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ABSTRACT
Several traffic models for the Internet of Things (IoT) have been proposed in the
literature. However, they can be considered as heuristic models since they only re-
flect the stochastic characteristic of the generated traffic. In this paper, we propose a
model to represent the communication of IoT devices. The model was used to obtain
the traffic generated by the devices. Therefore, the proposed model is able to cap-
ture a wider understanding of device behaviour than existing, state-of-the-art traffic
models. The proposed model illustrates the behaviour of Machine-to-Machine up-
link communication in a network with multiple-access limited information capacity
shared channels. In this paper, we analysed the number of transmitted packets using
the traffic model extracted from our proposed communication model and compared
it with the state-of-the-art traffic models using simulations. The simulation results
show that the proposed model has significantly higher accuracy in estimating the
number of transmitted packets compared with the current models in the literature.

KEYWORDS
Internet of Things Communication; Communication System Traffic; Traffic Model;
Stochastic Process.

1. Introduction

The amount of data carried through wireless networks has increased by more than 100
fold in the past decade [1]. Several market research studies have predicted that the
amount of data will continue to grow exponentially [2]. Furthermore, the number of
connected devices is also expected to grow exponentially. The increase in the number
of connected devices is occurring due to the variety of new applications coming on to
the market, such as smart homes and wearable devices. Handling this extraordinary
increase in the amount of communication data and number of connected devices is
the driving force for researchers around the world investigating the next generation of
wireless communication, i.e., the fifth generation (5G).

For the previous two generations of wireless communications, the typical challenges
were energy efficiency [3], data throughput [4,20], coverage [5] and end-to-end latency.
For 5G, these issues are still considerably challenging; however, serving the expected
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number of connected devices might be overwhelming. The Internet of Things (IoT) is
one of the leading forces in increasing the number of connected devices. The IoT can
be defined as the network connecting billions of Machine-to-Machine communication
(M2M) devices. M2M, also known as Machine-Type-Communications (MTC), is de-
fined as the communication between machines or from machine to the network with
little or no human intervention [6]. IoT is expected to play a crucial role in several
sectors, including smart grids [7], environmental monitoring, surveillance, healthcare
[8], and intelligent transport systems [9]. Several market studies have predicted that
there will be more than 50 billion M2M devices in operation by 2020 [10]. Providing a
ubiquitous service for this extraordinary number of connected devices and the conse-
quent volume of data generated by those devices is the biggest challenges for network
operators [14,18].

To design a network that can serve a large number of IoT devices, it is critical
to have a comprehensive understanding of IoT communication and the traffic gener-
ated by its devices. It is known that the characteristics and the traffic patterns of
M2M differ significantly from the conventional Human-to-Human (H2H) communica-
tion (mobile phone calls and computer video calls)[11,13,33]. For instance, commonly
M2M applications generate short bursts of periodic data, and the cellular network is
not well adapted for such short messages [14–17].

In this paper, a model for IoT communication is proposed. The model is used to
represent the traffic generated by IoT devices extending the work done in [37]. To bet-
ter understand the communication model, let us consider a conference as an analogy.
If it is intended to model the noise that will be produced generated by the audience,
we can model it as a random process (an Analytical approach shown in section 2.1),
or alternatively, use a sensor to record the noise level at several conferences and then
generalise the measured noise level (an empirical approach that will be presented in
section 2.2). However, it would be much more comprehensive to perceive the confer-
ence program and use it to estimate the noise level. The conference program here is
analogous to the communication model.

Consequently, the traffic extracted from the IoT communication model considers
several related factors (as shown in Fig.1). The first factor is the channel information
capacity. The channel information capacity plays a significant role in the time required
to transmit data. Most traffic models available in the literature do not consider the
information capacity as they are mainly based on the Erlang model [19] (such as
[6]). The Erlang model was proposed for telephone networks (i.e., circuit switched
networks) and are arguably not valid for M2M traffic.

The second factor not accounted for in the existing M2M traffic models is the block-
ing incidence in which the user requires access to the shared channels, but the chan-
nels are fully occupied [21–23]. Additionally, the multiple-access technique is missing
in the existing M2M traffic models [21–23]. For a shared channel, there are two main
multiple-access techniques (i) Centralised Scheduled Access in which a centralised de-
vice determines what part of the channel is allocated to each user, and (ii) Distributed
Access in which each user locally decides the channel to access.

Modelling the communication can be insightful to better understand the behaviour
devices in networks. For instance, it can help the researchers to model the traffic
generated by the devices. Another example application can be the modelling of the
energy consumption of the devices. One application that the authors believe that the
contribution made in this paper can be very insightful; is the modeling for real-time
systems. In particular, the work done on the Age of Information, in which several
researchers assumed that the traffic is generated according to Poisson distribution
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[24,25].
This paper is organised as follows, section 2 briefly present the state of the art traffic

models. Section 3, presents the proposed Machine Communication Model; section 4
shows the simulation results in which we present the number of transmitted packets
in a predefined time period. This paper is concluded in section 5.
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Figure 1. Factors affecting M2M communication traffic.

2. Traffic Models proposed in literature

In the literature, two main approaches have been taken to model the traffic generated
by the M2M devices (M2MDs). The first approach was to propose a stochastic model
to evaluate the traffic (analytical approach) and the second approach was to measure
the traffic generated by the M2MDs (an empirical approach) as shown in Fig. 2.
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Figure 2. Traffic models proposed in literature.

2.1. Analytical Approach

2.1.1. Fixed Scheduling and Event-driven M2MDS Traffic Model

The authors in [21,23,29] proposed splitting the M2MDs’ traffic modelling into two
distinct models according to the transmission periodicity. The first model considers the
traffic generated by the periodic updates referred to as Fixed Scheduling (FS) nodes,
e.g., sending a sensor measurement. The traffic generated by an FS node was assumed
to follow a deterministic process. The second modelling problem was focusing on the
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non-periodic data traffic referred to as Events-Driven (ED) nodes, e.g., the report of
an emergency alarm. The traffic packets generated by the ED notes are modelled as a
Poisson Process with rate λD (number of packets sent in an explicitly defined time).
Table 1 summarises the modelling classification:

Table 1. Machine-to-Machine communication devices classification proposed in [23].

M2MD node group Traffic transmission periodicity Transmission statistical distribution

Fixed Scheduling Periodic Deterministic

Events-Driven Non-periodic Poisson

Although the authors of [23] remarked on the inaccuracy of conventional traffic
models, they made some inaccurate simplifying assumptions in their modelling. The
first assumption made was to assume that the M2MDs can be either FS nodes or ED
nodes. This assumption makes the model only applicable to specific devices. These
devices can do only a particular job (such as periodically report the temperature, but
where it cannot report an event such as when the temperature is higher than a set
threshold), while most of the M2MDs at the moment in the market can be both types.
Assuming that the Fixed Scheduling nodes are synchronised is another one of the in-
accurate assumptions. Hence, the authors in [30] investigated the synchronisation of
machine-generated traffic such as router states update messages (a message reporting
the current link states). It was demonstrated (analytically and empirically) that be-
haviour transition from asynchronous to synchronous is practically abrupt even if it
was affected by an external influence (such as turning the devices On simultaneously).
The synchronisation in the case of M2MDs would be an even more significant chal-
lenge. Hence most of the M2MDs will be connected to the network through a wireless
connection; the propagation delays and multipath will play a vital role in preventing
synchronisation.

2.1.2. M2M Traffic Model Framework [21]

The authors in [21], made a remarkable contribution in demonstrating the differences
between human to human communication (H2H) and M2M traffic. They proposed an
M2M traffic model similar to the Engset Traffic model (also known as On-Off model
[27]). The only difference between the two models was that in the model proposed
they assumed a Semi-Markov chain while in the Engset model, it is a Markov chain.
The principal difference between a Markov chain and a Semi-Markov chain is the time
between successful states transitions. In particular, in the Semi-Markov process, the
states transitions times are random variables [31].

The M2M traffic model proposed in [21] is shown in Fig. 3. It assumes that the
transmission of data occurs in one the following instances: (1) Periodic Update data
referred to as PU; (2) Event-Driven data referred to as ED; or, (3) Payload Exchange
which refers to the data traffic following the PU and ED traffic. A Timer or an Event
drive the transition from the OFF state to ON state. On the other hand, the transition
between the ON state and OFF state occurs when data transmission finishes.

They also proposed a model for the Sensor-Based Alarm and Event Detection device
shown in Fig. 4. In this model, they used the sub-states of the ON state in Fig. 3 as
main states. However, they did not use the PE exchange sub-state as they assumed
that PU and ED are implicitly included in the PE state.
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Figure 3. M2M traffic model proposed in [21]. PU refers to Periodic Update, ED refers to Event Driven and
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Figure 4. Sensor based alarm and event detection model used in [21]. PU refers to Periodic Update, ED
refers to Event Driven.

The inter-departure times between the states and the size of the packets are assumed
to be identical and independent random variables. However, in practical cases, this
does not reflect the situation of M2MD traffic unless it is an exceptional case in which
the device transmits a very short burst of data traffic. Additionally, the researchers
did not take into consideration the channel characteristics and the number of devices.

2.1.3. Coupled Markov Modulated Poisson Process Model [22]

The authors in [22] proposed a traffic model for M2MDs relying on the Markov Modu-
lated Poisson Process (shown in Fig. 5). However, they used a Coupled Markov Mod-
ulated Poisson Process (CMMPP) to illustrate the M2MDs’ synchronisation effect.
The CMMPP refers to multiple Markov chains that influence each other’s transition
probabilities Pn[t]. The transition probability is defined as the probability of changing
from one state into the next state in a defined unit of time. The CMMPP were ini-
tially proposed in the context of pattern recognition. They assumed that the arrival
is a Poisson process. The arrival rate in the proposed model depends on the current
state of the MMPP, e.g., λ1 represents the rate of arrival of the first state.

𝑠𝑛 = 1, 	𝜆1 𝑠𝑛 = 3, 	𝜆3 

𝑝1,1 

𝑝1,2 

𝑝2,1 

𝑝1,3 

𝑝3,1 

𝑠𝑛 = 2, 	𝜆2 

Figure 5. Markov Modulated Poisson Process model used in [22]. sn represent the number of M2MD trans-
mitting data and λ represent the state arrival rate.

The model proposed was compared with those models proposed by 3GPP. That
was developed to model the aggregated traffic of several M2MDs. The focus of the
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comparison was to evaluate the complexity of computing and simulating the traffic.
The simulation results showed that the CMMPP model would require a slightly higher
simulation duration, but it can provide a better representation of the M2MD traffic
than the 3GPP model.

Although the model proposed added a new aspect to the simulation, (i.e., the effect
of the M2MDs synchronisation) as compared it with the conventional traffic models, it
still inherited various assumptions employed in the conventional models. In particular,
they rely on the Markov Modulated model. As a result, they assumed that the arrival
rates are still being considered as a Poisson Process. The Poisson Process arrivals
assumption is very commonly used in the literature because of its simplicity. However,
it is not the best representation of M2MD traffic. The principal reason for that is that
typically M2MDs generate traffic periodically. Therefore, each periodically generated
packet relies on the timing of the previous packet, which contradicts with the memory-
less property of Poisson Processes [27].

2.1.4. Parameterised Markoven Model [14]

The authors of [14] proposed a traffic model based on a Markov Process. Their main
contribution was to evaluate the Blocking Probability 1 in a network that services both
M2MD and H2H communication. The traffic model they used was similar to the model
represented in Fig. 5 in [22]. The parameters used in the evaluation of the traffic model
blocking probability was adapted from field trails in literature. Fig. 6 represents the
approach they used to obtain the results by combining parameters from simulations
and lab measurements.

Simulations

Lab 
Measurement 

F(SNR, 
#RBs)

Parameterised Markovian model 

Data 
Rates

CDF 
(SNR)

Figure 6. The parameters used in the traffic model in [14]. The model proposed used the data rate (i.e., the

data throughput achievable in terms of the number of bits that can be communicated using a communication

channel) from a lab measurement. The lab measurement relies on the Signal to Noise Ratio (SNR) and the
number of Resources Blocks (RB) to measure the Data Rate. The simulations were used to obtain SNR

statistical properties. In particular, the Cumulative Distribution Function (CDF).

Although the authors in [14], tried to bridge the gap between the Analytical and
Empirical models. Their analytical model still needs further enhancement. The ana-
lytical model used can be described as theoretical and does not reflect all the M2MD
characteristics. The next subsection represents a brief introduction to the empirical
models introduced in the literature.

2.2. Empirical Model

Empirical models rely on experiments and tests to evaluate a certain model. Typically,
the models proposed using this methodology start by running the experiment, and

1Blocking Probability is the probability that a device would not be able to transmit data because of a lack of

available channels.
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afterwards, they try to fit the collected data into a certain statistical distribution.
The seminal paper by Willinger et al. [32] used this approach to prove the deficiency
of modelling computer network communication traffic as a Poisson Process. At the
time of publication of that paper, the Poisson Process was the most commonly used
approach, and it was highly accepted [28,32,34]. They also proposed the Self-Similar
Traffic Model for Local Area Networks (LANs). The self-similar process refers to a
type of Stochastic Process that seems to have the same behaviour when viewed at
different scales [32].

Recently, the authors of [12,33] used an empirical approach and measured the M2M
traffic in a cellular network. They concluded that M2MDs traffic would have a sig-
nificant impact on the connectivity of smartphones. In particular, the M2MD would
compete with the smartphones on the available channels, and therefore, the blocking
probability would increase. Although the empirical models illustrate the behaviour of
several communication networks, they also have their shortcomings. Especially that
they are a reactive approach to solve already existing problems. The empirical ap-
proach can only evaluate the considered scenario and is not be able to give a gener-
alised model. This approach can only model aggregated traffic throughout the network.
Therefore, modelling the source traffic (per device) is not possible.

3. PROPOSED M2M COMMUNICATION MODEL (MCM)

3.1. Overview

Most of the research done in the literature has focused on modelling the traffic gener-
ated by IoT devices; in this paper, we are modelling the communication that generates
the traffic. In our investigation, we started with understanding the M2MDs, which are
typically a low computational complexity finite state machine that mainly consist of
sensor(s), a microprocessor/controller and a communication unit. The M2MD’s main
function is to monitor the environment and send a report to a centralised node so that
the data can be analysed along with data collected from other similar nodes. Fig. 7
illustrates a generic M2MD data communication flow chart. The M2MD initially, at
start-up, monitors the environment (e.g., senses the motion in a room). After a prede-
fined period, the M2MD sends a periodic update (i.e., Round Robin state update) to
the base station or a centralised node. In the occurrence of a triggered interrupt (an
event occurs, e.g., a movement detected), the M2MD also transmits exceptional, i.e.,
non-periodic data to report it.

The proposed M2MD Communication Model (MCM) is shown in Fig. 8. MCM is
a discrete stochastic process that consists of four states: Sleep (s), Round Robin (r),
Interrupt (i) and Buffer (b). At any time, the M2MD is considered to be in one of
these four states and would change to another state with a certain probability referred
to as the Transition Probability (TP). The TPs shown in Fig. 8 represent the Starting
State and Finishing State. For example, for a TP P(s,b) the Starting State would be s
and the Finishing State would be b.

The Sleep state represents the starting state of the finite state machine in which the
M2MD is not transmitting any data. The Round Robin state represents the epoch in
which the M2MD is transmitting routine periodic updates data, e.g., a periodic report
of room temperature. During the Buffer state, the M2MD has data to be sent, but it
is still waiting to access the shared channels to transmit it. Additionally, in the case
of fully occupied channels, the M2MD buffers the data packets until it can access a
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Figure 7. Generic M2MD data communications flow chart. The flow chart shows the two types of data
generated by an M2MD i.e., periodic updates and a-periodic event reporting data.
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Figure 8. Proposed M2MDs communication Model i.e. MCM. Showing the four states that represents the
IoT devices communication. Also, the probability of changing from one state to another.

channel. The Interrupt state represents a non-periodic update event occurring in the
M2MD in which it sends data representing the event, e.g., a burglar alarm is activated.

In MCM, the data traffic is transmitted during two distinct states, i.e., Interrupt
and Round Robin. It differentiates between the two states for the following reasons:

• typically, the data that has to be sent in the Round Robin updates are short
data bursts; while in the Interrupt state data packet size is comparatively large.
For instance, motion detectors would periodically send comparatively short data
bursts (e.g., data sent containing the device identifier and, say, the battery state
information). On the other hand, in the case of an exceptional event (e.g., a
moving object had been detected), the M2MD would send a longer data burst
that contains information of the event (e.g., a picture or the coordinates of the
moving object);
• in the Round Robin state the communication is synchronised while communica-

tion in the Interrupt state is asynchronised;
• consequently, the communication that occurs in the two states (Round Robin

and Interrupt ) would differ in their channel access approach, which relies on the
network access technique.

3.2. MCM Transitions

The MCM is modelled as a discrete stochastic process in which at each time unit
a state transition occurs. The transition can be to any possible state (including the
starting state itself). The TPs determine which state is the one most likely to be moved
to in the next time slot. The summation of the TPs going out of any state must equal
to unity, as follows:

Ps,s + Ps,r + Ps,b = 1

Pb,b + Pb,i + Pb,s + Pb,r = 1

Pr,r + Pr,s = 1

Pi,i + Pi,s = 1.

(1)
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The self-transition probabilities, i.e., staying in the same state, rely on several fac-
tors. In particular, P(s,s), which represents the probability of remaining in the Sleep
state, depends on the frequency of both the periodic updates and the event occurring.
The availability of channel resources directly affects the value of P(b,b). In particular,
the value of P(b,b) is equal to the channel’s instantaneous Blocking Probability. The
length of the M2MD data packet and the channel quality, e.g., Signal to Noise Ratio
(SNR), determines the value of both P(r,r) and P(i,i). Currently, let us only consider
the SNR to be affecting the information data rate. Hence, the maximum achievable
information rate by the kth M2MD in the jth channel (R(k,j)) can be obtained by the
Shannon capacity formula:

Rk,j = BWlog2(1 + SNRk,j) (2)

and the probability to remain in the round robin and the interrupt states can be
calculated by,

P(r,r)/(i,i) =
1

γ(t)(r,r)/(i,i)

γ(t)(r,r)/(i,i) =

⌈
DR(r)/(i)

Rk,j(t)

⌉ (3)

where BW is the channel bandwidth, γ represents the number of time units the data
needs to be transmitted, d.e refers to the ceiling function, t refers to the instantaneous
time, and DR is the state data requirements.

In a network with shared channels, there are two main multi-access techniques, as
classified in [26]. The first technique is Centralised Scheduling, in which the M2MD
must send a Scheduling Request (SR) to a centralised device such as, a Base Sta-
tion (BS) to access the channel. The Base Station controls the M2MDs’ channel’s
multiple-access scheduling [6]. The second technique is Distributed Scheduling where
each M2MD makes a local decision whether it should access any particular channel
based on channel sensing techniques, such as in [35].

In a Centralised Scheduling network, a central device such as a BS schedules the
M2MD shared channel access. Consequently, the M2MD is required to send a Schedul-
ing Request (SR) before starting to transmit data. After the BS receives the SR, it
schedules a specified Resource (such as a time and bandwidth pair) for the M2MD.
Thus, when an interrupt occurs (i.e., asynchronous data transmission is required) the
M2MD needs to store the data in its buffer (i.e., the Buffer state). The time duration
the data packets spend in the buffer represents the time of sending the SR to the BS,
and for a resource to be scheduled. On the other hand, in a Round Robin update, data
packets are transmitted in a predefined epoch (i.e., at an explicitly defined time). Ac-
cordingly, the M2MD sends the SR to the BS in advance, and M2MD periodic updates
do not require data buffering.

However, in a Distributed Scheduling network all the data transmission (i.e., the
data transmission owing both the Interrupt and Round Robin states) has to be buffered
until the M2MD senses the channel and determines an unoccupied channel then trans-
mits the data. Table 2 illustrates both data communication types (i.e., Round Robin
state data and Interrupt state data for both multi-access approaches (i.e., Centralised
and Distributed Scheduling).
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Table 2. Data procedures for both types of Network Acess i.e., Centralised and Distributed Scheduling.

Data generat-
ing state

Data transmission procedure

Interrupt Initially, the M2MD is in the Sleep state. When the data is ready to be transmitted
the M2MD stores it in the Buffer. The M2MD remains in the buffer state until it either
detects an unoccupied channel (for Distributed Scheduling) or it has been allocated a
channel (for Centralised Scheduling).

Round Robin In Centralised Scheduling the M2MD changes from the Sleep State (i.e., initial state) to
the Round Robin State. In Distributed Scheduling, the M2MD changes from the initial
state to the buffer state and stays there until it senses an unoccupied channel.

The Round Robin updates occur in a predefined epoch, so in a Centralised Schedul-
ing network, P(s,r) follows a Deterministic distribution with a rate of λ. It is worth
mentioning that the assumption that P(s,r) is deterministic is only acceptable if the
SR was sent in sufficient time for the centralised device to allocate a channel resource
to the M2MD. On the other hand, the interrupts occur randomly and hence P(s,b) can
be modelled as a Discrete Poisson distribution with a mean µ. P(b,s) represents the
probability of the M2MD discarding the packets it has previously prepared to trans-
mit. This incident occurs when the packets have been blocked for a period of time;
therefore, the information represented in the packet is not relevant anymore.

The TPs in the MCM model can thus be represented as a Transition Matrix (δ):

δ =


Ps,s Ps,r Ps,b Ps,i
Pr,s Pr,r 0 0
Pb,s Pb,r Pb,b Pb,i
Pi,s 0 0 Pi,i

 (4)

where the probabilities in each row have the same Starting State and the probabil-
ities in each column share the same Finishing State.

The steady-state probabilities of the Sleep, Round Robin, Buffer and Interrupt
states are referred to as Ps, Pr, Pb and Pi respectively. Accordingly, the steady-state
probabilities can be expressed as a Stationary Vector (Q):

Q = [Ps Pr Pb Pi] (5)

where,

Ps + Pr + Pb + Pi = 1. (6)

The steady-state probabilities for the M2MD for the MCM can be obtained using
the Balance equation:

δ ×Q = Q or Q(δ − 1) = 0 (7)
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where (I) is the identity matrix. Accordingly, from (2) and (4), expression (5) can
be represented as:

Ps(Ps,s − 1) + Pr(Pr,s) + Pi(Pi,s) = 0 (8)

Ps(Ps,r) + Pr(Pr,r − 1) = 0 (9)

Ps(Ps,b) + Pb(Pb,b − 1) = 0 (10)

Ps(Ps,i) + Pb(Pr,i) + Pi(Pi,i − 1) = 0. (11)

Finally, by solving (5),(8),(9),(10) and (11), the values of Q and, hence, steady-state
probabilities can be obtained.

The M2MD only transmits data in two states, i.e., Round Robin and Interrupt.
Therefore, the number of transmitted packets (NP ) can be derived from the MCM by
using the probability of a device transmitting data (PT ) and the number of devices in
the area of interest (n):

NP = PT × n where PT = Pr + Pi. (12)

4. Evaluating the Number of Transmitted Packets

For simulating the M2MDs a discrete event simulator [36] was used to evaluate the
network behaviour. In [26], it was shown that the Distributed Scheduling approach
could outperform the Centralised Scheduling approach where there is delayed Channel
State Information (CSI). In a high user density network (such as a network handling
many M2MDs), the probability of delaying the CSI is high, therefore, in this report,
let us study the packet transmission in a Distributed Scheduling network. The channel
access probability is assumed to be equiprobable access across the M2MDs, i.e., all
M2MDs are considered to have the same priority. For the simulations, five M2MDs
(i.e., n = 5) sharing three channels was considered. The parameters and the associated
values used to obtain the numerical and simulation results are given in Table 3. The
parameters were chosen to be representative of a simple network, however, the model
can also represent the traffic in other networks. The number of packets transmitted by
the M2MDs with respect to the time units is shown in Fig. 9. As shown in the figure,
the MCM can model the simulated M2MD traffic more accurately. In particular, in the
case where γ((r, r)) and γ((i, i)) are equal to unity and three respectively (i.e., SNR
1), the MCM is able to predict the number of transmitted packets with significantly
higher accuracy than the Poisson model (MMPP). For instance, in SNR1 the number
of packets achieved by simulation is 3× 104 for the 5× 104 time unit, and using MCM
is 3.041× 104, that is less than 1.4% error. However, using the MMPP model, which
does not adapt with respect to the SNR, the predicted number is 2.5× 104, which is
about 16.7% error.
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Table 3. Numerical Parameters and Values.

Parameter Value

Simulation duration 10 × 104 Time Units

Number of M2MD n / Channels 5/3

SNR 1 γ(r,r)/(i,i) 1 for (r, r) / 10 for (i, i)

SNR 2 γ(r,r)/(i,i) 3 for (r, r) / 30 for (i, i)

Round Robin update distribution in MCM Deterministic with mean of 10

Interrupts Distribution in MCM Poisson with mean 50

Data Requirements DRr/DRi 150 / 1500 Kbit

PT for the Poisson model Exponential distribution with mean 10

P(b,s) 0

Figure 9. Number of successfully transmitted packets with respect to the time unit.
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5. Conclusions

In the literature, several traffic models for M2M communications traffic have been
proposed. Those models are able to represent M2M traffic for a specific set of scenarios,
but, they do not cope well with a different set of scenarios. In this paper, a model for
IoT communications was proposed by looking more closely at M2MD behaviour. The
communication model was used to extract the traffic generated by the M2MDs. In the
proposed method, the data traffic does not only rely on the statistical characteristics
of the M2MD traffic. The extracted traffic has several other factors affecting it, such as
the channel information capacity and multi-access technique used. The traffic model
commonly used in the literature was simulated using a discrete event simulator and
compared it with the analytical results obtained by extracting the generated traffic out
of the proposed communication model. The results showed a significant improvement
in predicting the number of packets with respect to time by using the proposed model.
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