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ABSTRACT
As mobile devices have become the preferred tool for communication, work, and
entertainment, traffic at the edge of the network is growing more rapidly than ever.
To improve user experience, commodity servers are deployed in the edge to form a
decentralized network of mini datacenters each serving a localized region. A challenge
is how to place these servers geographically to maximize the offloading benefit and
be close to the users they respectively serve. We introduce a formulation for this
problem to serve applications that involve pairwise communication between mobile
devices at different geolocations. We explore several heuristic solutions and compare
them in an evaluation using both real-world and synthetic datasets.
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1. Introduction

Mobile Edge Computing (MEC) [1] has emerged as a viable technology for mobile
operators to push computing resources closer to the users so that requests can be
served locally without long-haul crossing of the network core, thus improving network
efficiency and user experience. In a nutshell, a typical MEC architecture consists of four
layers of entities: the mobile users, the base-stations, the edge servers, and the cloud
datacenter. The edge servers are introduced in the edge of the network connecting the
base-stations to the network core, each server being an aggregation hub, or a mini
datacenter to offload processing tasks from the remote datacenter. Because the region,
or “cloudlet” [2], served by an edge server is much smaller, a commodity virtualization-
enabled computer can be used to run compute and network functions that would
otherwise be provided by the datacenter.

MEC can benefit many compute-hungry or latency-critical applications involving
video optimization [3], content delivery [4], big data analytics [5], and augmented
reality [6], to name a few. Originally initiated for cellular networks to realize the 5G
vision, MEC has been generalized for broader wireless and mobile networks [7]. It is
becoming more of a phenomenon with the Internet of Things; more than 5 billion IoT
devices would be connected to MEC by 2020 according to a January 2017 forecast by
BI Intelligence [8].
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A challenge with MEC is how to align the edge servers with the base-stations
geographically to maximize the edge computing benefits. To address this challenge is
application-specific. We focus on applications involving pairwise transactions between
devices. Cellphone calls made from one user to another, peer-to-peer video streaming,
and multi-player online gaming are examples of this type of communication. If the two
devices are served by different edge servers, the datacenter must get involved, thus
incurring a backhaul cost. This cost is avoided if the same server serves both devices.
However, it makes no practical sense if they are located in far remote geographic
locations because a server should be geographically close to where it serves to avoid
high installation cost and long latency [9,10]. On the other hand, those devices with
many transactions should belong to the same server. Although geographic proximity
tends to imply high transactional activity, this relationship is not straightforward. As
the number of servers is finite and their capacities limited, it is impossible to equally
please all the users.

Therefore, we are motivated to solve the following optimization problem: where to
place a set of edge servers of limited capacity and assign them to the base-stations
such that (1) offloading benefit is maximized and (2) each server is geographically
close to its respective users. We require that the server locations be chosen from a set
of predetermined geographic sites; this constraint applies to practical cases involving
non-technical factors in the deployment of the servers, for example, due to economics,
policies, or management.

The server assignment problem is not new outside MEC. Indeed, it belongs to the
body of work on distributed allocation of resources (virtual machines) widely studied
in the area of cloud computing [11–14]. The MEC problem is similar, however with
unique constraints. Firstly, the servers in MEC need be near the user side, not the
datacenter side, and so the communication cost to be minimized is due to the use of
the backhaul network (towards the datacenter), not the front-haul (towards the cells).
Secondly, the geographic spread of the cells served by a MEC server should be a design
factor, which is not a typical priority for a distributed cloud solution.

The MEC server assignment problem has been addressed in some forms, only re-
cently [9,15]. Our key contribution is a new practical formulation for the server assign-
ment problem. We prove its NP-hardness and subsequently explore an approximation
solution based on local search heuristics. We evaluate its effectiveness and efficiency
using both real-world and synthetic datasets and comparing to intuitive approaches.

The remainder of the paper is organized as follows. Related work is discussed in
Section 2. The problem is stated and formulated in Section 3. The algorithm is pro-
posed in Section 4. The results of the evaluation study are analyzed in Section 5. The
paper concludes in Section 6 with pointers to our future work.

2. Related Work

Every finite computing system serving a large number of resource-hungry requests
faces the challenge of how to assign resources to computing units to optimize hard-
ware consumption and best satisfy application QoS requirements. The MEC server
assignment problem shares the same challenge, which can arise in various scenarios.

The assignment problem in [16] applies to a MEC network supporting multiple
applications of known request load and latency expectation and the challenge is to
determine which edge servers to run the required virtual machines (VMs), constrained
by server capacity and inter-server communication delay. In [17,18], where only one
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application is being considered and consists of multiple inter-related components or-
ganizable into a graph, the challenge is how to place this component graph on top of
the physical graph of edge servers to minimize the cost to run the application. In the
case that edge servers must be bound to certain geographic locations, a challenge is
to decide which among these locations we should place the servers and inter-connect
them for optimal routing and installation costs [15].

The above works do not take into account the geographic spread of the region served
by a server. The cells served by the same server can be highly scattered geographi-
cally, causing long latency and high management cost. This motivates the work in [9]
proposing a spatial partitioning of the geographic area such that the cells of the same
server are always contiguous. For this partitioning, a graph-based clustering algorithm
is proposed that repeatedly merges adjacent cells to form clusters as long as the merger
results in better offloading and no cluster exceeds the server capacity. In a similar re-
search [10], where the cells served by each server are also contiguous, the objectives
are to minimize the server deployment cost, the front-haul link cost for each server to
reach its assigned base-stations, and the cell-to-cell latency via the edge; the proposed
algorithm is to repeatedly select the next remaining server of the least deployment
cost and assign it to all the nearby base-stations of the least front-haul link cost so
long as the server capacity is met.

The problem in [9] is aimed to optimize for workloads involving cell-to-cell commu-
nication, whereas the problem in [10] is for individual-cell workloads. The latter also
requires that all the processing be fulfilled by the edge servers, hence zero backhaul
cost. In this aspect, our work is more similar to [9] because we also optimize for cell-
to-cell workloads and cannot avoid backhaul use (thus, the objective to minimize its
cost). However, there are key differences. First, the number of servers is a constraint
in our problem, but not in [9]. Second, we minimize the geographic spread of the cells
served by each server, instead of enforcing their geographic contiguity. We argue that
these cells should not be too far from their server but do not have to be contiguous;
in contrast, the solution in [9] enforces contiguity, but has no control of spread. Third,
we require that the servers be bound to predetermined locations (as in [10,15], but
not a constraint of [9]).

3. Problem Statement

The geographic area A is partitioned into a set C of NC cells, each cell i ∈ C served by a
base-station at a known location in A; we also refer to this base-station as base-station
i. The meanings of “base-station” and “cell” are general, not necessarily understood in
conventional meaning as in cellular networks; for example, as a Wi-Fi access router and
its coverage area in Wi-Fi networks. The edge layer consists of NS < NC edge servers,
whose locations are chosen from a set L ⊂ A of NL ≥ NS candidate locations. For
example, L can be a subset of base-station locations; in this case, an edge server must
be co-located with some base-station (as in [10]). In general, we admit any arbitrary
candidate location in A.

The input workload is a symmetric NC ×NC matrix of non-negative real values wij

representing the transaction demand between users in cell i ∈ C with users in cell j ∈ C.
Note that wii is the transaction demand between users of the same cell i. Denote by
wi =

∑
j∈C wij the total workload involving cell i. Without loss of generality, assume

that the total workload involving all the cells equals 1; i.e.,
∑

i≤j∈C wij = 1. Each
server exclusively manages the workload for a group of base-stations. If base-station
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i is assigned to a server at location l, we have a front-haul link, whose usage cost
should increase with their distance; denote this cost by dil (assumed given, e.g., equal
to distance). Because the backhaul links to reach the remote data center are much
more expensive, representing the worst-case scenario, we assume their cost to be a
fixed cost d much higher than all front-haul link costs. We want to avoid backhaul
links as much as possible.

Our goal is to (1) server location assignment (SLA): assign the best location for each
server and (2) cell-server assignment (CSA): assign the best server for each cell. We
use 0-1 integer programming to formulate these assignments. Define a binary variable
z = (zil)C×L such that zil = 1 iff there is a server at location l and this server serves
cell i. Given z, we can tell exactly the server locations (SLA) and the cell-to-server
assignment (CSA). A location l is a server location iff

∑
i∈C zil ≥ 1, i.e., at least one

cell is assigned to location l. Another way to express this condition is∏
i∈C

(1− zil) = 0.

Because NS different locations must be chosen for the servers, we have the constraint
below,

∑
l∈L

(
1−

∏
i∈C

(1− zil)
)

= NS .

Also, each cell must be assigned to exactly one server, another constraint is∑
l∈L

zil = 1 ∀i ∈ C.

We assume that there is a capacity W < 1 on the compute load a server can process.
In the case a server is fully saturated, the residual workload must be serviced by the
data center. Our objectives are to minimize the backhaul cost and geo-spread under
this assumption.

3.1. Backhaul Cost

A transaction can be one of the following types: between users of the same cell, between
users of two different cells assigned to the same server, and between users of two
different cells assigned to different servers. The compute demand for the edge comes
from transactions of the first two types. Specifically, if a server is placed at location l,
we represent its compute (demand) load as

W (l) =
∑

i≤j∈C
zilzjlwij . (1)

Of course, W (l) = 0 for every non-server location l.
If the server capacity is infinite, all of this load will be fulfilled by the server.

However, limited by the server capacity W , if W (l) > W , the remaining amount
(W (l)−W ) of workload must be processed at the datacenter, thus incurring a backhaul
cost. Consequently, the total backhaul cost is due to not only the transactions between
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cells assigned to different servers, but also those transactions assigned to the same
server that exceed its capacity. We represent the backhaul cost as

COST =
∑

i≤j∈C
wij

∏
l∈L

(1− zilzjl)︸ ︷︷ ︸
i,j not assigned to same server

+
∑
l∈L

max

(
0,
∑

i≤j∈C
zilzjlwij −W

)
︸ ︷︷ ︸
overload amount of server at l

,

(2)

which can also be expressed as

COST =

(
1−

∑
s∈S

∑
i≤j∈C

wijxisxjs

)
+
∑
s∈S

max

(
0,
∑

i≤j∈C
xisxjswij −W

)

=1 +
∑
s∈S

max

(
−W,−

∑
i≤j∈C

wijxisxjs

)

=1−
∑
s∈S

min

(
W,

∑
i≤j∈C

wijxisxjs

)
. (3)

We want to minimize COST .

3.2. Geographic Spread

For better latency and easier management, we should keep the geographic region served
by an edge server from spreading too far, especially for cells with many transactions.
We quantify the geo-spread of a server as the sum of its distance to each assigned
base-station, weighted by transaction demand. If this server is placed at location l, its
geo-spread is quantified as

S(l) =
∑
i∈C

zildilwi. (4)

We want to minimize the total geo-spread for all the servers

SPREAD =
∑
l∈L

S(l) =
∑
l∈L

∑
i∈C

zildilwi. (5)

3.3. Optimization Problem and NP-Hardness

In summary, our problem is the following two-objective optimization problem.
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Problem 3.1 (Min Cost-Spread Assignment (MCSA)).

min {COST, SPREAD}
s.t.

1)
∑
l∈L

(
1−

∏
i∈C

(1− zil)
)

= NS . (6)

2)
∑
l∈L

zil = 1 ∀i ∈ C (7)

3) zil ∈ {0, 1} ∀i ∈ C, l ∈ L. (8)

Theorem 3.2. MCSA is NP-hard.

Proof. Consider a simple configuration of our problem: wij = 0 for all (i, j) ∈ C × C
except for i = j, and dil = 1 for all (i, l) ∈ C × L. Then, it is easy to see that

COST =
∑
l∈L

max(0,
∑
i∈C

zilwii −W )

SPREAD =
∑
l∈L

∑
i∈C

zilwii =
∑
i∈C

wii

∑
l∈L

zil =
∑
i∈C

wii.

Because SPREAD is a constant, we can choose any NS locations to place the servers.
Given these server locations, what remains is to minimize COST ,

min

{
COST =

∑
l∈L

max(0,
∑
i∈C

zilwii −W )

}

This minimization is NP-hard because we show below that an algorithm for it can
be used to solve the optimization version of the partition problem, which is known to
be NP-hard: partition a given set of positive integers, {x1, x2, ..., xn}, into two subsets
such that the respective subset sums differ the least. To reduce to our problem, consider
NS = 2 servers and NC = n cells {1, 2, ..., n} with wii = xi, and let W = 1

2

∑n
i=1wii.

Suppose that an optimal COST solution, (A,B), assigns a cellset A ⊂ [n] to server 1
and a cellset B ⊂ [n] to server 2. Without loss of generality, let

∑
i∈Awii ≤

∑
i∈B wii.

The corresponding COST is

COST (A,B) = max(0,
∑
i∈A

wii −W ) + max(0,
∑
i∈B

wii −W ) =
∑
i∈B

wii −W.

There are two cases. First, if
∑

i∈Awii =
∑

i∈B wii = W , then partition A ∪ B is
optimal for the partition problem because the subset sums are identical. Second, in the
otherwise case,

∑
i∈Awii < W <

∑
i∈B wii, partition A∪B is optimal for the partition

problem because no partition A′ ∪B′ can offer a smaller subset sum difference,∑
i∈B′

wii −
∑
i∈A′

wii <
∑
i∈B

wii −
∑
i∈A

wii.
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Indeed, suppose by contradiction that this partition (A′, B′) exists. Without loss of
generality, let

∑
i∈B′ wii ≥

∑
i∈A′ wii; hence, we must have

∑
i∈B wii >

∑
i∈B′ wii ≥

W ≥
∑

i∈A′ wii. Then, if we assign A′ to server 1 and B′ to server 2, COST will be

COST (A′, B′) = max(0,
∑
i∈A′

wii −W ) + max(0,
∑
i∈B′

wii −W )

= 0 +
∑
i∈B′

wii −W <
∑
i∈B

wii −W

= COST (A,B).

This is contradictory to the assumption that (A,B) is the optimal COST solution.

4. Heuristic Approach

We propose a three-phase algorithm approach: focus on spread optimization first, then
refine the solution based on the cost, which as a side effect may worsen the spread,
and, finally, improve the solution again, this time for a better spread. As local search
is widely used for hard combinatorial optimization problems, we present below the
local search methods to optimize each individual objective and how to apply them in
the three-phase approach.

4.1. Cost-Only Optimization

Because COST does not involve geography, we need compute only the best cell-server
assignment based on the workload demand; any location choice for the servers would
work. In a nutshell, our algorithm starts with a random assignment (random cell-
server assignment and random server-location assignment), and repeatedly apply a
local operation such that the new assignment improves COST . A local operation,
denoted by move cells(l0, l1), runs an algorithm to migrate cells between a pair of
servers at locations l0 and l1; the servers are referred to as the l0-server and l1-server,
respectively. As long as we can find a local operation that improves COST ,

COSTnew < COST, (9)

we make the new assignment permanent and repeat the same process until no such
local operation is found.

Let A0(A
′
0) and A1(A

′
1) denote the cellsets of the l0-server and l1-server before

(after) the location, respectively. According to Eq. (2), COST will decrease if the
quantity

∆COST (A0, A1) =
∑
i∈A0

∑
j∈A1

wij + max

(
0,
∑

i≤j∈A0

wij −W
)

+ max

(
0,
∑

i≤j∈A1

wij −W
)

(10)

decreases as a result of replacing (A0, A1) with (A′0, A
′
1). Consequently, we should

design the cell-moving algorithm such that its objective is to minimize ∆COST .
This challenge can be translated into a graph bipartitioning problem. Let H be

a weighted graph (self-loop possible) where each cell in C is a vertex and an edge
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Algorithm 1: move cells(l0, l1)

1 A0, A1: cellsets of l0-server and l1-server, respectively;
2 Compute W (A0),W (A1): edge weight sum (compute load) of A0 and A1,

respectively;
3 while true do
4 k∗ = 0, GAINmax = 0, GAIN = 0;
5 Unlock all vertices;
6 Compute gain for every vertex;
7 Save the current partition C = A0 ∪A1;
8 for k = 1, 2, ..., |C| do
9 if ∃ an unlocked vertex ik ∈ C of highest gain satisfying InEq. (11) then

10 GAIN + = gain(ik);
11 if GAIN > GAINmax then
12 GAINmax = GAIN ;
13 k∗ = k;

14 end
15 Move vertex ik to the other component;
16 Update gain for every unlocked vertex;
17 Update W (A0) and W (A1);
18 Lock vertex ik;

19 end
20 else break ;

21 end
22 if GAINmax > 0 then
23 Retrieve the original current partition C = A0 ∪A1;
24 Move vertices i1, i2, ..., ik∗ each from its respective original component to

the other component;
25 Update gain for every unlocked vertex;
26 Update W (A0) and W (A1);

27 end
28 else break ;

29 end
30 return;

connects cell i and cell j if they have transactions; the weight of edge (i, j) is wij . A
feasible solution is a partition of H into two components. The first additive term of
Eq. (10) is the cut weight of this partition and the second and third additive terms
represent a capacity-constrained quality for the partition. We derive an algorithm to
compute the best partition based on the Fiduccia-Mattheyses (FM) heuristic [19]. FM
is effective for solving the classic graph min-cut bipartitioning problem whose objective
is to minimize the cut weight while balancing the vertex weight. FM is fast (linear
time in terms of the number of vertices) and simple (each local operation involves
moving only one vertex across the cut). Because our objective is different (minimizing
∆COST ), we need to modify FM.

The cell-moving algorithm works as follows (see Algorithm 1). Resembling FM, the
algorithm runs in passes and in each pass we compute a sequence of cell migrations
each moving a vertex from A0 to A1 or from A1 to A0 such that ∆COST (A0, A1) after
this series is maximally improved. The algorithm stops when no improvement can be
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made. To determine which vertex to move, let us define for each vertex a quantity
called “gain”, which is the cost reduction if the vertex were moved from its component
to the other component. Consider a vertex i and, without loss of generality, suppose
that i ∈ A0. If vertex i were moved to A1, its gain in the cut weight is

gaincut(i) =
∑
j∈A1

wij −
∑

j∈A0,j 6=i

wij .

The edge weight sum of A0 and that of A1 would be changed to

W ′(A0) = W (A0)−
∑
j∈A0

wij

W ′(A1) = W (A1) + wii +
∑
j∈A1

wij

and so the gain in the capacity-constrained quality is

gaincap(i) = max(0,W (A0)−W ) + max(0,W (A1)−W )

−max(0,W ′(A0)−W )−max(0,W ′(A1)−W ).

The gain of vertex i is

gain(i) = gaincut(i) + gaincap(i).

Intuitively, a positive (negative) gain would result in a smaller (larger) ∆COST if the
vertex switched its component.

At the beginning of each pass, we construct a priority queue of vertices based on
their gain. This queue includes only those vertices whose migration would result in

max(W ′(A0),W
′(A1)) ≤ max(W,W (A0),W (A1)). (11)

In other words, we consider moving a vertex only if the moving improves the load
balancing between the two servers or keeps them under the server capacity.

During the current pass, we repeatedly select the vertex of highest gain from the
priority queue, move it, and update the queue. After this vertex is moved, it is “locked”
so that it cannot be moved again in the current pass. Then, we repeat this process
until the queue is empty. We keep track of the gain accumulation after each kth step:

GAINk =

k∑
t=1

gain(it),

where it is the vertex chosen in step 1 ≤ t ≤ k. The best move decision would be to
move vertices i1, i2, ..., ik∗ such that k∗ = arg maxk≤NC GAINk.

If GAINk∗ > 0, these moves would result in better ∆COST because the new ∆COST

is ∆COST − GAINk∗ < ∆COST ; we make these moves permanent and go on to the
next pass which repeats the same procedure. Else, the algorithm makes no change
(i.e., keep the same partition as that before the pass starts) and stops.

When a local operation move cells(l0, l1) finishes, we will use the final assignment
resulted from this operation. The algorithm continues repeatedly with finding the next
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move cells() local operation that can further improve COST and stops when no such
local operation is found.

4.2. Spread-Only Optimization

To minimize SPREAD can be reduced to solving a k-median problem [20]. In k-
median, given a set of n clients and a set of m facilities, the goal is to choose k facilities
to open and assign an open facility to each client such that the total assignment cost is
minimum, assuming that the assignment cost to service client i by facility l is γil (by
default, a metric). We can consider each server a facility to open (k = NS , m = NL)
and each cell a client (n = NC). The cost to assign client i to facility l (if open) is
γil = widil (alternatively, we can think of dil as the assignment cost per unit of service
and wi as the service demand). Then the total service cost of the corresponding k-
median problem is ∑

l∈L: open

∑
i∈C

zilγil =
∑
l∈L

∑
i∈C

zildilwi = SPREAD.

Therefore, any k-median solution zil (zil = 1 iff facility l is open and client i is served
by this facility) is a solution that minimizes SPREAD for our problem.

K-median is NP-hard [20] and the best approximation factor known to date is
2.675 + ε, achieved by Byrka et al. [21]. Using the local search approach, one can
obtain an approximation factor of (3 + 2/p), for example by Arya et al.’s polynomial-
time algorithm [22]. This algorithm starts with a feasible assignment and repeatedly
perform a p-facility swap until no further cost reduction.

Similarly, our algorithm starts with a random assignment and then repeatedly ap-
plies a series of local operations. Let assign cells(L) denote an algorithm that assigns
the cells in C to the servers located at a given subset of locations, L ⊂ L, such that a
cell is always assigned to the nearest server; i.e.,

assign cells(L) : i 7→ arg min
l∈L

dil.

A local operation, denoted by swap locations(l0, l1), involves a pair of a server location
l0 in the current server location set L and a non-server location l1 6∈ L, and does the
following:

• Remove location l0 from the server set
• Add location l1 as a new server location set
• Run assign cells(L′) to obtain a new cell-server assignment where L′ = L−{l0}+
{l1} is the new server set.

A local operation is chosen to take place permanently if SPREAD of the resultant
assignment is improved by at least a constant factor κ ∈ (0, 1); i.e.,

SPREADnew < (1− κ)× SPREAD. (12)

Subsequently, the algorithm goes on repeatedly with finding another local operation
satisfying this inequality until none is found.
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4.3. Three-Phase Algorithm

The above algorithms are designed for only one objective, cost or spread. We propose
the following three-phase algorithm; a summary is given in Algorithm 2.

In Phase 1 (lines 1-4 of Algorithm 2), we run the spread-only algorithm presented
above to obtain an assignment with the (approximately) best spread.

In Phase 2 (lines 5-7 of Algorithm 2), we start with this assignment and adjust
the cell-server assignment to improve cost. During the process, the server-location
assignment is intact. For the adjustment, we apply the same local search algorithm
(same local operation) as in the cost-only algorithm except for one small modification.
Specifically, a local operation, move cells(l0, l1), is made permanent not only if the
resultant cost is less (Eq. (9), but also the resulted spread remains below a threshold,

SPREADnew ≤ (1 + ε)× SPREAD0, (13)

Because a local operation, while lessening the cost may worsen the spread, the thresh-
old is introduced to keep the spread within a reasonable factor of SPREAD0 that is
the spread at the start of Phase 2. Here, ε ∈ (0,∞); we can set ε =∞ if the goal is to
bring down the cost aggressively.

In Phase 3 (lines 8-10 of Algorithm 2), we start with the assignment of Phase 2 and
recompute the server locations for better spread (which has been worsen as tradeoff
during Phase 2 compared to that in Phase 1). During the process, the cell-server
assignment is intact. Denote the server set by S and the cellset of each server s ∈ S
by cellset(s). The unknown to compute is the binary variable ysl, set to 1 iff server s
is placed at location l. We have

SPREAD =
∑
l∈L

∑
i∈C

zildilwi =
∑
s∈S

∑
l∈L

ysl
∑

i∈cellset(s)

dilwi︸ ︷︷ ︸
Asl

. (14)

Because a server must be assigned to an exclusive location, to minimize∑
s∈S

∑
l∈L yslAsl is equivalent to finding a min-cost maximal matching in a com-

plete bipartite graph (S,L) where an edge connects a vertex s ∈ S to a vertex l ∈ L
with cost Asl (which is known from the intact cell-server assignment). Therefore, we
apply the Hungarian Algorithm [23] to compute this matching (ysl), which runs in
polynomial time (cubic in the number of vertices).

5. Evaluation

We conducted an evaluation in two scenarios: using a synthetic dataset (Synthetic500)
to represent a workload that has no relationship with geography and a real-world
dataset (Milano625) to represent a workload in which demand is higher between cells
of increasing proximity.

• Synthetic500: The service area is a 2D square area A = [0, 1]2 where NC = 500
random locations are chosen for the base-stations and their corresponding cells
are the Voronoi cells of A. The workload demand wij between cell i and cell j is
generated uniformly at random: wij ∼ uniform(0, 1).
• Milano625: We constructed this dataset from the collection of geo-referenced

Call Detail Records over the city of Milan during Nov 1st, 2013 - Jan 1st, 2014
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Algorithm 2: Three-Phase Algorithm

/* Phase 1: K-median to minimize SPREAD */

1 Initial assignment: Choose a set L of NS random locations for the servers and
assign cells to these servers randomly;

2 while ∃ l0 ∈ L and ∃ l1 6∈ L such that swap locations(l0, l1) would result in an
assignment satisfying InEq. (12) do

3 Permanently apply the assignment resulted from swap locations(l0, l1);
4 end
/* Phase 2: FM to improve COST */

5 while ∃ l0, l1 ∈ L such that move cells(l0, l1) would result in an assignment
satisfying InEq. (9) and InEq. (13) do

6 Permanently apply the assignment resulted from move cells(l0, l1) ;
7 end
/* Phase 3: Hungarian to improve SPREAD */

8 Let S be the set of servers (i.e., those serving cells according to the above
assignment);

9 Compute matrix [Asl]S×L as defined in Eq. (14) ;
10 Run Hungarian Algorithm on the cost matrix [Asl]S×L ;
11 return;

(https://dandelion.eu/). Specifically, we partition the area into a grid of 25×25 =
625 cells of size 0.94km× 0.94km, and count the calls between these cells made
during the Monday of Nov 4th, 2013.

In both studies, the transaction demand values are normalized such that they sum
to 1. The number of MEC servers is set to NS = 10 whose location is chosen from
NL = 50 random locations. These quantities are reasonable given the number of cells.
The server capacity is set to W ∈ {0.03, 0.04, ..., 0.08}, meaning {3%, 4%..., 8%} of
the total workload. Figure 5 shows the heat map of the workload demand for the
Milano625 dataset.

For convenience, we refer to our three-phase algorithm as KMED/FM/HUNG, as
it applies k-median, Fiduccia-Mattheyses (FM), and Hungarian algorithms in the
three phases, respectively. Serving as benchmark for comparison are: RAND (the ran-
dom assignment algorithm), KMED (the spread-only algorithm using k-median), and
FM/HUNG (the cost-only algorithm using FM with another step using Hungarian
to improve spread). Note that the only difference between KMED/FM/HUNG and
FM/HUNG is that the former starts with a KMED assignment while the latter starts
with a random assignment. The metrics for comparison are cost (COST ) and spread
(SPREAD). RAND offers a good upper-bound for both cost and spread, while KMED
represents a good lower bound (supposedly best) for spread and FM/HUNG a good
lower-bound (supposedly best) for cost.

The κ parameter in Eq. (12) is set to 0.0001 for k-median and ε in Eq. (13) is set to∞
(no spread constraint in the second phase). The simulation runs on 10 random sets of
candidate server locations and, for each set, 5 random choices for the initial assignment.
The results are averaged over these 50 runs and plotted with 100% confidence interval.
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Figure 1. Heat map of workload wij for Milano625 , where i is the x-axis, j the y-axis, and (0, 0) at top-left.

(a) (b)

Figure 2. Synthetic500: synthetic workload, no relationship with geography

5.1. Workload Without Geography Correlation

Figure 2 shows the results for the synthetic case in which geography is no factor in
workload demand. In terms of cost (Figure 2(a)), KMED is almost identical to RAND,
both incurring a high backhaul cost of almost 0.9 (i.e., 90% of the total workload), even
when the server capacity increases. This is not surprising because KMED is cost-blind
and so when workload has no relationship with geography, minimizing spread results
in a cost as bad as that of a random assignment. Perhaps for the same reason, the other
two methods, KMED/FM/HUNG and FM/HUNG, also incur almost the same cost. In
other words, whether we start with a RAND assignment or a KMED assignment, an
application of FM+HUNG would result in similar costs. It is important to note that
the FM step is effective, especially as the server capacity increases. With a server
capacity of 0.08, applying FM reduces the backhaul cost to 0.73, a 20% improvement
from the initial assignment.

In terms of spread (Figure 2(b)), KMED is the best (expected) and RAND the
worst (understandable because it is spread-blind). Between the other two, more in-
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(a) (b)

Figure 3. Milano625: real-world workload, strongly correlated to geography.

terestingly, FM/HUNG has a similar spread (only slightly larger) compared to that
of KMED/FM/HUNG. This study suggests that, for a workload input that has no re-
lationship with geography, (1) we can do better than a random assignment, (2) the
3-phase algorithm can run without Phase 1 (KMED) which has almost zero benefit,
and (3) there is no clear winner between FM/HUNG and KMED; which one should be
chosen depends on whether we prefer minimizing cost or spread.

5.2. Workload With Geography Correlation

Figure 3 shows the results for the real-world dataset (Milano625), in which the work-
load has a strong correlation with geography; specifically, higher between cells of
shorter distance [9]. Similar to the above study, and, expectedly, RAND is worse than
all the other algorithms in both objectives and KMED has the best spread. There are,
however, key differences.

First, KMED has a substantially lower cost than RAND’s; this implies that, due to
the correlation between workload and geography, by minimizing spread there is, to
some extent, a benefit in reducing the cost. Indeed, because KMED tends to cluster
cells near each other and workload demand is high between close cells, heavy workloads
tend to be served by the edge, hence less workload going backhaul (compared to a ran-
dom assignment). Second, KMED/FM/HUNG is clearly better than FM/HUNG in both
objectives; this substantiates the effectiveness of having Phase 1 (KMED) in our algo-
rithm, leading to not only better cost but also better spread. Third, KMED/FM/HUNG
has a spread only slightly worse than KMED; this shows the effectiveness of Phase 3
(HUNG) in improving spread. In short, all the three phases in the proposed algorithm
(KMED/FM/HUNG) are important to achieving both objectives.

5.3. Other Observations

Figure 4 gives a visual representation of the assignment map according to KMED
and KMED/FM/HUNG. Both methods are consistent with the physical map of Milan
(Figure 4(f)); that is, because most transactions involve the inner neighborhoods,
a server closer to the the central area covers fewer cells (which have high activity)
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than those in the outskirt (which have low activity). While KMED places the servers
spatially nicely (Figure 4(a), Figure 4(b)), KMED/FM/HUNG allows for some dis-
contiguity in the cells that belong to the same server (Figure 4(c), Figure 4(d)); the
latter does so to reduce the backhaul cost. For example, when the capacity W = 0.05,
(COST, SPREAD) is (0.43, 0.21) for KMED/FM/HUNG and (0.49, 0.18) for KMED.
This is a tradeoff between cost versus spread. Although we cannot avoid this tradeoff,
it is important to point out that KMED/FM/HUNG offers a better workload balance, as
clearly illustrated in Figure 4(e). The ratio of the maximum to the minimum workload
demand is at least two times less with KMED/FM/HUNG than with KMED.

6. Conclusions

We have addressed a new server assignment problem for MEC, whose decision making
needs to be made for where geographically to place the servers and how to assign
them to the user cells based on transactional workloads. The formulation of the two
objectives with respect to the backhaul cost and geographic spread has not appeared
in the MEC literature. We have proposed and evaluated a heuristic solution leveraging
k-median, Fiduccia-Mattheyses, and Hungarian methods. The solution is not optimal
(due to the NP-hardness of the problem), but an effective approximation. For the
future work, our next step is to consider the case where the workload demand is not
static. In practice, the workload demand varies over the time, but usually follows a
pattern. Knowing this pattern, for example, in the form of a probability distribution, an
interesting goal is to compute an assignment offering the best expected optimization.
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(a) KMED (b) KMED

(c) KMED/FM/HUNG (d) KMED/FM/HUNG

(e) KMED/FM/HUNG (f) Milano area

Figure 4. Assignment map of (a,b) KMED and (c,d) KMED/FM/HUNG for a single random run on Milano625
with capacity W = 5%, where each colored-circle represents a server (out of 50 possible locations) and each

server and its cells share the same color. Also shown is (e) the ratio of maximum to minimum workload and
(f) the physical map of Milan.
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