuple of {sλ}
def
= (tλ, {aλ})

def
= {(tλ, a

′
λ) : a′λ ∼ aλ}. Equivalently, {sλ}

def
= ({tλ}, aλ)

def
=

{(t′λ, aλ) : t
′
λ ∼ tλ}. If an agent tableau is a standard agent tableau or an agent tabloid

containing a standard agent tableau, the associated assignment tabloid is said to be

standard, denoted {Sλ}
def
= ({tλ}). By a slight abuse of notation, if no confusion arises,

we also denote {Sλ} as {tλ} (without parentheses).

Since both definitions in Definition 5.5 involve a row-equivalence class of Young
tableaux of the same shape, the entry order in the same row within an assignment tableau
is irrelevant, i.e., they are equivalent up to the n-task-n-agent assignment problem. In

9

case an agent tabloid is given instead of an agent tableau, we replace the agent tabloid
with the corresponding agent tableau, and the task tableau with the corresponding task
tabloid in order to keep the canonical form of an assignment tabloid. For instance, if

tλ = 3 1
2

and {aλ} = 1 2
3

, then {sλ} =

(

3 1
2

, 1 2
3

)

. Equivalently, the above

{sλ} can be written as {sλ} =

(

1 3
2

, 1 2
3

)

. We see that {sλ} is a standard assign-

ment tabloid. Thus, {sλ} = {Sλ} = 1 3
2

.

Lemma 5.1. Suppose λ = (λ1, λ2, . . . , λi) ⊢ n. For a given assignment tabloid of shape
λ, the number of n-task-n-agent assignments represented by the given assignment tabloid
is λ1!λ2! · · · λi!.

Proof. Let {sλ} be an assignment tabloid such that {sλ} = ({tλ}, aλ). Then, the number
of n-task-n-agent assignments represented by {sλ} for λ ⊢ n corresponds to the number
of distinct task tableaux in {tλ}. Therefore, the conclusion follows from Lemma 3.1.

Lemma 5.2. Suppose λ = (λ1, λ2, . . . , λi) ⊢ n. Then, the number of distinct standard
assignment tabloids of shape λ is n!/(λ1!λ2! · · · λi!).

Proof. It immediately follows from Lemma 3.2.

For instance, consider standard assignment tabloids of the following shapes λi ⊢ n for
n = 4 and 1 ≤ i ≤ 3:

λ1 = (4) : , λ2 = (1, 1, 1, 1) : , λ3 = (3, 1) : .

The number of distinct standard assignment tabloids of the shape λ1 is (n!/λ1!) =
(4!/4!) = 1 for n = 4. This situation may arise if all four agents are homogeneous. The
number of distinct standard assignment tabloids of the shape λ2 is (n!/(1!)

n) = n! = 4! for
n = 4. It corresponds to the number of all permutations of four tasks for a given standard
agent tableau of shape λ2. The number of distinct standard assignment tabloids of the
shape λ3 is n!/(n− 1)! = 4 for n = 4, which corresponds to the number of choices (from
1 to 4) for the element in the second row.

Proposition 5.1. Let λ = (λ1, λ2, . . . , λi) ⊢ n. If {sλ} is an assignment tabloid such
that {sλ} = ({tλ}, aλ), then n-task-n-agent assignments represented by {sλ} have the
same task turnaround time (respectively, average agent utilization).

Proof. By Definition 5.5, we have {sλ} = ({tλ}, aλ) = (tλ, {aλ}) = {(tλ, a
′
λ) : a′λ ∼

aλ}. Suppose to the contrary that the conclusion does not hold. Then, there exists two
assignment tableaux s1λ = (tλ, a

1
λ) ∈ {sλ} and s2λ = (tλ, a

2
λ) ∈ {sλ} such that the task

turnaround time (respectively, average agent utilization) of task assignments represented
by s1λ and s2λ are not the same. It follows that there exists task t, and two agents a and
b in the same row of a1λ and a2λ, such that the task execution time of t on a and t on b
necessarily differs, which is impossible by the choice of a and b since the execution rate of a
and b are the same by Definition 5.4. Thus, we conclude that n-task-n-agent assignments
represented by {sλ} have the same task turnaround time (respectively, average agent
utilization).

10

Proposition 5.2. Let λ = (λ1, λ2, . . . , λi) ⊢ n. If {Sλ} is a standard assignment tabloid
such that {Sλ} = {tλ}, then n-task-n-agent assignments represented by {Sλ} have the
same task turnaround time (respectively, average agent utilization).

Proof. It immediately follows from Proposition 5.1.

By Proposition 5.2, the search space of the n-task-n-agent assignment problem can
be reduced to the set of distinct standard assignment tabloids of a given shape λ ⊢ n
instead of Sn. Note that the converse of Proposition 5.1 and 5.2 is not necessarily true.
Two n-task-n-agent assignments represented by two different assignment tabloids may
have the same task turnaround time.

(a) (b)
 T: Task, C: Computation requirements (✁)

 A: Agent, E: Execution rate (✁/u)

T C A E

1 10 1 5

2 20 2 10

3 80 3 20

4 50 4 25

10

80

20

50

1

3

2

4

2

2

2

Figure 4. (a) Task graph; (b) characteristics of tasks, agents.

Suppose we have four tasks and four heterogeneous agents as shown in Figure 4. Then,
a standard assignment tabloid of shape (1, 1, 1, 1) represents a n-task-n-agent assignment
for n = 4 in a unique manner. For instance, consider two different standard assignment

tabloids of shape (1, 1, 1, 1) having the task assignment sets A1
set
= {(1 7→ 1), (2 7→

2), (3 7→ 3), (4 7→ 4)} and A2
set
= {(1 7→ 2), (2 7→ 1), (3 7→ 3), (4 7→ 4)}. A simple

calculation shows that A1 and A2 have the same task turnaround time (8 time units)
although their standard assignment tabloids are different.
Standard assignment tabloids are further studied in Section 6, in which we consider the

cases when tasks are reassigned for n-task-n-agent assignments represented by standard
assignment tabloids of a given shape λ ⊢ n.

5.2 Generalized assignment tableaux for n-task-m-agent assignments

An assignment tableau represents a task assignment, where each task in a cell (i, j) of a
task tableau is assigned to each agent in a cell (i, j) of an agent tableau bijectively. If a
set of tasks is assigned to a smaller-sized set of agents, i.e., n-task-m-agent assignment
(n > m), we use generalized Young tableaux to represent n-task-m-agent assignments
(n > m).

Definition 5.6. A generalized agent tableau of shape λ, denoted āλ, is a filling of the
Young diagram of shape λ with agents {1, 2, . . . , n} (repetitions allowed).

Definition 5.7. A generalized assignment tableau of shape λ, denoted s̄λ, is a 2-tuple

of Young tableaux s̄λ
def
= (tλ, āλ), where tλ is a task tableau of shape λ and āλ is a

generalized agent tableau of shape λ.

Definition 5.8. A standard task tableau of shape λ, denoted Tλ, is a task tableau having
the entries of task IDs {1, 2, . . . , n} in a sequential order, starting from the top left and
ending at the bottom right. If a task tableau is the standard task tableau, then we
say that the associated generalized assignment tableau is standard, denoted S̄λ, i.e.,

S̄λ
def
= (Tλ, āλ).

11

(a) s̄λ =

(

1 2 3
4 5
6

,
1 1 2
1 3
2

)

(b) S̄λ =

(

1 1 2
1 3
2

)

(c) S̄λ =
1 1 2
1 3
2

Figure 5. (a) Generalized assignment tableau; (b),(c) standard generalized assignment tableaux.

Consider the generalized assignment tableau s̄λ in Figure 5(a). Since the task tableau
in s̄λ is a standard task tableau, s̄λ is a standard generalized assignment tableau, i.e.,

s̄λ = S̄λ by Definition 5.8. Thus, we have s̄λ = S̄λ
set
= {(1 7→ 1), (2 7→ 1), (3 7→ 2), (4 7→

1), (5 7→ 3), (6 7→ 2)} for λ = (3, 2, 1). As shown in Figure 5(b), we also denote S̄λ as (āλ)
rather than denoting a 2-tuple (tλ, āλ) for a standard generalized assignment tableau.
Similarly to a standard assignment tableau, by a slight abuse of notation, we may denote
S̄λ as āλ without parentheses if no confusion arises (see Figure 5(c)).
Note that a shape λ of a standard assignment tableau Sλ := (tλ, Aλ) (i.e., Sλ := tλ)

can be given based on a logical partition of agents. Meanwhile, a shape λ of a standard
generalized assignment tableau S̄λ := (Tλ, āλ) (i.e., S̄λ := āλ) can be given based on a log-
ical partition of tasks rather than agents. Unlike n-task-n-agent assignments, a standard
generalized assignment tableau alone does not necessarily determine the task turnaround
time of a task assignment. As mentioned in Section 2.3, the start time of each task for
an n-task-n-agent assignment is its unique data ready time. Meanwhile, the start time of
each task for an n-task-m-agent assignment for n > m depends on an execution order,
i.e., temporal assignment of tasks. For instance, if agent a has two tasks t1 and t2 with
the same data ready time, then it depends on a task assignment algorithm to determine
whether t1 or t2 starts first on a. However, if no task precedence constraint is given, we
may obtain the task turnaround time of a given standard generalized assignment tableau
using the |T | × |A| cost matrix, where |T | is the number of tasks and |A| is the number
of agents.
In Section 5.1 we showed that the search space of the n-task-n-agent assignment

problem can be reduced to the set of standard assignment tabloids of a given shape
λ ⊢ n. We now consider a search space for the n-task-m-agent assignment problem
(n > m) consisting of standard generalized assignment tableaux of a given shape. Let
Xλ

j = {t1, t2, . . . , tj} denote a set of distinct standard generalized assignment tableaux

ti(1 ≤ i ≤ j) of a given shape λ. If j = nm, then Xλ
j is the whole search space of the

n-task-m-agent assignment problem represented by standard generalized assignment
tableaux of a given shape λ (see the following “Remarks”). If j = k for k < nm, it
is a selected search space of the n-task-m-agent assignment problem represented by
standard generalized assignment tableaux of a given shape λ.

Remarks. The number of distinct standard general assignment tableaux of shape
λ = (λ1, λ2, . . . , λi) ⊢ n for m agents is nm. Using an elementary counting argument,
we see that the number of distinct standard generalized assignment tableaux of shape
λ ⊢ n for m agents is the same with the number of m permutations from the set of n
tasks with repetition allowed, which is nm. Note that it does not rely on a given shape
of standard generalized assignment tableaux.

The following proposition describes an equivalence relation on a set of standard gener-
alized assignment tableaux of a given shape with respect to task reassignments defined
by a group action.

Proposition 5.3. Let G ≤ Sn act on Xλ
n = {t1, t2, . . . , tn} by gti = tg(i) for g ∈ G.

For t1, t2 ∈ Xλ
n , let t1 ∼tr t2 iff there exists g ∈ G such that gt1 = t2. Then, ∼tr is an

equivalence relation on Xλ
n .

12

Proof. Since et = t for each t ∈ Xλ
n , we have t ∼tr t. Thus, ∼tr is reflexive.

To show that ∼tr is symmetric, assume t1 ∼tr t2 for t1, t2 ∈ Xλ
n . It follows that gt1 = t2

for some g ∈ G. Now, we have g−1(gt1) = g−1(t2). Since g−1(t2) = g−1(gt1) = et1 = t1,
we have t2 ∼tr t1. Thus, ∼tr is symmetric.
To show that ∼tr is transitive, assume that t1 ∼tr t2 and t2 ∼tr t3 for t1, t2, t3 ∈ Xλ

n .
Then, we have g1t1 = t2 and g2t2 = t3 for some g1, g2 ∈ G. We claim that (g2g1)t1 = t3,
which shows that t1 ∼tr t3. Since (g2g1)t1 = g2(g1t1) = g2(t2) = t3, we have (g2g1)t1 = t3.
Thus, t1 ∼tr t3, which shows that ∼tr is transitive.

The following proposition describes the size of the equivalence class of t ∈ Xλ
n with

respect to the equivalence relation ∼tr. We first denote the equivalence class of t ∈ Xλ
n

with respect to ∼tr by G(t) = {gt : g ∈ G} when G ≤ Sn act on Xλ
n = {t1, t2, . . . , tn}

by gti = tg(i) for g ∈ G.

Proposition 5.4. Let G ≤ Sn act on Xλ
n = {t1, t2, . . . , tn} as above and let Gt = {g ∈

G : gt = t} for t ∈ Xλ
n . The size of the equivalence class of t ∈ Xλ

n with respect to the
equivalence relation ∼tr in Proposition 5.3 is |G|/|Gt|.

Proof. We show that gGt 7→ gt is a well-defined bijection from the set of cosets of Gt in
G onto the equivalence class G(t) = {gt : g ∈ G} for t ∈ Xλ

n . We first show that Gt is a
subgroup of G.
Let a, b ∈ Gt. Then, we have at = t and bt = t. It follows that (ab)t = a(bt) = at = t.

Thus, ab ∈ Gt, which shows that Gt is closed under the binary operation of G. Since
et = t, we have e ∈ Gt as well. Let h ∈ Gt. Then, we have ht = t. Since t = et =
(h−1h)t = h−1h(t) = h−1t, it follows that h−1 ∈ Gt. Thus, Gt is a subgroup of G.
Let g1, g2 ∈ G. Since g1t = g2t ⇐⇒ g−1

2 g1t = t ⇐⇒ g−1
2 g1 ∈ Gt ⇐⇒ g1G

t = g2G
t, we

see that gGt 7→ gt is a well-defined bijection.
Thus, the size of the equivalence class of t ∈ Xλ

n with respect to the equivalence relation
∼tr in Proposition 5.3 is [G : Gt] = |G|/|Gt|.

Proposition 5.4 directly follows from the orbit-stabilizer theorem [19] in group theory.
The interested reader may refer to [13, 19, 21] for further details.
Now, we illustrate how Proposition 5.4 applies to a simple search space consisting

of standard generalized assignment tableaux of a given shape. We assume that task
reassignments are closed with respect to a search space, i.e., if a task reassignment
transforms a standard generalized assignment tableau ti to tj, then both ti and tj belong
to the given search space consisting of standard generalized assignment tableaux of a
given shape.
For instance, let G = {e, (2 3 5 6), (2 5)(3 6), (2 6 5 3)} be a subgroup of S8 and let

Xλ
8 = {t1, t2, . . . , t8} be a set of distinct standard generalized assignment tableaux of

a given shape λ. Let G act on X8 as above. Since Gt2 = Gt3 = Gt5 = Gt6 = {e}, the
size of the equivalence class of each t2, t3, t5, and t6 is 4 by Proposition 5.4. Similarly,
Gt1 = Gt4 = Gt7 = Gt8 = G. It follows that the size of the equivalence class of each
t1, t4, t7, and t8 is [G : G] = 1.
In contrast, the reader is encouraged to verify that if S8 acts on Xλ

8 as above, the
equivalence class of each ti for 1 ≤ i ≤ 8 is the whole Xλ

8 .
Now, we illustrate an algorithm for finding the equivalence class of a standard generalized
assignment tableau of a given shape with respect to ∼tr. The following algorithms are
slight modifications of the orbit-stabilizer algorithms discussed in [19, 20]1.
We first convert Xλ

n into a totally ordered set (Xλ
n ,≤t) by assigning each ti ∈ Xλ

n to

1In computational group theory right group actions are often considered [19, 20] for convenience. However, we are
only concerned with left group actions and stick with them throughout this paper.

13

a number, denoted |ti|, which is the sum of all entries of ti [30]. The total order ≤t is
defined on Xλ

n in such a way that ti ≤t tj iff |ti| ≤ |tj|. Then, we rename each tableau of
Xλ

n in such a manner that t1 ≤t t2 ≤t · · · ≤t tn.

Algorithm 5.2. TASK-REASSIGNMENT-ORBIT (tj ,X
λ
n ,Ω):

Input: a standard generalized assignment tableau tj ∈ Xλ
n of shape λ ⊢ k, a permutation

group G ≤ Sn given by a generating set Ω = {g1, . . . , gm}.
Output: the equivalence class of a given standard generalized assignment tableau tj
with respect to ∼tr.

1 ∆ := [tj];
2 for α ∈ ∆, g ∈ Ω do

3 β = gα;
3 if β /∈ ∆ then

4 append β to ∆;
5 return ∆;

In Algorithm 5.2 a permutation group is given by the set of m generators. Therefore,
there will be |∆|m images to compute.
As an example of Algorithm 5.2, consider (Xλ

50, <t), where Xλ
50 = {t1, t2, . . . , t50}

and t1 <t t2 <t · · · <t t50 for standard generalized assignment tableaux ti(1 ≤ i ≤ 50)
of shape λ ⊢ k. (We write ti <t tj if ti ≤t tj and |ti| 6= |tj|.) If G ≤ S50 act
on Xλ

50 = {t1, t2, . . . , t50} by gti = tg(i) for g ∈ G as discussed and a group
G is generated by Ω = {(1 2), (2 3), (3 4)}, then the equivalence class of t1 with
respect to ∼tr is {t1, t2, t3, t4}. On the other hand, if a group is generated by
Ω′ = {(47 48), (48 49), (49 50)}, then the equivalence class of t48 with respect to ∼tr

is {t47, t48, t49, t50}. A typical example of a standard generalized assignment tableau
in {t1, t2, t3, t4} is one with smaller number entries from {1, 2, . . . , k}, while a typical
example of a standard generalized assignment tableau in {t47, t48, t49, t50} is one with
larger number entries from {1, 2, . . . , k}.
Let G(tj) denote the equivalence class of tj ∈ Xλ

n with respect to ∼tr. For each
σ ∈ G(tj), the following algorithm finds an element g ∈ G such that gtj = σ. It returns
two lists ∆ and L, in which ∆ stores each σ ∈ G(tj), while L stores the corresponding
group element g ∈ G satisfying gtj = σ. The first elements of ∆ and L are tj and e,
respectively. In Algorithm 5.3 L[σ] denotes L[i] where ∆[i] = σ. Note that if we have
two arbitrary σ1, σ2 ∈ G(tj), we can find g ∈ G such that gσ1 = σ2 using the following
algorithm by obtaining g1tj = σ1 and g2tj = σ2 (i.e., g = g2g1

−1).

Algorithm 5.3. TASK-REASSIGNMENT-TRANSVERSAL (tj,X
λ
n ,Ω):

Input: a standard generalized assignment tableau tj ∈ Xλ
n of shape λ ⊢ k, a permutation

group G ≤ Sn given by a generating set Ω = {g1, . . . , gm}.
Output: Transversal L, the equivalence class of a given standard generalized assignment
tableau tj with respect to ∼tr.

1 ∆ := [tj];
2 L := [e];
3 for α ∈ ∆ do

4 for i ∈ {1, . . . ,m} do

5 β = giα;
6 if β /∈ ∆ then

14

7 append β to ∆;
8 append gi · L[α] to L;
9 return L, ∆;

For instance, consider when G ≤ S50 acts on Xλ
50 = {t1, t2, . . . , t50} by gti = tg(i) for

g ∈ G and a group G is generated by Ω = {g1, g2, g3}, where g1 = (1 2), g2 = (2 3),
and g3 = (3 4). As seen above, the equivalence class of t1 (i.e., G(t1)) with respect to
∼tr is {t1, t2, t3, t4}. Now, we find a group element g ∈ G such that gt1 = t4 using
Algorithm 5.3. The first elements of ∆ and L are given as t1 and e, respectively (i.e.,
∆[1] = t1 and L[1] = e). The reader is encouraged to verify that ∆[2] = t2, L[2] = (1 2),
∆[3] = t3, L[3] = (2 3)(1 2), ∆[4] = t4, and L[4] = (3 4)(2 3)(1 2). Since ∆[4] = t4, we
have g = L[4] = (3 4)(2 3)(1 2).
The time-complexity of both Algorithm 5.2 and Algorithm 5.3 is proportional to |∆|m.

To test whether β ∈ ∆ or β /∈ ∆ for both algorithms is basically a search problem. An
additional data structure (e.g., list) can be used for ∆ to maintain the sorted hash value
for each entry ti in ∆.
The correctness of Algorithms 5.2 and 5.3 directly follows from the orbit algorithms [19,

20] used in GAP [17] by renaming the elements of Xλ
n such that ti 7→ i for ti ∈ Xλ

n and

defining the action of G ≤ Sn on the resulting set, denoted X
λ
n = {1, 2, . . . , n}, simply

by gi = g(i) for g ∈ G, i ∈ X
λ

n accordingly. The total order ≤ is naturally defined on the

set X
λ

n. (The orbit algorithms have already been well-established when G ≤ Sn acts on
the set {1, 2, . . . , n} as above [17]. In Appendix B we discuss how GAP is used for the
applications of Propositions 5.3 and 5.4.)
Note that the total order defined on Xλ

n in this section is not the only total order
that can be defined on Xλ

n . The purpose of defining an equivalence relation and a total
order on Xλ

n is to explore the search space corresponding to Xλ
n in a well-defined and

systematic manner by means of algebraic operations (e.g., a group action). We leave it
as an open question to consider and define other useful total orders on Xλ

n that exploits
the symmetry during the navigation of a search space.

6. Task reassignments on the set of standard assignment tabloids of shape

λ ⊢ n

The counting aspects1 of the search space of the n-task-n-agent assignment problem
using tabloids of a given shape are further investigated in this section.
We first give a brief overview of the necessary background of this section. We assume

that the reader has some familiarity with a vector space [13] over a field K [9]. Examples
of fields are the set of real numbers R and the set of complex numbers C. In the remainder
of this section, G denotes a finite group, K a field, and V denotes a finite dimensional
vector space. Definitions and results used in the following overview are found in [1, 9,
13, 16, 21, 24, 31, 33].
Suppose G acts on V over K. The action of G on V is called linear if the following

conditions are met: (i) g(v+w) = gv+ gw for all g ∈ G and v,w ∈ V , (ii) g(kv) = k(gv)
for all g ∈ G, k ∈ K, and v ∈ V . If G acts on V linearly, then V is called a G-module.
Let (G, ·) and (G′, ◦) be groups. A map φ : G → G′ is a homomorphism if φ(x · y) =

φ(x) ◦ φ(y) for all x, y ∈ G.

1The counting argument of task assignments in distributed systems was researched in [37]. However, its scope is
quite different from that of our approach.

15

The general linear group GL(n,K) is the group of all invertible n×n matrices over K,
whose binary operation is matrix multiplication.
A matrix representation of G is any homomorphism from G into GL(n,K).
The trace of an n × n matrix A = (ai,j) over K, denoted tr(A), is defined to be

a1,1 + a2,2 + · · · + an,n ∈ K.
If X is a matrix representation of G, then the character of X is a function χ : G → K

defined by χ(g) = trX(g) for any g ∈ G. If V is a G-module, then its character, denoted
χV , is the character of a matrix representation X of G corresponding to V .
Let S = {x1, x2, . . . , xn} and let V be a vector space over K with basis {ex : x ∈ S}.

Let G act on V by g(
∑

kxex) =
∑

kxegx for g ∈ G and kx ∈ K by linearly extending the
action of G on S. The G-module V is called the permutation module of G on the set S.
For instance, consider the permutation module of S3 associated with the set S =

{1, 2, 3}. Let V be an 3-dimensional vector space over K with basis B = {e1, e2, e3}. We
give V an S3-module structure by defining g(

∑

kxex) =
∑

kxegx for any g ∈ S3 and
kx ∈ K in an obvious way. For instance, (1 2)e1 = e2, (1 2)e2 = e1, and (1 2)e3 = e3. The
matrix representation X(g) at g ∈ S3 corresponding to V has a 1 in row i and column
j if g · ej = ei, and 0 otherwise.

X(e) =

(

1 0 0
0 1 0
0 0 1

)

,X((1 2)) =

(

0 1 0
1 0 0
0 0 1

)

,X((1 3)) =

(

0 0 1
0 1 0
1 0 0

)

,

X((2 3)) =

(

1 0 0
0 0 1
0 1 0

)

,X((1 2 3)) =

(

0 0 1
1 0 0
0 1 0

)

,X((1 3 2)) =

(

0 1 0
0 0 1
1 0 0

)

.

The reader is encouraged to verify that X is indeed a matrix representation of S3,
e.g., X((1 3 2)) = X((1 2)(1 3)) = X((1 2))X((1 3)) and X(e) = X((1 2)(1 2)) =
X((1 2))X((1 2)). We see that the value of the character χV of V at g equals the num-
ber of elements of B = {e1, e2, e3} that are fixed by the action of g ∈ S3 in the above
example.
Let H be a subgroup of a group G. An action of h ∈ H on the set G defined by

(h, x) 7→ hxh−1 is called conjugation by h. If a group G acts on itself by conjugation,
then the set {gxg−1 : g ∈ G} of x ∈ G is called the conjugacy class of x. Two elements
of Sn are in the same conjugacy class iff they have the same cycle type.

Theorem 6.1 ([9, 33]). If K is a conjugacy class of G, then g, h ∈ K implies χ(g) =
χ(h).

Theorem 6.1 says that characters are constant on conjugacy classes.

Theorem 6.2 ([16]). Let S = {x1, x2, . . . , xn} and let V be the associated permutation
module of G on S. The value of the character χV of V at g ∈ G equals the number of
elements of S that are fixed by the action of g ∈ G.

The action of π ∈ Sn on a Young tableau t = (ti,j) of shape λ ⊢ n is defined here by
πt = (π(ti,j)), where ti,j denotes the entry of t in position (i, j). In a similar manner the
action of π ∈ Sn on tabloids is defined by π{t} = {πt}. For instance, (2 3) ∈ S3 acts on
a tabloid of shape λ = (2, 1) as shown below:

(2 3) 1 2
3

= 1 3
2

We see that (2 3) ∈ S3 gives a permutation to a tabloid of shape λ, swapping “2” and
“3” in the tabloid.
Suppose λ ⊢ n. Let V λ denote the vector space over the field of real numbers R

whose basis consists of the set of tabloids of shape λ, i.e., V λ = R{{t1}, . . . , {tk}}, where
{t1}, . . . , {tk} is a complete list of distinct tabloids of shape λ. Then, V λ is a permutation

16

module of Sn on the set of distinct tabloids of shape λ [33].
The following theorem provides a formula to compute the characters of V λ for λ ⊢ n.

Theorem 6.3 ([50]). Let λ = (λ1, . . . , λi) and µ = (µ1, . . . , µj) be partitions of n. The
characters of V λ evaluated at an element of Sn with cycle type µ is equal to the coefficient
of x1

λ1x2
λ2 · · · xi

λi in

j
∏

k=1

(xµk

1 + xµk

2 + · · ·+ xµk

i).

We now consider task reassignments by means of a group action for n-task-n-agent
assignments represented by the set of standard assignment tabloids of shape λ ⊢ n. We
define the action of π ∈ Sn on standard assignment tabloids in exactly the same way as
above.

{S1
µ} = 1 2 3

4
, {S2

µ} = 1 2 4
3

, {S3
µ} = 1 3 4

2
, {S4

µ} = 2 3 4
1

.

Figure 6. Standard assignment tabloids of shape µ = (3, 1).

Consider g = (1 2) ∈ S4 acts on each standard assignment tabloid {Sk
µ} for 1 ≤ k ≤

4. For instance, (1 2){S3
µ} swaps task 1 and task 2 in the n-task-n-agent assignments

represented by {S3
µ}. We see that g{S1

µ} = {S1
µ}, g{S2

µ} = {S2
µ}, g{S

3
µ} = {S4

µ}, and

g{S4
µ} = {S3

µ}. Note that swapping elements in the same row of the given tabloid remains

the tabloid invariant. We see that g fixes {S1
µ} and {S2

µ} only. The following proposition
is the main result of this section.

Proposition 6.1. The number of standard assignment tabloids of shape λ ⊢ n fixed
by the (task reassignment) action of g ∈ Sn is the character of V λ evaluated on the
conjugacy class of g ∈ Sn.

Proof. Let Sn act on the set S consisting of a complete list of distinct standard assign-
ment tabloids of shape λ ⊢ n as above. Then, we see that its associated permutation
module of Sn on S is simply V λ. The number of standard assignment tabloids of shape
λ ⊢ n fixed by the (task reassignment) action of g ∈ Sn is the character of V λ at g ∈ Sn

by Theorem 6.2. Since characters are constant on conjugacy classes by Theorem 6.1, the
number of standard assignment tabloids of shape λ ⊢ n fixed by the (task reassignment)
action of g ∈ Sn is the character of V λ evaluated on the conjugacy class of g ∈ Sn.

By Proposition 6.1, we see how a task reassignment represented by g ∈ Sn affects the
elements of the search space of the n-task-n-agent assignment problem represented by
the set of standard assignment tabloids of shape λ ⊢ n. Using Lemma 5.2, the size of
the search space represented by the set of standard assignment tabloids of a given shape
λ ⊢ n is obtained. By subtracting the number in Proposition 6.1 from the above size
of the search space, we obtain the total number of standard assignment tabloids of a
given shape λ ⊢ n that is not invariant by a task reassignment represented by g ∈ Sn.
The higher the total number, the more elements of the search space become affected
and the more computations for task reassignments are required as a result. Note that by
Proposition 5.2, a standard assignment tabloid {Sλ} fixed by the action of g ∈ Sn has
the same task turnaround time before and after the action of g ∈ Sn, which does not
need a task reassignment by g ∈ Sn at all.
Now, consider Table 1, which shows the list of characters of V λ for each conjugacy

class of S4 [50]. The characters of V λ in Table 1 can also be computed by means of
Theorem 6.3. For instance, we obtain φ(2,2) at K(2,1,1) in Table 1 by computing the

17

Table 1. Characters of V λ for S4 (φλ: the character of V λ, Kµ: the conjugacy class of S4 with
cycle type µ) [50].

K(1,1,1,1) K(2,1,1) K(2,2) K(3,1) K(4)

φ(1,1,1,1) 24 0 0 0 0
φ(2,1,1) 12 2 0 0 0
φ(2,2) 6 2 2 0 0
φ(3,1) 4 2 0 1 0
φ(4) 1 1 1 1 1

coefficient of x21x
2
2 in (x21 + x22)(x1 + x2)

2, which is 2. (The interested reader may refer
to [33, 50] for further details.) Note that the column of K(1,1,1,1) in Table 1 corresponds

to the dimension of V λ, which indicates the number of distinct standard assignment
tabloids of shape λ ⊢ n for n = 4. Since φ(3,1) at K(2,2) is 0 in Table 1, we see that in
Figure 6 the number of standard assignment tabloids of shape λ = (3, 1) fixed by the (task
reassignment) action of (1 2)(3 4) ∈ S4 is 0 by Proposition 6.1, where (1 2)(3 4) ∈ S4 has
cycle type (2, 2).

7. Conclusions

This paper presented a framework for representing task assignments and reassignments
in distributed systems using Young tableaux and finite groups focused on finite symmet-
ric groups. We showed that a task assignment with a partition is naturally represented by
a Young tableau and that task reassignments are described by means of a group action
on a set of Young tableaux.
We introduced a standard assignment tableau (respectively, a standard generalized

assignment tableau) to represent an n-task-n-agent assignment (respectively, an n-task-
m-agent assignment (n > m)) in a visual and compact manner, while representing a
logical partition of agents (respectively, tasks) in a distributed system.
We discussed row-equivalence classes of Young tableaux to represent certain equiv-

alence classes of standard assignment tableaux. Then, we discussed the search space
reduction using equivalence classes of standard assignment tableaux and showed how
task reassignments by means of a group action affect the elements of the search space for
the n-task-n-agent assignment problem. We also discussed an equivalence relation and a
total order on a set of standard generalized assignment tableaux of a given shape in order
to explore the selected search space for the n-task-m-agent assignment problem (n > m)
in a well-defined and systematic manner by means of group-theoretical methods.
By raising the expressiveness of task assignments, our approach is able to employ some

of the known results of Young tableaux and group theory for task assignments and reas-
signments in distributed systems.
There are a wide variety of tableaux (e.g. skew tableaux [33], oscillating tableaux [40],

etc.) and their algorithms (e.g. row insertion [33], deletion, forward and backward
slides [40], etc.) used in combinatorics and group theory, which have not been discussed
in this paper. Variants of assignment tableaux can be considered by means of those
tableaux. When applying our approach to certain types of distributed systems, one may
need to link additional constraints (e.g. task or node priorities, task dependencies [11],
etc.) or data structure to entries or cells in an assignment tableau. One may also need
to consider the variants of assignment tableaux to represent the specific kinds of tasks
or nodes in certain types of distributed systems. We leave it to future work to consider
the possible variants of assignment tableaux along with their algorithms in distributed

18

systems and to examine them from both theoretical and practical perspectives.

References

[1] J.L. Alperin and R.B. Bell, Groups and Representations, Springer, New York, NY (1995).
[2] A. Benoit and Y. Robert, Mapping pipeline skeletons onto heterogeneous platforms, Journal of Par-

allel and Distributed Computing 68 (2008), pp. 790–808.
[3] R. Bettati and J.W.S. Liu, End-to-End Scheduling to Meet Deadlines in Distributed Systems, in

Proceedings of the 12th International Conference on Distributed Computing Systems, Yokohama,
Japan, 1992, pp. 452–459.

[4] R. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems, SIAM, Philadelphia, PA (2009).
[5] L. Bus and P. Tvrdik, Distributed Memory Auction Algorithms for the Linear Assignment Problem,

in Proceedings of 14th IASTED International Conference of Parallel and Distributed Computing and
Systems, Cambridge, MA, 2002, pp. 137–142.

[6] Y.B. Cho, T. Kurokawa, Y. Takefuji, and H.S. Kim, An O(1) approximate parallel algorithm for
the n-task-n-person assignment problem, in Proceedings of 1993 International Joint Conference on
Neural Networks, Nagoya, Japan, 1993, pp. 1503–1506.

[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to algorithms, 2nd ed., The
MIT Press, Cambridge, MA (2001).

[8] B. Cosenza, G. Cordasco, R.D. Chiara, and V. Scarano, Distributed load balancing for parallel
agent-based simulations, in 19th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), 2011, Ayia Napa, Cyprus, 2011, pp. 62–69.

[9] D. Dummit and R. Foote, Abstract Algebra, 3rd ed., John Wiley and Sons Inc., Hoboken, NJ (2004).
[10] K. Efe, Heuristic models of task assignment scheduling in distributed systems, Computer 15 (1982),

pp. 50–56.
[11] H. El-Rewini and T.G. Lewis, Distributed and Parellel Computing, Manning Publications Co., Green-

wich, CT (1998).
[12] H. El-Rewini, T.G. Lewis, and H.H. Ali, Task scheduling in parallel and distributed systems, Prentice-

Hall, Inc., Upper Saddle River, NJ (1994).
[13] J.B. Fraleigh, A First Course in Abstract Algebra, Addison-Wesley, Reading, MA (1998).
[14] Free Software Foundation, GNU C++ Library, http://gcc.gnu.org/onlinedocs/libstdc++.
[15] W. Fulton, Young Tableaux: With application to Representation Theory and Geometry, Cambridge

University Press, Cambridge (1997).
[16] W. Fulton and J. Harris, Representation Theory: A First Course, Springer, New York, NY (1991).
[17] The GAP Group, GAP - Groups, Algorithms, Programming - a System for Computational Discrete

Algebra, Version 4.7.5 (2014), http://www.gap-system.org/.
[18] S. Hartmann and D. Briskorn, A survey of variants and extensions of the resource-constrained project

scheduling problem, European Journal of Operational Research 207 (2010), pp. 1–14.
[19] D.F. Holt, B. Eick, and E. O’Brien, Handbook of computational group theory, CRC Press, Boca

Raton, FL (2005).
[20] A. Hulpke, Notes on computational group theory, Tech. rep., Colorado State University, Fort Collins,

CO, 2010.
[21] T. Hungerford, Algebra, Springer, New York, NY (1980).
[22] E. Ilavarasan, P. Thambidurai, and R. Mahilmannan, High Performance Task Scheduling Algorithm

for Heterogeneous Computing System, in ICA3PP 2005, M. Hobbs, A. Goscinski, and W. Zhou, eds.,
LNCS 3719, Springer, Melbourne, Australia, 2005, pp. 193–203.

[23] M.W. Jang and G. Agha, Adaptive agent allocation for massively multi-agent applications, in Mas-
sively Multi-Agent Systems I, T. Ishida, L. Gasser, and H. Nakashima, eds., LNCS 3446, Springer,
Kyoto, Japan, 2005, pp. 25–39.

[24] D. Kim, Task swapping networks in distributed systems, International Journal of Computer Mathe-
matics 90 (2013), pp. 2221–2243.

[25] A. Knutson, E. Miller, and A. Yong, Tableau complexes, Israel Journal of Mathematics 163 (2008),
pp. 317–343.

[26] S. Kumar and P. Jadon, A Novel Hybrid Algorithm for Permutation Flow Shop Scheduling, Inter-
national Journal of Computer Science and Information Technologies 5 (2014), pp. 5057–5061.

[27] J.C. Lin, Optimal Task Assignment with Precedence in Distributed Computing Systems, Information
Sciences 78 (1994), pp. 1–18.

[28] L. Liu and D.A. Shell, A Distributable and Computation-flexible Assignment Algorithm: From Local
Task Swapping to Global Optimality, in 2012 Robotics: Science and Systems Conference (RSS),

19

Sydney, Australia, 2012.
[29] A. Naiem and M. El-Beltagy, Deep Greedy Switching: A Fast and Simple Approach For Linear As-

signment Problems, in 7th International Conference of Numerical Analysis and Applied Mathematics
(ICNAAM 2009), Rethymno, Greece, 2009.

[30] V. Prosper, Factorization properties of the q-specialization of Schubert polynomials, Annals of Com-
binatorics 4 (2000), pp. 91–107.

[31] J.J. Rotman, The Theory of Groups: An Introduction, Allyn and Bacon, Inc, Boston, MA (1965).
[32] J.E. Rowe, M.D. Vose, and A.H. Wright, Group properties of crossover and mutation, Evolutionary

Computation 10 (2002), pp. 151–184.
[33] B.E. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric

Functions, 2nd ed., Springer, New York, NY (2001).
[34] A. Sahu and R. Tapadar, Solving the Assignment problem using Genetic Algorithm and Simulated

Annealing, IAENG International Journal of Applied Mathematics 36 (2007), pp. 37–40.
[35] A.Z.S. Shahul and O. Sinnen, Optimal Scheduling of Task Graphs on Parallel Systems, in Proceedings

of the 2008 Ninth International Conference on Parallel and Distributed Computing, Applications and
Technologies, Dunedin, New Zealand, 2008, pp. 323–328.

[36] C.C. Shen and W.H. Tsai, A Graph Matching Approach to Optimal Task Assignment in Distributed
Computing System Using a Minimax Criterion, IEEE Trans. Computers 34 (1985), pp. 197–203.

[37] K.G. Shin and M.S. Chen, On the number of acceptable task assignments in distributed computing
systems, IEEE Transactions on Computers 39 (1990), pp. 99–110.

[38] N.G. Shivaratri, P. Krueger, and M. Singhal, Load Distributing for Locally Distributed Systems,
Computer 25 (1992), pp. 33–44.

[39] O. Sinnen, Task Scheduling for Parallel Systems, Wiley-Interscience, Hoboken, NJ (2007).
[40] R.P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, Cambridge, UK

(1997).
[41] F. Suter, F. Desprez, and H. Casanova, From Heterogeneous Task Scheduling to Heterogeneous

Mixed Parallel Scheduling, in Euro-Par 2004 Parallel Processing, M. Danelutto, M. Vanneschi, and
D. Laforenza, eds., LNCS 3149, Springer, Pisa, Italy, 2004, pp. 230–237.

[42] A.S. Tanenbaum, Distributed Operating Systems, Prentice Hall, Upper Saddle River, NJ (1995).
[43] F.G. Tinetti, A.A. Quijano, and A.D. Giusti, Heterogeneous Networks of Workstations and SPMD

Scientific Computing, in 1999 International Workshops on Parallel Processing, Aizu-Wakamatsu,
Japan, 1999, pp. 338–342.

[44] M.F. Tompkins, Optimization techniques for task allocation and scheduling in distributed multi-agent
operations, Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA (2003).

[45] A.M. van Tilborg and G.M. Koob, Foundations of Real-Time Computing: Scheduling and Resource
Management, Kluwer, Norwell, MA (1991).

[46] M. Šeda, Mathematical Models of Flow Shop and Job Shop Scheduling Problems, World Academy of
Science, Engineering and Technology 31 (2007), pp. 122–127.

[47] L.L. Wang and W.H. Tsai, Optimal assignment of task modules with precedence for distributed
processing by graph matching and state-space search, BIT 28 (1988), pp. 54–68.

[48] E.W. Weisstein, CRC Concise Encyclopedia of Mathematics, CRC Press, Boca Raton, FL (2003).
[49] T. Yamada and R. Nakano, Genetic Algorithms in Engineering Systems, in IEE Control Engineering

Series 55, P.J. Fleming and A.M.S. Zalzala, eds., chap. Job-shop scheduling, The Institution of
Engineering and Technology, London, UK, 1997, pp. 134–160.

[50] Y. Zhao, Young tableaux and the representations of the symmetric group, The Harvard College
Mathematics Review 2 (2008), pp. 33–45.

[51] X. Zheng and S. Koenig, K-Swaps: Cooperative Negotiation for Solving Task-Allocation Problems,
in Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, CA,
2009, pp. 373–378.

Appendix A. Young tableaux for job-shop and flow-shop scheduling

There are a wide variety of task assignment and scheduling problems, such as job-
shop [46, 49], flow-shop shop [26, 46], and resource-constrained project scheduling
problems [18]. Job-shop and flow-shop scheduling have also been discussed in a dis-
tributed system environment [3, 45]. In this appendix we briefly consider assignment
objects using Young tableaux for the job-shop and flow-shop scheduling problem.

20

The job-shop scheduling problem [46, 49], in its classical form, can be described by
a set of n jobs {Ji}1≤i≤n that is to be processed on a set of m machines (or agents)
{Mj}1≤j≤m. Each job consists of a chain of m operations and has a machine order to be
processed, in which m operations of job Ji are processed on m different machines. The
processing of job Ji on machine Mj is denoted by operation Oij . Operation Oij requires
the processing time pij for the use of machine Mj in an uninterruptable manner. The
scheduling problem is to find an assignment of all operations to minimize the makespan
which is the maximum of the completion times (or finishing times) of all jobs (see [46, 49]
for detailed assumptions and constraints for the job-shop scheduling problem).
Meanwhile, in the flow-shop scheduling problem [26, 46], each job consists of a chain

of m operations and has the exact same machine order to be processed, in which m
operations of a job are processed on m different machines. The scheduling problem here
is to find the job sequences on the machines that minimize the makespan [46]. The
flow-shop scheduling problem is a special case of the job-shop scheduling problem [26].
Now, consider the following machine orders of the jobs:

J1 : M4 → M3 → M1 → M2,
J2 : M3 → M2 → M1 → M4,
J3 : M2 → M3 → M4 → M1.

Note that the machine orders of the jobs for the classical, deterministic job-shop
scheduling and flow-shop scheduling problem are given in advance, while job orders on
machines may vary by different schedules. Note also that in the flow-shop scheduling
problem, J1, J2, and J3 have to be the same. An example of job orders on machines is
as follows:

M1 : J1 → J2 → J3,
M2 : J3 → J2 → J1,
M3 : J2 → J1 → J3,
M4 : J1 → J3 → J2.

The assignment tableaux we have discussed in the previous sections cannot describe
the job orders on machines. One possible way of describing the above job assignment
using a generalized Young tableau is as follows:

1 2 3
3 2 1
2 1 3
1 3 2

The rows in the above generalized Young tableau describes the machines, in which the
first row describes the first machine (i.e., M1), the second row describes the second ma-
chine (i.e., M2), and so on. The columns in the above generalized Young tableau describes
the job orders, in which the first column describes (the index of) the first job in the job
orders, the second column describes (the index of) the second job in the job orders, and
so on. For a non-classical job-shop scheduling problem, each job may consist of a chain
of the different number of operations. In this case we may need to use empty cells in a
tableau to describe the different number of job orders on machines.
To define assignment objects using Young tableaux and groups in other types of

scheduling problems, such as resource-constrained project scheduling problems [18], are
problem-specific and have not been well-established thus far, which requires future re-

21

search.

Appendix B. Computational tools

In Section 5.2 we described an equivalence relation ∼tr for task reassignments on Xλ
n =

{t1, t2, . . . , tn} which is a set of standard generalized assignment tableaux ti(1 ≤ i ≤ n)
of shape λ. The following figure describes how the GAP [17, 19, 20] computer algebra
system can be used for finding the size of the equivalence class of t ∈ Xλ

n with respect
to the equivalence relation ∼tr by regarding Xλ

n as a set {1, 2, . . . , n} and defining the
action of G ≤ Sn on {1, 2, . . . , n} simply by gi = g(i) for g ∈ G.

1: gap> g:=Group((1,2,3,4),(47,48,49,50));
2: <permutation group with 2 generators>;
3: gap> Elements(g);
4: [(), (47,48,49,50), (47,49)(48,50), (47,50,49,48), (1,2,3,4), (1,2,3,4)(47,48,49,50),
5: (1,2,3,4)(47,49)(48,50), (1,2,3,4)(47,50,49,48), (1,3)(2,4), (1,3)(2,4)(47,48,49,50),
6: (1,3)(2,4)(47,49)(48,50), (1,3)(2,4)(47,50,49,48),
7: (1,4,3,2), (1,4,3,2)(47,48,49,50), (1,4,3,2)(47,49)(48,50), (1,4,3,2)(47,50,49,48)]
8: gap> Order(g);
9: 16
10: gap> orbits:=Orbits(g, [1..50]);
11: [[1, 2, 3, 4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
12: [20], [21], [22], [23], [24], [25], [26], [27], [28], [29],[30], [31], [32], [33], [34], [35], [36],
13: [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47, 48, 49, 50]]
14: gap> OrbitLength(g,48);
15: 4
16: gap> Size(orbits);
17: 44

Figure 7. Examples of Propositions 5.3 and 5.4 using GAP.

Lines 1–2 in Figure 7 indicates that we choose G ≤ Sn that is generated by the cycles
(1 2 3 4) and (47 48 49 50). Lines 3–7 in Figure 7 shows the elements of G. Lines 10–13
in Figure 7 show all the orbits when G acts on a set {1, 2, . . . , 50} by gi = g(i) for
g ∈ G. Using the renaming map i 7→ ti, we may interpret them as all the equivalence
classes of Xλ

50 = {t1, t2, . . . , t50} with respect to ∼tr when G acts on Xλ
50 by gti = tg(i)

for g ∈ G. For instance, [1, 2, 3, 4] in line 11 can be interpreted as [t1, t2, t3, t4]. Lines
14–15 in Figure 7 indicates that the size of the orbit of 48 ∈ {1, 2, . . . , 50} is 4. We may
interpret it as the size of the equivalence class of t48 ∈ Xλ

n is 4 with respect to ∼tr.
Finally, lines 16–17 show that the number of orbits is 44. We may interpret it as the
number of equivalence classes of Xλ

50 with respect to ∼tr is 44.
We also provide a simple tool written in GNU C++[14] for the n-task-n-agent

assignment problem using genetic algorithms [34] and Young tableaux. Metaheuristic
methods, such as genetic algorithms, are often used for task assignment problems, since
finding an optimal task assignment is often intractable [11, 39]. The purpose of our
tool1, called simple tableaux-based genetic algorithms (STG), is to show how Young
tableaux and their partitions are applied to the existing genetic algorithms for task
assignment problems. The following table shows an example of (file) input and output
of STG for the n-task-n-agent assignment problem for n = 20.

1Source codes and sample data are available at http://www.airesearch.kr/downloads/STG.zip.

22

Table 2. An example of (file) input and output of STG for the n-task-n-agent-assignment problem
for n = 20.

1: Input:

2: NumberOfTasks 20
3: NumberOfAgents 20
4: · · ·
5: Task Length 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

6: Processing Capacity 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
7: · · ·
8: #GAs

9: CrossoverRate 0.8
10: MutationRate 0.005
11: · · ·
12: #Young Tableau : Y, Young Tabloid : N

13: YoungTableau Y

14: NumberOfPartitions 4
15: TableauShape 6 6 4 4
16: · · ·
17: 1
18: 2
19: · · ·
20: 19 16 17
21: 20 18 19

22: Output:

23: (GENERATION 800)

24: ********************** Candidate Solution********************
25: Candidate Solution Fitness:0.205212
26: 1 2 3 4 5 6 7 9 8 11 12 13 14 16 10 17 18 15 19 20
27: · · ·
28: Tableau Shape: 6 6 4 4
29: · · ·
30: {{1, 2, 3, 4, 5, 6}, {7, 9, 8, 11, 12, 13}, {14, 16, 10, 17}, {18, 15, 19, 20}},

31: · · ·

The input of STG specifies the number of tasks, number of agents, the list of task
lengths, the list of processing capacities of agents, parameters of genetic algorithms, etc.
The first entry of the task length list (see line 5) in Table 2 corresponds to the task length
of task ID 1, the second entry corresponds to the task length of task ID 2, and so on.
Similarly, the first entry of the processing capacity list (see line 6) in Table 2 corresponds
to the processing capacity of agent ID 1, the second entry corresponds to the processing
capacity of agent ID 2, and so on. At the bottom of “Input” in Table 2 (see lines 17–21),
the leftmost numbers denote task IDs (i.e., task IDs 1, 2, . . ., 19, and 20), while their
following numbers denote their precedence lists. For instance, task IDs 1 and 2 have no
precedence list, while task ID 19 (respectively, task ID 20) has its precedence list [16, 17]
(respectively, [18, 19]).
The output of STG shows the candidate solution represented by the one-line per-

mutation notation for the n-task-n-agent assignment problem after a certain number
of generations (see line 26 in Table 2). Then, the candidate solution represented by
the one-line permutation notation is converted into the corresponding standard assign-
ment tableau based on the given tableau shape. Finally, the converted candidate so-
lution {{1, 2, 3, 4, 5, 6}, {7, 9, 8, 11, 12, 13}, {14, 16, 10, 17}, {18, 15, 19, 20}} (see line 30 in
Table 2) represents the standard assignment tableau of shape (6, 6, 4, 4) ⊢ 20, where the

23

entries of its first row (reading from left to right) are 1, 2, 3, 4, 5, 6; the entries of its
second row 7, 9, 8, 11, 12, 13; the entries of its third row 14, 16, 10, 17; and the entries
of its last row are 18, 15, 19, 20.

24

