
This is a repository copy of Reaction–diffusion chemistry implementation of associative
memory neural network.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/117428/

Version: Accepted Version

Article:

Stovold, James Henry and O'Keefe, Simon Edward Marius orcid.org/0000-0001-5957-
2474 (2017) Reaction–diffusion chemistry implementation of associative memory neural
network. International Journal on Parallel, Emergent and Distributed Systems. pp. 74-94.
ISSN 1744-5760

https://doi.org/10.1080/17445760.2016.1155579

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=gpaa20

Download by: [University of York] Date: 06 June 2017, At: 05:59

International Journal of Parallel, Emergent and
Distributed Systems

ISSN: 1744-5760 (Print) 1744-5779 (Online) Journal homepage: http://www.tandfonline.com/loi/gpaa20

Reaction–diffusion chemistry implementation of
associative memory neural network

James Stovold & Simon O’Keefe

To cite this article: James Stovold & Simon O’Keefe (2017) Reaction–diffusion chemistry
implementation of associative memory neural network, International Journal of Parallel, Emergent
and Distributed Systems, 32:1, 74-94, DOI: 10.1080/17445760.2016.1155579

To link to this article: http://dx.doi.org/10.1080/17445760.2016.1155579

Published online: 07 Mar 2016.

Submit your article to this journal

Article views: 101

View related articles

View Crossmark data

Citing articles: 2 View citing articles

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS, 2017
VOL. 32, NO. 1, 74–94
http://dx.doi.org/10.1080/17445760.2016.1155579

Reaction–diffusion chemistry implementation of associative
memory neural network

James Stovold and Simon O’Keefe

Department of Computer Science, University of York, York, UK

ABSTRACT

Unconventional computing paradigms are typically very difficult to
program. By implementing efficient parallel control architectures such
as artificial neural networks, we show that it is possible to program
unconventional paradigms with relative ease. The work presented
implements correlationmatrixmemories (a form of artificial neural network
based on associative memory) in reaction–diffusion chemistry, and shows
that implementations of such artificial neural networks can be trained and
act in a similar way to conventional implementations.

ARTICLE HISTORY

Received 11 December 2015
Accepted 15 February 2016

KEYWORDS

Associative memory; artificial
neural network; correlation
matrix memory;
reaction–diffusion chemistry;
unconventional computing

1. Introduction

Whilst, in theory at least, unconventional computing paradigms offer significant advantages [37] over
the traditional Turing/von Neumann approach, there remain a number of concerns [36] regarding
larger-scale applicability, including the appropriate method for programming and controlling such
unconventional approaches to computation. The massive parallelism obtainable through many of
these paradigms is both the basis for, and a source of problems for, much of this power. Given
how quickly these approaches could overtake conventional computing methods, large-scale im-
plementations would be incredibly exciting, and would allow for a larger proportion of possible
computations to be computable [13] The power of such parallelism can be seen by the recent advent
of general-purpose graphic processing unit (GPGPU) technology, where huge speed-ups are gained
by parallelising repetitive tasks. However, translating between the traditional, algorithmic approach
to problem solving that is ubiquitous in computer science, and the complex, dynamical, nonlinear
environment that most unconventional paradigms exploit, can be a highly non-trivial task.

CONTACT Simon O’Keefe simon.okeefe@york.ac.uk

© 2016 Informa UK Limited, trading as Taylor & Francis Group

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 75

Conrad [12] proposed the principle of a tradeoff between programmability, efficiency and evolv-
ability of a computational system. This principle states that the price paid for having such a highly-
programmable system is in terms of efficiency, evolvability or both. A corollary to this is, in order to
increase the efficiency of a computational construct either the programmability or the evolvability
must be sacrificed.

This principle underlies the field of unconventional computing. By considering alternative, non-
standard approaches to computation, there is the possibility that the efficiency of the system can be
increased with a minimal loss of programmability.

There are many examples of unconventional approaches to computation, each with their potential
advantages, all with a notable decrease in programmability. For example, Adleman [6] showed
experimentally that DNA could be used as a computational substrate by computing a solution to
the Hamiltonian path problem; Nakagaki et al. [31] showed that the plasmodial slimemould Physarum

polycephalum could compute the shortest path through amaze; and Laplante et al. [27] showed how a
mass-coupled chemical reaction could implement a Hopfield network. While these are all clearlymuch
harder to program than traditional computational substrates, the potential for much more efficient
computation is present in all of them through their intrinsic parallelism. By exploring many alternate
paths of computation simultaneously, certain unconventional substrates have the effect of being able
to implement a non-deterministic UTM, allowing them to potentially solve NP problems in polynomial
time.

The problem faced by researchers in the unconventional computing field is that in order to get
access to this hugepotential power, the systemmust beprogrammed, and in order to use the substrate
as a general-purpose computer, the systemmust be reliable. These considerations are necessarily non-
trivial. The reliability problem is inherent in the non-determinism, as there is no guarantee that the
substrate will perform the computation intended. The programmability problem is that of finding
‘algorithms’ that can be used to performmeaningful computation on the substrate.

Conrad and Zauner [13] quantified the idea that general-purpose machines are not particularly
general-purpose, and that only certain problems can be solved using conventional computational
methods. From this, it becomes clear that different approaches to the same problem – whilst being
Turing equivalent – may be different from other perspectives. For example, consider Turing tarpit

languages such as ‘OISC’ [17] and ‘brainfuck’ [sic] [30]. Although these languages are Turing complete
in the same sense as languages such as C and Java, they have particularly obfuscated programs.
These systems serve to elucidate the difference between being Turing computable and being usably

computable. While an extreme example, ‘brainfuck’ shows the importance of programmability in
general-purpose computers. If this idea is extended to computability in general, just because a system
is labelled as Turing complete does not mean that it should be explicitly used as a Turing machine.

Recent approaches have attempted to utilise parallelism to increase the number of computable
functions. In conventional computing paradigms, this consists of many universal turing machines
(UTMs) working in parallel on the same function. The use of GPGPU processing has been the primary
result of this, but the problem with using multiple forms of the same computational construct is that
each computational unit has the same limitations. Field-programmable gate arrays (FPGAs) help with
this, in that processing units can be implemented alongside bespoke hardware, to speed up regularly-
used operations, but problems arise in terms of the time taken to reprogram the devices. Because of
this, the reprogrammability – and hence the programmability – of FPGAs as a computational construct
is reduced in response to the efficiency gained.

If unconventional computing paradigms are considered as a complement to UTMs, the number of
computable functions is likely to be increased, as the limitations of each system may offset those of
the other. This is because there will inevitably be certain functions that UTMs are better suited to, and
other functions that unconventional approaches are better suited to.

In this paper, we present an implementation of an artificial neural network (a correlation matrix
memory) in an unconventional paradigm (reaction–diffusion chemistry). This implementation will
serve as a method of simplifying the process of programming the unconventional paradigm (we

76 J. STOVOLD AND S. O’KEEFE

already know how to program correlation matrix memories, and it’s simpler than programming
reaction–diffusion reactors).

The paper is organised as follows: in Section 2 we introduce diffusive computation and
reaction–diffusion chemistry (RD chemistry), and show how this can be used for computation; in
Section 3 we describe associative memory and correlation matrix memories; Section 4 discusses the
methodsused togetour results; Sections5–8detail theprocessofdesigningand testing the correlation
matrix memories in RD chemistry. Finally, Section 9 presents our conclusions.

2. Diffusive computation and RD chemistry

We define diffusive computation as an unconventional approach to computing that harnesses the
diffusion of particles as a representation of data. The power of diffusive computing systems come
from their highly parallel architectures, with the emergent behaviour of interactions between dif-
fusing particles dictating the operation of the system. A simple example of a diffusive computing
system is a cellular automaton. While nothing physical diffuses in a cellular automaton, the emergent
behaviour of structures such as gliders gives rise to the diffusion of information. A simple rule for
the cellular automaton can be used to give complex behaviour that is shown to be similar to that of
reaction–diffusion systems [5]. It has recently been shown that diffusion canbe exploited to implement
a one-dimensional cellular automaton [34].

Oneof theprimarybenefitsof considering this unconventional computingparadigm is thepotential
it offers compared toexisting systems. Theproperties of diffusive computation comparedwithgeneral-
purposemachinesmake it amuchbetter candidate for producing systems that have similar complexity
to that of the brain [32].

There aremany different forms of diffusive computation, such as silicon-based diffusion processors
[3], slimemould [2] and cellular automata [5]. In this paper, we consider a fundamental formof diffusive
computation: RD chemistry.

RD chemistry is a form of chemical reaction that changes state in such a way that wavefronts of
reagent appear to flow (or diffuse) across the solution. The most widely-used models are based on
the Belousov–Zhabotinsky (BZ) reaction [10,44], which may display single waves of reaction or an
oscillation between two (observable) states, depending on the setup used.

2.1. Belousov–Zhabotinsky reaction

Belousov [10] discovered a visibly periodic chemical reaction based on Bromate and citric acid. The
reaction cycled through a series of colour changes on a timescale of many seconds – making it very
easy for humans to observe the changes in state. Zhabotinsky [44] then enhanced the effect of the
colour change by replacing the citric acid used by Belousov with malonic acid. This reaction was soon
termed the BZ reaction.

The chemical reaction can be distributed across a wide area, such as in a Petri dish, with the
depth of the liquid reduced to less than 2mm. This can also be achieved by binding the catalyst to
a chemical gel, with a thin layer of chemicals over the top. This ‘thin-layer’ reactor allows the system

Figure 1. A ‘leading centre’ pattern, observed in a thin-layer Belousov–Zhabotinsky reaction (from [43]).

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 77

to be considered as a pseudo-two-dimensional system. As the reaction oscillates, each point in the
reactor will react only with the chemicals available locally to it, meaning that a small disturbance in
the reaction – such as an inhomogeneity (gas bubble, speck of dust etc.) – will cause a wave of colour
change to propagate across the reactor [45], and can result in some very interesting effects (such as
those in Figure 1).

There are many potential catalysts for BZ reactions, each with different properties. Ruthenium
bipyridyl complex (Ru(bipy)2+3) is particularly interesting as a catalyst in BZ reactions as it is photosen-
sitive. This in an incredibly helpful property, as the rate with which ruthenium catalyses the reaction is
inversely proportional to the level of illumination. This can be harnessed as amethod of controlling the
reaction for computation [26]. By disabling different regions of the reactor, either through illumination
or by constraining the distribution of catalyst in a chemical gel, circuits can be constructed that allow
logic gates and other computation to be performed [7].

2.2. Applications

The different applications of diffusive chemical reactions have been studied in great depth since
it was proposed as a basis for morphogenesis by Turing [41]. Between 1986 and 1989, a series of
seminal papers proposed a method of using RD chemistry as a computational medium, showing that
it can be used for a number of image processing operations: in particular, contrast modification and
contour discernment [24–26]. These papers sparked much research interest, particularly given the
CPU-intensive nature of sequential image processing algorithms and how intrinsically parallelised the
process becomes through the use of RD chemistry.

Since then, a large amount of work has been invested examining the computational properties of
RD chemistry. RD chemistry was shown to have the intrinsic ability to find the shortest path through
a maze, with a time complexity that is independent of the complexity of the maze, only dependent
on the distance between start and finish [35]. This is because the propagating waves explore every
reachable path simultaneously, but at each junction, only the firstwave to arrive can continue (because
of the refractory period of the waves, which will inhibit later waves).

There have been many other applications of RD chemistry, for example, construction of a Voronoi
diagram [39]; a chemical diode [7]; and the involute for a static object [28].

The computational universality of RD chemistry (and other nonlinear media) has been discussed
in depth [1], and many authors have suggested different approaches to constructing logic gates. The
use of capillary tubes to constrain the reaction has been considered, using the diameter of the tube to
control the behaviour of the wave, which can be used to implement logic gates (including a universal

Figure 2. Four photographs of a chemical coincidence detector. Each photo has two sections of active substrate, the left-most
acting as inputs, the right-most as output. The waves are inputted (from the top and bottom), and as they collide, the activator
concentration between them rises higher than if only one wave was present. This results in the activator diffusing farther into the
gap between input and output section, producing a wave on the output section (Reprinted with permission from [18]. Copyright
(2003) American Chemical Society).

78 J. STOVOLD AND S. O’KEEFE

Figure 3. Two-layer artificial neural network showing the relationship between input–output pairs and the correlation matrix M,
as given in matrix (1), above.

set) [40]. Various logic gates, a memory cell and a coincidence detector have been constructed using
simulations of the diffusion dynamics when constrained to channels [29].

Gorecki et al. [18] take this idea a step further, constructing the coincidence detector, which
implements an AND gate, both in simulation and in experiments. The coincidence detector (shown
in Figure 2) allows a single wave to pass through in either direction, but the presence of two waves
travelling towards each other raises the activator concentration between the colliding waves higher
than either of the single waves would alone. This higher concentration then diffuses farther into the
gap in catalytic material compared to the concentration from the single waves. The lower part of the
gate, which acts as the output, can then be stimulated by this diffusion. The same paper then presents
an extension of this idea by constructing a cascadable binary counter. Other work has focussed on
constructing arithmetic circuits, often making use of vesicles to constrain the solution [4,22].

If a seriesofwaves arrive at agap in chemicalmediumwithin a certain timeperiod, the concentration
on the far side of the gap will rise higher than with a single wave, because of the diffusion of chemicals
across the gap [19]. If this stimulation is sufficient, it can cause an excitatory response on the far side
of the gap [14], which is directly analogous to the behaviour of spiking neurons, as shown in both
simulation [38] and experimentally [16].

3. Associative memory

Associative memory is a form of memory that associates stimuli with responses. There are two forms
of associative memory, autoassociative memory and heteroassociative memory. In autoassociative
memory, the associated, complete pattern can be retrieved from a small cue: for example, given
the cue ‘lived happily ever…’ most people would immediately think of ‘…after’. However, with
heteroassociative memory, other patterns that are associated with the cue are retrieved, but not
necessarily the completed pattern from the cue. The brain works in a similar way to a combination
of these forms of memory, as when presented with the same cue as above, most people would still
complete the associated pattern, but subsequently think of a fairytale or children’s story.

From a computational perspective, this could be implemented as an artificial neural network [20]
that behaves in a similar fashion, where a noisy pattern or subset of the pattern could be used as the
stimulus to the network in order to retrieve the complete, clean pattern.

The basic idea of an artificial associative memory is to train a fully-connected, two layer artificial
neural network (see Figure 3) in such a way that, when presented with the stimulus vector x , the
connections between the input and output layers will produce the associated output vector y [11].

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 79

In training such a network, the weights on these connections are crucial, as they are what define
the association. The correlation weight matrix, w, stores associations representing p patterns, and is
produced via:

wij =

p
∑

1

x
(p)
i · y

(p)
j

Because of the importance of the correlation weight matrix, one form of artificial associative memory
uses it as the entire basis for the computational construct. This is the correlationmatrixmemory (CMM).

3.1. Correlationmatrixmemories

Willshaw et al. [42] proposed a potential method for the brain to store memories inspired by ‘correl-
ograms,’ produced by shining light through two pieces of card with pinholes on. The resulting spots
of light were captured on a third piece of card, and pertained to the correlation between the patterns
on the first two cards. By capturing the correlation present on the third card, an inverted pattern
could be used to retrieve the original pattern. Willshaw et al. [42] then proposed a discretised form
of correlogram, called an ‘associative net’ that captured this idea, but without the imperfections of an
experimental setup. By presenting a series of input patterns and output patterns to the associative
net simultaneously, the associations can be built up within the net and the patterns later retrieved by
presenting one of the original patterns.

The idea of an associative net later developed into the binary CMM [23]. The CMM is amatrix-based
representationof a fully-connected two-layer neural network (one input layer, oneoutput layer), where
binary values in the matrix represent the binary weights on the connections between the two layers.
As such, the neural network in Figure 3 would be represented by the CMM, M, with k input–output
pairs I and O:

Before training, the initialmatrixMwould be filledwith zeros (as there are no associations stored in
the network). As the k binary-valued input–output pairs are presented to the network, the associations
are built up in the matrix.

Upon recall, we get [20]:

O = MIr

where Ir is the input pattern, and O is the output from the network trained with associations stored
inM. The desired output pattern,Or is currently combined with noise from the other patterns stored
in the network, er , hence:

Figure 4.ACMMcanbe viewed as an electrical circuit, with associations between input–output pairs representedby the connections
between input and output wires (left). The matrix representation of this diagram is given as the correlation matrix on the right.

80 J. STOVOLD AND S. O’KEEFE

Table 1. Parameter values for excitable Belousov–Zhabotinsky simulation.

Parameter Value

ǫ 0.0243
f 1.4
φactive 0.054
φpassive 0.0975
q 0.002
Du 0.45
δt 0.001
δx 0.25

O = Or + er

er =
N
∑

k=1
k �=r

(

IT
k
Ir

)

Ok

The output vector O can be thresholded to a appropriate level, which (depending on how saturated
the network is) should leave the desired output vector Or . This process can be used as a method of
generalisation, allowing the network to retrieve complete patterns from a noisy or distorted cue.

Because the associationmatrix,M, is a binary matrix (only allowing 0 or 1), the network can also be
represented by a grid of wires, with connections between horizontal and vertical wires representing
the 1s in M, and hence the associations stored in the network (see Figure 4).

The binary nature of the CMM lends itself to be efficiently implemented using RD chemistry. The
propagating waves in RD chemistry can be used to implement the binary signals (0/1 encoded as
absence/presence of a wave) that are required to perform training and recall in the CMM. Interactions
between the input waves and correlation matrix can allow recall to occur without external influence.
Section 5 discusses how the correlation matrix, M, may be stored in an RDmemory structure.

4. Methods

Given the speed of the chemical reaction, we have simulated the dynamics of the BZ reaction instead
of using a wet lab setup. A large number of authors have taken this approach previously, including
some of the early papers by Rovinsky [33] who give a mathematical model of the dynamics alongside
the chemical definition.

4.1. Simulation

We simulate a diffusive chemical reaction using the Oregonator model [15]:

∂u

∂t
=

1

ǫ

[

u − u2 − (fv + φ) ·
u − q

u + q

]

+ Du∇
2u

∂v

∂t
= u − v (2)

with parameter values as given in Table 1. The parameters (ǫ, f , φ, q, Du) are described in detail in [21],
but (briefly): ǫ is a scaling factor, f is the stoichiometric coefficient (a conservation ofmass parameter), q

Figure 5. Example time-lapse output from the simulator. The activator concentration is thresholded at u = 0.04 every 1000
simulated time-steps, and marked as white. The illuminated (passive) regions of reactor (high φ) are signified by grey background,
and non-illuminated (active) regions of reactor (low φ) are black.

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 81

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time

A
c
ti
v
a

to
r

C
o

n
c
e

n
tr

a
ti
o

n

Pixel Trace Thresholding

Pixel Trace

Threshold

Figure 6. Graph showing the pixel trace values over time (solid line) and threshold point (dashed line) for approximating wave
arrival time.

is a propagation scaling factor,φ is representative of the illumination, andDu is the diffusion coefficient
for the solution. These are fixed over the course of the reaction and reactor, other than φ, which varies
spatially across the reactor in order to construct ‘circuits.’

The diffusion term (Dx∇
2x for chemical x) is provided for the activator u, but not for inhibitor v.

This is because the simulation assumes that v is bound to an immobile substrate, such as a chemical
gel. Equation 2 are integrated using an explicit forward Euler integration, with timestep δt = 0.001
and five-node discrete Laplace operator with grid spacing δx = 0.25. Waves are started through the
simultaneous stimulation of 15 adjacent pixels by setting their activator concentration (u) to 1.0.

4.2. Extracting results

Two different methods are used to extract results from the simulation. The first is to use time-lapse
images produced by the simulation to visually check the presence or absence of a wave in a given
channel; the second is through the use of ‘pixel traces.’

Time-lapse images were produced by thresholding the activator concentration at u = 0.04 every
1000 simulated time-steps. All points above u = 0.04 were marked as white, while the rest left as they
were (see Figure 5).

The idea behind pixel traces, on the other hand, is to record the concentration values of a small set
of pixels throughout the entire run of the simulation. This record of chemical concentrations can then
be used to produce a graph, showing how the concentrations vary over time. Alternatively, if many
runs are beingperformed, and the arrival of a singlewave is all thatmatters, the activator concentration
can be thresholded to an appropriate value, and used to determine the approximate arrival time of the
wave. The graph presented in Figure 6 shows an example pixel trace extracted from the simulator, and
the threshold point. All time values with concentration above this threshold are then extracted, and
the centre of the ‘bump’ is calculated, as an approximation of the waves arrival time at the specified
pixel. For the work presented, this threshold value is held constant at u = 0.54.

5. Isolated CMMNeuron

While the basic structure of the CMM is a matrix of binary neurons, we first consider the construction
of an individual binary neuron and its connections with other neurons in the matrix. There already
exist a number of physical implementations, including the use of a simple RAM device [9]. This use of

82 J. STOVOLD AND S. O’KEEFE

Figure 7. Basic (simulated) memory cell. The wave propagates round the outer ring, in one direction only, but can be cleared by
stimulating the S-shaped structure in the centre. From [19].

a memory device to store the neural network was the starting point for the construction of the CMM
presented here.

Motoike and Yoshikawa [29] showed how memory cells can be constructed in RD chemistry using
a unidirectional ring of catalytic channels. By arranging the catalyst such that an external signal can
excite the channels, or annihilate an existing excitatory wavefront, the memory cell can perform
set/reset operations. Gorecki et al. [19] proposed amethod of separating the reset and read operations
that were previously linked. An early design for this is given in Figure 7, where the ring round the edge
contains the state of the memory cell and the ‘S’ shape in the centre can be used as a reset signal.

A side-effect of this particular design of memory cell is that by taking an output from one point in
the ring, it can be used to produce a periodic signal (as the wave travels round the ring, it will pass the
output point at a rate proportional to the internal perimeter of the ring).

By storing the value of the CMM neuron in a memory cell in this way (i.e. if there is a connection in
the matrix at that point, the memory cell is set to 1), then training a CMM is just a case of setting the
corresponding memory cells.

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 83

5.1. Requirements

The following requirements were identified as the basis for the CMM design:

Req. 1: The systemmust implement functionality of a CMM neuron.
Req. 1a: The neuron must maintain an internal state, si ∈ {0, 1}.
Req. 1b: The neuron must output si ∧ x for some binary input x ∈ {0, 1}.
Req. 1c: The neuron must allow the state, si to be set to 1 (for training).
Req. 2: The neuron must allow the input (output) of one neuron to be passed to the next as
input horizontally (output vertically).

5.2. Design

Figure 8 shows the initial logical design of the circuit. The circuit consists of a single memory cell, used
to store the internal state (si) of the neuron. This fulfills Req. 1a. It is also used to provide a periodic
pulse to coincidence detector (a), when trained to value 1. The second input to coincidence detector
(a) is the input signal x , which corresponds to an individual binary element of the input vector I . The
output of detector (a) is then si ∧ x , and so fulfills Req. 1b. Finally, on coincidence of input signal x
and training signal z (which corresponds to an individual binary element of the output vector O) the
second coincidence detector (b) sets the memory cell to 1, satisfying Req. 1c. From the fulfilling of all
three sub-requirements, the system can then be said to fulfill Req. 1.

The cascading of inputs horizontally is achieved by splitting the x input value so that it feeds into
both the coincidence detectors in the neuron and to the next neuron in the row. The z input in the
design is representative of the vertical cascade functionality. This is used to pass the training signals
through to each neuron and also to pass through the outputs from those neurons above this in the
column to the bottom of the matrix. These points fulfill Req. 2.

In order to implement the vertical (train/output) cascading without interfering with the logic of
the neuron, it has been moved from the centre to the side, leaving space for the memory cell to be
compactly placed in the centre of the neuron (see Figure 9).

During training, only an input–output pair of (1,1) will load the memory cell, because coincidence
detector (b), which is used for training, implements a logical-AND operation.

During recall, given an input of x = 1, if the memory cell is loaded (i.e. if there exists a link at
this point in the matrix), then this cell will produce an output wave. This is then fed down to the
output channel, marked z. This output channel feeds into the top of the cell below it in the matrix, as
a means of propagating all the values from that column down to the thresholding logic that will be
present at the bottom of the matrix. Because all the waves in any particular column will be produced

(a)

(b)

Figure 8. Diagram showing the logical design of a single CMM neuron. The loop on the right implements a memory cell (with state
si ∈ {0, 1}), the input (output) path is represented by x (z), and is used for both training and recall, and the original value of x (z) is
passed through to the next neuron in the row (column).

84 J. STOVOLD AND S. O’KEEFE

Figure 9. Chemical layout for single CMM neuron. There are two coincidence detectors (AND-gates) in this design, the first is above
thememory cell and is used during training (x ∧ z, detector (b) in Figure 8). The second is below thememory cell and is used during
recall (x ∧ si , detector (a) in Figure 8).

simultaneously, the waves in the z-channel will not interfere with each other in any way. They also
cannot interfere with the x-channels, as by the time an output wave is generated, the x-value will
already have propagated to the next column.

Because of the way the neuron has been designed, we need to include a further requirement to
ensure the design is scalable:

Req. 2a: The periodicity of thememory cell outputmustmatch the time to cascade horizontally.

This requirement means that the cascaded inputs will match with the periodic output of the memory
cell across the entire row of neurons (i.e. the inputs to each neuron will arrive at the same point in the
memory cell’s periodic cycle).

5.3. Testing

Three tests were identified to ensure the proposed design was sufficient for use as a CMM neuron:

Test 1: Test periodicity of memory cell output is equal to time for cascading input horizontally.
Test 2: Test recall logic works for two neurons in each direction.
Test 3: Test training logic works for two neurons in each direction.

Test 1 requires precise measurements of the periodicity of the memory cell output and of the
cascading input. To implement this test, two neurons were wired up horizontally, and a periodic
boundary implemented on the far-side of the second neuron. This means that when the input
propagates through the second neuron, it will reappear at the input of the first neuron. In doing
so, the input becomes a periodic signal that can be compared to the signals from the memory cell
output.

Test 2 can be implemented alongside Test 1, as a side effect of having a memory cell loaded and
providing an input signal. Provided the first neuron produces output at every input signal, and the
second produces no output, then the logic is correct.

Tests 1 and 2 weremeasured through pixel traces at locations (98, 44) and (98, 121) and time-lapse
images.

Test 3 required training signals to be provided to the neurons from both the top and left. As this
cannot be implemented alongside the other tests, it was set up separately. The test was looking for

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 85

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0

0.2

0.4

0.6

0.8
A

c
ti
v
a
to

r
C

o
n
c
e
n
tr

a
ti
o
n

Time (00,000s)

Pixel Trace for Input Signal

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0

0.2

0.4

0.6

0.8

A
c
ti
v
a
to

r
C

o
n
c
e
n
tr

a
ti
o
n

Time (00,000s)

Pixel Trace for Memory Cell Signal

Figure 10. Top graph shows semi-periodic input of x signal, bottom graph shows periodic output of memory cell. The spikes at the
start of the bottom graph result from the initial stimulations.

Figure 11. Time-lapse image showing correctly implemented recall logic in CMM neuron. Left neuron is trained to value 1, and
upon recall outputs value 1. Right neuron is trained to value 0, and upon recall outputs value 0.

whether the coincidence of training signals will load the memory cell, and also tested that the output
of said memory cell will coincide with the input from a recall signal. On top of this, the test needed to
check for whether another training signal will ‘overload’ the memory cell, i.e. loading the cell with two
waves instead of one.

Test 3 was measured using time-lapse images.

5.4. Results

Figure 10 shows the pixel traces for both memory cell and input cascade, for Test 1. The times that
the waves pass the measurement points line up exactly for every other memory cell output – the

86 J. STOVOLD AND S. O’KEEFE

Figure 12. Time-lapse images (top) showing CMMneuron training, and failure to ‘overload’ the neuron (wheremore than one value
is stored in the memory cell at the same time (images are multiples of 10,000 simulated time steps). Images on the bottom show
snapshots (at 500 simulated time step intervals) of the same behaviour, showing how the refractory period of the wave in the cell
prevents a further wave from starting.

semi-periodic nature of the x signal is due to there being two neurons wired up, so the signal takes
twice as long to reach the measurement point.

The recall logic of the CMM neuron worked as expected, as can be seen from the time-lapse image
produced towards the start of the run, in Figure 11.

Finally, the training logic of the CMM also worked as expected, as can be seen from the time-lapse
images in Figure 12.

At this point, all three tests have been shown to be a success and the CMM neuron can now be
considered as fulfilling its requirements.

6. CMM thresholding

The next stage in the development of a complete CMM network is the ability to threshold the output.
One of themain strengths of associativememory is the ability to generalise from a noisy or incomplete
input pattern and returning the complete pattern. As described in Section 3.1, the output pattern, Or

should contribute the most to the output of the network, with just a comparatively small noise term
that needs to be cancelled out.

One method for achieving this is to input a series of waves (corresponding to the integer value
of the threshold) up the output channels of the matrix. This will have the effect of annihilating that
number of waves in each channel. Any waves remaining will propagate to the output, and should
represent Or .

6.1. Requirements

The following were identified as requirements for an appropriate thresholding circuit:

Req. 1: The systemmust generate the specified number (θ) of waves as output.
Req. 1a: The system must maintain an internal state representing the number of waves out-
putted.
Req.2: The systemmust allow extraneous (i.e. >θ) output waves from the CMM to pass through
uninhibited.

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 87

Figure 13. Design for thresholding logic with threshold value θ . The circuit should produce θ waves, which are used to inhibit the
output line. Once the counter reaches θ , it produces a single wave that inhibits the memory cell, stopping the output of waves.

Figure 14. Reaction layout for thresholding logic with threshold value θ = 4. The two memory cells on the right and bottom are
the binary counter, and the large memory cell on the left produces the output waves to inhibit the output line (across the top).

6.2. Design

Figure 13 shows the basic logical design proposed to fill these requirements. The memory cell is used
to produce the periodic output required from the circuit, while the binary counter keeps track of how
many waves have been produced, fulfilling Req. 1a. Once the binary counter reaches threshold, it
inhibits the production of further waves by clearing the memory cell, fulfilling Req. 1.

Figure 14 shows the chemical design (for threshold θ = 4). By inserting a diode junction [7] on
the output channel, the circuit fulfills Req. 2, as the thresholding waves will propagate up the output
channel, until the appropriate threshold has been reached, at which point the output waves will
propagate past the thresholding logic to the output.

6.3. Testing

Test 1: Test number of waves outputted from thresholding logic matches threshold value, θ .

88 J. STOVOLD AND S. O’KEEFE

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time

C
h

e
m

ic
a

l
C

o
n

c
e

n
tr

a
ti
o

n
s

Pixel Trace for Threshold Output (= 4)

Figure 15. Graph showing correct output from threshold circuit, with four periodic waves produced.

Figure 16. Time-lapse image showing single output wave on output channel, after thresholding. Note: the image has been rotated
from the original definition of a CMM, so this represents a single column of neurons.

Test 2: Test number of waves outputted from CMM after thresholding matches number pro-
duced less threshold value.

Both tests can be performed simultaneously, by hooking up a series of five CMM neurons to a
threshold circuit with θ = 4. If both tests are successful, the circuit should output a single wave after
thresholding. These tests can bemeasured using pixel traces, counting the number ofwaves produced
on the output of the threshold logic, and then visually counting the number of waves produced on
the post-threshold output channel.

Figure 15 shows the pixel trace for the threshold circuit output, clearly showing four waves at
regular intervals, as expected. Figure 16 shows a time-lapse image with a single output wave on the
output channel. At this stage, each test has been passed successfully, and the thresholding logic can
now be considered as fulfilling its requirements.

Figure 17. A single column (rotated) of a correlation matrix, successfully trained to the binary value of 21 (10110).

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 89

Figure 18. A single column (rotated) with binary value of 21 (10110) already stored, is successfully trained with the binary value of
5 (00101), resulting in the superposed value 10111 stored in the column.

Figure 19. Two columns (rotated) are succesfully trained with distinct patterns, without interference or crosstalk between the
patterns. First pattern (bottom) is the binary value of 25 (11001); second pattern (top) is the binary value of 21 (10110).

7. CMM training

The final checks to perform on a column of CMM neurons is to ensure that the training mechanism
functions correctly. While Req. 1c in Section 5 showed that an individual neuron can be set to 1, this
did not show howmultiple neurons could be trained to a specific binary pattern.

The first test will be to check that a column of neurons is able to be trained. In order to achieve this,
a column of five CMM neurons have been wired up, as in Figure 16, but without the threshold circuit
(for simplicity). These will be trained to the binary pattern that encodes 21 (10110).

Five waves are sent down the z-channel of the column, with a periodicity such that the waves arrive
at the neurons at the same time as each other (one wave every 15,750 simulated timesteps). When all
five had been sent, the x-channels of the columnwere stimulated with the binary pattern to be stored
(at simulated time t = 77, 000). For the training to be successful, the memory cells pertaining to the 1s
in the stored pattern will be set, and no others.

As can be seen from the time-lapse image in Figure 17, the first, third and fourthmemory cells (from
the top of the column) have been set to 1, and no others. This shows that the training stage for a single
pattern in a single column has been successful.

The next step in the testing the single column is to store a second pattern in the pre-trained column
of CMM neurons. At present, three of the neurons (1,3,4) have been set. By subsequently storing the
binary pattern encoding 5 (00101), the column should only set the final (fifth) neuron in the column,
so that the final neurons set are (1,3,4,5). This pertains to the logical OR of the first and second patterns
(10111). If any of the pre-set neurons are affected, then this test will have failed.

As can be seen from the time-lapse image in Figure 18, the training has been successful and the
appropriate neurons are set, as anticipated.

The next stage in the testing is to ensure that multiple columns can be trained with different
patterns. This will be achieved by connecting up two columns of CMM neurons, and training the
first (left-most) column with the binary pattern encoding 25 (11001) and the second column with the
binary pattern encoding 21 (10110, as before).

As can be seen from Figure 19, the multi-column training was successful, with each column
successfully trained without interference from the other column.

90 J. STOVOLD AND S. O’KEEFE

Figure 20. (Left) logical construction of a trained 6 × 4 CMM, with four patterns (011000, 010111, 101010 and 101101) stored, and
input pattern 010101). (Right) matrix representation of the same CMM, including expected results after thresholding at θ = 2.

Figure 21. Time-lapse image of the 6× 4 CMM network (rotated) after training with the four patterns (011000, 010111, 101010 and
101101).

At this point, it is evident that themechanisms provided for training amatrix of CMMs are sufficient.
The next stage is to check the recall from a trained network of CMMs.

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 91

Figure 22. Final time-lapse of the 6 × 4 CMM network. The time-lapse was cleared at simulated time 575,000, to make the results
clearer. The input pattern (010101) gives a single output after thresholding (second column) which pertains to the value 010111.

92 J. STOVOLD AND S. O’KEEFE

8. Full CMM networks

Before we can be sure we have constructed associativememory, we need to ensure a network of CMM
neurons will perform the computation we expect it to. The design decisions made when considering
the individual neuron, and the testing that has already been performed on the thresholding and
training aspects of the network, ensure that this is straightforward.

The testing in this section will consist of all the major stages required to construct a fully-functional
CMM network. The network will be trained on a number of patterns. It will then be presented with a
noisy version of one of the patterns, and the response thresholded to retrieve the answer. These tests
will be performed on a 6 × 4 matrix of CMM neurons, with threshold θ = 2. The patterns stored in
the matrix will be the binary representations of 24, 23, 42 and 45. Upon presentation of the binary
representation of 21, the network should respond with 23.

Figure 20 shows the logical (trained) construction of this network, where the grey and white boxes
represent 1 and 0 respectively.

As is evident from Figure 21, the training phase successfully stored the four patterns in the network.
The final phase is to check the recall and generalisation of the network. The threshold circuit is

started, and the input pattern (010101) presented to the network. As is evident from Figure 22, the
network responded with the second column, which corresponds to the number 23. From this, it can
be seen that the circuit successfully implements a CMM-based associative memory.

9. Conclusions and future work

RD chemistry and diffusive computation could offer a viable alternative to traditional approaches to
computer science, but are generally very difficult to program. By providing amethod of implementing
different forms of neural network (spiking neurons previously [38]) and associative memory herein,
we offer different methods of encoding problems in RD chemistry using paradigms that are more
well-known.

The work presented implements a binary CMM, and shows that the memory exhibits that same
behaviour in RD chemistry as it would in traditional substrates. One of the main benefits of using
binary CMMs is that training the network doesn’t require altering the circuit in any way, just requires
the setting of a series of memory cells. This is much simpler than training the form of spiking neuron
we proposed previously [38], although a simpler spiking neuron implementation has been proposed
[32] but requires a more implicit representation to that proposed by the current authors.

We suggest that diffusive computation, such as RD chemistry, has many further applications, and
through the use of silicon-based diffusive processors [8] these systems could potentially be used
alongside traditional computing systems, such that those problems that are amenable to solution by
diffusive computation can be offloaded to the diffusive processor for efficient processing.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

SimonO’Keefe http://orcid.org/0000-0001-5957-2474

James Stovold http://orcid.org/0000-0002-0708-2630

References

[1] A. Adamatzky, Computing in Nonlinear Media and Automata Collectives, IoP Publishing, Bristol, 2001.
[2] A. Adamatzky, If BZ medium did spanning trees these would be the same trees as Physarum built, Phys. Lett. A 373(10)

(2009), pp. 952–956.

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 93

[3] A. Adamatzky, B. De Lacy Costello and T. Asai, Reaction—diffusion Computers, Elsevier Science, Amsterdam, 2005.
[4] A. Adamatzky, B. De Lacy Costello, L. Bull, and J. Holley, Towards arithmetic circuits in sub-excitable chemical media,

Isr. J. Chem. 51(1) (2011), pp. 56–66.
[5] A. Adamatzky, A. Wuensche, A. Wuensche, and B. De Lacy Costello, Glider-based computing in reaction–diffusion

hexagonal cellular automata, Chaos, Solitons Fractals 27(2) (2006), pp. 287–295.
[6] L. Adleman,Molecular computation of solutions to combinatorial problems, Science 266(5187) (1994), pp. 1021–1024.
[7] K. Agladze, R.R. Aliev, T. Yamaguchi, and K. Yoshikawa, Chemical diode, J. Phys. Chem. 100 (1996), pp. 13895–13897.
[8] T. Asai, B. De Lacy Costello, and A. Adamatzky, Silicon implementation of a chemical reaction–diffusion processor for

computation of Voronoi diagram, Int. J. Bifurcation Chaos 15(10) (2005), pp. 3307–3320.
[9] J. Austin and T.J. Stonham, Distributed associativememory for use in scene analysis, Image Vision Comput. 5(4) (1987),

pp. 251–260.
[10] B.P. Belousov, A Periodic Reaction and Its Mechanism, Med Publishing, Moscow, 1959.
[11] G.A. Carpenter, Neural network models for pattern recognition and associative memory, Neural Networks 2(4) (1989),

pp. 243–257.
[12] M. Conrad, The brain-machine disanalogy, Biosystems 22(3) (1989), pp. 197–213.
[13] M. Conrad and K. Zauner, Conformation-based computing: A rationale and a recipe, inMolecular Computing, chap 1, T.

Sienko, A. Adamatzky, N. Rambidi, and M. Conrad , eds., MIT Press, Cambridge, MA, 2003, pp. 1–31.
[14] M. Dolnik, M. Marek, and I.R. Epstein, Resonances in periodically forced excitable systems, J. Phys. Chem. 96(8) (1992),

pp. 3218–3224.
[15] R.J. Field, R.D. Janz, and D.J. Vanecek, Composite double oscillation in amodified version of the Oregonatormodel of the

Belousov–Zhabotinsky reaction, J. Chem. Phys. 73(7) (1980), pp. 3132–3138.
[16] P.L. Gentili, V. Horvath, V.K. Vanag, and I.R. Epstein, Belousov–Zhabotinsky “chemical neuron” as a binary and fuzzy

logic processor, J. Unconventional Comput. 8 (2012), pp. 177–192.
[17] W.F. Gilreath and P.A. Laplante,Historical review of OISC, in Computer Architecture: AMinimalist Perspective Vol. 730,

The Kluwer International Series in Engineering and Computer Science, New York, Springer, 2003, pp. 51–54.
[18] J. Gorecki, K. Yoshikawa, and Y. Igarashi, On chemical reactors that can count, J. Phys. Chem. A 107(10) (2003), pp.

1664–1669.
[19] J. Gorecki, J. Gorecka, and Y. Igarashi, Information processingwith structured excitablemedium, Nat. Comput. 8 (2009),

pp. 473–492.
[20] S. Haykin, Neural Networks: A Comprehensive Foundation, 1st ed., Prentice Hall PTR, Upper Saddle River, NJ, 1994.
[21] J. Holley, A. Adamatzky, L. Bull, B. De Lacy Costello, and I. Jahan , Computational modalities of Belousov–Zhabotinsky

encapsulated vesicles, (2010). Available at ArXiv e-prints.
[22] E. Katz (ed.), Molecular and Supramolecular Information Processing: From Molecular Switches to Logic Systems, Wiley-

VCH, Weinheim, 2012.
[23] T. Kohonen, Correlationmatrix memories, IEEE Trans. Comput. C-21 4(1972), pp. 353–359.
[24] L. Kuhnert, A new optical photochemical memory device in a light-sensitive chemical active medium, Nature 319(6052)

(1986), pp. 393–394.
[25] L. Kuhnert, Photochemische manipulation von chemischen wellen (in German), Naturwissenschaften 73 (1986), pp.

96–97.
[26] L. Kuhnert, K.I. Agladze, and V.I. Krinsky, Image processing using light-sensitive chemical waves, Nature 337(6204)

(1989), pp. 244–247.
[27] J. Laplante, M. Pemberton, A. Hjelmfelt, and J. Ross, Experiments on pattern recognition by chemical kinetics, J. Phys.

Chem. 99(25) (1995), pp. 10063–10065.
[28] A. Lázár, Z. Noszticzius, H. Farkas, and H.D. Försterling, Involutes: The geometry of chemical waves rotating in annular

membranes, Chaos 5(2) (1995), pp. 443–447.
[29] I. Motoike and K. Yoshikawa, Information operations with an excitable field, Phys. Rev. E 59 (1999), pp. 5354–5360.
[30] U. Müller, Brainfuck—an eight-instruction Turing-complete programming language, 1993. Available at http://www.

muppetlabs.com/~breadbox/bf/.
[31] T. Nakagaki, H. Yamada, and Á. Tóth, Path finding by tube morphogenesis in an amoeboid organism, Biophys. Chem.

92(1–2) (2001), pp. 47–52.
[32] N. Rambidi, Chemical-based computing and problems of high computational complexity: The reaction–diffusion

paradigm, in Molecular Computing, chap 4, T. Sienko, A. Adamatzky, N. Rambidi and M. Conrad, eds., MIT Press,
Cambridge, MA, 2003, pp. 91–152.

[33] A.B. Rovinsky and A.M. Zhabotinsky, Mechanism and mathematical model of the oscillating bromate-ferroin-

bromomalonic acid reaction, J. Phys. Chem. 88(25) (1984), pp. 6081–6084.
[34] D. Scalise and R. Schulman, Emulating cellular automata in chemical reaction-diffusion networks, in DNA Computing

andMolecular Programming, Vol. 8727, LectureNotes in Computer Science, S.Murata andS. Kobayashi, eds., Springer,
2014, pp. 67–83.

[35] O. Steinbock, Á. Tóth, and K. Showalter, Navigating complex labyrinths: Optimal paths from chemical waves, Science
267(5199) (1995), pp. 868–871.

94 J. STOVOLD AND S. O’KEEFE

[36] S. Stepney, Unconventional computer programming, in Symposium on Natural/Unconventional Computing and Its

Philosophical Significance, AISB, London, 2012.
[37] S. Stepney, S. Abramsky, A. Adamatzky, C. Johnson, and J. Timmis, Grand challenge 7: Journeys in non-classical

computation, in Visions of Computer Science, London, 2008, pp. 407–421.
[38] J. Stovold, and S. O’Keefe, Simulating neurons in reaction-diffusion chemistry, in Information Processing in Cells and

Tissues, Vol. 7223, Lecture Notes in Computer Science, M. Lones, S. Smith, S. Teichmann, F. Naef, J. Walker and M.
Trefzer, eds., Springer, Berlin / Heidelberg, 2012, pp. 143–149.

[39] D. Tolmachiev, and A. Adamatzky, Chemical processor for computation of Voronoi diagram, Adv. Mater. Opt. Electron.
6(4) (1996), pp. 191–196.

[40] Á. Tóth, and K. Showalter, Logic gates in excitablemedia, J. Chem. Phys. 103(6) (1995), pp. 2058–2066.
[41] A.M.Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. London Ser. B, Biol. Sci. 237 641(1952), pp.

37–72.
[42] D.J. Willshaw, O.P. Buneman, and H.C. Longuet-Higgins, Non-holographic associative memory, Nature 222(5197)

(1969), pp. 960–962.
[43] A. Zhabotinsky, and A. Zaikin, Autowave processes in a distributed chemical system, J. Theor. Biol. 40(1) (1973), pp.

45–61.
[44] A.M. Zhabotinsky, Periodic course of the oxidation of malonic acid in a solution (studies on the kinetics of Belousov’s

reaction), Biofizika 9 (1964), pp. 306–311.
[45] A.M. Zhabotinsky, A history of chemical oscillations andwaves. Chaos: Interdisciplinary, J. Nonlinear Sci. 1(4) (1991), pp.

379–386.

	1. Introduction
	2. Diffusive computation and RD chemistry
	2.1. Belousov–Zhabotinsky reaction
	2.2. Applications

	3. Associative memory
	3.1. Correlation matrix memories

	4. Methods
	4.1. Simulation
	4.2. Extracting results

	5. Isolated CMM Neuron
	5.1. Requirements
	5.2. Design
	5.3. Testing
	5.4. Results

	6. CMM thresholding
	6.1. Requirements
	6.2. Design
	6.3. Testing

	7. CMM training
	8. Full CMM networks
	9. Conclusions and future work
	Disclosure statement
	ORCID
	References

