arXiv:2110.08511v1 [cs.FL] 16 Oct 2021

What can we learn from universal Turing
machines?

Maurice Margenstern

October 19, 2021

Abstract

In the present paper, we construct what we call a pedagogical univer-
sal Turing machine. We try to understand which comparisons with biolog-
ical phenomena can be deduced from its encoding and from its working.

1 Introduction

In one of my papers, sorry, I do not remember in which one, I wrote that if
we encode one of the smallest universal Turing machines in a DNA way, we
get something whose size is much smaller than the smallest virus. As far as
a universal Turing machine has an unpredictable behaviour, the parallel we
indicated suggested that the behaviour of a virus is more unpredictable. At
that time, I did not argue more than those few words which, clearly, did not
raise any noise. As far as at the present moment people are more concerned with
what we know about viruses, it can be interesting to go back to that comparison
and to discuss whether it is relevant or not.

In Section[2] we remember the results about small universal Turing machines
and classical results about Turing machines. Then, we remind the reader results
about the smallest universal Turing machines. In Section Bl we introduce the
informal notion of a pedagogical universal Turing machine and we build such
a machine. In Section] we discuss whether the comparison which is indicated
in the first paragraph of the present section is relevant or not. In Section [we
put a temporary end to the dispute.

2 Universal Turing machines and tiny ones

In the present paper, the reader is supposed to know the definition of a Turing
machine. To make things as clear as possible, we indicate that here, we only
consider deterministic Turing machines with one head and a single infinite tape
in both directions. The instructions of a Turing machine will be represented in
a table: the columns are labelled with the alphabet of the machine, the lines
are labelled with its set of states. We remind the reader that a configuration

http://arxiv.org/abs/2110.08511v1

of a Turing machine is the smallest finite segment of its tape containing the
scanned square outside which all squares are empty together with the position
and the state of the head. All machines we consider in the paper have a finite
initial configuration from which it clearly follows that at any time during its
computation, the configuration of a Turing machine is also finite.

As an example, we give the instructions of a Turing machine which performs
an addition over two numbers written in unary representation: n is represented
by n vertical strokes. The initial configuration looks like that one :

e (1)

In that configuration, _ represents the symbol which means that the square
of the tape containing it is empty. It means that there is no information in the
square. A simple machine consists in replacing the * in the middle by a | and
then erase the rightmost * and replacing the rightmost | by a *.

The machine of Table [l is what I call a courteous Turing machine. It is
defined by two conditions : the machine head never goes to the left-hand side
of its initial position and in the final configuration, the result is concatenated to
the initial data. For a courteous addition, the final configuration corresponding
to (1) is:

o L L (2)

Table 1 Table of the Turing machine for the courteous addition.

- * | a X
1 X R 2
2 R 3 R
3 XL 4 R
4 a Rb5 R7
5 | L 6 R R R
6 L L | L 4 L
7 R 8 R
8 * L 9 R * R
9 L L * |

Let us explain the notation used for Table [I] which follows Minsky’s con-
ventions as formulated in [2]. The format of an instruction is AMs where A is
the letter written by the machine in the scanned square in place of the letter it
has seen, M is the move of the head: either to left, symbolised by L, to right,
symbolised by R or no move at all symbolised by Z. When a symbol is missing,
it means that it is the same as the label of the column if it is a letter, or the
same as the number of the line if it is a state or Z if it is a move. Those con-
ventions are illustrated by the table. The symbol ’!” means the halting state:

it stops the computation. Note that the instruction represented by an empty
entry may also be considered as halting the computation: the scanned symbol is
unchanged, the state of the head remains the same and the head scans the same
square and all this forever. Accordingly, when such an instruction is performed
no change happens after that over the configuration which endlessly remains
the same. We shall consider that situation as identical to a halting instruction
as far is it can easily be detected.

The working of the machine is rather simple: it marks the leftmost and the
rightmost = by x, states 1, 2 and 3, and then, it marks the current read | by a
which triggers the copying of | on the leftmost empty square after the rightmost
x: states 4, 5 and 6. The end of the computation is detected under state 4
when marking a | fails as far as the rightmost x is met. States 7 and 8 allow
the machine to write extremal *’s while replacing all x by *. State 9 allows the
machine to stop at its initial position.

We can see that many instructions have a single symbol: that of the move. I
call such an instruction a glide: it is particularly clear under states 5 and 6: the
machine head runs over the configuration while it meets some expected symbol
in order to change the direction of its motion. Note that there are 13 glides
in the table, 21 entries of the table are empty, meaning halting instructions as
already mentioned.

2.1 Universal Turing machine

It is now time to consider universal Turing machines. In what sense such a
machine is universal? The meaning is the following: a Turing machine is called
universal it it is able to simulate any other Turing machine. Let us make it more
precise. Let M be a Turing machine and C be an initial configuration for M.
The computation of M starting from C' is a sequence {C} } ;>0 of configurations
for M such that Cy = C and Cy41 is obtained from Cj by the application of
the single instruction of M which can be applied to C%. The computation is
a finite sequence if and only if the last configuration in the sequence contains
the halting state. A machine U is said universal if, for any Turing machine M
and for any initial configuration C' for M, there is a configuration K of U such
that the computation {K,},>0 of U starting from K contains a subsequence
{K, } k>0 such that K, = 7(Ck) where 7 is a transformation of configurations
for M which does not depend neither from C nor from M.

Accordingly, a universal Turing machine U must be able to simulate any
Turing machine M, even if the number of states of M is bigger than that of U,
even if the size of the alphabet of M is bigger than the size of the alphabet of U.
Turing proved that it is possible and the key point for that is the construction
of 7 and of K. A solution to that problem is to define the transformation 7 as a
translation of the instructions of M as well as the squares of its tape. Although
the tape of a Turing machine is infinite, its configuration at any time is finite
which clearly follows from the above definition of a configuration. The number
of instructions of M also is finite so that those finitely many finite elements can
be, in principle, translated on the tape of U.

The idea for that is to split K into two parts: one contains the 7(I) for I
running over the elements of the table of M, the other contains the 7(z) for x
running over the configuration of M at the considered time of its computation.
The place of the head and its state must be marked in some way. If that point is
satisfied, the working of U is simple. It locates the 7(I) for the I which applies
to Cy, for the considered time k. It copies 7(y) where y is the letter in I onto 7(&)
where £ is the square of C) scanned by the head of M. When it is performed,
U moves the position of the head of M from where it is in Cj onto its place
in Ck41 under construction. When the head is in its new place, U changes the
state of the head of M to the state indicated by 7(I). In Section Bl we describe
an explicit universal Turing machine performing the just described behaviour.
We will bring in a tuning of a few points which will be explained in that section.

How big is such a universal Turing machine? Roughly speaking, less than
twenty letters and less than a hundred of states are enough to make the table of
a universal Turing machine. Now, if we compose a universal Turing machine U
with a machine which does nothing, we obtain a new universal Turing machine
whose table strictly contains that of U. Accordingly, there are infinitely many
universal Turing machines. Note that it is easy to make a bigger universal
Turing machine compared with another given one. Is it possible to make a
smaller universal Turing machine?

The answer is yes, if we start from a rather big universal Turing machine.

Small universal Turing machines happened to be a source of important
works. It is not the place in this paper to report the history of that race.
We refer to [I] for such a sketchy account and to [3] were a more recent state of
the art is described. The key reduction for the table of a universal Turing ma-
chine is to use the delayed computation of a Turing machine. Instead of directly
simulating a Turing machine, we allow the machine supposed to be universal to
simulate another way of computation which, in its turn, is able to simulate any
Turing machine. Such a system is used in Rogozhin’s paper [5] which gave a
decisive impulse to the race to universal Turing machines as small as possible.

2.2 Tiny universal Turing machines

The results of [5] were a long time the best results. Initially appearing in a
Soviet journal, [6] was an improved presentation of the results in Theoretical
Computer Science, far much accessible. More than twenty years later, Neary
and Woods obtained smaller machines, see [4]. As far as the present paper does
not aim at giving an account of that race, we will present a small universal
Turing machine contained in [4], the machine with four symbols and six states.
That machine improves the machine with four symbols and seven states of [6].
That machine, as well as all machines of [5] and [4], is universal in the following
meaning: it simulates another system of computation which is able to simulate
any Turing machine. The program of the machine is reproduced by Table
under a translation of the alphabet to which we turn back in Section Ml

Table 2 Table of the machine with four letters and siz states

by T. Neary and D. Woods.

A C G U
1 UL G L CL AR2
2 GRS G R R 1 AR
3 UL L5 CL L5
4 R 5 G R CR2 AR
5 CL3 GRE6 CLE®6 R
6 GRS CL4 GR1

The table displays those conventions. As examples, we have the instruction
when reading A in state 1: U L, and also the instruction when the head reads U
in state 6: R. We call that latter move a glide as far as the head passes over the
symbol without changing it and remaining in the same state. From the table,
we can see that the machine has 23 instructions. The missing instruction for
the entry for the letter A and state 6 is in fact the instruction AS1. Accordingly,
that instruction makes the head stay over the same square without changing its
content. We already mentioned that we consider that it is a halting instruction.
The writing of the table requires at least 54 letters: those used in the writing of
the instructions of Table 2 Without Minsky’s conventions, we need 72 letters.
In that counting, each letter of the alphabet of the machine, each symbol of move
and each number for a state counts for one unit. From our discussion about
a universal Turing machine, we can see that the number of letters depends on
the encoding we use. As an example, if we used a binary encoding, the four
letters of the alphabet require two bits with the convention that A, C, G, U are
encoded by 00, 01, 10, 11 respectively. We can encode L, R and S by o1, 10, 00
respectively. We can encode the number of a state by its binary representation.
If we wish to encode the table itself, we need a delimiter for the instructions
and a delimiter for the states. We deal with that question in Section Bl to which
we now turn.

3 Pedagogical universal Turing machines

As indicated in the name pedagogical universal Turing machine, the ma-
chines we consider under that terminology defines something which should be
easily understood. That very condition makes it impossible to provide a formal
definition for that notion: what is indeed easily understandable? What another
person understands can be not understood by me and, sometimes, conversely.
So that such a notion is clearly subjective. However, I think that if somebody
actually knows and understands what a universal Turing machine is, that person

can understand the working of the pedagogical machine we give in the present
section.

3.1 Working of the pedagogical universal machine

As mentioned in Section 2] we consider a deterministic Turing machine with a
single tape and a single head. In Sub section 2.1 we stressed the feature that a
universal Turing machine U must be able to simulate any Turing machine M,
whatever the size of the alphabet A of M and whatever the number N of states
of M. The solution to those constraints is to encode the letters of A as well as
the numbers in {1..N}. Usually, the encoding is conceived in order to facilitate
the location of instructions and of the new state. The most convenient solution is
to represent the letters by their rank in a fixed ordering of A and to do the same
for the states. Then, the location is easy: it is enough to mark the instructions
by a delimiter, to gather in the same area the instructions depending on the
same current state of M and to delimit also such an area. Then the location
is obtained by a one-to-one correspondence between the number of symbols in
the unary representation of the number of a letter or of a state and the number
of delimiters to cross in order to access the needed area. Basically, the working
is the same as what the courteous addition performed in Section

When the needed instruction is obtained, the replacement of the content
of the scanned square by the letter given by the instruction is performed by
a copying process. The unary representation makes that operation somewhat
complex: if the length of the new letter is equal to that of the scanned one,
there is a simple copying process to perform. Otherwise, the situation is more
complex if the length of the new letter is different from that of the scanned one.
If it is shorter, the square has to be shrunk which triggers to move the rest of
the tape to left. If it is larger, the square has to be widened which entails to
move the rest of the tape to right.

The move of the whole tape of the simulated machine is also needed if the
head goes to the left-hand side of the leftmost square of the simulated configu-
ration. Fortunately, we may assume that our universal Turing machine has to
only simulate Turing machines which work on a half-tape only, i.e. the tape
is infinite to the right only. We say that such a machine which observes one
condition of courtesy is polite. Indeed such machines can simulate any Turing
machine M on a bi-infinite tape: it is enough to imagine that the half tape
is divided into two parts : one devoted to the right-hand side half of the tape
of M and the other part is devoted to its left-hand side part. That entails a
larger alphabet and a bigger number of states only. It is easily feasible. Another
constraint, in order to make the code lighter is to forbid the stationary state:
the head has always to move, either to left or to right, otherwise the instruction
is considered as a halting one. That constraint does not alter the generality of
the result as far as a machine with stationary instructions can be simulated by
a machine which rules out such instructions. The price to pay is to allow the
machine to use more states.

The price to pay with unary representation of the numbers is a longer rep-

resentation of each element in the code of the universal machine. In order to
get a shorter code for our pedagogical universal machine, we decided to repre-
sent the encoded numbers in binary. The counterpart is a complexification of
the location process. In a first step, U, our universal machine, transforms the
binary representation into a unary one. In a second step, the temporary unary
representation is used to locate the expected element.

In order to evaluate the maximal size needed for such a transformation, U
counts the delimiters for the state areas and also those for the instructions in
such an area, keeping the largest one written in unary. In Sub-section 321 we
more precisely describe the process together with its implementation in the code
of U. Roughly speaking, we implement the function n — 2" together with the
reverse function.

The tape of U is divided into two parts: to the left-hand side P, the set of
instructions collected state by state, to the right-hand side, T, an encoding of
the squares of the current configuration of M.

The working of U can be divided into cycles where each such cycle simulates
the execution by M of one step of its computation on its tape. A cycle is divided
into five steps. At the beginning of the cycle, U knows the current state of M
and it knows which square of the tape of M is currently scanned. The area
and the scanned square are both marked by the same symbol w which replaces
the corresponding delimiter. The first step for U consists in transforming the
binary representation of the scanned letter in the scanned square into its unary
representation stored in an appropriate area B to the left-hand side of P. The
second step consists in locating the execution of M to be performed by U: U
counts the number of appropriate delimiters in P thanks to the unary repre-
sentation stored in B. In the third step, U copies the letter indicated by the
instruction Z onto the letter of the scanned square, in 7. As we use the binary
representation of numbers and we know the size of A, we decide that the size of
binary representations is standardised into a fixed size possibly using an addi-
tional padding symbol: if A contains n letters, the maximal size is |n|, the size
of its binary representation, so that if k < n, it is represented by konl™—IFI+1
where h is the padding symbol, and ks is the binary representation of k and
|k| is the size of ka. The third step consists in moving the head of M which is
dictated by the appropriate symbol in Z. The step consists in moving w on the
previous or on the next delimiter. The fourth step consists in transforming the
binary representation of the new state in Z into its unary representation. The
fifth step locates the delimiter of the area devoted to the new state thanks to
that unary representation: accordingly, we are in the situation of the starting
point of the next cycle.

We implement those indications in the next Sub section, completing the just
given description by details implied by the implementation.

3.2 Constructing a pedagogical universal machine

As mentioned in Sub section 2.1 the tape of U contains an encoding of the table
of M together with an encoding of the tape of M. That latter representation

is possible as far as M starts from a finite configuration and as far as at each
step of its computation, only finitely many squares of its tape are non-blank as
already mentioned.

Figure [illustrates the basic structure observed by the configuration of the
tape of the pedagogical universal Turing machine U. The part of the tape
to the left hand side of the leftmost s is devoted to auxiliary computations we
explain a bit later. In between both s the tape contains an encoding of the table
of M. The part of the tape to the right hand-side of the rightmost s contains an
encoding of the configuration of the tape of M restricted to a segment outside
which all squares of the tape of M are empty such that the segment also contains
the head of M.

_F__S___S___

Figure 1 Basic structure of the configuration of the tape of the pedagogical universal
Turing machine.

The code of the program of M is a concatenation of the codes of its instruc-
tions, provided that for each state, an instruction is present for each letter. The
code of an instruction obeys the following format:

Ya;..azhMag. .a,, (3)

k m
where a; € {0,1}, and ax = a,, = 1. Indeed, ¢, = Zal- and ¢y = Zal- are
1 0

i= i=
numbers: ¢, € {1..L} and ¢, € {1..N} where L is the number of letters in the
alphabet of M and N is the number of its states. Accordingly, letters and states
are designated by their rank in an ordered representation of the alphabet and
in the list of states. Moreover, in order to facilitate the working of U, in (3),
we assume that k4 is a constant value with £ > 1. The codes in (3) are binary
representations of the codes written with the low powers to the left.

The area which lies to the left hand-side of the leftmost s is devoted to
the computation of the values of n — 2" for 2™ < p, where p is the maximum
between L and N.

Let us clarify that point. The initial configuration of the tape of U is the
following one :

.S _8___ (4)

The program and the tape of M are delimited to left by s. Each square of M
is delimited to left by u. The instructions of M are delimited to left by Y and the
area containing the instructions attached to a given state are delimited to left
by x. The tape of M is delimited to right by _, the blank of U. The blank of M
is, by convention, the first letter of A. The area devoted to the computation
of n+— 2™ is delimited to right by the leftmost s and, to left by _. That area
contains two sub areas marked by F. In between s and F, we have in unary a
number P = max(L, N). To the left-hand side of F, we have the representation
in unary of the powers of 2 which are not greater than P. We can see that area
of powers of 2 as a pattern to construct a number in unary knowing its binary
representation.

As an example, the following configurations show us how to compute 111111

from 011, as illustrated in (5):

d000d0ddF000000000S (a)
d000e0ehF000000000S (b)
d000LOehF000000000S (¢) (5)
d000dOLhFhhhh00000S (d)
d000d0ddFhhhhhh000S (e)

In (a) we have the initial setting when it is installed by the first operation
performed by U before the simulation itself. In (b) we have the copy of 011 on the
pattern: note that the writing of the digits is on the reverse order with respect
to the source. In (¢) L marks the power of 2 to be copied over the 0’s between
F and s. In (d) the copy is performed: four u’s replaced four 0’s. Moreover, the
next power of 2 to be copied is marked with L. In (e), we can see that the copy of
the last power of 2 to be copied is performed. The pattern is completely restored
and we have six h’s which is the writing in unary of 011. Table [l is extracted
from the table of the pedagogical universal Turing machine. It contains the
instructions which perform the transformations sketchily indicated in (5).

Table 3 Part of the table of the pedagogical universal Turing machine which
computes n in unary from its binary representation in the pattern at the left-
hand side of F.

0 1 L R Y Y F h d e
40 R R R41 R hR R
41 | hL42 L R L42
42 L L R43 L L L L L L L
43 | YR40 R R R L44 | UR40 RR40
44 dR45 el OL dL
45 R R OR46 R LR40

The reader is invited to look at the configurations of (5) in order to better see
the transformations given in what follows. Under state 40, a d is transformed
into n and the head crosses F which makes it to change the sate to 41. Under
that state, meeting the leftmost 0 in between F and s, the head transforms o
into h and change its state to 42. State 42 is a glide to left until L is met which
triggers the copy of the corresponding power of 2. The meeting of L makes the
head change its motion to right and to change its state to 43. That state is a
glide over the symbols which are marked as copied. The glide occurs when a not
yet copied symbol is met: 0o, h or e which are changed to v, U or r respectively.
When a symbol is met, the head goes again to right under state 40. The head
glides over u, b and e, it changes d to n and changes its state to 41 going on
to right, running over n’s until o is met. That writing triggers a new cycle of
copying that power of 2. That copying is completed when F is met under state 43
which, looking after a symbol to copy, meets F. Then the head turns to state 44

which unmarks the copied symbol and looks after L. which is changed back to d
and makes the head to turn to state 45 and to go to right. Under that state,
the head looks after the next e which is changed to L. While going to the right,
the head restores the o’s to the left-hand side of the new L which were changed
to n. When e is met, the head is now under state 40 and a new cycle of copying
the current power of 2 is triggered. Under state 45 too, if looking after e the
head meets F, it goes to right and, meeting n, it knows that the transformation
from binary to unary is performed. The head turns to state 46 which starts the
process of detecting the needed instruction. The process is already started by
state 45 which transforms the met n to o.

That process is used twice in a cycle of computation of U devoted to the
execution of one step of M. In fact, the same states are used for the conversion
of the binary representation copied on the pattern to the left-hand side of F. We
shall explain that point a bit later.

We give the full table of U in Appendix 1 to the paper, see Table [l Before
going on the explanation of the precise working of U, it is time to indicate how
the tape of M is encoded. The implementation of a square of M is given by (6):

vay . .apht (6)
where a; is in {0,1}, £ > 1 and h + k is the same constant value as in (3) for
the instructions. That makes easier the copying of the letter of the instruction
onto the scanned square: it overwrites the content of the square without any
comparison.

The first transformation from binary to unary is performed for the letter n
written in the scanned square. We know that n is the binary representation of

the rank of the considered letter in the alphabet of M. From (6), we know that
k

n = Z ;271 so that the binary representation of n on the square has the low
i=1
powers of 2 to left. We note that (5) shows us that the binary representation
over the pattern has the high powers to left. The display is chosen in order to
take benefit of the direction of the motion of the head in order to facilitate the
operations.
The alphabet of U consists of the following symbols:

,0,1, LR, X, Y, U, S h d e F2ZT.

Note that _ is the blank, i.e. the symbol indicating that the square which
contains it is empty. Symbols L and R occur in the instructions as indication
of the direction of the move to be performed by the head when it executes
the corresponding instruction while z indicates a halting instruction with no
mention of a direction. The symbols X, Y and v are delimiters. We already met
Yy and U, delimiters of an instruction and of a square of the tape respectively.
The symbol x delimits the states: in between two consecutive x, we have, on the
tape of U, all the instructions corresponding to the left-hand side x. It is the
same for the last state whose instructions are displayed between the rightmost x
and the rightmost s. The symbol n is basically a padding symbol in the binary
representations used in instructions and squares of the tape. It is also used for

10

marking other symbols during some operations. We already met the symbol F.
For what are symbols d and e, they are auxiliary symbols used during copying
processes. Two w’s occur on the tape: one usually replaces the Y which delimits
the instruction currently executed. That w replaces the leftmost x in the initial
configuration. The other w replaces the v which delimits the scanned square.

The first operation performed by U is to compute the number of states
and of letters of M: it is enough to compute from s the number of Y’s from
the leftmost x to the next one and then, again starting from s, to compute the
number of x’s until the next s is met. That computation is performed by states 1
up to 11,see Sub-table[dla: states from 1 up to 6 compute the indicated Y’s and
states from 7 up to 11 compute the x’s. State 11 puts the F which closes the
zone of 1’s giving P in unary. In that zone, the machine computes in unary the
powers of 2 which are not greater than P. That is performed by states 12 up
to 22, see Sub-tabledlb. The first four states writes ddhd to the right-hand side
of F. Then state 17 looks after the leftmost 1 which is transformed into h. The
head turns to state 18 and moves to left to mark the symbol corresponding to
the transformed 1: d is turned to e and h in between F and the rightmost d or e is
changed to R. Under state 18 the head goes back to left under state 16 in order
to look after a fresh symbol n or d to copy, marking it as r or e respectively.
The cycle of the succession of states 17, 18 and 16 is repeated until F is met
under state 16. It means that the number of h’s written by state 17 is equal
to the number of symbols e and r in between F and the leftmost n. The head
goes back to right under state 19 in order to change the rightmost n written
by state 17 to d, which is performed by state 20 and state 16 is called for a
new cycle of copying. When s is reached under state 17, U knows that the last
marked power of 2 not greater than P is the highest one. Accordingly, that part
of the computation is over. State 21 is called in a motion to left in order to
rewrite 0’s as 1’s and to return e’s and R’s to d’s and n’s respectively. The task
is continued by state 22. When F is reached under that state, a new action of
the pedagogical universal Turing machine starts beginning under state 23.

In Sub-table[dlc, states 23 up to 29 construct the pattern which lies to the
left-hand side of F and which is later used to compute the unary representation
of a number given in binary representation. The head goes form one side of F
to the other, looking after the next symbol to be copied when it is to the right-
hand side of F and copying it when it is to the left-hand side. States 23 up to 27
perform that copying. That part of Sub-table dlc is displayed on the left-hand
side half of the sub-table. State 23 performs the overwriting of the symbols
to be copied, namely o, h and d. State 24 writes d on the rightmost _-square,
while state 26 performs the same operation for 0. As far as those states go
from the marked symbol to the copying place, when it is under those states,
the head goes to left, gliding over o, 1, d and F. State 25 operates the opposite
motion, leading back the head under state 23 when it meets F. The end of the
transformation happens when looking after a symbol to be marked the head
under state 23 reads s. It turns to state 27 which transforms the initial 1’s in
between F and s into 0o’s and it turn to state 28 when it meets F. Two states,
28 and 29 are needed to go to the w which locates the square scanned by M.

11

States 28 and 29 are displayed on the right-hand side half of Sub-table dl.c.

In Sub-table [dld, states 30 to 40 copy n, the binary representation of the
letter scanned by the head of M, onto the scale-pattern lying on the left-hand
side of F. State 30 operates on the square scanned by M which is located by the
appropriate w. It glides over 0’s and 1’s which have been changed into d’s and
e’s respectively until it meet a free symbol 0 or 1 which it changes as already
mentioned. Then, state 31 is called to start the copying of a o while state 35 is
called to perform the same operation for a 1. Two states are needed to cross the
configuration of U from the square scanned by M up to F. In the area delimited
by F and the rightmost - to the right-hand side of it, state 32 overwrite a d
as b as far as the corresponding power of two is marked by o in the binary
representation of n. Then, by states 33 and 34, the head goes back to the
scanned square and then state 30 is called for marking a new symbol. Similarly,
state 35 looks after F and then state 36 overwrite the fresh d as e as far as the
corresponding power of two is marked by 1 in the binary representation of n.
That marking is performed by state 36 and the return to the scanned square
is again initiated by state 33. That copying process is completed when under
state 30 the head meets h. As mentioned in (6), there is at least one n in the
code of a square of the tape of M. Then state 37 is called and the head goes
to left until it meets under state 38 the rightmost .. Then the head goes to left
under state 39 until it finds the leftmost e. Then state 40 is called to change
that e into L in order to start the conversion of the binary representation to a
unary one.

In Sub-tableMle, its left-hand side half reproduces Table[3in another display.
That sub-table displays the states from 40 up to 50. The columns, the lines are
labelled by the states, the letters respectively. In the sub-table, there is no line
for _ as far as it raises only a halting instruction under the considered states.
We explained the process of converting the binary representation into the unary
one. States 46 up to 50 are devoted to the location of the needed instruction. By
assumption, the w in between the two s’s of the configuration of U replaces the
x delimiting the instructions associated to the current state of M. The counting
is performed by erasing a unary symbol and then mark a vy in between w and
the leftmost x or s to its right-hand side. When meeting w under state 46, the
head turns to state 47 looking after the closest Y while gliding to right. That v
is transformed into F which triggers state 48 and a glide to left back to s where
state 49 is called. Under state 49, the head goes back to the closest n, gliding
other o’s. When that n is met,it is marked by o and, turning to state 50, the
head goes back to right to the closest F which marks a Y. When that F is met,
the head restores the Y and it goes to state 47 in order to find the next Y which
has to be marked. The location of the appropriate instruction is obtained when
looking after a not yet erased n, the head finds F under state 49. It then turns
to the next stage of the simulation under state 51.

In Sub-table MLf, states 51 up to 60, U copies the letter encoded in the
instruction to be executed by M onto the square of M tape squared by M.
First, state 51 goes to the right-hand side F which is replaced by w: it is the
instruction to be executed. Then, the copying processes as usual: the first o or

12

1 met by state 52 is replaced by d or e respectively. The meeting of a o triggers
state 53 in order to overwrite the first not yet overwritten symbol by d under
state 54: the crossing of w by state 53 means that the square scanned by M is
reached. When the marking is performed, the return to the w of the instruction
is obtained by state 55. When it is done, state 52 is again called so that a new
cycle of copying one symbol is performed. When 1 is overwritten under state 52,
that triggers state 57 which overwrites with e the leftmost not yet transformed
symbol of the square scanned by M. States 57 and 58 are parallel to states 53
and 54. The return state is 59 which calls state 60 when the w delimiting the
instruction is met: state 52 is again called so that a new cycle of copying one
symbol is performed. The process is stopped when i is read under state 52:
it means that the binary representation of the new letter is completely copied
onto the square scanned by M. Note that during the glide to left or to right
in between both w’s glides over d and e. When looking after a new symbol to
be copied, state 52 also glides over the d’s and e’s present in the letter of the
instruction.

In Sub-table Ml.g, a first part of the states erase the markings: d’s and e’s
are back turned to o’s and 1’s respectively. That operation is performed by
states 61 in the instruction, by state 62 which makes the head of M go back
to the scanned square and by state 63 which clears the marking in the scanned
square. When it is completed as far as state 63 reads h, the head of U goes
back to the instruction, states 64 and 65, in order to look which move of the
head of M has to be performed. It is given by the letter & or L of the instruction
transformed into F or U respectively. States 67 up to 70 move w to the right
place. As far as M is supposed to be a polite Turing machine, the move to
left raises no problem: the required u-delimiter will be found. A move to right
is more complex: when going to right in the scanned square, the head of U
under state 70 meets U, the encoding of a square follows to the right-hand side
of that u. But such an v is missing if w was put on the rightmost square of the
tape of M. In that case, the head of U meets _. It is transformed into v and an
empty square must be copied, which is performed by states in Sub-table [4lh.

In Sub-table Ml h, states 71 up to 79 perform the construction of an empty
square at the right-hand side end of the configuration of M and they also control
the copying process of the new state of the the head of M onto the scale-
pattern at the left-hand side of F and its conversion in a unary representation.
The construction of an empty square is performed by states 71 up to 75. The
symbols of the previously scanned square () are marked in a copying process.
As far as the size of a square of M is not known but as far as, by construction,
all squares of M have the same size, it is enough in that copying process to
replicate any symbol of () as a h. In that process, n’s, 0’s and 1’s of Q) are
one by one replaced by Y, e and R respectively, which is performed by state 74.
States 71, 72 and 73 initialize that process. State 72 copies h on _ each time a
symbol of @ has been marked. The construction is done when under state 74
the head reads v. Then under state 75, U replaces by 1 the leftmost n of the just
constructed square and still under state 75 it erases the marks in @, returning
Y’s, e’s and R’s to h, 0 and 1 respectively.

13

State 77 crosses s and then state 78 makes the head of U go back to left to
the other s which is changed to T: the head goes to w, still marking the state
of the executed instruction and turns it back to x. Then, under state 79, the
head of U looks after u or F which is restored into L and r respectively and the
new state is 30. It means that the binary representation of a number which is
to the right-hand side of that move symbol is copied onto the scale-pattern to
the left-hand side of F, see Sub-table dld. State 39 of that table calls states 40
of Sub-table Mle which converts that binary representation into unary. When
the conversion is completed, state 46 reads T, which triggers state 80, the first
state of Sub-table [4li.

In Sub-tabledLi, the last sub-table of Table[d] states 80 up to 86 perform the
location of the new state of M. The principle is the same as that performed in
Sub-table[dle. The leftmost x is replaced by F by state 80, corresponding to the
first marking of a h in the unary representation of the number of the new state.
Then state 84 makes the head of U go to left until it reaches the rightmost _
to the left-hand side of the configuration of U. Then, under state 85, the head
marks a new h. That marking changes the state to 81 under which the head goes
to right until reaching T. There the head changes to state 82: when meeting F,
it changes it back to x. Then under state 83, it still goes to right, looking after
the next x, which is marked and which triggers state 84 so that a new cycle of
search starts. When under state 85 the head meets no more n, there are only
0’s between F and T, so that the head meets T. It changes T to s and it goes
to right under state 86 which changes w to the v it previously marked and then
replaces F by w: the new state is located. The new scanned square is also located
so that meeting s under state 86, the head goes to left under state 87 until it
meets again the w in the program of M. Then state 29 is called so that a new
cycle for simulating the next step of M is starting.

Accordingly, the pedagogical universal Turing machine we devised has 87
states and 16 letters which means 1392 instructions. The encoding we de-
scribed for M can also be used for U. It requires 10351 letters of that encoding.
The execution of U on the program of Table [l as M and on the encoding of
* % *asits data requires 106 steps of computation for M and 1,143,717
steps for U, as indicated by the execution of the computer program P I de-
vised to check the correctness of the pedagogical universal Turing machine. The
initial configuration of the tape of M in that of U is:

SW01hhU11hhU11hhU11hhUO1hhU11hhU11hhUO1hh_,
and its final configuration is:
SWO01hhU11hhU11hhU11hhU01hhU11hhU11hhUO01hhU11hhU11hhU11hhU11hhU11hhUO1hh_,

as computed by P which is what was expected.

14

4 Comparison: relevant or not?

Let us now turn to what is raised in the introduction. What can be the basis
off a comparison between a universal Turing machine and a virus? Of course, I
do not have in mind computer viruses which are something different based on
another behaviour of programs which aim at replicate themselves inside as most
machines as possible and to invest each infected machine, preventing it to work.
A computer virus has an intention, a natural virus has no will. What we call
will when speaking of a natural virus, we speak of the result of natural selection
on its evolution. As an example, if we say that a natural virus tries to adapt to
its hosts, that 'trying’ is indeed the result of selection: the variant of the virus
which is the least malevolent to their hosts has the best chance to survive.
The basis of our comparison is, I think, more profound. It is grounded on the
complexity of the things we consider and on their behaviour, mainly the working
of a universal Turing machine and the behaviour of a virus at a molecular level.
The unpredictability of the behaviour of a universal Turing machine is a
theorem: it is a corollary of both the existence of universal Turing machines and
the algorithmic unsolvability of the halting problem for Turing machines from
which a lot of corollaries are derived as, for instance, the same impossibility to
say whether a Turing machine launched on a given configuration reaches another
fixed in advance configuration. Before going on the dispute we postpone to Sub-
section [£.2] T give in Sub-section [4.1] the description of how we can encode the
code of U in RNA-terms and how it is possible to deal with that RNA-code.

4.1 How to construct a universal RNA Turing machine

Let us look at the size of a code of a Turing machine, using the encoding defined
for the pedagogical universal Turing machine U in (3) and (6), in Section
As given in Table 2 the code of that tiny universal Turing machine, say N,
requires 206 letters in the just mentioned encoding. The code of U itself in the
same encoding requires 10,351 letters. That encoding is based on the following
alphabet: 0,1,L,R,X,Y,U,W,S,h,d, e, F, z, T, considering also the working of U. The
genome of a DNA-virus consists in a very long chain of thousands of nucleotides
of four kinds: adenine, cytosine, guanine and thyomine denoted by A, C, G
and T respectively, given in alphabetic order. In the case of an RNA-virus, the
composition of the genome is similar: we have also four kinds of nucleotides, the
same ones with the exception of thyomine which is replaced by uracil, denoted
by U. We later refer to the alphabet {A,C,G,U} as the RN A-alphabet.

With those four letters, we may encode the alphabet of U. For example we
can define the following correspondence, encoding a letter of U by two letters
of the RNA-alphabet:

S XY UTU FW _ L R O 1 h d e Z
UU AA CC GG UA UC UG CG AC AG CA CU GA GC GU AU

As an example, state 42 of Table [3] looks like that:

(7)

15

XY1hhhhhZ010101Y01hhhh.010101Y11hhhh[.L010101Y001hhhR110101
Y101hhh1.010101Y011hhhZ010101Y111hhh.010101Y0001hhL010101 8)
Y1001hhZ010101Y0101hhZ010101Y1101hhL.010101Y0011hh[.010101
Y1011hh1.010101Y0111hh1.010101Y1111hhZ010101Y00001hZ010101
The translation of (8) into the RNA-alphabet is given in (9).
AACCCUGAGAGAGAGAAUCACUCACUCACUCCCACUGAGAGAGAACCACUCACUCACU
CCCUCUGAGAGAGAACCACUCACUCACUCCCACACUGAGAGAAGCUCUCACUCACU
CCCUCACUGAGAGAACCACUCACUCACUCCCACUCUGAGAGAAUCACUCACUCACU
CCCUCUCUGAGAGAACCACUCACUCACUCCCACACACUGAGAACCACUCACUCACU (9)
CCCUCACACUGAGAAUCACUCACUCACUCCCACUCACUGAGAAUCACUCACUCACU
CCCUCUCACUGAGAACCACUCACUCACUCCCACACUCUGAGAACCACUCACUCACU
CCCUCACUCUGAGAACCACUCACUCACUCCCACUCUCUGAGAACCACUCACUCACU
CCCUCUCUCUGAGAAUCACUCACUCACUCCCACACACACUGAAUCACUCACUCACU
It is important to note that a code similar to (8) is dealt with by U but a code
similar to (9) cannot be used by an RNA Turing machine. Let us see how such
a universal RNA Turing machine works, say RN A universal Turing machine,
denote it by rnalU. It is assumed that the data used by rnaU is constituted
in the same way as (9), starting from (7). Table Bl in Appendix 2, displays
the program of rnalU. In the table, as in Table Ml the halting instructions
are represented by an empty entry. Moreover, as the program of Table d the
program has been checked by a computer program I devised to simulate it, as
already mentioned.
The principle of transforming U into rnaU is simple: each state of U contains
16 instructions. With a four-letter alphabet five states at most are needed to
sort the instructions corresponding to those of U. Indeed, the execution of an
instruction requires to write down two letters in place of the two ones scanned
by the machine. That may require one, two, exceptionally four more states
as a backward step may be required to overwrite a two symbol pattern. Most
often a state is called by just a single other one from a single instruction. The
calling instruction I has a move, say p € {L,R}. Most often too, the majority
of the instructions under the state s called by I have the same move y. Most
often too, in the calling state, the calling instructions also have the same move.
Consequently we have the following two patterns for those sets of instructions:

A - C - G - U - A - C - G - U -
001 RO02 - RO0O3 - RO04 - ROO5 - 001 LO02 - L0OO3 - L004 - LOOS -
002 ROOX - ROOL - ROOR - ROOZ - 002 LOOX - L0Oz - LOOh - LOOT -
003 ROOz - ROOY - ROO_ - ROO1 - 003 LOOL - LOOY - L0Od - LOOF - (10)
004 ROOh - ROOd - ROOU - ROOe - 004 LOOR - LOO_ - LOOU - LOOW -
005 ROOT - ROOF - ROOW - ROOS - 005 LOOZ - LOOL - LOOe - LOOS -

To left, in (10), we have the pattern for a move to right, to left of (10),
the patter for a move to left. Note that the ’instructions’ are in fact pseudo-
instructions which should be replaced by the right state corresponding to the
letter of U represented by the position of the considered pseudo-instruction. In
the case when several instructions with opposite moves call the same state, we
need both sets together. In Table Bl it happens once for states 88 up to 95
which simulate state 21 of U. But in several case, when the state only has two

16

or three non-halting instructions, we need less states and also much less non
halting instructions in the RNA version. In (11), (12) and (13) we give three
examples of the translation required for rnal.

42|L|L|R43|L‘L‘L‘L‘L‘L‘L‘
A - C - G - U -
191 L192 - L193 - L194 - L195 -
192 - L191 - L191 - -
193 R194 - L191 - L191 - L191 - (11)
194 L191 - R196 - L191 - -
195 - L191 - L191 - .

Those instructions belong to the Table Bl but they are not the code of such
a machine. We shall go back to that point in Sub-section The piece of a
table given in (11) implements the instructions of the state 42 of U as described
in Section 3l Note that (11) applies to 16 instructions of U while Table B] given
in Section [displays 10 instructions only for states 40 up to 45. That can be
checked in Table [of Appendix 1 to the paper. In (12), we can see, to left, the
transcription of state 13, to right, that of state 14. In Table[d] both states have
only two non halting instructions. In state 13, although the calling instruction
and the instructions of state 13 themselves have r as motion, as 1 is encoded cu
and d is encoded ac , the rewriting of the scanned square requires a step to left
in order to write down the appropriate letter followed by another step to right
as the move is R. The same steps are required in state 14 to rewrite 1 by h. But
the second letter in the RNA-code is the same for 1 and h, which allows us to
use the same RNA-state for the step to right as there are halting instructions
only for a first RNA-letter A. Hence two RNA-states are enough to translate
state 14 instead of three ones required to translate state 13.

A - C - G - U - A - C - G - U -
057 - RO58 - - - 060 - RO61 - - -
058 - GR069- - CLO58- 061 R062 - GRO60- - ALO61- (12)
059 - RO60 - - -

In (13), with have the unique case where the translation of a state of U
requires 9 RNA-states. It concerns state 21 which is called by state 17 and by
state 23. In state 17 the calling instruction is to left while it is to right under
state 23.

A - C - G - U - A - C - G - U -
088 G089 - G090 - G091 - G092 - 093 D094 - - D095 - D096 -
089 - D102 - CGO88- CGO90- 094 - - AGO90- - (13)
090 GDO97- - G088 - D102 - 095 G089 - GO90 - G097 - CGO9O-
091 GD091- - AGO95- D089 - 096 - D102 - - -
092 - - D089 - -

It can be seen that the instruction from state 17 arrives on s, while that
from state 23 arrives on F.

The number of letters of the code of U is 10,351 so that its translation in

17

the RNA-alphabet yields 20,702 letters. Note that the genome of the SARS-
Cov2 virus contains around 31,000 letters, each one being materialised by a
nucleotides. The genome of that virus has 15 genes, we shall go back to that
point in Sub-section

If we consider the RN A-universal machine, its application to the RN A-
code of the machine whose program is given in Table [[l requires 2,303,033 steps
corresponding to the 106 steps of the courteous addition of that table. It was
checked by a computer program P, I devised for that purpose. The initial
configuration of rnal is:

UUUGCACUGAGAGGCUCUGAGAGGCUCUGAGAGGCUCUGAGA
GGCACUGAGAGGCUCUGAGAGGCUCUGAGAGGCACUGAGACG

and its final configuration is:

UUUGCACUGAGAGGCUCUGAGAGGCUCUGAGAGGCUCUGAGA
GGCACUGAGAGGCUCUGAGAGGCUCUGAGAGGCACUGAGAGG
CUCUGAGAGGCUCUGAGAGGCUCUGAGAGGCUCUGAGA
GGCUCUGAGAGGCACUGAGACG
In that final configuration, we can note that the head, ve , is on the square
containing the leftmost * encoded as cacucaca . We can also check that there
are five squares GGCUCUGAGA , where cucu encodes | .

Compared to the 1,143,717 steps of the pedagogical universal Turing ma-
chine, the RN A-universal machine requires a little more than twice that number
of steps.

At this point, I have to indicate that it is easy to get a smaller universal
Turing machine which can still be considered as pedagogic. There are two
possible solutions which can also be both applied. The first solution is to note
that the construction of the area to the left of F with the unary pattern for the
powers of 2 not greater than P requires 29 states. The price to pay is to require
that the code of the simulated Turing machine M contains the area constructed
by U between the leftmost s and the rightmost - to the left-hand side of that s.
The other solution consists in noticing that the majority of instructions in U are
glides. If we append a new letter, say M, we can replace all halting instructions
by the code MDM where D is the move and M says that the element at the place
of the symbol is the same as in the scanned square for the letter and the new
state is the current one.

We conclude that subsection by indicating the RNA-translation of the small
universal Turing machine whose instructions are displayed by Table 2l We use
(7) and (14) displays the RNA-code which requires 410 letters.

18

AACCCACACUGAACCUCCCUCUGAGAACCU
CCCACUGAGAACCUCCCUGAGAGAAGCACU
AACCCUCUGAGAAGCUCACUCCCUCUGAGAAGCACU
CCCUCUGAGAAGCUCCCUGAGAGAAGCACU
AACCCACACUGAACCUCUCCCACUGAGAAGCUCACU
CCCACUGAGAACCUCUCCCACACUGAACCUCACU (14)
AACCCUGAGAGAAGCUCACUCCCUCUGAGAAGCACACU
CCCACUGAGAAGCACUCCCAGAGAGAAGCACACU
AACCCACUGAGAACCUCUCCCUCUGAGAAGCACUCU
CCCACUGAGAACCACUCUCCCACACUGAAGCUCACU
AACCCUGAGAGAAUCACUCUCCCUCUGAGAAGCUCACU
CCCACUGAGAACCACACUCCCUCUGAGAAGCU

It is time to turn back to the dispute.

4.2 Continuation of the dispute

Clearly, the complexity of the RNA-code obtained from the code of U is signif-
icantly less than the size of the SARS-Cov2. It is comparable to the size of an
influenza virus. At first glance, as the behaviour of U is unpredictable we could
conclude that, a fortiori, the behaviour of the SARS-Cov?2 is also unpredictable.
Although the history of the pandemia confirms that point up to now, is that
comparison of code sizes a relevant argument?

One can certainly raise the following objection: you speak of completely
incomparable objects, what a Turing machine has to do with a virus?

At first glance, the objection seems to be sound. Moreover, the tape of
a Turing machine is a linear thread like which is also the case of any code
written within a segment of the tape even if the segment does not contain any
empty square. Indeed, a virus has a complex 3D-structure which is not at all
represented by the Turing tape. It can be objected to the objection that a
Turing tape is an abstract object. What is important, in the tape, is that it
has a linear order. Whether the tape is folded in whichever way is meaningless
for the computation. For RNA or DNA strands, the way they are folded may
be important as far as elements which are far away from each other in the
linear order may become neighbours thanks to the folding. That means more
complication on the side of viruses. Consequently, that objection does not
seem to me a serious one. Moreover, the 3D-folding which makes molecules
close neighbours has a kind of counter-parts in the Turing technology: in the
pedagogical universal Turing machine most instructions of a state refer to a
rather neighbouring states according to their numbering, if not the immediate
successor or the immediate predecessor. Other references to distant states which
are less frequent may be looked as a jump which makes close states which are
not according to their numbering. Accordingly, the jumps perform what the
folding does.

Another objection could be the fact that in the concept of a Turing machine,
at least those considered in the present paper, the tape is infinite in both direc-
tions which has no meaning in a biological context. I answered to that objection
in underlying that the configuration of a Turing machine is finite at each step of

19

its computation. Remember that namely that property allows us to construct
universal Turing machines. I already stressed that point in the section devoted
to the pedagogical universal Turing machine. Now, a finite segment which can
be continued step by step as long as needed has its relevance in a biological con-
text. Another point on the side of the relevance is the consideration of polite
machines only as simulated machines. We mentioned that theoretically that re-
striction does not alter the generality of the result as far as a non-polite machine
can be simulated by a polite one. But such a limitation on the tape means that
it has a beginning which is also the case for RN A-strands of a virus.

The complexity is not the single argument in favour of the unpredictability
of the behaviour or evolution of viruses. The other reason I have to consider
that comparison as relevant lies in the behaviour of the pedagogical universal
Turing machine. What are its actions if we only look at the behaviour of the
head? We can mainly see two basic features. In many cases, the head runs over
the configuration looking after some pattern which is expected to be somewhere
on the tape. It is most probably something which also happens within a cell
during a replication process. That latter word points at the other main activity
of the Turing machine: it copies some portion of the tape over another portion of
the tape. What does a virus do? It takes advantage of the copying possibilities
contained in a cell to replicate itself as it cannot do that by itself only. Copying
and searching something are the basic actions of a Turing machine and those
phenomena are also at work at a bio molecular level. But there is a third point.
A code by itself can do nothing. It must be treated by a Turing machine in the
case of abstract computations, it must be treated by the cell machinery in case
of the replication of a virus. The computation of a Turing machine is performed
in the head of the human being which created it. The same person may create a
computer program in order to perform that computation, in particular to check
the correctness of the machine he/she built. It is the reason why at several
places I clearly distinguished between a Turing machine and its encoding. As
an example, (14) is a code which can be performed by the machine of which
(11), (12) and (13) display a few states.

There are simple model of computations, more simple but more abstract
than the Turing machine, which are based on that copying process like Post
systems, for example, see [2] for a short description. I have no room to consider
them here but it is significant that such models are used in order to make the
machine of Table [2] able of universal computations. Universality lies in the data
too. Which makes us return to the code.

Another point about Turing machines and viruses are the contrast with er-
rors. When a Turing machine works on some data, it is assumed that not only
the data can be read by the machine but also that there are no errors in the
data. It is also assumed that there is no error in the program of the Turing
machine. In the abstract world in which they are living, Turing machines are
error free objects which work on error free data without error during the compu-
tation. A Turing machine exactly does what is written in its program. Clearly,
such a perfect behaviour is far away from what happens in a biological context.
However, things are not that different if we look at Turing machines as objects

20

created by human brains. How does a human being who decides to create a
Turing machine in order to solve a given problem? He/she writes down the pro-
gram and submit it with the data to a simulator of Turing machines. Whether
the simulator is borrowed from the web or it is created by the same person,
there are several trials before the human being obtains a machine he/she can
trust as error free. Those trials are interesting as far as there are usually errors
during that tuning process. There are errors in the data which are not com-
pletely conformal to the format which they are supposed to obey. There are also
errors in the Turing machine which does not behave as expected. Sometimes,
the Turing machine halts because no instruction corresponds to what it reads
under its current state. Sometimes too, the Turing machine runs a so long time
without halting that its creator thinks it never halts. Looking carefully, the
human being detects an error in his/her program or in the data he/she wrote.
Both cases may also happen together. Accordingly, data and program mute
until they arrive to a sufficiently stable form. That real life process of creating
a Turing machine looks like some evolution process of real life. Things occur as
just described as far as nobody can prove the correctness of a program as far
as the controlling tools are guaranteed to work just by long enough trials. We
reach here the same limit to the power of universal Turing machine: there are
(infinitely many) problems which they cannot solve. That latter sentence is a
theorem.

Another interesting point consists in the following statistics: among the 1652
instructions of the RN A universal Turing machine (4 letters and 413 states),
958 of them are glides: the head does not overwrite the scanned square. Also,
among those 1652 instructions, 542 of them are halting instructions, so that we
remain with 152 instructions which overwrite the scanned square with another
letter: it means less than 10% of the instructions make changes on the tape. It
looks like the situation in the genome where active coding elements are a small
minority, which does not mean that the others are useless as is the case in the
RN A universal Turing machine: only 45 instructions among the non-halting one
does not change the state of the head. Moreover among those 45 instructions,
24 of them replace the letter of the scanned square by another one. The big
number of changes of states comes from the fact that the pedagogical universal
Turing machine U has 16 letters in its alphabet while the RN A universal Turing
machine has only 4 of them at its disposal. In Table [l we dispatch the table of
that latter machine by grouping its states according to those of U which they
are simulating. In each such groups, the first state dispatches the execution
into at most four states in order to sort what is read according to the letter it
represents in terms of those of U. Note that the operations of U can be split
into nine parts, so that in mean, from 30 up to 53 states of the RN A-universal
Turing machine correspond to a specific action. More precisely, those groups
are the following:

1-53 :: 54-101 :: 102-132 :: 133-182 :: 183-231 :: 232-281 :: 282-331 :: 332-373 :: 374-413

The number of genes in a virus is very small. Let us remember that, as an
example, the SARS-Cov2 has 15 of them.

21

Assuming that the comparison I raised with the present paper is relevant,
what can we infer from that?

The first conclusion is the unpredictability of the evolution of a virus. All
reasons which were raised against the relevance of the comparison point at the
same conclusion: a virus is much more complex than a Turing machine so that
if the behaviour of the latter is unpredictable, it is all the more the case for
the former. Does it mean that there is nothing to do to limit as strongly as
possible the damage a virus can do when it is virulent? Certainly not. The
comparison I consider means that something which looks like algorithmic has
little chance to fight a virus. At that point, let us go back to the comparison.
Computer scientists introduced sometimes a topology on data from which it can
be proved that Turing machines viewed as operators on the data are continuous.
The notion of continuity corresponding to that topology can be stated in a more
concrete way: for a given Turing machine, if it is given long enough data and if
there are no differences between the data within that length, the Turing machine
gives the same output for those data. The larger that length with no difference
is, the finer, we say, the continuity is. In other words, if different data entail
the same behaviour of the machine, it means that the considered data are big
and that ’close to the machine’ we could say, they are not different. Every thing
relies on the fineness of that continuity.

The consequences of that continuity theorem are that viruses try to cheat
on the immune system of their hosts, it is the way they can survive. When I
say that 'the virus tries’ it is a short-circuit for the sentence: among the ’child’-
virions produced by the ’'parent’-virions, those which are the more adapted to
the present situation survive and only them. From the side of the immune
system, its efficiency is a kind of measure of the fineness of its continuity . If
it can be cheated only when data are very large and are little different, then it
will be difficult for a virus to deceive it. Viruses and our immune systems have
a long history of constant struggle one against the other.

Homo sapiens sapiens is very proud of the knowledge that could be accu-
mulated thanks to science. Let us remember that the basis of today sciences
stems from late 16" century, mathematics being a bit older. Certainly it is a
little duration at the geological scale. Indeed, that means less than 500 years,
around 3000 years for mathematics. Life on our planet exists from over than
3,000,000,000 years. For sure, life evolution requires much time to evolve from
viruses and bacteria to plants, to animals, to man. Let us stress that human
beings are newcomers at geological scale. The way life appeared make all its
components interact, and that was apparently always the case. Science of which
homo sapiens sapiens is so proud is the work of how many people? Certainly
less than one million and a half persons at world scale at the present moment
and we have to compare that with the more than 7,000,000,000 human beings
at present. Moreover, the number of to day scientists is several times more
than the number of dead scientists since the beginning of science, at some point
5,000 years ago, roughly speaking. That large estimate shows us that scientific
activity, whatever the appraisal of its results, is a very partial and very recent
activity of mankind. Can it allow us to play with our environment as it were

22

something given at our free use and free will? It seems to me that the answer is
no. We should be careful when dealing with our environment. We should try to
foresee as far as possible the consequences of our actions on the environment.

Let us be more modest and let us try to take benefit of what can we learn
from the other fields of science in each field of science. Theoretical computer sci-
entists observe their environment and that careful look brought them valuable
results. Perhaps Turing machine may be of help to better understand phenom-
ena studied by other sciences. When computation and information are involved
we may have relevant points of view for other people. Theoretical computer
science bring some light to philosophical problems too, but that point goes for
beyond the goal of that paper.

I hope that the reader will find those comments of interest, whatever his/her
point of view.

5 Conclusion

References

[1] M. Margenstern, Frontier between decidability and undecidability: a survey.
Theoretical Computer Science, 231(2), (2000), 217-251.

[2] M. L. Minsky, Computation: Finite and Infinite Machines, Prenice Hall,
Englewood Cliffs, NJ, (1967)

[3] D. Woods, T. Neary, The complexity of small universal Turing machines: A
survey, Theoretical Computer Science, 410(4-5), (2009), 443-450.

[4] T. Neary, D. Woods, Four Small Univeral Turing Machines, Fundamenta
Informaticae, 91(1), (2009), 123-144.

[5] Yu. V. Rogozhin, Seven Universal Turing machines, Systems and Theoretical
Programming, Matematicheskie Issledovania, 69, (1982), Akademia Nauk
Moldavskoi SSR, Kishinev, 76-90, (in Russian).

[6] Yu. Rogozhin, Small universal Turing machines, Theoretical Computer Sci-
ence, 168, (1996), 215-240.

23

Appendix 1

Table 4 Table of U: it is devided in several sub-tables where the columns are
labelled by the states and the lines are labelled by the letters. That latter display is
more convenient, taking into account the number of states.

Sub-table dla: building the area between S and F. T is missing as not used at that
stage.

1 2 3 4 5 6 7 8 9 10 11
- 0DO5 1R08 FR12
0 L R L R L 1R08 R R L L
1 L R L R L L R R L L
L L R L R L R R L L
R L R L R L R R L L
X L FRO3 Lo6 R R FL10 L L
Y L WLO4 L R L R R L L
U
W SL L YRO3
S RO2 L R L R L11 Lo7 L
h L R L R L R R L L
d
e
F R L R Lo7 XRO9
Z R L R L R R L L

Sub-table @l b: States for constructing the scale of powers of two not greater than
P. The missing letters, namely _, 0, L, X, Y, U, W and T, involve halting instructions.
It is the reason why the corresponding lines are missing in the table.

12 13 14 15 16 17 18 19 20 21 22
1 dR13 | dR14 | hR15 | dL16 hL18 L20 | dR16
R L R L R hL22 hL
S L21 L20
h RR17 R L R dL16 OL L
d eR17 R eR17 L
e L R L16 R dR dL
F R19 R23 R23

24

Sub-table Mlc: To left: states for preparing the pattern to the left-hand side of F
allowing to convert the binary representation of n < P into h™. The following symbols
are not concerned by the states 23 up to 27: L, R, X, Y, U, W, e, Z and T. To right, on
two sub-tables, the motion of the head to the W indicating the scanned square on the
tape of M. Here too a few symbols are not concerned: _, d, e, F and T.

23 24 25 26 27 28 29 28 29
- dR25 OR25 0 R R U R
0 iR L R L 1 R R W R30
1 R L L OL L R R S R R
S L27 R R R h R
h 1L26 R X | WR29 R Z R R
d 1L24 L R L Y R R
F R21 L R23 L R28

Sub-table [Mld: States for copying the binary representation of n in the scanned
square of the tape of M onto the pattern of the useful powers of two. Here there is
no missing letter as far as each letter is read under at least one state among those
of that part of the table.

30 31 32 33 34 35 36 37 38 39
- R 39
0 dL31 L L R R L L L L R
1 eL35 L R R L L L
L L R R L L
R L R R L L
X L37 L R R L L
Y L37 L R R L L
U L R L L
W L R 34| R 30 L L
S L R R L L
h L37 L L R R L L L L R
d R L hR33 OR30 L eR33 OL L R
e R L L R 1R30 L L iL L LR40
F L32 R L36 L38
Z L R R L L
T L R R L L

25

Sub-table [dle: Left-hand side half, states 40 up to 45: transformation of the
binary representation of n copied to the right-hand side of F into n copies of h to
the right-hand side of F. Those states are used twice during the simulation of one
step of M computation.

Right-hand side half, states 45 up to 46: thanks to the unary representation of n,

location of the instruction to be applied under the state marked by W.

40 41 42 43 44 45 46 47 48 49 50
0 R hL42 L YR40 R R R L L R
1 L L R R L R
L R43 dR45 R R L R
R L R el R R L R
X R L R
Y L R OL R FL48 L R
Y R L R dL
W R47 L R
S R L49 R
h R R L UR40 OR46 R R L OR50 R
d hR L R
e R L RR40 LR40
F R41 L42 L L44 R R51 YR47
Z L84 R R L R
T R80

26

Sub-table [Elf: States 51 up to 60. Copying the letter of the instruction onto the
square scanned by M.

51 52 53 54 55 56 57 58 59 60
0 R dR53 R dL55 L R eL59 L
1 R eR57 R dL55 L R eL59 L
L R R L R L
R R R L R L
X R R L R L
Y R R R L R L
U R L R L
W R R54 L56 R52 R58 L60 R52
S R R L R L L
h R L61 R dL55 L R eL59 L L
d R R L R52 R L L
e R R L R52 R L L
F WR52 L
Z R R L R L

27

Sub-tabledlg: States 61 up to 70. Return to the scanned square in order to erase
the markings and then return to clear the instruction from the markings. Then, U
performs the move of the head of M over its tape.

61 62 63 64 65 66 67 68 69 70
- UL71
0 L R hR L L R R L R R
1 L R hR L L R R L R R
L R L L UR67 R R R
R R L L FR69 R R R
X R L L R R
Y R L L R R
U R L L R WL76 R WL76
W R62 R63 L65 R66 UL68 UR70
S R L L R R
h R L64 L L R R L R R
d OL OR L L
e 1L iR L L
Z R L L R R R

28

Sub-table [lh: States 71 up to 79. Creating a new empty square at the
right-hand side end of the tape of M. The first states also clear the marking
performed during the action indicated by Sub-tabledlg. We also have a new
call to states 30 up to 45 to copy the binary representation of the new state
onto the scale-pattern to the left-hand side of F and to compute to the right-
hand side of it the unary representation of that number.

71 72 73 74 75 76 7 78 79
- hL73
0 eR72 L L R R
1 RR72 R L L R R
L L R R
R R L iR L R R
X L R R
Y R L hR L L R R
U R L74 R75 WR L L LR30
W L L XR79 R
S L77 TR78
h YR72 R L YR72 1L76 L L R R
e R L OR
F L RR30
Z L R R

29

Sub-table [@li: States 70 up to 87. Locating the new state and, when it is
obtained, start the simulation of the next step of M in its computation.

80 81 82 83 84 85 86 87
- R85
0 R R R R L R R L
1 R R R L R L
L R R R L R L
R R R R L R L
X FL84 R FL84 L R L
Y R R R L R L
W YR L YR R29
S L87
h R R R R L OR81 R L
d L R
F XR83 L R WR
Z R R R L R L
T R82 L SR86 R

30

Table 5 The RN A-universal Turing machine: it works with the encoding defined
both by that of the pedagogical universal Turing machine and by its translation in
the RN A-alphabet. The label state n indicates the state of the pedagogical universal
Turing machine which is simulated by the states of the RN A-universal Turing machine

Appendix 2

which follows it. Empty entries are halting instructions.

A

¢

G

state 1

1 L2
2 L1
3 L1
4 L1
5
tate 2
6 R7
7 CL8
8 TUR7
state 3

9 R10
10 L13
11 RO
12 R9
13 L24

state 4

14 L1565
15

16 Li14
17 Li14
18 Li14

state 5

19 R20
20 R19
21 R19
22 R19
23

state 6

24 L25
25

26 L24
27 L24
28 L24

state 7

29 L30
30 UR33
31
32

state 8

33 R34
34 R33
35 R33
36 R33
37 R38

state 9

38 R39
39 CL42
40 R38
41 R38
42 UL44
43

S

L3
L1
L1

R9

R11

GL12
UL14
R9

L16
L14
L14

R
L14
R21
R19
R19

R19

L26
L24
L24

L24

R30
L29

R35
R33
R33

AL36

R40
R38
R38

L4
UL

R12
R9

L17
L14

AR19

R22
R19

CL22

L27
L24

L31
UR33

R36
R33

R41
R38

R13
RO

L18

L14
Li14
L14

R23
R19
R19

R19

L28
L29

L32

L29

R37
R33
R33
AR37
R33

R42
R38
R38
L49
L41
L44

31

A -
state 10

44 145 -
45 144 -
46 144 -
47 144 -
48 L44 -

state 11

49 L50 -
50 L49 -
51 L49 -
52 149 -
53 L49 -

¢

L46
L44
L44

L44

L51
L49
L49
UR51
L49

L47
L44

L52
L49
CR54

L48

L29

L53

L49

state 12
54 -
55 -
56 -

state 13
57 -
58 -
59 -

state 14
60 -
61 R62 -

state 15
62 -
63 -
64 -

state 16

65 L66 -
66 GR70 -
67 -
68 L65 -
69 -
state 17

70 R71 -

R65
GR56
R&7

R68
GR59
R60

R61
GR

R63
GL65
L65

Le7
R80
UR70

R72
GL75

R70

L77
UR70

R82
L85

Les8
AR

L65

R73
R70

L78
L75
R76

L65

R83
R80

CL

CL

AL

CL

L69
R66

R74
L88
AL71
R70
L71

L79

R84
L85

R80
L81

A - C - G - U - A - C - G - U -

state 20 state 30

85 L86 - - - 187 - 133 R134 - R135 - R136 - R137 -
86 CL87 - - R - CL - 134 L1137 - L169 - L169 - -
87 - GR86 - L65 - - 135 CL131 - L134 - - L137 -
state 21 136 L134 - R133 - - R133 -
88 189 - 190 - L9l - 192 - 137 L1169 - GL159 - - -
89 - R102 - CL88 - CL9O - state 31

90 GRI7 - - 188 - R102 - 138 L139 - L140 - L141 - L142 -
91 GR - - AL95 - RS89 - 139 L138 - L138 - L1338 - L138 -
92 - - R89 - - 140 L1138 - L138 - L138 - L143 -
93 R94 - - R95 - R96 - 141 1138 - - 1138 - L138 -
94 - - AL9O - - 142 1138 - L138 - L138 - L138 -
95 L89 - L90 - L97 - CL9O - state 32

96 - R102 - - - 143 1144 - L1145 - 1146 - L147 -
state 22 144 - L143 - L143 - -
97 198 - L99 - L100 - L101 - 145 -AR148- R - -
98 - R102 - L97 - CL - 146 - - 1148 - -
99 - - AL98 - R98 - 147 - - 1143 - -
100 GR99 - - - - state 33

101 - - RO8 - -

148 R149 - R150 - R151 - R152 -
149 R148 - R148 - R148 - R148 -

150 R148 - R148 - - R148 -
fgzate 23- R103 - R104 - R105 - 151 R148 - ' - R148 -
102 Ri02 - - s - RA0S - 152 R1A§Z- R148 - R153 - R148 -
104 UL103- UL - CL106 - - State
105 - R8S - - L120 - 153 R154 - R155 - R156 - R157 -
state 24 154 R153 - R153 - R153 - R153 -
106 1107 - 1108 - L1109 - 1110 - 155 R153 - R153 - CR158 - R153 -

156 R153 - AL155- R153 - L158
107 - L106 - CR111 - - _ _ _ _

157 R153 R133 - R153
108 - - 1L106 - L106 - _ _ _ _

158 R133 CR - R133
109 - GR107 - - -

110 - 1106 - B _ state 35

159 L160 - L161 - L162 - L163 -
state 25 160 L159 - L1159 - 1159 - L159 -
111 - R112 - R113 - R114 - 161 L159 - L159 - L159 - L164 -
112 R111 - - - - 162 L159 - - L159 - L159 -
113 R111 - R111 - - - 163 L159 - L159 - L159 - L159 -
114 - R102 - - -
state 26 state 36
115 L116 - L117 - L118 - L119 - 164 1165 - 1166 - L167 - L1168 -

165 L164 - L164
116 - L115 - - - 166 -UR148- R - -
117 - - L115 - L115 - 167 _ _ _ _
118 - R -AR111- - 168 _ - L164 - _
119 - L115 - - -
ctate 27 state 37

169 L170 - L171 - L172 - L173 -
120 - L121 - - L122 - 170 L169 - L169 - L169 - L169 -
121 - R124 - - R - 171 L169 - L169 - CR172- L174 -
13% - L1R20 - - AL123 - 172 L169 - AL171- L169 - L169 -

- - - - 173 L1169 - L169 - CL169 - L169 -
T§2t§12258 R126 R127 state 38
125 GL127 - R124 - R124 - R124 - gé L175 - %};2 : f}ZZ o LiTs -
126 R124 - R124 - R128 - R124 - _ _ _ _

176 L174
127 UR126 - - - R124 - 177 _ R - R179 - _
state 29 178 - L174 - L174 - -
128 R129 - R130 - R131 - R132 - state 39
129 R128 - R128 - R128 - R128 - } } ; _
129 R128 - R128 - T 179 - R180 - R181 - R182 -

180 R179 AR182
131 R128 - GL138- R128 - - _ _ _ _

181 R179 - R179 CL180
132 - - R133 - R128 - 182 - R183 - _ _

32

A - C - G -
state 40
183 R184 - R184 - R185 -
184 R183 - - -
185 R183 - AR183 - R183 -
186 - R187 - -
state 41
187 - R188 - R189 -
188 L -GL191- -
189 R187 - - -
190 - - -
state 42
191 L192 - L193 - L194 -
192 - L191 - L191 -
193 R194 - L191 - L191 -
194 L191 - R196 - L191 -
195 - L191 - L191 -
state 43
196 R197 - R198 - R199 -
197 L393 - - R196 -
198 CR183 - R196 - AR200 -
199 GR183 - - R196 -
200 - L198 - R183 -
state 44
201 - L202 - L203 -
202 GR203 - R204 - UL204 -
203 GR202 - R206 - R205 -
204 GR203 - AL205 - L201 -
205 - L201 - CL204 -
state 45
206 - R207 - R208 -
207 R206 - R183 - CR209 -
208 L207 - R206 - AR207 -
209 R210 - R206 - -
state 46
210 R211 - R212 - R213 -
211 R210 - R210 - R210 -
212 R210 - R210 - -
213 R210 - - -
214 R374 - - R215 -
state 47
215 R216 - R217 - R218 -
216 - R215 - R215 -
217 R215 - L218 - -
218 R215 - UL220 - -
219 - - -
state 48
220 1221 - 1222 - 1223 -
221 1220 - 1220 - L220 -
222 1220 - 1220 - -
223 1220 - - -
224 1220 - L220 - -
state 49
225 1226 - L227 - -
226 R228 - 1225 - CR -
227 - R233 - -
state 50
228 R229 - R230 - R231 -
229 R228 - R228 - R228 -
230 R228 - R228 - -
231 R228 - R215 - -
232 - 1231 - R228 -

R186
R183

L1956
L191

R200

L201
GL198

L204

R209
CL

R214
R210
R210

R210

R219
R215
R215

L224

L220
L225

R232
R228
R228

R228

33

A - C

state 51

233 R234 - R235
234 R233 - R233
235 R233 - R233
236 R233 -

237 - GR238
state 52

238 R239 - R240
239 - GR242
240 CL239 - R238
241 1240 - R238
242 - R243
state 53

243 R244 - R245
244 R243 - R243
245 R243 - R243
246 R243 -

247 R243 -
state 54

248 R249 - R250
249 - GL253
250 CL249 -

251 CL249 - R248
252 -

state 55

253 - L254
254 -

255 -

256 -
state 56

257 L2568 - L2569
258 L257 - L257
259 L257 - L257
260 L257 - R238
261 L257 - L2567
262 -
state 57

263 R264 - R265
264 R263 - R263
265 R263 - R263
266 R263 -

267 -
state 58

268 - R269
269 UL -GL271
270 UL - R268
state 59

271 L272 - L273
272 -
273 -
274 -
275 -

state 60

276 L277 -
277 L276 -
278 L276 -
279 L276 -
280 L276 -
281 -

L278
L276
L276

L276

R236
R233

R233

R241
L282

R246
R243

R243
R248

R251
L253

L2565
L2563

L253

L260
L257
R260
L257
R260
R238

R266
R263

R263
R268

R270
L271

L274
L271
L271

L271

L279
L276
L276
L276
L276
R238

- R237 -
- R233 -
- R233 -

- R233 -

- L239 -
- R238 -
- R263 -

- R247 -
- R243 -
- R243 -

- R243 -

- R252 -

- CL249 -
- R248 -

- L256 -
- L2567 -

- L261 -
- R238 -

- R262 -
- L2567 -

- R267 -
- R263 -
- R263 -

- R263 -

- R268 -

- L275 -

- L276 -
- L271 -

- L280 -

- L276 -
- R281 -
- L276 -

- GR324 -

A - C - G
state 61
282 L1283 - L284 - L285
283 - L282 - R287
284 - AL286 - CR
285 - - -
286 - L282 - CL282 -
state 62
287 R288 - R289 - R290
288 R287 - R287 - R287
289 R287 - R287 -
290 R287 - - R287
291 - - R292
state 63
292 - R293 - R294
293 L - GR295 - CR295 -
294 L - AL293- L296
295 R292 - -
state 64
296 L297 - L298 - L299
297 L296 - L296 - L296
298 L296 - L296 - L296
299 L296 - - L296
300 L296 - L296 - L296
state 65
301 L302 - L303 - L304
302 L301 - L301 - L301
303 L301 - L301 - L301
304 L301 - - L301
305 L301 - L301 - L301
306 - - R307
state 66
307 R308 - R309 - R310
308 GR309- GL -CL311-
309 R307 - R312 - R312
310 R307 - R322 -
311 UR310 - -
state 67
312 R313 - R314 - R315
313 R312 - R312 - R312
314 R312 - R312 -
315 R312 - - R312
316 - - L315
state 68
317 L318 - L319 - L320
318 - L317 - L317
319 - -
320 - - UL353 -
321 - L317 -
state 69
322 R323 - R324 - R325
323 R322 - R322 - R322
324 R322 - R322 - R327
325 R322 - - R322
326 - - L325
state 70
327 R328 - R329 - R330
328 - R327 - R327
329 R327 -GL332- L
330 R327 - - L331
331 - - UL353 -

L286

R283

R291
R287
R287

R287

R295

L293
R292

L300

L301
L296

L305

R306
L301

R311
R307

R316
R312
R312
GL317
R312

L321

R326
R322
R322

R322

R331
R327
R327

34

A - C - G - U -
state 71
332 L333 - - - -
333 CR334 - - CR - -
state 72
334 R335 - R336 - R337 - -
335 - GL338 - R334 - -
336 - R334 - AL335 - -
337 R334 - - R334 - R334 -
state 73
338 L339 - - L340 - -
339 - - L338 - -
340 - - L341 - -
state 74

341 L342 - L343 - L344 - L345 -

342 UR334- GR - CR343-GR334-
343 CR334 - L341 - R346 - -
344 1341 - - R343 - -
345 - AR342 - L341 - -
state 75

346 R347 - R348 - R349 - R350 -
347 CR -GR348- UL - R346 -
348 R346 - AL347 - UR350 - R346 -
349 UL351 - - L348 - AL352 -
350 UL - - R346 - -
351 - - CL353 - -
352 - - CR348 - -
state 76

353 L354 - L355 - L3656 - L357 -
354 - L353 - L3563 - -
355 - L3563 - - -
356 - - L353 - L353 -
357 - L353 - - L358 -
state 77

358 L359 - L360 - L361 - L362 -
359 L358 - L358 - L358 - AR363 -
360 L358 - L358 - - L358 -
361 L358 - - L358 - L358 -
362 L358 - L358 - - R359 -
state 78

363 R364 - R365 - R366 - R367 -
364 R363 - R363 - R363 - R363 -
365 R363 - R363 - - R363 -
366 R363 - - - AR367 -
367 R368 - - AL366 - -
state 79

368 R369 - R370 - R371 - R372 -
369 R368 - R368 - R368 - R368 -
370 R368 - R368 - AR371- R368 -
371 R368 - R133 - CL370 - AR373 -
372 - GL371- R368 - -
373 - - R133 - -
state 80

374 R375 - R376 - R377 - -
375 CL378 - R374 - R374 - R374 -
376 R374 - R374 - - R374 -
377 R374 - - - -
378 UL393 - - - -

A -
state 81
379 -
380 R379 -
381 R379 -
382 R383 -
state 82
383 R384 -
384 R383 -
385 R383 -
386 R383 -

387 R388 - AL386

state 83

388 R389 -
389 CL392 -
390 R388 -
391 R388 -
392 UL393 -

state 84

393 L39%4 -
394 L393 -
395 L393 -
396 L393 -
397 L393 -

C

R380

R385
R383
R383

R390
R388
R388

L395
L393
L393

R
L393

R381

R386
R383

R391
R388

- R382 -

- R387 -
- R383 -
- R383 -
- AR387 -

- R392 -
- R388 -
- R388 -
- CR390 -

CL391 - -

L396
L393
L393
R398

- L397 -
- L393 -
- 1393 -
- 1393 -

35

state 85

398

A

C

G

U

- R399 - R400 - R401

399 R398 -
400 L399 - R398 -
401 UR403 - R398

402 R379 -
state 86

403 R404 - R405
404 R403 - R403
405 R403 - R403
406 R403 -

407 R403 - GR403
408 -
state 87

409 L410 - L4111
410 L409 - L409
411 L409 - L409
412 L1409 -

413 L1409 - L409

- CR402 -

R406
R403

- CL406 -

L412
L409

R128

R407
R403
R403
CR405
L408
L409

L413

	1 Introduction
	2 Universal Turing machines and tiny ones
	2.1 Universal Turing machine
	2.2 Tiny universal Turing machines

	3 Pedagogical universal Turing machines
	3.1 Working of the pedagogical universal machine
	3.2 Constructing a pedagogical universal machine

	4 Comparison: relevant or not?
	4.1 How to construct a universal RNA Turing machine
	4.2 Continuation of the dispute

	5 Conclusion

