
A recursive orchestration and control framework for large-scale, 

federated SDN experiments: the FELIX architecture and use cases 

Programmable networks are a substantial part of current R&D on Future Internet 

(FI) in Europe and worldwide, with considerable impact generated by large-scale 

testbed infrastructures. In such testbeds, researchers validate proof-of-concept 

prototypes for new algorithms and mechanisms for efficiently controlling and 

managing network resources. One of the key domains for FI research is 

Software-Defined Networking (SDN), which creates innovations in existing 

Internet architectures by shifting the control and logic outside the network 

equipment to Data Centres. International cooperation among leading research 

centres in Europe, Americas and Asia is key to validate SDN foundations and 

tools. EU and Japan have jointly funded the FELIX project (FEderated Test-beds 

for Large-scale Infrastructure eXperiments), which defines a common control and 

orchestration framework to manage federated FI testbeds across continents. This 

framework enables an experimenter to i) request and obtain resources across 

different testbed infrastructures dynamically; ii) manage and control the network 

paths connecting the federated SDN testbeds; iii) monitor the underlying 

resources; and iv) use distributed applications executed on the federated 

infrastructures. This paper describes the high-level architecture of the FELIX 

framework and details six use cases that will be employed for validation. We 

present our analysis and end-user considerations, highlighting the necessity for 

resource accessibility and coherent use of physical connections over a large-scale 

testbed where different control technologies like OpenFlow and the Network 

Service Interface (NSI) are simultaneously used. 
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1 Introduction 

Programmable networks, based on Software-Defined Networking (SDN) principles, 
decouple the control  and data planes and allow for remote software to assume the 
control and management of the underlying network. These networks are a substantial 
part of existing R&D on the Future Internet (FI) in Europe and worldwide. Both 
academic and industrial SDN researchers around the world are embracing large-scale 
testbed infrastructures to validate their proof-of-concept prototypes and experiment with 
new algorithms, protocols or network functions in large-scale, efficient, predictable, 
realistic environments. 



In general, FI testbeds differ in the resources provided as well as in the 
geographic regions in which they operate. With the aim of promoting the use of 
heterogeneous resources across different infrastructures, FI testbeds usually provide the 
experimenter with common interfaces and workflows. This is typically referred to as 
testbed federation and is a way of abstracting different internal infrastructures, 
resources, and procedures to enable the definition of larger experiments with unified 
resources that are handled the same way. An open federation of heterogeneous testbeds 
is non-trivial, however, and requires the design of a suitable architecture and 
framework. The FELIX [1] project aims to facilitate the federation and integration of 
different network and computing resources residing in a multi-domain heterogeneous 
environment across different continents. To achieve this, the FELIX architecture 
extends and advances assets previously developed in other FI projects (e.g. OFELIA), 
for instance by realizing the federation concepts defined in SFA [2] and implemented by 
GENI [3]. In particular, FELIX uses a combination of recursive and hierarchical 
configurations for orchestration, request delegation and inter-domain dependency 
management. Resource orchestrating entities are responsible for the synchronization of 
resources available in particular administrative domains. These entities and other key 
building blocks of the FELIX architecture are introduced in the following sections. 

This paper details six use case scenarios for validating and demonstrating the 
FELIX framework over its distributed SDN virtual infrastructure spanning multiple 
domains. These use cases are grouped in two major domains: Data Domain and 
Infrastructure Domain. The Data Domain use cases focus on the efficient use of SDN 
technologies to provide interconnections across geographically dispersed testbeds with 
the ability to realize data migration dynamically and efficiently. The Infrastructure 
Domain use cases are mainly oriented towards the use of a virtual distributed 
infrastructure that can be employed for migrating entire data processing workloads. This 
paper reports early-phase work focusing on use-case identification [4] and architecture 
definition [5]. Future work will address the validation of these use cases on the FELIX 
federated infrastructure. 

The remainder of this paper is organized as follows: Section 2 describes the 
different resources and key concepts considered in the FELIX experimental facility, 
Section 3 is an in-depth discussion into the FELIX architecture, Section 4 details the use 
cases considered, and Section 5 presents conclusions and future work. 

2 Resources in the FELIX Federated Testbed 

Resources in FELIX include both networking and computing capacities available at 
geographically dispersed facilities. Resources are under the administrative control of 
different but cooperating (federated) stakeholders. Federated resources in FELIX are 
used to create a virtual infrastructure that spans multiple domains. Note that this 
environment is starkly different from the case of a) a single administrative domain with 
resources geographically distributed across the world, e.g. data centres of a single cloud 
operator; and b) loosely coupled, interconnected islands that allow for remote access to 
certain resources. FELIX is primarily interested on network enablers and, in particular, 
integration of SDN testbeds with Network Service Interface (NSI) [6] controlled transit 
domains, with particular focus on the Connection Services (NSI-CS). These services, in 
turn, can be used to solve the dynamic establishment and teardown of network 
connectivity services (based on L2 switching and L3+ flow routing/forwarding) across 
multiple domains and technologies. 



2.1 Virtual Infrastructures through Federation 

Monga et al. [7] note that connecting facilities at continental and inter-continental scale 
is not a trivial task and they motivate the need for connecting facilities (such as those 
considered in FELIX) at the lower layers (e.g. L2), thus avoiding the system overheads 
introduced by the connections established at L3 and above. However, the resulting 
proposals [7], [8], [9] do not conform to emerging standards, such as NSI. Moreover, 
previous work does not comprehensively consider the elements of each island from a 
network control perspective, and does not account for policies and trust. We believe that 
these aspects will play a crucial role in determining the adoption of a framework 
suitable for federated resources. Our analysis of the latest research literature on this 
topic has highlighted the need to introduce new APIs and logic for globally distributed 
heterogeneous facilities (e.g. OFELIA islands and JGN-X RISE testbeds). It is clear that 
these new APIs and logic should capitalize on SDN and NSI mechanisms and protocols 
to facilitate the dynamic, on-demand establishment of end-to-end, cross-continental 
virtual network infrastructures. 

While SDN testbed infrastructures are constructed from the viewpoint of network 
research and development, computing and storage resources are also important 
components in each testbed. FI services can be grouped into two categories: those that 
use network resources to move data, and those that use the whole infrastructure 
(including computing and storage resources) to provide network-based services. 
Therefore, we consider two major classes of use cases for the demonstration of virtual 
infrastructure based on federated testbed resources. Namely, the first category of use 
cases belongs to the data domain since the primary focus here is the use of data. The 
second category of use cases forms part of the infrastructure domain, which includes 
the three resource types in a testbed: networking, storage, and computing. 

2.2 Key System Concepts and Definitions 

The foundation of the FELIX experimental facility consists of the key system concepts 
summarized in this subsection. 

FI experimental facilities (or SDN-controlled network domains) are controlled 
by dedicated software, exposing interfaces that can be used by a federation framework 
to orchestrate resources in a multi-domain environment. The SDN-controlled network 
domains are illustrated in Figure 1. 

An SDN island is a set of virtualized network and computing resources under the 
same administrative ownership and control. It may consist of multiple SDN zones, each 
characterized by a specific set of control tools and interfaces. Each SDN Zone is a set of 
resources grouped together by common technologies and/or control tools and/or 
interfaces, e.g. L2 switching zone, optical switching zone, OpenFlow protocol 
controlled zone, and other transit domain zones with a control interface. The major goal 
of defining SDN zones is to implement appropriate policies for increasing availability, 
scalability and control of the different resources of the SDN islands. Examples of zone 
definitions can be found in widely deployed Cloud Management Systems (CMS) such 
as CloudStack, where infrastructure is partitioned into regions, zones [10], pods, and so 
on. In addition, OpenStack offers infrastructure partitioning through availability zones 
and host aggregates [11]. 

Transit network domains use NSI to expose either automatically or on-demand 
control of the connectivity services and, optionally, exchange inter-domain topology 
information. On-demand interconnectivity with a specific granularity must be provided 
in order to federate resources that belong to distant experimental facilities. In FELIX, it 



is assumed that all experimental facilities will be interconnected with networks running 
NSI-compatible network controllers. The NSIv2.0 standard interface will be used as a 
means to orchestrate network resources for an experiment setup. 

In Figure 1, a slice is a user-defined subset of virtual networking and computing 
resources. Each slice is an abstraction created upon the set of physical resources 
available in the federated SDN Zones and SDN Islands. Every slice is isolated from 
other slices running simultaneously on the same physical resources, thereby avoiding 
interferences from other separate experiments. A slice should also be dynamically 
extensible across multiple SDN Islands. Each slice instantiates only when needed the 
specific set of control tools required for the specific zones it must traverse. 

The slice concept originates from the Slice-Based Federation Architecture (SFA) 
that defines a number of abstractions to identify provisioned resources, enable their 
aggregation and identify entities to manage resources (i.e. slivers, slices and component 
managers). SFA also provides a minimal set of structures and interfaces, which consist 
of two parts: 1) a specific data type per resource encapsulated in a RSpec to define, for 
example, a computing node, and 2) a list of methods following a specific workflow in 
order to reserve and provision any resource. These interfaces and data models facilitate 
and standardize the process of providing a federated slice composed of heterogeneous 
resources located in any other testbed in the federation. In order to do this, every SFA-
compliant testbed must share the same interfaces and data models with its federated 
members to be able to understand resource requests. More information and samples can 
be found on the FELIX project implementation deliverables, available at [1]. 

3 The FELIX Architecture 

The FELIX architecture is the result of a careful analysis of the state of the art in 
relevant FI research projects in both Europe and Japan. From the European side, the 
OFELIA [12], FIBRE [13] and Fed4FIRE [14] projects were taken into account thereby 
providing a working approach to large-scale distributed systems and federation (e.g. 
through SFA and GENI), as well as addressing federation between heterogeneous 
testbeds. From the Japanese testbeds, GridARS [15] and RISE [16] were considered in 
order to manage seamlessly the establishment of dynamic inter-domain communication 
through the NSI protocol. Taken together, we have defined a modular and multi-layer 
architecture for the FELIX control framework. As illustrated in Figure 2, we use the 
combination of two different ‘spaces’, namely the FELIX Space and User Space, which 
cooperate to build, manage, control, and monitor a large-scale virtual infrastructure. 

3.1 Spaces in the architecture 

The FELIX Space is composed of management and control tools that coordinate the 
creation of a virtual environment in heterogeneous, multi-domain, and geographically 
distributed facilities. The elements in this layer operate in both hierarchical and 
recursive models for efficient multi-domain information management and sharing. The 
User Space is composed of any tool or application a user wants to deploy to control his 
or her virtual network environment or to run a particular experiment within it. These 
two logical spaces glue together different functional building blocks, as shown in Figure 
2. 

In the FELIX Space, the Resource Orchestrators (ROs) are responsible for 
orchestrating the end-to-end network service and resources reservation in the entire 
infrastructure, as well as delegating end-to-end resource and service provisioning in a 



technology-agnostic way. ROs are connected to the different types of Resource 
Managers (RMs), which control and manage different kinds of technological resources 
similar to the concept of Component Manager in SFA. For example, the Transit 
Network RM and Stitching Entity RM provide connectivity between L1/L2 transport 
network domains and manage physical devices by using frame, packet, or circuit 
switching technologies; whilst able to support different protocols. The SDN RM 
manages the user traffic environment and the network infrastructure, composed of 
SDN-enabled devices, by updating the flow tables of the physical devices. In addition, 
the Computing RM is responsible for setting up and configuring computing resources, 
i.e. creating new virtual machine instances, network interface card configuration, etc. 
Moreover, the FELIX Space can provide essential functionalities to the FELIX 
architecture using dedicated modules such as the Authentication, Authorization and 
Accounting (AAA) for authenticating and authorizing users, or the Monitoring 
Functions module to retrieve, aggregate and store metering information from 
networking and computing resources to be used as feedback in the experiments. 

In the User Space, the Slice Controller can dynamically control the physical and 
virtual resources belonging to the user's slice environment. In other words, it can 
request more bandwidth, virtual CPU or RAM, add new resources such as storage, or 
even completely reconfigure the slice behaviour. 

3.2 Common design considerations 

The modules of the FELIX architecture address a number of common design 
requirements that are inherent and key to any successful federated Future Internet 
testbed. 
 Resource Orchestration: This entity performs the necessary orchestration of the 
different types of virtualized resources present in the testbeds, such as compute, storage 
or network nodes. 
 Resource Allocation Planning: This entity controls the reservation or allocation 
status for any resource subject to it. Both experimenter and administrator aspects are 
considered, for instance, allocation time desired by the experimenter or load balancing 
and complete provisioning cost for a given resource. 
 Provisioning: The system must be able to instantiate and initialize the resources 
requested by the experimenter. The infrastructure at the different islands must provide 
applications with a virtual flat environment that behaves like a dedicated cluster and in 
which some specific user-space resource information, like IP addresses, are made 
available to the experimenter after proper instantiation and configuration tasks. 

Domain Resource Management: The heterogeneous resources that are provided 
by their corresponding resource management systems need to be managed accordingly, 
within that same domain. 

Authentication, Authorization and Accounting: In order to achieve a controlled 
environment where any action is authorized and can be traced back in detail, we need to 
ensure that a) an actor has a valid claim on the presented identity, b) any action is 
exclusively performed by an authorized actor and c) every action is tracked by the 
accounting system. 

Monitoring: The framework must provide the user with a coordinated set of 
monitoring data for both virtual and physical resources provisioned or located in 
different domains. This monitoring data is used primarily for the accounting of the 
infrastructure use, but also for enhanced control applications based on traffic 
measurements. 



User Access: The federated experimental facility provides friendly interfaces to 
simplify the operations of the experiment lifecycle for the user, as well as facilitating 
the general management of the testbed resources for the administrator. 

 

3.3 Building blocks in the FELIX Architecture 

The FELIX Architecture is composed of a number of modules that implement the 
functionalities identified in the common design considerations. These modules or 
‘building blocks’ are intended to be as generic as possible in order to deal with different 
environments. Figure 3 shows a schema with the different modules and the interactions 
between them. 

3.3.1 Resource Orchestrator (RO) 

The FELIX RO is a key element of the FELIX architecture and the cornerstone of the 
management and orchestration system design.  

We consider that the RO operates over a federated testbed infrastructure of SDN 
‘islands’, which are interconnected by Transit Networks subject to dynamic 
configuration through the Network Services Interface (NSI). The RO module is 
responsible for orchestrating the end-to-end network service as well as for instructing 
the resource reservation and provisioning for the entire FELIX infrastructure. 

There are two different levels at which the RO may operate: a) the upper layer, 
right below the User Access level, and b) the layer immediately underneath. In a typical 
scenario, the RO in the upper layer can operate at continental level, whilst the ROs in 
the lower layer may communicate with the RMs or with other ROs. 

The main functionalities of RO are as follows: i) proxying requests between the 
experimenter and the RMs, ii) recursively delegating requests between ROs of other 
federated infrastructures according to pre-defined policies, iii) maintaining an updated 
and aggregated topological view of its managed, underlying infrastructures, and iv) 
verifying proper workflow and notifying the experimenter of any detected error 
condition. 

Request forwarding for allocating and provisioning resources is performed in a 
technology-agnostic way within the infrastructure and depends on the conditions 
defined in the federation policy engine previously configured for the particular domain. 
It is therefore necessary to ensure similar interfaces for each orchestrator. RO must also 
interpret the experimenter’s request to be able to perform any request forwarding as 
well as evaluate the set of actions received from the user for correctness and notify the 
user of error conditions. 

An internal view of the cross-island topology (for computing, SDN and NSI 
nodes) is necessary for the RO to properly forward requests, for instance by detecting 
where computing resources can be provisioned to meet the experimenter’s 
requirements. Such topological information is filled from the lower layers (its scope is 
the resource management) to the upper layers, where this abstraction and mapping takes 
place. This resource discovery procedure minimizes the data being transmitted by 
taking advantage of the data interchanged between the modules during the expected 
workflow for SFA testbeds. 



3.3.2 Transit Network Resource Manager (TN RM) 

The TN RM enhances the FELIX architecture with mechanisms for network 
connectivity within and between particular domains. In order to deliver the network 
services in the FELIX architecture, the TN RM must be integrated with its southbound 
interfaces within a particular network domain. Such a domain can use different L1/L2 
technologies and may be controlled by specific interfaces, systems such as the Network 
Management System (NMS), or protocols that are technology-dependent and unique in 
each case. 

A single TN RM must communicate with a single RO in order to i) advertise 
resources under its control, ii) receive requests, and iii) notify the RO about success and 
failure events. A single TN RM is responsible for a group of particular network 
resources, which belong to a network domain and are usually managed by a single 
entity, i.e. a network administrator or NMS. 

TN RM usually manages L1/L2 transport networks that are composed of 
physical devices using frames/packets or circuit switching technologies and support 
different protocols, e.g. MPLS/GMPLS. In order to support inter-island connectivity 
between existing OFELIA islands in Europe realized with VPN services over the 
Internet, the TN RM also supports the management of VPN set up and tear down 
procedures. 

In the FELIX architecture, the TN RM southbound interface is based on the 
NSI-CS protocol for L1/L2 transport networks, a proprietary interface for L3 VPN 
services, whilst the northbound interface uses SFA-based APIs that can be understood 
by the RO. 

3.3.3 Stitching Entity Resource Manager (SE RM) 

The SE RM is a software element of the FELIX architecture that controls the Stitching 
Entity (SE), a network element providing the necessary translation mechanisms for a 
slice setup on top of the L2 protocol stack. SE RM hides from a user the actual 
complexity of the multi-domain transport network topology. SE must provide at least 
one of the following network functions: i) QinQ, to encapsulate slice traffic into 
transport network Ethernet frames, or ii) a VLAN translation mechanism to hide from 
users the actual VLAN tagging, which is used by carrier networks while interconnecting 
two or more FELIX islands. 

The SE RM communicates with a single RO to i) advertise an internal topology 
and capabilities of the SE under its control, ii) receive requests, and iii) notify the RO 
about success and failure events. 

A single SE RM must be implemented in each FELIX island and is responsible 
for single or multiple SEs, which belong to a network domain and act as an entry point 
to the island infrastructure. 

3.3.4 SDN Resource Manager (SDN RM) 

The domains in FELIX provide SDN-enabled infrastructures, usually equipped with 
OpenFlow-enabled network devices. This provides experimenters with tools to control 
their network behaviour in a programmatic way, that is, by defining a set of flow rules 
through a software controller that communicates with the physical network devices. 
Each rule defines a matching condition (any OpenFlow header, such as VLAN, and a 



value to match against) as well as an action; and can be either polled from the controller 
by the network device, or directly inserted into special tables within the latter. 

These switches and routers are configured and controlled through the SDN RM. 
This module can interact with a special purpose controller (e.g. FlowVisor) that is able 
to proxy the OpenFlow packets to the corresponding user controller thus keeping each 
environment for experimentation properly isolated from others. The SDN RM also 
allows the administrator to observe the experimenter’s set of rules (which define her 
‘virtual network’) and grant or revoke it. 

3.3.5 Computing Resource Manager (C RM) 

The C RM provides experimenters with mechanisms to configure, instantiate, and 
operate on computing resources and gives administrators the means to manage and 
monitor them. 

This module interacts with the underlying infrastructure (virtualization servers 
and associated hypervisors) through an agent that acts as a proxy between the FELIX 
Control Framework side and the hypervisor. Therefore, the agent is able to 
communicate with the hypervisor and perform the operations provided by the former, 
such as creating, deleting and changing the status of the machines; informing of the 
status of each operation; and synchronizing the status of such resources between the 
infrastructure and management layers. 

3.3.6 Authentication, Authorization and Accounting (AAA) 

AAA makes available the necessary mechanisms to authenticate and authorize users and 
provides accounting for the user actions. These actions may be used from any other 
module (see Figure 3). 

The FELIX architecture implements a Certificate-Based Clearinghouse (CH) 
[17] that establishes the root of a trust chain. By using a certificate-based approach, the 
architecture has the flexibility to federate different SDN islands easily and allows 
verifying the identity and privileges of all actors in the FELIX architecture. 

The CH comprises a set of related services supporting AAA operations and acts 
as a location to lookup information about members, slices and other available services 
in the testbed. These services are offered through the Member Authority for certificate 
and credentials management, the Slice Authority for slice registry and privilege-
mapping against its members, the Project Service for experiment registry and role 
evaluation, the Logging Service for accounting purposes and finally the Service Registry 
to register the aforementioned services. These authorities – derive from SFA principals 
– and the services complement the processes of i) registration and management, ii) 
authentication and authorization, and iii) accounting. 

For federating purposes, these services can be accessed via the Common 
Federation API [18], allowing thus compatibility with tools like OMNI and testbeds 
complying with the GENI Aggregate Manager API [18]. 

The AAA module is closely related to the User Access and is ultimately 
responsible for granting access to resources, as authentication and especially 
authorization procedures are invoked on many operations. It may also be extended 
through policies, which are a set of rules defined by administrators to tailor the upper-
level control on resources and testbeds usage. 



3.3.7 Monitoring Functions 

The monitoring functions are responsible for retrieving monitoring data for 
heterogeneous resources (e.g. compute, SDN, TN nodes) in the diverse testbeds of the 
federation, as well as aggregating and storing it. Monitoring data can be categorized in 
two types: facility monitoring and infrastructure monitoring. 
 The facility monitoring data encompasses the basic status information about the 
facility, such as the status of the servers’ availability or network connectivity; and may 
also include the status of the functional components in the FELIX Control Framework, 
which is aggregated from RMs and ROs. This information can be offered through the 
user portal for both experimenters and administrators. 
 The infrastructure monitoring checks the status of the resources currently 
available or provisioned, as well as some data for the experiments. This includes 
availability of virtualization and networking hardware or other information such as 
uptime and resource usage statistics. 

The slice monitoring developed in FELIX builds upon state of the art monitoring 
tools, as well as testbed specific (facility) monitoring tools. Among these tools we use 
SNMP and OpenFlow flow space monitoring statistics. Monitoring data, is provided not 
only graphically, but also via a Monitoring API so that the statistics can be directly used 
by control mechanisms to make routing decisions based on traffic measurements or link 
status. The use of monitoring data is key to implement reactive decisions in all use cases 
considered in the FELIX project, guaranteeing feedback to the Planning and 
Provisioning tools to ensure that the required slice resources are available and can be 
used for specific workloads. 

3.3.8 User Access 

The FELIX Graphical User Interface (GUI) offers intuitive access to the lifecycle 
management of an experiment for experimenters and general management operations 
for administrators. To do this, the User Portal communicates with the underlying 
modules of the FELIX architecture to use a subset of their functionalities to authenticate 
and authorize users, as well as track their actions and provide them with any requested 
resource management, operation or observation. 

The experimenters are thus able to list the available resources, define a subset of 
resources and allocate or provision them, performs operational actions on the resources, 
retrieve a description of the resources made available to them as well as release the 
resources when no longer needed. 

On the other hand, the administrators may configure and manage resources, define 
different types of policies, grant or revoke resource requests and monitor different sets 
of resources, among others. 

4 The FELIX Use Cases 

As previously mentioned, FELIX usage scenarios are clustered into two groups: Data 
Domain and Infrastructure Domain. Use cases in the Data Domain, include virtual 
infrastructure consisting of SDN islands interconnected with dynamic circuit-switched 
(inter-continental) networks. One important goal is to optimize the use of 
interconnectivity between testbeds to realize data migration. The Infrastructure Domain 
use cases describe user scenarios based upon federated resources placing emphasis on 
the optimized use of the infrastructure as a whole.  



4.1 Data Domain Use Cases 

Data Domain use cases are primarily oriented towards the efficient utilization of the 
physical network by taking advantage of SDN and NSI operations for the dynamic 
interconnection of testbeds dispersed across different continents. The focus here is on 
the coordination of caching, processing and network services rather than on the exact 
caching algorithms to be used, which are in the full scope of FELIX user/experimenter 
priorities and control.  

The testbeds for the Data Domain use cases form a virtual infrastructure that 
consists of SDN islands (L2 domains) interconnected with dynamic circuit-switched 
networks (multi-domain transit networks). In this large-scale facility, data must be 
transferred from the origin to its destination end-point, typically in another SDN island. 
The following subsections summarize each use case and explain how the 
aforementioned flows of data traverse a real network. 

4.1.1 Data-on-Demand: delivery of distributed data by setting data flows over 

the network 

 
This use case investigates how to process large amounts of data stored in 

distributed sites. For instance, several applications, such as astronomical observations or 
collaborative investigations, generate huge data sets, typically stored in dedicated 
storage servers or devices in a nearby data centre. A user may want to run a post-
processing algorithm on the data collected by different data providers. In this context, it 
is neither suitable nor efficient to move the whole data from the original sites to the 
final location but it could be convenient to perform sequential processing on partial 
data. Figure 4 depicts the main components of the scenario, the relevant actors and their 
potential interactions. 

In this use case, an SDN-based (e.g. OpenFlow) controller maintains a global 
view of the whole network topology and could access monitoring information from the 
Data Centres (e.g. delay and jitter per link) then use this information at any given time 
to automatically select adequate paths based on any selected metric. Connectivity would 
be established by requesting the FELIX framework in each Data Centre thus effectively 
setting the SDN flowspace, inter-domain Transit Network connections, and stitching 
them together. By setting the most appropriate connection in each moment, an optimal 
use of the physical network resources could be achieved. 

4.1.2 Data pre-processing for minimizing network latency effect for live data 

This use case aims to provide near real-time data, e.g. satellite images, to users 
located in different and very distant places without incurring in the large Round Trip 
Delay (RTD) values typically found with transfers through the public Internet. Figure 5 
presents an overview of this scenario. Common examples of such a condition are 
congested links during peak working hours of the day, which generate fast re-
adaptations of the TCP transmission windows and, consequently,   critical degradation 
of the throughput. This is particularly evident in inter-continental data transfers that 
typically have high values of RTD (>200ms) between the communicating servers due to 
long distance transmissions. In these situations, a dedicated platform would be placed 
near the receiver station and perform a suitable pre-processing of the data. This platform 
could be able to allocate computing, caching and networking resources at both source 



and destination islands. It could also be able to implement on-demand and application-
driven network services for the specific data transfers, which require well-defined 
network parameters. Consequently, this approach can significantly reduce the size of 
data to be delivered across the transit network and improve the overall system 
performance.  

4.1.3 High-quality media transmission over long-distance networks 

In the last few years we are experiencing a rapid evolution in media content 
delivery, especially in the context of the ultra-high definition of the video streaming, i.e. 
4K and 8K resolution. This evolution directly relates to a higher quality of media 
playback, but also imposes higher bandwidth and lower delay constraints on the 
network. In this scenario, illustrated in Figure 6, hardware optimization is required for 
the transmission and reception of the data content, especially in a very long-distance 
environment. 

At the same time, network streamlining is needed both in the transport segments 
and in the inter-data centre networks (NSI- and SDN-enabled). In this use case, all the 
defects of poor management and control of the network will manifest themselves in 
visible playback artefacts: jitter, incorrect frame sequencing, transmission disruption, 
etc. Moreover, strict requirements are imposed in order to serve 3D video to the user, as 
two flows have to be delivered separately for the left and right eye. In this scenario, 
proper synchronization is extremely important to achieve a satisfactory quality of 
service. This is measured through Quality of Service (QoS) and Quality of Experience 
(QoE) metrics. 

4.2 Infrastructure Domain Use Cases 

The Infrastructure Domain use cases are mainly concerned with the services and 
workloads that can be facilitated by a software platform built on top of the federated 
resources. It is important to note that both the Infrastructure and Data Domain use cases 
share common architectural, trust and security assumptions. In the Infrastructure 
Domain use cases, we consider network, computing and storage resources that can 
dynamically migrate over the allocated physical environment. This work is in line with 
recent developments in leading standardization fora, such as IETF and ETSI, where 
significant attention has been drawn from both industry and academia towards network 
service chaining and the ability to relocate network functions, infrastructure scale-out 
and scale-up, as well as continuous service delivery [19]. The following subsections 
introduce the Infrastructure Domain use cases and explain how the services can be 
deployed in a large-scale facility, such as FELIX. 

4.2.1 Inter-cloud use case: data mobility service by SDN technologies 

This use case focuses on cloud systems and the services provided by them in 
carrier-grade, mission-critical areas. This includes electronic administration, medical 
care and finance. To satisfy the requirements, these complex cloud systems should meet 
demands of an end-to-end guaranteed service quality, reliability of compliance and 
energy efficiency. In this context, every single-cloud system is limited by its available 
resources. This limit can be easily exceeded with a flexible reassignment of resources 
belonging to different cloud systems. Therefore, it is important to establish cooperation 
between data centres, at least on a temporary basis. 



For example, consider a user who moves to a remote location due to a business 
trip. The user wants to use a number of cloud-based services with the same level of 
quality of experience as when using local resources and on par with the quality 
experienced in their home network. Note that in this case, traditional mobility 
management solutions [20] would not be able to mitigate the expected large propagation 
delays between the present user location and the data centre processing the user's 
workload. Instead, the scenario illustrated in Figure 7 shows that it would be preferable 
to transfer user data (such as credentials, applications and services) to a cloud system 
closer to the visiting place (e.g. the cloud with minimum delay relative to the user’s 
visiting place); and therefore reconstructing the user’s work place in a remote location. 

4.2.2 Follow the sun (or moon) principles 

As detailed in [21], Internet usage curves follow a similar daily pattern 
everywhere in the world, and there is a natural shift in the load of data centres to places 
in the world where it is currently daytime. The opposite is true during the night, when 
data centres are under a different amount of load. This is often referred to as the ‘follow 
the sun/moon’ principle. Moreover, the prices of renewable energy strongly depend on 
the availability of wind and solar energy (green energy). As a result, several data centres 
are moved to locations such as Iceland and Finland and perhaps in the future to desert 
areas. 

In this case, one could shift the load of one data centre to another one following 
two different approaches (Figure 8): a) move the entire workload to a more efficient 
data centre basically with a re-routing of the user's traffic, or b) handle the user's 
requests at the less efficient data centres by delegating the work-flow to more efficient 
data centres. It is important to note that both scenarios require dynamic and on-demand 
end-to-end connections between the federated data centres. Moreover, when the 
workload is moved from one data centre to another, a number of different resources 
(network, compute and storage) need to be configured accordingly. 

4.2.3 Disaster recovery by migrating IaaS to a remote data centre 

This use case is inspired by the Business Continuity Planning (BCP) of key 
services to cloud providers. This is particularly pertinent after the experience of the 
Great East Japan earthquake in 2011. Typically, the cloud systems are managed by 
Infrastructure as a Service (IaaS) software, such as OpenStack or CloudStack, and 
provide isolated tenants on physical resources (computers, storage and network) in a 
data centre with multiple IaaS users. These users expect a stable and fault-free 
environment, but under particular conditions, in a serious disaster, it can be difficult to 
continue providing the desired services. In such a case, middleware can assist in 
enabling the migration of the cluster of servers and virtual machines to some remote 
data centre and guarantee business continuity. Another factor used in creating this use 
case is the Hardware as a Service (HaaS) paradigm [22], which can dynamically 
configure virtual IaaS-enabled resources using nested virtualization technologies (e.g. 
KVM and FlowVisor). These resources can be migrated on the HaaS layer of another 
data centre, as depicted in Figure 9, coordinating the configuration of the hypervisor 
resources with the network bandwidth constraints to allow a fast and efficient migration 
of the IaaS instance from one site to another. 



5 Conclusions and Future Work 

We presented the FELIX Control Framework architecture and six use cases for large-
scale SDN experiments over cross-continental federated environments. We grouped the 
set of use cases into two major categories, namely the Data Domain and Infrastructure 
Domain, in order to better reflect their primary applicability area and stakeholders. 
These scenarios highlight the necessity to have a single management and control of the 
intra- and inter- connectivity for the data centres.  These scenarios serve as the 
foundation for the development of complex architectural models and software platforms 
able to manage resources in more efficient ways. 

From the users' perspective, all presented use cases apply to the same and unique 
FELIX framework architecture that includes common system functionalities derived 
from the specific use cases and the users' goals, in the form of requirements. The current 
list of use cases is not meant to be exhaustive.  

The resulting architecture allows experimenters of the testbed to request, 
manage, and monitor a slice in a heterogeneous, distributed, and multi-domain 
environment. This high-level specification is generic enough to allow flexible and 
scalable deployments in the different testbeds that are part of the federated environment. 

The work in the FELIX project is now proceeding towards the implementation 
of the FELIX system components. As part of our future work, we aim to complete the 
development of the feature set defined for each software component and – in parallel – 
test, validate and refine the implemented functionalities through the use cases presented 
in this paper. 
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Figure 1. FELIX key concepts: transit domains, islands, zones and slices. 

 

 
Figure 2. FELIX Architecture and Spaces. 

 



 
Figure 3. Building blocks of the FELIX Architecture. 
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Figure 4. Data-on-demand: distributing data via programmable data flows. 

 
 

 
Figure 5. Data pre-processing: minimizing network latency effect for live data. 

 



 
Figure 6. High-quality media transmission. 

 
 

 
Figure 7. The inter-cloud data mobility scenario. 

 
 



 
Figure 8. The ‘follow the sun-moon’ use case. 

 
 

 
Figure 9. Disaster recovery through IaaS migration in remote data centre. 

 


