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Abstract—Bacteria have been a source of inspiration for the design of 

evolutionary algorithms. At the beginning of the 20th century synthetic 

biology was born, a discipline whose goal is the design of biological systems 

that do not exist in nature, for example, programmable synthetic bacteria. In 

this paper, we introduce as a novelty the designing of evolutionary 

algorithms where all the steps are conducted by synthetic bacteria. To this 

end, we designed a genetic algorithm, which we have named BAGA, 

illustrating its utility solving simple instances of optimization problems such 

as function optimization, 0/1 knapsack problem, Hamiltonian path problem. 

The results obtained open the possibility of conceiving evolutionary 

algorithms inspired by principles, mechanisms and genetic circuits from 

synthetic biology. In summary, we can conclude that synthetic biology is a 

source of inspiration either for the design of evolutionary algorithms or for 

some of their steps, as shown by the results obtained in our simulation 

experiments.   
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       1. Introduction 

 

Evolutionary computing is a discipline of computer science, which aims to design algorithms 
inspired by the Darwinian evolution of organisms. However, many evolutionary algorithms exploit 
another principle and, in particular, the massive and parallel search for a good solution. Of all the 
organisms that exist in nature, bacteria are agents showing both principles as well as a remarkable 
evolutionary potential, standing out mainly for their fast evolution and high adaptability. 
Furthermore, bacteria display a wide repertoire of genetic mechanisms that have been a major source 
of inspiration in evolutionary computing.  

Bacteria-inspired evolutionary algorithms arise from the need to resolve some of the distinctive 
setbacks of optimization methods. At the end of the 90s of the last century, [1] introduced a Bacterial 
Evolutionary Algorithm with new genetic operators for the simulation of gene transfer and mutation, 
and [2] Microbial Genetic Algorithm, which includes a recombination operator inspired by bacterial 
conjugation. More recently, genetic algorithms were designed to solve specific optimization 
problems with gene transfer operators and non-standard versions of genetic mutation operators, e.g. 
inverse mutation and pairwise interchange mutation [3]. The above algorithms illustrate some 
examples where bacteria provide a source of inspiration for new genetic operators. In fact, bacteria 
have the ability to transfer genes between individuals of the same generation, which is known as 
horizontal gene transfer. An example of horizontal gene transfer is the bacterial conjugation 
mechanism. For instance, [4] introduced a bacterial conjugation operator showing its usefulness in 
the design of an AM radio receiver. Afterwards other bacterial conjugation operators were 
introduced [5], exploring the possibility of incorporating physiological behaviors of bacteria into an 
evolutionary algorithm. For example [6] incorporates the chemotactic behavior of E. coli bacteria 
which is one of the main steps in the Bacterial Foraging Optimization Algorithm [7], which is one 
of the most distinctive bacteria-inspired algorithms. New versions of evolutionary algorithms based 
on bacteria are designed by their hybridization with other techniques, e.g. the Bacterial Memetic 
Algorithm [8] includes local search methods, particularly the Levenberg-Marquardt method.  

On the other hand, advances in synthetic biology have led to a new perspective on bacteria, 
considering these microorganisms as organisms in which it is possible to program specific tasks. 
Today, these bacteria, known as synthetic bacteria, are programmable microorganisms with 
applications in biomedicine, pharmacology, bioremediation, bioenergy, etc. [9, 10, 11]. The most 
common approach, known as 'top-down' strategy, involves the use of a microorganism, for example 
a bacterium, into which we insert elements from the outside. At present, synthetic biology assumes 
that bacteria are computational agents or machines [12]. Thus, a bacterium receives inputs of a 
chemical or physical nature that are processed through ‘biochemical hardware’, which in turn is 
regulated by algorithms controlling gene expression. In this context, the evolution of a bacterial 
population towards an optimal state is accomplished through a protocol known as programmed 
evolution. At present, programmed evolution techniques make it possible to carry out in vitro 
evolution experiments using for this purpose those ingredients that are distinctive of Darwinian 
natural selection, i.e. bacterial population variability and artificial selection based on bacterial 
fitness. Fitness can adopt multiple different forms such as life/death of a bacterium, growth rate, or 
even protein of interest concentration. In 2012 [13, 14, 15] a programming language called Gro was 
introduced, allowing the modelling, specification and simulation in silico of the behavior of synthetic 
bacteria growing in a colony. At present, agent-based modelling [16, 17] is one of the common 
techniques in the prototyping and design of simulation experiments in synthetic biology. 

In this work, we explore the application of synthetic bacteria colonies in evolutionary 
computation, by designing evolutionary algorithms conducted by bacterial agents. Bacterial agents 
were programmed using the Gro language, introducing a genetic algorithm in which all stages of the 
algorithm are performed by a colony of synthetic bacteria. The algorithm is termed BAGA, an 
acronym for Bacterial Agent Genetic Algorithm, simulating the evolution of a colony of bacterial 
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agents. The utility of BAGA algorithm is evaluated with classical optimization problems, showing 
the practical utility of three important features present in both synthetic bacteria and their natural 
counterparts. First, bacteria are reproduced by binary excision, i.e. the colony grows exponentially 
or according to a Malthusian model [18]. Consequently, a large number of individuals ensures a 
massive exploration of the solutions space. Secondly, and since individuals are autonomous agents, 
the exploration of the environment is in parallel. Thus, combining these two features bacteria can 
find the solution to a given optimization problem [19] by checking all possible solutions. Thirdly, 
the pressure of natural selection acts on the bacterial colony changing the value of the Malthusian 
parameter of the equation ruling the exponential growth of the bacterial colony. As a result, the 
bacteria that evolve are those that increase their growth rates [20]. In line with these principles, 
BAGA can be tuned to seek an optimal solution by performing a massive search, by natural selection 
or by both principles simultaneously. 

In Section 2 of this paper, we present the methodology and simulation experiments description 
solving several optimization problems, and in Section 3 we present the whole results of the computer 
simulation experiments. Finally, Section 4, discusses the possible impact of this work together with 
the general limitations. 

 
2. Methods 

In the present work, bacteria are agents programmed in a cellular programming language, in 
particular Gro 4.0 [13]. Using Gro language, we coded the scripts of both the BAGA algorithm and 
in the interactive evolutionary algorithm the screening procedures. Bacterial colony executes a 
program written in this language parallel to each bacterium, allowing the emergence of collective 
behaviors and different biological phenomena, e.g. cell division, chemotaxis, signal diffusion, etc. 
[13]. An extended version of Gro has recently been published [15] that allows plasmids 
recombination. Although the former feature is not used in our simulation experiments, we have used 
this version because the execution of the scripts is slightly faster than the original version of Gro.  

 
2.1. A bacterial agent genetic algorithm 

BAGA, an acronym for Bacterial Agent Genetic Algorithm, is a genetic algorithm inspired in 
the evolution in silico of a colony of synthetic bacteria or bacterial agents. Bacteria efficiently 
explores the evolutionary surface looking for the optimal solutions through two features present in 
bacterial colonies. Firstly, the bacteria reproduce by bipartition growing the population according to 
an exponential growth curve. This feature allows the bacterial colony to search for the optimum or 
quasi-optimal solutions massively and in parallel. Secondly, bacteria selection takes place according 
to their fitness, because of the influence that fitness has on the growth rate. For example in bacteria 
such as E. coli the higher the fitness, the greater the growth rate value will be. Thus, in nature 
bacterial evolution by Darwinian natural selection is the result of an adjustment of the expression 
level of proteins (e.g. enzyme activity, i.e. proteins that act as biological catalysts for chemical 
reactions). Such adjustment has an effect on the bacterial growth rate [20] or Malthusian parameter 
k in the equation ruling population growth: 

 

0( ) k ty t y e=         (1) 

where y(t) is the number of bacteria at time t, and 0y  the initial number of bacteria. The 
goodness of the solution found by a bacterium is detected and evaluated with a reporter circuit. This 
kind of genetic circuit is included into the plasmid of synthetic bacteria, detecting the best solutions 
according to the fluorescence emitted by the bacteria. Hence, the different degree of fluorescence 
observed in a colony of bacteria will show the fitness of each bacterium and therefore in some way 
the colony evolutionary landscape.   
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2.1.1. Coding 

Similar to genetic algorithms and other evolutionary algorithms, solutions are encoded in a 
string of characters. Since the agents simulate bacteria, the string represents a plasmid. Plasmids are 
circular strands of DNA that are different from chromosomal DNA. Present in bacteria, plasmids 
carry genes that give adaptive advantage to bacteria; when a bacterium reproduces by bacterial 
division each daughter bacterium receives a copy of the plasmid. Manipulation of plasmids allows 
designing customized gene circuits, being this one of the main goals of synthetic biology.  

In this paper, a plasmid as a list in Gro being either a binary encoding, permutation encoding 
(numbers representing a sequence) or a string of values (e.g. characters, real numbers, words etc.). 
For example, a binary plasmid and a real number plasmid are defined as: 

 
plasmid := {1,0,1,0,1,1,0,0}    plasmid := {A,B,C,D,E} 

 
In some optimization problems, it may be necessary the concatenation of lists in Gro language: 
 

plasmid := {0,1,4}#{2}#{5,1,6}#{2}#{7,3,8}#{2}#{5,3,6}#{2} 
 
2.1.2. Standard BAGA algorithm 
 
In this section, we show the main steps of the standard version of BAGA algorithm (Fig. 1): 
 

Step 1. Initial bacterium setup.- In t=0 a single bacterium is set by assigning the initial 
values to the following parameters: 

(1) Set the initial value of the growth rate: k0. 
(2) Initialize to zero the values of the GFP (green fluorescent protein) and IPTG (isopropyl β-

D-1-thiogalactopyranoside) concentrations: gfp=0, iptg=0. 
(3) Set to zero the initial fitness value: z=0. 
(4) Given an optimization problem, we will encode the potential solutions into a plasmid 

plasmid= { }1 2, , , lx x x . In the simplest case, and if we use a binary sequence, e.g. 
plasmid={ }0,1, ,1

 then in the initial bacterial agent the plasmid is initialized with a list 
of zero values, i.e. plasmid= {0, 0, …,0}. 

Step 2. Bacterial division.- Bacteria reproduce by cell division yielding two bacterial cells. 
One of them referred to as the mother cell, the other daughter cell, although in fact the two are 
indistinguishable.  

 
Step 3. Mutation.- After cell division, one of the bacterial cells retains the plasmid genes 

state while the other daughter bacterium undergoes point mutations. It is also possible for both cells 
to undergo mutation. In the algorithm, this is an option to set in the Gro script, since it affects the 
evolution of the bacterial colony. Mutation operator is a flip-bit operator, setting a pm value for the 
mutation rate.  
 

Step 4. Fitness evaluation.- Once the bacterial division and mutation take place, the fitness 
value is calculated (Fig. 2). Inspired by synthetic biology BAGA assumes that bacteria include in 
their plasmid a hypothetical operon (i.e. a group of genes under the control of a region of the DNA 
called a promoter) as well as a molecule playing a role of operon activator. When activator enters 
into the interior of the bacterium, it activates the operon being the activator concentration the output 
of a particular optimization problem. For example, let us consider a problem consisting in finding 
the maximum of a function y=f(x), then the activator concentration is given by y. In this example, 
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the value of x results from decoding the plasmid sequence { }1 2, , , lx x x
. In terms of synthetic 

biology, the algorithm assumes as activator the sugar emulator IPTG (isopropyl β-D-1-
thiogalactopyranoside), which activates Lac operon (i.e. the operon lactose). For instance, in the 
above optimization example, the concentration of IPTG is the value of y, in the 0/1 knapsack problem 

IPTG concentration is given by 
1

.
l

i i
i

v x
=
∑  where xi represents whether a certain item i has been (1) 

or not (0) included in the knapsack, being vi its value, etc. In short, in the algorithm IPTG molecules 
act as an activator of a ‘Z operon’. The Z operon calculates the fitness of a given bacterium from the 
expression of a Z gene that synthesizes a z protein. The concentration of z protein, is the bacterial 
fitness value, which is given by function z=f(IPTG). The convenience of using a particular function 
will depend on the optimization problem. For instance, linear function, Hill function or any other 
function may be appropriate on a case-by-case basis (Table I). In the case of the Hill function and 
this applies to any other chosen function, its parameters (i.e. v, k and n) are set empirically, 
normalizing with z=f(IPTG) function the value of fitness z between 0 and 1. 

 
 

Linear function [ ].k iptg
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=  

 
Hill function 
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[ ]
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=

+

n

nn

v iptg
z

k iptg
 

Table 1.Fitness functions z=f(IPTG) for BAGA algorithm. 

 
Step 5. Screening method.- As the bacterial colony grows, bacterial agents will report fitness 

z. Solution goodness coded in the bacterial plasmid, will be expressed through synthesis of 
fluorescent proteins in bacteria. In the algorithm, we assume that concentration of green fluorescent 
protein, i.e. GFP, is synthesized in function of the fitness value z (Fig. 2). Thus, since the Z operon 
activates in turn an operon reporter that expresses GFP protein, the higher the fitness value, the better 
the solution and therefore the greater the fluorescence that a bacterium emits: 

 
gfp = m.z        (2) 

 
with m being the proportionality constant. 

 
Step 6. Selection.- Bacterial selection is based on growth rate. Z operon not only influences 

the GFP fluorescence emitted by bacteria, but also affects the Malthusian parameter or bacterial 
growth rate (k). Updating of bacterial growth rate is given by the following expression: 
 

0
α
β

= +k k z         (3) 

being k0 the initial growth rate at t=0 and α , β two parameters for setting k parameter in simulation 
experiments. Notice how in the particular case of α =0 and β =1 then BAGA algorithm performs 
optimization in the absence of selection and therefore by the parallel and massive search. 
  

2.1.3. BAGA algorithm with penalty: solving the 0/1 knapsack problem  

In this paper, we also designed an improved version of BAGA. This version of the algorithm is 
useful when an optimization problem requires a penalty, e.g. the knapsack problem (Fig. 3). Next, 
we will introduce the improved BAGA algorithm by adopting as an example the 0/1 knapsack 
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problem. Let w be the weight of the knapsack, i.e. 
1

.
l

i i
i

w x
=
∑  after entering the selected objects xi with 

weights wi, and W the maximum tolerated weight. The improved BAGA algorithm includes penalty 
and shares the same steps as the standard BAGA, with the exception of the following two features. 
Firstly, the improved BAGA instead of simulating the concentration of IPTG simulates v0, thus the 
velocity at which IPTG enters into the bacterium. In the knapsack problem, the input velocity of 

IPTG represents de profit calculated by
1

.
=
∑

l

i i
i

v x . Secondly, the fitness calculation (Step 4) is 

conducted depending on whether or not the constraint imposed on the optimization problem is met:  
 

Step 4. Fitness evaluation in solutions that do not satisfy the restriction (w>W).- We will 
consider those solutions where the weight of the knapsack exceeds the maximum permissible weight. 
In such cases, the error w-W value is simulated as the concentration of an inhibitor, i.e. a 
phosphotransferase IIA protein [21], which inhibits the entry of IPTG into bacteria (Fig. 3):  

 
Inhibitor = w-W        (4) 

 
The velocity at which the IPTG enters into the bacterium is given by the following kinetic expression: 
 

[ ]

[ ]
0

2
1

iptg
v v

Inhibitoriptg k
k

=
 + + 
 

         (5) 

 
calculating the value of k as the ratio between the sum of the values of the objects and the length l of 
the plasmid: 

1

l

i
i

v
k

l
==
∑

         (6) 

When we use in the model the Hill function, then we get the following fitness function: 
 

0

0

. n

n n
v v

z
k v

=
+

        (7) 

Notice how in the above expressions k represents the Michaelis' constant Km and v the maximum 
velocity Vmax.  

 
Step 4. Fitness evaluation in solutions that satisfy the restriction (w ≤W).- When a solution 

satisfies the restriction, i.e. the weight of the knapsack is below the maximum allowed value W then 
the algorithm assumes that inhibitor is not present. In this case, the velocity of IPTG intake into the 
bacterium is given by the following expression:  
 

[ ]
[ ]0

iptg
v v

k iptg
=

+
         (8) 

 
calculating k with expression (6)  and fitness as we did before with the Hill function: 
 

0

0

. n

n n
v v

z
k v

=
+

        (9) 
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In summary, for the example of the 0/1 knapsack problem, the fitness in the improved version 
of BAGA is given by the following expression: 

 
 

[ ]

[ ]

[ ]
[ ]

0

0
2

0

0
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n n

iptg
if v v

Inhibitoriptg kv v kz
k v iptg

i

w W

w Wf v v
k iptg

 =  + +  =  

>

≤
+ 

=
+

        (10) 

 
 
2.1.4. A customized BAGA algorithm to solve the Hamiltonian path problem 

One of the optimization problems we applied the BAGA algorithm was the replication in silico 
of the synthetic biology experiment carried out with real bacteria [22, 23]. In this experiment, a 
colony of bacteria is programmed as a computer, solving an elementary instance of the Hamiltonian 
path problem. The in vivo experiment illustrates how to encode a problem in the DNA chain of a 
bacterium. In bacteria, gene components must be in the proper orientation (which is known as               
5'→  3'). The components of a bacterial gene [24,  25] are promoter, ribosome (i.e. a complex particle 
where protein synthesis takes place) binding site (rbs), the structural gene (i.e. the actual gene 
responsible for the synthesis of a protein) and the end 3' or transcriptional terminator (TT) (i.e. a 
point at which ends the expression of a gene). 

We successfully reproduced the general methodology adopted in the in vivo experiments, 
solving the three-node Hamiltonian path problem (Fig. 4).  In the real experiments, their authors [22] 
coded the problem into a plasmid by splitting in two segments the genes that synthesize fluorescence-
emitting proteins. In particular, the gene of GFP was split into two sections (Fig. 5), one referred to 
as right or 3’ GFP (GFPr) and the other as left or 5' GFP (GFPl). The other gene was involved in the 
synthesis of the red fluorescent protein (RFP), which was also broken down into two parts: 3’ RFP 
or RFPr and 5’ RFP or RFPl. Following, [22] found a procedure by which it would be possible to 
permute gene sections, conducting a crossover of the gene segments inside the bacterium, a method 
known as Hin-hixC recombinase. In this paper, we designed a customized operator (Fig. 6) 
simulating this recombination mechanism. The application of this operator in the bacterial colony 
conducted to different random sequences of gene segments (Fig. 5), and therefore of the graph edges. 
We will refer to the joining points of the segments as HixC.  For example, in the AC path when gene 
for RFP protein is expressed, then the bacterium emits red fluorescence. When a bacterium found 
the only Hamiltonian pathway in the graph, i.e. the AB pathway, then both GFP and RFP genes are 
expressed, synthesizing the green and red fluorescent proteins.  In consequence, the bacteria with 
the optimal solution will emit yellow fluorescence. Simulation experiments with BAGA algorithm 
were conducted as follows:  

 
Step 1. Initial bacterium setup.- Bacterial plasmid was initialized by concatenating lists 

representing the gene segments. The plasmid obtained, named as plasmid Hin/hix, encodes the graph 
into the bacterial plasmid according to the code shown in Table II: 

 
plasmid= {0,1,4}#{2}#{8,8,8}#{2}#{8,8,8}#{2}#{8,8,8}#{2} 

 
In accordance with the defined code the paths A, B and C of the graph were A= {5,1,6}, B= {7,3,8} 
and C= {5,3,6}.  
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Gene 

component 
Code 

promoter 0 
rbs 1 

HixC 2 
TT 3 

5’ RFP 4 
3’ RFP 5 
5’ GFP 6 
3’ GFP 7 

null 8 

 Table 2. Hin/hix plasmid code 

 
Step 2. Hin-hixC recombinase operator.-  Once the bacterial division has concluded, we 

apply the genetic operator simulating the Hin-hixC recombinase. The algorithm begins by randomly 
choosing two x, y positions in the plasmid that will undergo the exchange, i.e. (x,y) →  (y,x). Notice 
how this DNA exchange mechanism occurs within the plasmid of a bacterium, not between the DNA 
of two different plasmids. The value of x is obtained randomly, whereas the value of y is obtained 
from a random number u∈[0, 1], which is compared with a p probability value (p=0.5). The exchange 
between DNA segments is then performed (u<p) according to chart depicted in Fig. 6. In the 
simulation experiments, the Hin-hixC recombinase operator is applied with a probability pHix. 

 
Step 3. Expression of reporter genes.- After obtaining the new configurations of the plasmid 

DNA strands (Fig. 5), the algorithm proceeds expressing the genes of the fluorescent proteins. Note 
how the presence of 4}#{2}#{5 sequence stands for the binding of the two halves of the gene 
encoding for RFP protein, emitting the bacterium a red fluorescence. Similarly, the binding of the 
two halves of the GFP gene is revealed by the pattern 6}#{2}#{7, emitting the bacterium a green 
fluorescence. However, when the respective halves of both genes are properly bound together, then 
a simultaneous emission of red and green fluorescence will result in a yellow light emission in the 
bacterium. Only bacteria that emit yellow fluorescence have found the three-node Hamiltonian 
pathway solution. 
 

2.1.5. Simulation experiments 

In order to test the potential usefulness of the algorithms described above we conducted the 
following simulation experiments. A first experiment was an optimization problem consisting of 
finding the maximum value of the function: 

 
5 , 0 16

2
xy x

Sin x
−

= ≤ ≤
+

        (11) 

 
First, at time t=0 (Step 1) in the initial bacterium a binary a plasmid = {x0, x1, x2, x3} is obtained 
randomly. Following, the bacterium undergoes a bipartition (Step 2) and mutation with pm=0.3 (Step 
3) in the plasmid of the daughter bacterium, the other cell is the parental bacterium. Next, the plasmid 
is expressed, translating the binary sequence x0 x1 x2 x3 to its equivalent decimal number, resulting the 
x value of the function (11). The concentration of IPTG or y is given by y=f(x), obtaining the fitness 
(Step 4) with a linear function (Table I) where k=10 and s=60. Afterwards, GFP value will depend 
on the fitness z value (Step 5), with m=150. Finally, the Malthusian growth rate k is updated (Step 
6), being k0=0.03, α =0.8 and β =10. 
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In a second experiment, the goal was to find the minimum value of the booth function: 
 

2 2
1 2 1 2 1 2( 2 7) (2 5) , 0 8 , 0 8y x x x x x x= + − + + − ≤ ≤ ≤ ≤         (12) 

 
We defined a longer plasmid, plasmid = {x0, x1, x2, x3, x4, x5}, since (12) is a two variables function,  
encoding the first three bits for the variable x1 and the remaining three bits for x2. The experiment 
was conducted with the following parameter values: pm=0.5, k=10, s=7000, m=150, k0=0.03, α =0.8 
and β =1.0. 

In the optimization experiments described above, we evaluated four variations of the standard 
BAGA algorithm. Firstly, in expression (3) when α  >0 and β >0 then we set the conditions of the 
default version searching for the optimal solution via selection (S) and parallelism (P).  Secondly, 
by setting α =0 and β >0 in (3) selection is removed conducting only a parallel (P) search for the 
optimal solution. Finally, in both cases it is possible to include a procedure that we termed as eugenic 
(E) procedure. In such a case, an additional step is included in the algorithm by which are removed 
those bacterial agents where GFP reporter protein levels are below to a certain threshold θ  value. 
Thus, the algorithm kills bacteria without good solutions (gfp θ≤ ).  In this paper, we will run the 
algorithm in one of these four scenarios, which we will refer to as: (1) SP when the search for the 
optimum is via selection and parallelism, and (2) SPE when in (1) the eugenic rule is included. Other 
options are (3) P if the search for the optimum is in the absence of selection, with only parallelism, 
and (4) PE when in (3) the eugenic rule is included.   

Following, we evaluated the performance of the improved version of BAGA comparing the 
obtained results with the standard BAGA algorithm. In this case, both experiments were just run 
according to SP protocol and solving an instance of the 0/1 knapsack problem (Table III), with 
W=100. In the standard BAGA experiments, we set pm=0.3, m=150, k0=0.03, α =2.0 and β =10.0, 
obtaining the bacterial fitness with a Hill function (Table I) where v=1.0, k=27 and n=6.0. Next, we 
conducted the experiments with the improved version of BAGA. The instance and general parameter 
values were similar to those used with the standard BAGA, with the exception of the values of the 
parameters related to the fitness value calculation. Thus, parameters of the Hill function were v=1.0, 
k was obtained according to (6) with n=3.0 and k2=0.02.  
 

Profit 50 55 35 
Weight 65 45 55 

          Table 3.0/1 knapsack instance 

Finally, simulation experiments solving the Hamiltonian path problem were conducted 
replicating the original experiment [22]. For this reason, there is no Darwinian natural selection and 
the Malthusian growth rate remains constant (k0=0.03). Therefore, it is a P protocol experiment. 
Instead of mutation, the Hin-hixC recombinase operator was the source of variability of the bacterial 
colony, with pHix=0.3.  

In all the experiments carried out, we recorded the optimal bacterial occurrence times. Using the 
program Statgraphics Centurion 18 version 18.1.12 we fit the experimental data to the following 
regression growth curve: 

( ) a bty t e− +=     (13) 
 

An optimal bacterium contains a plasmid with a sequence encoding an optimal solution. These 
bacteria are detected by conducting a screening of the growing colony, thus a bacterium is optimal 
when GFP concentration (fluorescence emitted) is above a given threshold gfpθ . In the experiments 

with (11) and (12) functions we set gfpθ =149, whereas in 0/1 knapsack problem a value gfpθ = 145 was 

used. However, in the Hamiltonian path problem the detection of the optimal bacteria was conducted 
recording the times in which the bacteria that have arisen emit yellow fluorescence.  
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Scripts written in Gro language, which implement the algorithms (Sections 2.1.2, 2.1.3 and 
2.1.4), and used to perform the simulation experiments described in section 2.1.5 can be downloaded 
from the repository [26]. 

 
3. Results 

The results obtained with the different versions of BAGA, opens up the possibility of designing 
evolutionary algorithms based on synthetic bacteria in silico. Synthetic biology is a discipline still in 
development from which to draw inspiration for the design of evolutionary algorithms. In this paper, 
we conducted simulation experiments with colonies of bacterial agents, confronting the bacterial 
colony with different optimization problems. In order to specify whether the search for the optimal 
solution is exclusively in parallel or with the help of selection, simulation experiments were 
conducted by setting different values to the parameters of the BAGA algorithm. In Fig. 7, we show 
for the problem related with the optimization of function (11) a screenshot of the sequence of stages 
in the growth of the colony as well as the representative growth model y(t) of  the number of  bacteria 
per time carrying optimal solutions (Fig. 8). Indeed, all variants of the standard BAGA algorithm 
lead to the formation of a population of optimal bacteria with a similar genome 1011, i.e. the value 
of x that maximizes the function (11). According to Table IV, the value of the estimated slope in the 
function modelling the population growth allows us to quantify the effects of selection in the search 
for the optimum, e.g. 0.071 in SP and 0.026 in P. In other words, for instance to obtain 246 bacteria 
with the optimal solution, it takes t=196 units of time for a SP search and t=297 for a P search. 
Therefore, when there is selection the bacteria find 101 units of time before the optimal solution. 
This means that as expected, and as BAGA is an evolutionary agent-driven algorithm, selection is a 
significant contributor in the parallel search for the optimal solution conducted by the bacterial 
agents. Interestingly, the inclusion in SP and P of such an extreme rule as the eugenic procedure 
leads to a delay in the emergence of bacteria carrying the optimal solution. However, after this delay, 
the number of optimal bacteria rises to the order of several thousand individuals with respect to the 
algorithms without this rule. When considering all four variants of the BAGA algorithm, the waiting 
time needed to reach a given number of bacteria carrying the optimal solution, e.g. for 246 bacteria, 
was SP (t=196) < P (t=297) < SPE (t=511) < PE (t=675). 

Similar to the optimization problem described above in Fig. 9 we show the results of the 
experiments performed with standard BAGA in the search of the minimum of the booth function 
(12). In this simulation experiments the optimal bacteria carry the 001, 011 values that represent the 
x1 and x2 values which minimize the booth function. Although the selection is a factor that promotes 
the finding of optimal solutions, its effect is not as great in (12) as in the previous experiment with 
the function of one variable (11). One plausible explanation is that parallel search is the main factor 
driving bacteria during the search for the optimum. This is justified because regression function 
slopes are similar in the SP and P variants of the experiment (Table V), i.e. 0.036 and 0.035 
respectively. The inclusion of a eugenic step in the BAGA algorithm further delays the presence of 
optimal bacteria (Fig. 9b) by adopting in SPE experiment a 'J' shape the growth function y(t). Note 
how in this case the slope of the growth function exhibits a very high value (0.141) compared to the 
other population growth curves. Once again, in the four experimental variants of BAGA algorithm 
and given a number of bacteria, for example 88, the time required to observe such population size 
was SP (t=236) < P (t=293) < SPE (t=870) < PE (t=1614). 

In the experiment carried out with the improved BAGA, thus the algorithm including 
punishment that was applied to 0/1 knapsack problem, the number y(t) of bacterial agents carrying 
optimal solutions (Table VI) increases significantly (Fig. 10) with respect to the standard BAGA. 
Consequently, the replacement in the algorithm of the IPTG concentration by its velocity v0 as well 
as the restriction ( ≤w W ) in (10) improve the rate at which bacterial carrying optimal solutions arise 
during the simulation experiment. 

 
 



 

 

11 

Algorithm version Regression curve (*) 
SP 8.492 0.071ty e− +=   

SPE 33.943 0.077 ty e− +=  
P 2.291 0.026 ty e− +=  

PE 10.251 0.023ty e− +=  

Table 4. Optimal bacteria growth models in the standard BAGA algorithm for the function (11) 

optimization problem. (*) The relationships between population size (y) and time (t) was statistically 

significant in all four models (p-value=0.0000) 

 
 

Algorithm version Regression curve 
SP 4.236 0.036 ty e− +=   

SPE 117.941 0.141ty e− +=  
P 5.727 0.035 ty e− +=  

PE 25.022 0.018 ty e− +=  

Table 5. Optimal bacteria growth models in the standard BAGA algorithm for the function (12) 

optimization problem. (*) The relationships between population size (y) and time (t) was statistically 

significant in all four models (p-value=0.0000) 

 
 

BAGA algorithm Regression curve 
Standard BAGA 18.858 0.167 ty e− +=   
Improved BAGA 7.327 0.098 ty e− +=  

Table 6. Optimal bacteria growth models in the standard BAGA and improved BAGA 

algorithms for the 0/1 knapsack optimization problem. (*) The relationship between population size (y) 

and time (t) was statistically significant in all four models (p-value=0.0000) 

 
Fig. 11 depicts the growth of the colony in the Hamiltonian path problem. The optimal growth 

curve of the number of bacteria finding the optimal pathway is shown in Fig. 12. In a particular 
experiment, after 262.65 time units, 318 bacterial agents found the optimal solution (Fig. 13). The 
results obtained in the in silico experiment replicate those obtained in the original wet experiment 
with real bacteria [22]. In the simulation experiment bacteria found the optimal solution in the 
absence of selection as occurs in its laboratory counterpart. 

In summary, we can conclude that synthetic biology is a source of inspiration either for the 
design of evolutionary algorithms or for some of their steps, as shown by the results obtained in our 
simulation experiments.  With the experiments conducted we have illustrated how using synthetic 
bacteria it is possible to solve some elementary optimization problems. 
 

4. DISCUSSION 

The results of the simulations are in line with those that could be expected from similar 
experiments conducted in the field of programmed evolution in both microbiology and synthetic 
biology. The different versions of the BAGA algorithm solve elementary instances of classic 
optimization problems in a similar way to a classical genetic algorithm, capturing the role played by 
the different components that are part of a synthetic biology experiment, which justifies the 



 

 

12 

acceptance of the assumptions of the algorithm, as shown in the simulation experiments.  
However, although the results are quite encouraging, there are still issues that need to be 

addressed in the future. In the experiments performed with the BAGA algorithm the only source of 
variability is the mutation. In particular, in the optimization experiments and  0/1 knapsack problem 
the mutation is similar to the operator mutation of a genetic algorithm. That is, given a certain 
probability of mutation, the operator randomly generates 0s and 1s that are substituted in the old 
gene value. Likewise, and similarly in the case of the Hamiltonian problem, the only source of 
variability in the BAGA algorithm is the mechanism of Hin-hixC recombination, as it occurs in its 
laboratory counterpart. Therefore, and in the future, the possibility of including in BAGA other 
sources of variability should be explored, and in particular we refer to the possibility of implementing 
bacterial conjugation, a form of recombination between neighboring bacteria. Bacteria are 
microorganisms that exhibit a variety of mechanisms for gene transfer between individuals, which 
are known as horizontal gene transfer [27]. Another interesting possibility not included in the present 
BAGA simulations will be the substitution of reporter proteins by other procedures for the detection 
of optimal solutions, for example the use of simulated antibiotics and the resistance of optimal 
bacteria to the presence of antibiotics.  

One of the interesting aspects in the simulations is the the parallel search for solutions, thus a 
feature that is a natural consequence of the exponential growth of the bacterial population. The 
simulations suggest that although selection is an important factor in the evolution of the colony of 
synthetic bacteria, equally important is the parallelism. The mechanism of bacterial duplication leads 
to an exponential or Malthusian growth model in which bacteria of different generations explore the 
evolutionary space in search of the optimum. In the absence of the mechanism we have termed  
eugenic procedure, i.e. if we do not eliminate the bacteria carrying the worst solutions, then the entire 
colony in growth will collaborate in this search, and therefore in solving the optimization problem. 
Even if there are bacteria with optimal or near-optimal solutions that increase their growth rate, that 
is the value of the Malthusian parameter, the remaining agents will continue cooperating in the 
exploration of the solution space. Since in BAGA the fitness is expressed through the bacterial 
growth rate, then bacterial colony explores the evolutionary landscape in a fashion that best mimics 
natural selection.  On the contrary, in a genetic algorithm all individuals are replaced generation after 
generation, with no overlap of generations. Therefore, the evolutionary dynamics of BAGA is 
different from the Wright-Fisher evolutionary dynamics of a genetic algorithm. Furthermore, the 
execution of any of BAGA implementations in the Gro cell programming language is a parallel run, 
since every daughter bacterium resulting from the division of a parent bacterium will be programmed 
with a copy of the script from the parent bacterium. Therefore, a script will be doubled itself as time 
goes by with the growth of the colony. For this reason, and given a certain problem of optimization 
the execution speed of the algorithm depends largely on the version of Gro used in the simulation as 
well as the computer's performance. A novel feature of BAGA is the replacement of the objective or 
fitness function characteristic of a genetic algorithm by a procedure in which fitness is calculated by 
a method inspired by synthetic biology. The possibility of obtaining a fitness value that depends on 
IPTG, a molecule that triggers the expression of any gene under the control of the Lac operon, 
corroborates how synthetic biology is a good source of inspiration in evolutionary computing. 
However, an important difference between our algorithm and a programmed evolutionary 
experiment in synthetic biology is that in the latter case, in an experiment with real bacteria in the 
laboratory, the selection of the bacteria is based on the idea that bacterial survival depends on gene 
expression. That is, the information of a gene is translated into a protein. In the case of an enzyme, 
i.e. a protein catalyzing a chemical reaction of the metabolism, then the expression of the gene is 
measured by the enzymatic activity. In contrast, in experiments with BAGA algorithm in silico, 
bacterial selection depends on the IPTG inducer and not on the gene expression, i.e. IPTG-induced 
enzyme activity. Nevertheless, BAGA shares some drawbacks with genetic algorithms. For instance, 
as it occurs in genetic algorithms, and regardless of whether the IPTG value expresses its 
concentration or velocity, we need to adjust the fitness value obtained either by scaling the values or 
by any other procedure. A similar situation occurs with α  and β  parameters which allow the 
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calibration of the effect of fitness on the bacterial growth rate. These values  must be carefully 
adjusted to values that are within the physiological scales governing the dynamics of  bacterial 
colony. In addition, the current version of BAGA assumes a linear relationship between bacterial 
growth rate and fitness. That is, in the expression (3) the increase in the growth rate is directly 
proportional (α ) to the fitness (z), which is scaled with the parameter β . Consequently, in the future 
it will be of interest to study other non-linear relationships between growth rate and fitness. 

Another interesting question to study in the future is related with the fact that BAGA does not 
take into account whether the bacterial culture grows on a Petri dish, chemostat [28] or any other 
container [29]. The availability of space is one of the most relevant issues in the dynamics of a 
population of microorganisms, and from which could derive interesting issues related to the 
resolution of an optimization problem with bacterial agents. Related to the latter question, the 
potential emergence of spatial patterns from the application of BAGA to a bacterial colony can also 
be studied: strategies for harnessing the spatial patterns into improving the execution of the algorithm 
could be proposed, or conversely, producing spatial patterns from the algorithm as a secondary goal 
in establishing a blueprint for a primary goal such as biomaterial fabrication, biosensor 
implementation, or tissue engineering [30]. Other issues also to be studied are those related to the 
mutation that takes place after bacterial duplication. Each time a bacterium divides into two daughter 
bacteria, one of them retains the parental genes state while the other daughter bacterium undergoes 
point mutations. It is also possible for both cells to undergo mutation. In the algorithm, this is an 
option to decide and set, since it affects the evolution of the colony. Our goal has been to take the 
first steps in the design and development of a genetic algorithm, being the novelty of the algorithm 
that its main steps are inspired by the physiology, genetic mechanisms and dynamic behavior of 
synthetic bacteria. In the future we should address a study of all these issues,  because then we would 
be able to design new versions of the current algorithm.   

Although there are other programming languages [31] available in synthetic biology, both in 
BAGA and in the implementation of screening procedures, the programming of synthetic bacteria 
has been done with Gro language. We believe that this cellular programming language has a potential 
future as long as the language is maintained up to date, including new commands, libraries, etc. 
Likewise, and in our opinion, we believe that these kinds of simulation experiments will favor the 
opposite process, that is, when designing evolutionary algorithms not only do engineers look more 
like biologists, but biologists will become computer scientists [32]. Another possible effect of our 
work is in the field of synthetic biology. To date, in synthetic biology there is a predominance of the 
top-down approach, i.e. elements designed externally are added into a bacterium. However, one of 
the challenges of several scientific disciplines, e.g., synthetic biology, artificial life, bioinformatics, 
etc. is succeed with the opposite approach, i.e. a bottom-up approach [33]. The aim is the creation 
of an artificial cell or proto-cell from the gradual assembly of different elements, modules or systems.  
Therefore, our simulations could be a starting point about how to incorporate synthetic bacterial 
evolution in synthetic biology experiments [34], because it is likely that in a near future evolution 
will be one of the main ingredients of the bottom-up strategy. An exemplification of this scenario be 
applied to the automation of gene circuit designs. Electronic Design Automation (EDA) currently 
uses genetic algorithms for the placement of electronic components within a circuit, therefore, 
selecting the better circuits among many variants of possible ones. In 2016, a genetic design 
automation tool, Cello [35], was published. However, there is no mention to genetic algorithms in 
the implementation of Cello. An interesting direction could be to study the use of BAGA variants to 
automate the design process in vitro/in vivo.   

Simulation experiments carried out with BAGA algorithm reproduce some of the main features 
of biological evolution. However, in the future, when BAGA-like algorithms are designed and 
applied to solving optimization problems in vivo, i.e. with real bacteria, some drawbacks will arise. 
In this sense, the experiments carried out by [20] as well as the study of microbial evolution in the 
laboratory [36] could provide interesting ideas for the in vivo version of BAGA. In fact, the 
possibility of implementing in vivo genetic algorithms has already been outlined. In 2005, [37] 
introduced an experimental protocol referred to as Cellular Evolutionary Computation by combining 
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an in vitro phase where plasmids are recombined, and other phase in vivo where bacteria carrying 
the plasmids are selected according to their fitness. Nevertheless, their authors [37] are aware that 
the procedure is tedious, so with in silico simulations it is possible to reach similar results in a simpler 
way. 

Finally, and as the main conclusion, we propose that synthetic biology opens up the possibility 
of developing new algorithms, genetic operators, and simulation protocols as a source of inspiration 
in the field of evolutionary computing. Furthermore, we believe that this kind of simulation 
experiments will someday help to make the leap into the design of evolutionary algorithms with real 
bacteria in e.g. a hardware system integrating a bioreactor with a computer. 
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Figure 1. BAGA algorithm (for explanation see text). 

 

 

 
 

 

Figure 2. Fitness evaluation in standard BAGA algorithm. The P gene encodes a given 

optimization problem, e.g. finding the maximum of the function y=f(x), being proOP the promoter. 

The concentration of IPTG entering the bacterium is the value of y, with x being the value/sequence 

coded in the plasmid. The IPTG value activates the 'operon Z' which calculates the fitness, value that 

is modeled by the synthesis of a protein z, i.e. z = f (IPTG). The fitness value is reported through the 

synthesis of a fluorescent protein, and in particular of GFP. The higher the fitness, the greater the 

GFP synthesis (  = promotor,  = gene,  = rbs,  = terminator,  

= activator) . 
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Figure 3. Fitness evaluation in BAGA algorithm with penalty. In the example the P gene encodes 

the 0/1 knapsack problem. The main stages are similar to those of the standard BAGA algorithm 

(Figure 2), except for the presence of an inhibitor, namely protein IIA.  The protein is synthesized 

by a gene when w>W, being proPENALTY the promoter. If IIA is present then the entry of IPTG 

into the bacterium is blocked. 

 
 

 

Figure 4. Three node Hamiltonian problem. 
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Figure 5. Solutions of Hamiltonian path problem obtained with BAGA algorithm (See Figure 2 

for the meaning of the symbols,  = HixC). 

 
 

 

Figure 6. Hin-hixC recombinase operator (for explanation see text). 
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Figure 7. Growing colony for the optimization problem of the search of the maximum of the 

function (11). From left to right the colony is composed by 94 (t=667.31), 270 (t=714.35) and 524 

(t=751.19) bacteria respectively. The different brightness of the bacteria depends on the 

concentration of GFP. The higher the fluorescence, the better the solution. 

 
 

 

 

 

Figure 8. Number of bacteria bearing optimal solution (y) as a function of time (t) in the function 

optimization problem (11): (a) SP (b) SPE (c) P (d) PE. 
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Figure 9. Number of bacteria bearing optimal solution (y) as a function of time (t) in the function 

optimization problem (12): (a) SP (b) SPE (c) P (d) PE. 

 

 

Figure 10. Number of bacteria bearing optimal solution (y) as a function of time (t) in the 0/1 

knapsack optimization problema (12):  (a) standard BAGA (b) BAGA algorithm with penalty. 
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Figure 11. Growth of the colony of synthetic bacteria in the Hamiltonian path problem. The size 

of the colony is 125 bacteria in t=167.71 (left), 503 bacteria in t=215.16 (center) and 1017 bacteria 

in t=241.06 (right). 

 
 
 

 

 
 

Figure 12. Number of bacteria bearing optimal solution (y) as a function of time (t) in the 

Hamiltonian path problem with three nodes. In the experiment, the regression equation of the growth 

model has a function 3.328 0.034ty e− += (p-value=0.0000). 

 

 

Figure 13. Hamiltonian path solution. 


