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ABSTRACT
This paper presents a parallel solution based on the coarse-grained multicomputer
(CGM) model using the four-splitting technique to solve the optimal binary search
tree problem. The well-known sequential algorithm of Knuth solves this problem in
O

(
n2

)
time and space, where n is the number of keys used to build the optimal

binary search tree. To parallelize this algorithm on the CGM model, the irregular
partitioning technique, consisting in subdividing the dependency graph into sub-
graphs (or blocks) of variable size, has been proposed to tackle the trade-off of min-
imizing the number of communication rounds and balancing the load of processors.
This technique however induces a high latency time of processors (which accounts
for most of the global communication time) because varying the blocks’ sizes does
not enable them to start evaluating some blocks as soon as the data they need are
available. The four-splitting technique proposed in this paper solves this shortcom-
ing by evaluating a block as a sequence of computation and communication steps
of four subblocks. This CGM-based parallel solution requires O

(
n2/
√
p
)

execution

time with O
(
k
√
p
)

communication rounds, where p is the number of processors and
k is the number of times the size of blocks is subdivided. An experimental study
conducted to evaluate the performance of this CGM-based parallel solution showed
that compared to the solution based on the irregular partitioning technique where
the speedup factor is up to ×10.39 on one hundred and twenty-eight processors with
40960 keys when k = 2, the speedup factor of this solution is up to ×13.12 and rises
up to ×14.93 when k = 5.

KEYWORDS
Coarse-grained multicomputer; Optimal binary search tree; Dynamic
programming; Dynamic graph model; Irregular partitioning; Four-splitting

1. Introduction

The optimal binary search tree problem consists in determining the binary search tree
that will have the lowest overall cost of searching from a set of sorted keys knowing
their access probabilities. It is a non-serial polyadic dynamic-programming problem
which is characterized by a strong dependency between subproblems [1]. This problem
is widely studied since applications of optimal search binary trees are numerous. One
of the most obvious is the search for a word in a dictionary. Indeed, from the words
of a dictionary and the access frequency of each word, an optimal binary search tree
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can be built to quickly and efficiently answer a query. An application derived from the
latter is the translation of a word from one language to another [2]. El-Qawasmeh [3]
used an optimal binary search tree to solve the word prediction problem. This problem
attempts to guess and update the next word in a sentence as it is typed. In view of
these different applications, an optimal binary search tree should be constructed from
Knuth’s sequential algorithm running in O

(
n2
)

time and space [4]. It is an improved

version of Godbole’s sequential algorithm requiring O
(
n3
)

time and O
(
n2
)

space [5].

1.1. Related work

In the literature, researchers proposed several parallel solutions of Knuth’s sequential
algorithm on different parallel computing models. On the PRAM model, Karpinski et
al. [6] designed a sublinear time parallel algorithm to construct optimal binary search
trees. It requires O

(
n1−ε log n

)
computation time with the total work O

(
n2+2ε

)
for

an arbitrarily small constant 0 < ε ≤ 0.5. Recall that the total work is equal to the
computation time multiplied by the number of processors [6]. On CREW-PRAM ma-
chines, Karpinski et al. [7] presented an algorithm running in O

(
n0.6

)
computation

time with n processors. On realistic models of parallel machines, Craus [8] proposed an
O (n)-time parallel algorithm using O

(
n2
)

processors on very-large-scale integration
architectures. Wani and Admad [9] proposed a parallel implementation of Knuth’s se-
quential algorithm on GPU architectures. With 16384 keys, they achieved a speedup
factor of 409 on a NVIDIA GeForce GTX 570 chip and a speedup factor of 745 on a
NVIDIA GeForce GTX 1060 chip. On shared-memory architectures, after demonstrat-
ing that dependencies of subproblems available in the code implementing the Knuth
sequential algorithm enable to generate only 2D tiled code, using the polyhedral model,
Bielecki et al. [10] proposed a way of transforming this algorithm to a modified one ex-
posing dependencies to generate 3D parallel tiled code. Experimentations conducted
using OpenMP demonstrated that the 3D tiled code considerably outperforms the
2D tiled code. On distributed-memory architectures, many researchers proposed their
parallel solutions on the coarse-grained multicomputer (CGM) model.

The CGM model introduced in [11,12] is the most suitable to design parallel al-
gorithms that are not too dependent on a specific architecture than the systolic and
hypercube models. It enables to formalize in just two parameters the performance of
a parallel algorithm : the input data size n and the number of processors p. A CGM-
based parallel algorithm consists in successively repeating a computation round and
a communication round until the problem is solved. Processors perform local compu-
tations on their data using the best sequential algorithm in each computation round
and exchange data through the network in each communication round. All information
sent from one processor to another is wrapped into a single long message to minimize
the overall message overhead.

Kechid and Myoupo [13] proposed the first CGM-based parallel solution to solve the
OBST problem in O

(
n2/p

)
execution time with O (p) communication rounds. Myoupo

and Kengne [14] built a CGM-based parallel solution running in O
(
n2/
√
p
)

execution

time with O
(√
p
)

communication rounds. Later on, Kengne et al. [15] noticed that the
execution time was related to the load balancing and the number of communication
rounds. These criteria depend on the partitioning strategy and the distribution scheme
strategy used when designing the CGM-based parallel solution:

(1) When the dependency graph is subdivided into small-size subgraphs (or blocks)
[13], the load difference between processors is small if one processor has one more
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block than another. However, the number of communication rounds will be high.
(2) When the dependency graph is subdivided into large-size blocks [14], the number

of communication rounds of the corresponding algorithm is reduced since there
are few blocks. However, the load of processors will be unbalanced.

By generalizing the ideas of the dependency graph partitioning and distribution scheme
introduced in [13,14], Kengne et al. [15] proposed a CGM-based parallel solution that
gives to the end-user the choice to optimize one criterion according to his own goal.
The main drawback of this solution is the conflicting optimization criteria owing to
the fact that the end-user cannot optimize more than one criterion. Moreover, these
criteria have a significant impact on the latency time of processors, which in turn has
an impact on the global communication time. Recall that the global communication
time is obtained by adding up the latency time of processors and the effective transfer
time of data. Indeed, when the number of communication rounds is high, excessive
communication will lead to communication overhead which will deteriorate the global
communication time. On the other hand, when the load of processors is unbalanced,
the evaluation of a block will take a long time because of its large size. So a processor
that is waiting for this block to start or continue its computation will wait longer to
receive this block. As a result, whatever the chosen criterion, the global communication
time will decrease the performance of CGM-based parallel solutions.

To tackle this trade-off, Kengne and Lacmou [16] proposed the irregular partitioning
technique of the dynamic graph. It consists in subdividing this graph into blocks of
variable size. It ensures that the blocks of the first steps (or diagonals) are of large sizes
to minimize the number of communication rounds. Thereafter, it decreases these sizes
along the diagonals to increase the number of blocks in these diagonals and enable
processors to stay active longer. These blocks are fairly distributed over processors to
minimize their idle time and balance the load between them. It requires O

(
n2/
√
p
)

execution time with O
(
k
√
p
)

communication rounds, where k is the number of times
the size of blocks is subdivided. Experimental results showed that the irregular par-
titioning technique significantly reduced the global communication time compared to
the regular partitioning technique proposed in [13–15].

Nevertheless, this technique also induces a high latency time of processors since it
does not enable processors to start evaluating small-size blocks as soon as the data
they need are available. Yet, these data are usually available before the end of the
evaluation of large-size blocks.

1.2. Our contribution

To solve the minimum cost parenthesizing problem (MPP), which is part of the same
class of non-serial polyadic dynamic-programming problems than the OBST prob-
lem, Lacmou and Kengne [17] proposed the k-block splitting technique to reduce this
latency time. This technique consists in splitting the large-size blocks into a set of
smaller-size blocks called k-blocks. Thus, to enable processors to start the evaluation
of k-blocks as soon as possible, a single processor evaluates a block by computing and
communicating each k-block contained in this block.

The purpose of splitting the blocks into a set of k-blocks is to progressively evaluate
and communicate them during the evaluation of blocks. Indeed, evaluating a block
belonging to the diagonal d in a progressive fashion consists in starting at the diagonal
dd/2e. The k-block splitting technique is essentially based on the progressive evaluation
of blocks. It is therefore adequate to solve the MPP because Godbole’s sequential
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algorithm gives the possibility to evaluate the nodes of blocks in this way. In contrast,
Knuth’s sequential algorithm does not enable to perform this kind of evaluation to
solve the OBST problem because it does not enable to know in advance when to start
or continue the evaluation of a node. Moreover, since the k-block are numerous and
small when k increases, computing and communicating them to processors that need
them will lead to communication overhead [17]. Thus, it would not be meaningful and
practical to apply the k-block splitting technique to solve the OBST problem because
a lot of unnecessary computations could be performed and lead to poor performance.

In this paper, we introduce the four-splitting technique to reduce the latency time
of processors caused by the irregular partitioning technique by splitting the large-size
blocks into four small-size blocks (or subblocks). Hence, evaluating a block by a single
processor will consist of computing and communicating each subblock contained in
this block. The goal is the same than the k-block splitting technique, that is, to enable
processors to start the evaluation of blocks as soon as possible. This CGM-based
parallel solution requires O

(
n2/
√
p
)

execution time with O
(
k
√
p
)

communication
rounds. An experimental study conducted to evaluate the performance of this CGM-
based parallel solution showed that compared to the solution based on the irregular
partitioning technique where the speedup factor is up to ×10.39 on one hundred and
twenty-eight processors with 40960 keys when k = 2, the speedup factor of this new
solution is up to ×13.12 and increases up to ×14.93 when k = 5. We also conducted
experiments to determine the ideal number of times the size of the blocks is subdivided.
The results showed that this number depends on the architecture where the solution
is executed.

This paper is organized as follows: Section 2 describes the OBST problem and
presents Knuth’s sequential algorithm. Section 3 illustrates the dynamic graph model
of the OBST problem introduced in [16]. Then, Section 4 presents our CGM-based
parallel solution using the four-splitting technique. Section 5 outlines the experimental
results obtained, and finally Section 6 concludes this work.

2. Optimal binary search tree problem

A binary search tree is a binary tree that maintains a set of sorted keys according to
the following rule: for each vertex x of the tree, the key of x is larger than all the keys
contained in the left subtree of x and it is smaller than all the keys contained in the
right subtree of x [18]. Figure 1 shows an example of a binary search tree corresponding
to the set of keys 〈c, e, f, g, h, k, l, n, o, r, s〉 sorted in alphabetical order. A binary
search tree is typically used to efficiently search for a particular key among a set of
sorted keys. The cost of searching for this key is equal to length of the path from the
root to this key plus one, which is in fact, the depth of this key [2]. For example, in
Figure 1, the cost of searching for the key ”n” (the root vertex) is equal to 1 and the
cost of searching for the key ”h” is equal to 5.

The overall cost of searching, that is equal to the sum of the cost of searching
of each key, must be usually as less as possible in many applications. Self-balancing
binary search trees, which are binary search trees that automatically attempt to keep
its height (maximal number of levels below the root vertex) as small as possible at
all times [19], minimize this cost by ensuring that all keys are as near the root vertex
as possible. However, when a query frequency is associated with each key, this tree
will not be the most efficient in some cases. Indeed, it would be better to place the
most frequently queried keys closer to the root vertex, and to place the less frequently
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Figure 1. Example of a binary search tree corresponding to the set of letters 〈c, e, f, g, h, k, l, n, o, r, s〉
sorted in alphabetical order

Figure 2. Five possible binary search trees obtained from the set of sorted keys 〈a, b, c〉

queried keys further from the root vertex. For example, consider the set of sorted keys
〈a, b, c〉 with respective frequencies of 3, 1, and 7. The cost of searching for a key x is
equal to the depth of x multiplied by the frequency of x. Of the five possible binary
search trees, depicted in Figure 2, that can be obtained from these keys, the tree that
minimizes the overall cost of searching is determined as follows:

(1) for the first tree, it is equal to (1× 3) + (2× 7) + (3× 1) = 20;
(2) for the second tree, it is equal to (1× 3) + (2× 1) + (3× 7) = 26;
(3) for the third tree, it is equal to (1× 1) + (2× 3) + (2× 7) = 21;
(4) for the fourth tree, it is equal to (1× 7) + (2× 1) + (3× 3) = 18;
(5) for the fifth tree, it is equal to (1× 7) + (2× 3) + (3× 1) = 16.

As shown in Figure 2, the third binary search tree is balanced but the fifth is not.
Nevertheless, the overall search cost of the latter is lower than the self-balanced binary
search tree (the third tree in Figure 2) and is the lowest of all; thus, it is the optimal
binary search tree for the above example.

More formally, the optimal binary search tree (OBST) problem can be defined as
follows: consider a set of n sorted keys K = 〈k1, k2, . . . , kn〉, such that k1 < k2 <
· · · < kn. The probability of finding a key ki is denoted by pi. In the case where the
searched element is not in K, consider a set of n+ 1 dummy keys D = 〈d0, d1, . . . , dn〉.
Indeed, d0 represents the set of values that are smaller than k1 and dn the set of values
that are larger than kn. A dummy key di, such that 1 ≤ i < n, represents the set of
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Algorithm 1 Godbole’s sequential algorithm

1: for i = 0 to n do
2: Tree[i, i]← qi;

3: for d = 1 to n do
4: for i = 0 to n− d+ 1 do
5: j ← n− d+ 1;
6: Tree[i, j]←∞;
7: for k = i to j − 1 do
8: c← Tree[i, k] + Tree[k + 1, j] + w(i, j);
9: if c < Tree[i, j] then

10: Tree[i, j]← c;
11: Cut[i, j]← k;

values between ki and ki+1. The probability of finding a dummy key di is denoted by
qi. In summary, either the search ends in success (i.e. finding the searched key ki) or
in failure (i.e. finding a dummy key di); thus the sum of probabilities of success and
failure is equal to 1. A binary search tree T constructed from these different keys is
composed of n internal vertices in the set K and n+ 1 leaves in the set D. The overall
cost of searching of T is given by Equation (1) :

Cost(T ) =

n∑
i=1

(depth(ki)× pi) +

n∑
i=0

(depth(di)× qi) (1)

where depth(x) is the depth of the key x. The OBST problem consists in finding the
binary search tree that will have the lowest overall cost of searching.

Let w(i, j) = pi+1 + · · ·+ pj + qi + qi+1 + · · ·+ qj . The minimum cost of searching of
a tree Ti,j from the set of keys Ki,j = 〈ki+1, ki+2, . . . , kj〉 and the set of dummy keys
Di,j = 〈di, di+1, . . . , dj〉 is denoted by Tree[i, j] and defined by:

Tree[i, j] =

{
qi if 0 ≤ i = j ≤ n,

min
i≤k<j

{Tree[i, k] + Tree[k + 1, j] + w(i, j)} if 0 ≤ i < j ≤ n.
(2)

Finding the optimal binary search tree from the set of keys K and the set of dummy
keys D is reduced to compute Tree[0, n]. The straightforward sequential algorithm of
Godboble [5], running in O

(
n3
)

time and O
(
n2
)

space, is given by Algorithm 1. The
dynamic-programming (DP) table (named Tree in Algorithm 1) stores the value of
the optimal cost of searching of Ti,j (see line 10 in Algorithm 1). The tracking table
(named Cut in Algorithm 1) stores the value of the index k which minimizes Tree[i, j]
(see line 11 in Algorithm 1). It is the optimal decomposition value of Ti,j into two
subtrees. For a problem of size n = 3, the dependency graph partitioning and the DP
table are illustrated in Figures 3a and 3b, respectively.

Knuth [4] noticed entries of tracking table Cut satisfy the monotonicity property
such that Cut[i, j − 1] ≤ Cut[i, j] ≤ Cut[i+ 1, j] for all 0 ≤ i < j ≤ n. This property
means that computing Cut[i, j] consists in finding all indices between Cut[i, j−1] and
Cut[i+ 1, j], instead of between i and j as it is done in line 7 of Algorithm 1. He thus
achieves to evaluate the Θ

(
n2
)

subproblems in constant time. Algorithm 2 draws a
big picture.
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(a) Dependency graph (b) DP table

Figure 3. Dependency graph and dynamic-programming table used to compute Tree[0, 3]

Algorithm 2 Knuth’s sequential algorithm

1: for i = 0 to n do
2: Tree[i, i]← qi;

3: for d = 1 to n do
4: for i = 0 to n− d+ 1 do
5: j ← n− d+ 1;
6: Tree[i, j]←∞;
7: for k = Cut[i, j − 1] to Cut[i+ 1, j] do
8: c← Tree[i, k] + Tree[k + 1, j] + w(i, j);
9: if c < Tree[i, j] then

10: Tree[i, j]← c;
11: Cut[i, j]← k;

One downside to the speedup of Knuth, however, is that the number of comparison
operations for entries in the same diagonal varies from one entry to another compared
to the classical version [4]. Therefore, when designing parallel algorithms based on
Knuth’s sequential algorithm, there is no guarantee that the processors will have the
same load if entries on a diagonal are fairly distributed among them. It is the main
parallelization constraint of this algorithm.

3. Dynamic graph model of the OBST problem

Kengne and Lacmou [16] showed that the OBST problem can be solved through the
shortest path algorithms on weighted dependency graph. Indeed, they proposed a
graph model called dynamic graph that is formulated from Equation (2). For a problem
of size n, this graph is denoted by Dn and defined as follows :

Definition 3.1. Given a set of n sorted keys, a dynamic graph Dn = (V,E ∪ E′) is
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defined as a set of vertices,

V = {(i, j) : 0 ≤ i ≤ j ≤ n} ∪ {(−1,−1)}

a set of unit edges,

E = {(i, j)→ (i, j + 1) : 0 ≤ i ≤ j < n} ∪ {(i, j) ↑ (i− 1, j) :

0 < i ≤ j ≤ n} ∪ {(−1,−1)↗ (i, i) : 0 ≤ i ≤ n}

a set of jumps,

E′ = {(i, j)⇒ (i, t) : 0 ≤ i < j < t ≤ n} ∪ {(s, t) ⇑ (i, t) :

0 ≤ i < s < t ≤ n}

a weight function W such that

W ((i, j)→ (i, j + 1)) = qj+1 + w(i, j + 1) 0 ≤ i ≤ j < n
W ((i, j) ↑ (i− 1, j)) = qi−1 + w(i− 1, j) 0 < i ≤ j ≤ n
W ((−1,−1)↗ (i, i)) = qi 0 ≤ i ≤ n
W ((i, k)⇒ (i, j)) = SP [k + 1, j] + w(i, j) 0 ≤ i < k < j ≤ n
W ((k + 1, j) ⇑ (i, j)) = SP [i, k] + w(i, j) 0 ≤ i ≤ k < j ≤ n

A square matrix of size n called shortest path matrix, and denoted by SP , is used to
store in the cell SP [i, j] the shortest path from node (−1,−1) to (i, j). They showed
that the computation of Tree[i, j] is equivalent to search in Dn the shortest path
from node (−1,−1) to (i, j). Therefore, it is straightforward to prove that Knuth’s
sequential algorithm is equivalent to compute the shortest paths from (−1,−1) to the
other vertices in a dynamic graph Dn, incrementally, diagonal after diagonal, from left
to right. Thus, the shortest path corresponds to the optimal binary search tree. Figure
4a shows a dynamic graph D3 for a problem of size n = 3. It has the same form as
the dependency graph between subproblems depicted in Figure 3a, with an additional
node (−1,−1).

Given a problem of size n and its corresponding dynamic graph Dn :

Theorem 3.2 (Duality Theorem). If a shortest path from (−1,−1) to (i, j) contains
the jump (i, k) ⇒ (i, j), then there is a dual shortest path containing the unit edge
(k + 1, j) ↑ (i, j) when 0 ≤ i = k < j ≤ n and the jump (k + 1, j) ⇑ (i, j) when
0 ≤ i < k < j ≤ n.

Theorem 3.2 is fundamental because it makes it possible to avoid redundant com-
putations when looking for the value of the shortest path of Dn’s vertices. Indeed, for
any vertex (i, j), among all its shortest paths containing jumps, only those that con-
tain only horizontal jumps are evaluated. The input graph of our CGM-based parallel
solution is therefore a subgraph of Dn denoted by D′n, in which the set of edges from
(i, k) to (i, j), such that 0 ≤ i = k < j ≤ n, and from (k + 1, j) to (i, j), such that
0 ≤ i < k < j ≤ n, is removed. Figure 4b shows the dynamic graph D′3.
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(a) Dynamic graph D3 (b) Dynamic graph D′
3

Figure 4. Dynamic graphs D3 and D′
3 for n = 3

4. Our CGM-based parallel solution using the four-splitting technique

4.1. Dynamic graph partitioning

The irregular partitioning technique consists in subdividing the shortest path matrix
into submatrices (blocks) of varying size (irregular size) to enable a maximum of
processors to remain active longer. The idea is to increase the number of blocks of
diagonals whose this number is lower or equal to half of the first one through the block
fragmentation technique. This technique aims to reduce the block size by dividing it
into four subblocks. To minimize the number of communication rounds, it begins to
subdivide the shortest path matrix with large-size blocks from the largest diagonal
(the first diagonal of blocks) to the diagonal located just before the one whose number
of blocks is half of the first one. Then, since the number of blocks per diagonal quickly
becomes smaller than the number of processors, to increase the number of blocks of
these diagonals and enable a maximum of processors to remain active, it fragments all
the blocks belonging to the next diagonal until the last one to catch up or exceed by one
notch the number of blocks of the first diagonal. It reduces the idle time of processors
and promotes the load balancing. This process is repeated k times, after which the
block sizes are no longer modify, and the rest of the partitioning becomes traditional
because an excessive fragmentation would lead to a drastic rise in the number of
communication rounds. After performing k fragmentations, a block belonging to lth
level of fragmentation has been subdivided l times, 0 ≤ l ≤ k.

The four-splitting technique consists of splitting the large-size blocks into four small-
size blocks (or subblocks) after performing k fragmentations to reduce the latency time
of processors. The subblocks of the blocks belonging to the lth level of fragmentation
must have the same size than the blocks belonging to the (l + 1)th level of fragmen-
tation. The goal is to enable processors to start the evaluation of blocks as soon as
possible. Hence, evaluating a block by a single processor will consist of computing and
communicating each subblock contained in this block.

By denoting f(p) =
⌈√

2p
⌉
, θ(n, p) = d(n+ 1)/f(p)e, and θ(n, p, l) =

⌈
θ(n, p)/2l

⌉
,

formally, we subdivide the shortest path matrix SP into blocks (denoted by SM(i, j)),
and split the large-size blocks into four subblocks. Thus, a block SM(i, j) belonging
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(a) p ∈ {3, 4} and k = 1 (b) p ∈ {3, 4} and k = 2

(c) p ∈ {5, 6, 7, 8} and k = 1 (d) p ∈ {5, 6, 7, 8} and k = 2

Figure 5. Four-splitting technique of the shortest path matrix for n = 31, k ∈ {1, 2}, and p ∈ {3, 4, 5, 6,

7, 8}. For p ∈ {3, 4}, SP is partitioned into fifteen blocks and twenty-one subblocks when k = 1, and into
twenty-four blocks and fifty-seven subblocks when k = 2. For p ∈ {5, 6, 7, 8}, SP is partitioned into nineteen

blocks and thirty-six subblocks when k = 1, and into twenty-eight blocks and seventy-two subblocks when

k = 2

to the lth level of fragmentation, such that l < k, is a θ(n, p, l) × θ(n, p, l) matrix
and is subdivided into four subblocks of size θ(n, p, l + 1) × θ(n, p, l + 1). The blocks
of the kth level of fragmentation are not splitting into four as these are the smallest
blocks. Figures 5a, 5b, 5c, and 5d depict four scenarios of this partitioning for n = 31,
k ∈ {1, 2}, and p ∈ {3, 4, 5, 6, 7, 8}. The number in each block represents the diagonal
in which it belongs.

Remark 1. Some relevant points can be noticed about this partitioning :

(1) the blocks of the first diagonal are θ(n, p) × θ(n, p) upper triangular matrices
splitting into tree subblocks;

(2) all the blocks are not full when n mod
(
2k × f(p)

)
6= 0, for example in Figure

10



(a) Dependencies of SM(i, j) (b) Extremities of SM(i, j)

Figure 6. Dependencies and extremities of a block SM(i, j) after applying the four-splitting technique

5b where 32 mod
(
22 × 3

)
= 8 6= 0);

(3) a block belonging to the lth level of fragmentation is full if it is a non-triangular
matrix of size θ(n, p, l)× θ(n, p, l);

(4) one fragmentation increases up to (df(p)/2e+ 1) the number of diagonals;
(5) when f(p) is odd, the number of blocks in a diagonal after each fragmentation

exceeds by one notch the number of the larger blocks of the first diagonal. This
is illustrated in Figure 5a, where there are three blocks in the first diagonal and
four blocks in third diagonal.

4.2. Blocks’ dependency analysis

Figures 6a and 6b show respectively an example of dependencies and extremities of a
block SM(i, j) after applying the four-splitting technique. The extremities of SM(i, j)
are defined by :

• the leftmost upper entry LUEij = (i, j − θ(n, g, l) + 1);
• the rightmost upper entry RUEij = (i, j);
• the leftmost lower entry LLEij = (i+ θ(n, g, l)− 1, j − θ(n, g, l) + 1);
• the rightmost lower entry RLEij = (i+ θ(n, g, l)− 1, j).

Figure 6a depicts eight points (A, B, C, D, E, F , G, and H) that identify blocks on
which the block SM(i, j) depends :

• A = Tree
[
LUEi,j−3×θ(n,g,l)−1

]
• B = Tree

[
LUEi,j−θ(n,g,l)−2

]
• C = Tree

[
LLEi,j−θ(n,g,l)−2

]
11



Figure 7. Snake-like mapping on six processors when k = 1

• D = Tree
[
LLEi,j−3×θ(n,g,l)−1

]
• E = Tree

[
LLEi+θ(n,g,l)+1,j

]
• F = Tree

[
RLEi+θ(n,g,l)+1,j

]
• G = Tree

[
RLEi+3×θ(n,g,l),j

]
• H = Tree

[
LLEi+3×θ(n,g,l),j

]
All lower blocks and subblocks (a part of a block) that are in the same row and column
than the block SM(i, j) are no longer absolutely required to evaluate SM(i, j) as a
consequence of the speedup of Knuth [4]. In Figure 6a for example, only the five most
shaded blocks will be needed. In other cases, it could have been just four, three or
two blocks. Moreover, it may happen that some nodes of blocks located in extremities
are needed instead of the whole blocks. It depends on the input data. Therefore,
the speedup of Knuth doesn’t enable to estimate the exact load of a block before
its evaluation [14]. However, the blocks on which the block SM(i, j) depends aren’t
located on the same diagonal than SM(i, j). Hence, they can be carried out in parallel.

4.3. Mapping blocks onto processors

The mapping used here consists in assigning the blocks of a given diagonal from the
upper leftmost corner to the lower rightmost corner. First, the blocks of the first
diagonal are assigned from processor P0 to processor Pf(p)−1. Then, the process is
repeated on the next diagonal starting with processor Pf(p), and so on until a block
has been assigned to each processor. The mapping starts again with processor P0, and
continues along the diagonals with a snake-like path until the last diagonal. Figure 7
illustrates this mapping on six processors.

The communication scheme corresponding to this mapping is simple and easy to
implement. Moreover, this mapping enables processors to remain active as soon as
possible and minimizes the number of communication rounds. It also ensures load
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balancing because it enables some processors to evaluate at most one block more than
others. For example, Figure 7 shows that only processor P0 evaluates one more block
than others. However, this mapping does not optimize communications insofar as a
processor does not usually hold the upper blocks that are on the same row and column
than the block that has been assigned to that processor.

4.4. Our CGM-based parallel algorithm

To solve the OBST problem, our CGM-based parallel algorithm evaluates the values of
shortest paths to each node of a block, starting from the first diagonal of blocks to the
diagonal f(p)+k×(df(p)/2e+1), by using Knuth’s sequential algorithm in computation
rounds; although it does not enable to predict before starting the computation of the
block SM(i, j), which will be the values necessary for its evaluation. This is why
the blocks are evaluated in a non-progressive way, i.e. the evaluation of blocks of the
diagonal d start after computing blocks of the diagonal (d− 1).

The four-splitting technique can be adapted to evaluate the subblocks that are part
of a block in a non-progressive fashion compared to the k-block splitting technique
proposed in [17]. Recall that when the latter is used, the number of subblocks (or
k-blocks) drastically grows as the number of fragmentation rises. When a subblock is
evaluated in a non-progressive fashion by a processor, it must receive all the data of
subblocks that it needs to start computations. However, since the subblocks are nu-
merous and small, computing and communicating them to processors that need them
will lead to communication overhead as a huge amount of communication must be
done to exchange data [17]. With the four-splitting technique, the blocks are subdi-
vided into at most four, regardless of the number of fragmentation performed. This
reduces the number of communication rounds and the number of steps to evaluate a
whole block.

Denote the four subblocks of given block by LL, LU , RL, and RU , which respec-
tively correspond to the subblock located in the leftmost lower corner, the leftmost
upper corner, the rightmost lower corner, and the rightmost upper corner. Figures 8a,
8b, 8c, 8d, 8e, and 8f illustrate the different computation and communication steps of
these subblocks by a processor :

(1) At step 0 in Figure 8a, no subblocks have started to be evaluated. This means
that the processor is still receiving data of subblocks on which LL depends.

(2) At step 1 in Figure 8b, LL is computed but it is not communicated because a
communication is not necessary at this step. Indeed, the processors which will
receive LL will not be able to start the computation as soon as possible because
the evaluation is done in a non-progressive fashion. The ideal would be to wait
to compute LU before communicating them together.

(3) At step 2 in Figure 8c, the processor starts by receiving the lower subblocks that
are in the same row than LU . Then, it computes LU . Finally, it communicates
LL and LU to processors that need them. For example, the processor P5 which
evaluates the block of the second diagonal in Figure 7 will send LL and LU to
P1 and P3.

(4) At step 3 in Figure 8d, the processor receives the lower subblocks that are in the
same column than RL. Then, it computes RL. Finally, it communicates LL and
RL to processors that need them. By taking the previous example, P5 will send
LL and RL to P0 and P2.

(5) At step 4 in Figure 8e, the processor computes RU . Thereafter, it communicates
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(a) Step 0 (b) Step 1 (c) Step 2

(d) Step 3 (e) Step 4 (f) Step 5

Figure 8. Steps to evaluate the four subblocks of a given block when solving the OBST problem with the

four-splitting technique. When a subblock is computed and needs to be communicated, it is colored in gray

Algorithm 3 Our CGM-based parallel algorithm based on the four-splitting technique

1: for d = 1 to f(p) + k × (df(p)/2e+ 1) do
2: Computation of the subblocks LL and LU of blocks belonging to the round
d using Algorithm 2;

3: Communication of entries (Tree and Cut tables) of LL and LU required for
computing each block of rounds {d+ 1, d+ 2, . . . , f(p) + k × (df(p)/2e+ 1)};

4: Computation of RL using Algorithm 2;
5: Communication of LL and RL;
6: Computation of RU using Algorithm 2;
7: Communication of LU , RL, and RU ;

RL and RU to processors that need them. By taking the previous example, P5

will send RL and RU to P1 and P4.
(6) At step 5 in Figure 8f, all subblocks have been computed. The processor com-

municates LU and RU to processors that need them. By taking the previous
example, P5 will send LU and RU to P3.

Our CGM-based parallel algorithm based on the four-splitting technique to solve
the OBST problem is given by Algorithm 3.
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Theorem 4.1. Our CGM-based parallel solution based on the four-splitting technique
requires O

(
n2/
√
p
)
execution time with O

(
k
√
p
)
communication rounds in the worst

case to solve the OBST problem.

Proof. Let S = f(p) =
⌈√

2p
⌉

and β = (S mod 2). A single processor computes and
communicates:

(1) three subblocks at the first diagonal of blocks;
(2) four subblocks from the diagonal of blocks 2 to bS/2c − 1;
(3) four subblocks for each (dS/2e+ 1) diagonals of blocks belonging to the lth level

of fragmentation such that 1 ≤ l < k;
(4) one subblock for each (S + β) diagonals of blocks belonging to the kth level of

fragmentation.

During the computation rounds where Knuth’s sequential algorithm is used to evaluate
blocks, evaluating each subblock of a block belonging to the lth level of fragmentation

requires O
(

n2

22(l+1)×(2p)2/2

)
= O

(
n2

4l+1×p

)
local computation time. So, the evaluation

of each diagonal required :

D = 3×O
(

n2

4× p

)
+ 4

(⌊
S

2

⌋
− 1

)
×O

(
n2

4× p

)
+ 4

(⌈
S

2

⌉
+ 1

)
×O

(
n2

42 × p

)
+

4

(⌈
S

2

⌉
+ 1

)
×O

(
n2

43 × p

)
+ · · ·+ 4

(⌈
S

2

⌉
+ 1

)
×O

(
n2

4k × p

)
+(⌈

S

2

⌉
+ 1

)
×O

(
n2

4k × p

)
+ (S + β)×O

(
n2

4k × p

)
= O

(
n2

√
p

)
The number of communication rounds is equal to :

E = 3 + 4

(⌊
S

2

⌋
− 1

)
+ 4(k − 1)

(⌈
S

2

⌉
+ 1

)
+ S + β

= O (k
√
p)

Therefore, this algorithm requires O
(
n2/
√
p
)

execution time with O
(
k
√
p
)

commu-
nication rounds.

5. Experimental results

5.1. Experimental setups

This section highlights the results obtained from experimentations of our CGM-based
parallel solutions based on the four-splitting technique to solve the OBST problem,
and compares them with the best previous solutions [14,16]. These experimentations
have been performed on the cluster dolphin of the MatriCS platform of the Univer-
sity of Picardie Jules Verne1 and on our Raspberry Pi cluster (described hereunder).
The MatriCS platform is composed of 48 nodes called thin nodes with 48 × 128GB of

1https://www.u-picardie.fr/matrics
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RAM, and 12 named thick nodes with 12 × 512GB of RAM. Each node is made of two
Intel Xeon Processor E5-2680 V4 (35M Cache, 2.40 GHz), and each of them consists
of 14 cores. All nodes are interconnected with OmniPath links providing 100Gbps
throughput. These algorithms have been implemented in the C programming lan-
guage2, and on the operating system CentOS Linux release 7.6.1810. The MPI library
(OpenMPI version 1.10.4) has been used for inter-processor communication. These
algorithms have been executed on five thin nodes. The results are presented following
the different values of (n, p, k), where :

• n is the data size, with values in the set 〈4096, 8192, 12288, 16384, 20480, 24576,
28672, 32768, 36864, 40960〉.
• p is the number of processors, with values in the set 〈1, 32, 64, 96, 128〉. When
p = 1, the sequential algorithm of Knuth [4] is carried out.
• k is the number of fragmentations performed, with values in the set 〈0, 1, 2, 3,

4, 5〉. When k = 0, our solution is similar to the one in [14].

Tables 1, 2, 3, 4, and 5 show the total execution time, the speedup, and the efficiency
of our CGM-based parallel solutions to solve the OBST problem. In these tables, the
solution based on the irregular partitioning technique is referred to frag and the one
based on the four-splitting technique is referred to 4s. Figures 9a, 9b, 10a, 10b, 11a,
11b, 12a, 12b, 13a, and 13b are drawn from the results obtained in Tables 1, 2, 3, 4,
and 5.

5.2. Evolution of the global communication time

Figures 9a and 9b depict the global communication time of frag and 4s while solving
the OBST problem by performing one and two fragmentations. Recall that the global
communication time is composed of the latency time of processors and the effective
transfer time of data. These figures show that the global communication time of frag
and 4s is relatively lower than the one based on the regular partitioning (when k =
0). It gradually decreases as the number of fragmentations increases. For example,
on thirty-two processors when n = 40960, the global communication time of frag
(respectively 4s) decreases on average by 3.87% (respectively 41.84%) when k = 1 and
on average by 40.49% (respectively 54.83%) when k = 2. Indeed, when a fragmentation
is performed, the number of blocks increase by dividing the current size of blocks
into four to form the smaller-size blocks. It enables to minimize the latency time of
processors and the effective transfer time of data since the smaller-size blocks take less
time to evaluate and communicate compared to the larger-size blocks.

Figures 9a and 9b also show that the global communication time of 4s is lower than
frag. It decreases significantly when the number of fragmentations increases. These
results were expected because 4s minimizes the latency time of processors by enabling
them to start evaluating subblocks as soon as the data they need are available. Group-
ing the subblocks into two before communicating also contributes to this minimization
because it limits the number of messages to be exchanged in the network.

Figures 10a and 10b show that the global communication time and the overall com-
putation time of 4s gradually decrease while solving the OBST problem by successively
performing five fragmentations. It can be noticed that until the fifth fragmentation
the global communication time does not deteriorate. For example, on thirty-two pro-
cessors when n = 40960, it decreases in average by 41.84% when k = 1, in average by

2The source codes are available here : https://github.com/compiii/CGM-Sol-for-OBST.
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Figure 9. Global communication time for n ∈ {4096, . . . , 40960}, p ∈ {32, . . . , 128}, and k ∈ {0, 1, 2} on the
MatriCS platform
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Figure 10. Comparison of the overall computation time and the global communication time for n ∈
{24576, 32768, 40960}, p ∈ {32, . . . , 128}, and k ∈ {1, . . . , 5} while solving the OBST problem with the four-

splitting technique on the MatriCS platform

54.83% when k = 2, in average by 58.18% when k = 3, in average by 59.43% when
k = 4, and in average by 69.08% when k = 5. This is due to the sequential algorithm
of Knuth [4] which is used to evaluate small subblocks that are close to the optimal
solution. Since they do not require a high evaluation time, processors that need these
subblocks will not have to wait long to receive them.

5.3. Evolution of the load-balancing of processors

Figures 11a and 11b compare the load imbalance on thirty-two processors by per-
forming the difference between the average computation time of processors and the
lowest (and highest) computation time among them. The processor with the lowest or
highest computational load varies with the number of fragmentations performed. For
example, when k = 0 and k = 2, respectively, P7 and P30 have the lowest loads, and
P3 and P22 have the highest.

These figures show that the irregular partitioning technique of the dynamic graph
balances the load of processors better than the regular partitioning technique of this
graph due to the gradual reduction of the block sizes that enables processors to remain
active as long as possible. Indeed, the fragmentation is performed on the blocks with
the largest loads. So, some small-size blocks (which are in the upper diagonals) have
higher loads than the large ones (which are in the lower diagonals). Thanks to the
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Figure 11. Load imbalance of processors for n ∈ {24576, 32768, 40960}, p = 32, and k ∈ {0, 1, 2} on the

MatriCS platform

 0

 5400

 10800

 16200

 21600

 0  8192  16384  24576  32768  40960

T
im

e 
(s

ec
)

Data size

Exec. time for p = 1
Exec. time for k = 0
Exec. time for k = 1 (frag)
Exec. time for k = 1 (4s)
Exec. time for k = 2 (frag)
Exec. time for k = 2 (4s)

(a) p = 32

 0

 5400

 10800

 16200

 21600

 32  64  96  128

T
im

e 
(s

ec
)

Number of processors

Exec. time for k = 0
Exec. time for k = 1 (frag)
Exec. time for k = 1 (4s)
Exec. time for k = 2 (frag)
Exec. time for k = 2 (4s)

(b) n = 40960

Figure 12. Total execution time for n ∈ {4096, . . . , 40960}, p ∈ {32, . . . , 128}, and k ∈ {0, 1, 2} on the

MatriCS platform

snake-like mapping which enables to distribute blocks onto processors in an equitable
way, a processor can have in the worst case one more block than another. This greatly
contributes to balancing the loads of processors. When n = 40960 and k = 1, the
lowest load narrows down to 27.52% for frag and to 27.24% for 4s; and the highest
load increases up to 11.89% for frag and to 11.60% for 4s. In the same vein when
k = 2, the lowest load and the highest load decrease on average by 56.63% and 42.98%
for frag, and on average by 55.73% and 42.77% for 4s. Therefore, our CGM-based
parallel solution based on the four-splitting technique (4s) kept the good performance
of our CGM-based parallel solution based on the irregular partitioning technique (frag)
with respect to the load-balancing of processors since they promote the load balancing
when the number of fragmentations increases. These results were predictable since 4s
is based on the irregular partitioning technique and the snake-like mapping.

5.4. Evolution of the total execution time

Figures 10a, 10b, 12a, and 12b illustrate the total execution time of frag and 4s while
solving the OBST problem by performing one, two, three, four, and five fragmenta-
tions. These figures show that the minimization of the global communication time (due
to the minimization of the latency time of processors) lead up to a reduction of the
total execution time as the number of fragmentations rises. For example, on thirty-two
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processors when n = 40960 and k = 1 (respectively k = 2) in Figure 10a, the total
execution time decreases on average by 15.96% (respectively 47.87%) for frag and on
average by 46.93% (respectively 59.37%) for 4s. Similar observations can be made on
one hundred and twenty-eight processors in Figure 10b; where when n = 40960 and
k = 1 (respectively k = 2), the total execution time decreases on average by 35.40%
(respectively 45.50%) for frag and on average by 42.18% (respectively 56.80%) for 4s.
It is then obvious to notice the huge impact that the global communication time has
on the total execution time, and consequently on the speedup and the efficiency (as
shown in Tables 1, 2, 3, and 4). The following results can be noticed :

• From n = 4096 to 40960 on thirty-two to one hundred and twenty-eight proces-
sors, the total execution time of 4s is better than that of frag when perform-
ing one and two fragmentations. For example, on thirty-two processors when
n = 40960 and k = 1 (respectively k = 2), the speedup and the efficiency are
equal to 3.33 and 10.41% (respectively 5.37 and 16.78%) for frag, and increase
up to 5.27 and 16.48% (respectively 6.89 and 21.53%) for 4s.
• When performing three, four, and five additional fragmentations, the total execu-

tion time of 4s keeps good performance, although from the fourth fragmentation
the performance gain is not meaningful anymore. For example, on thirty-two
processors when n = 40960, the speedup and the efficiency are equal to 7.54 and
23.55% when k = 3, and rise up to 7.74 and 24.17% when k = 4, up to 7.78 and
24.31% when k = 5.

From all this, we can deduce that it is better to use our CGM-based parallel solution
based on the four-splitting technique to solve the OBST problem since it outperforms
the one using the irregular partitioning technique and it is scalable as the data size,
the number of processors, and the number of fragmentations rise.

5.5. What is the ideal number of fragmentations ?

This is a legitimate question because as shown earlier, on the MatriCS platform the
total execution time of 4s degrades from the fourth fragmentation while solving the
MPP but keeps good performance until the fifth fragmentation while solving the OBST
problem. One idea to determine the ideal number of fragmentations would be to run
our CGM-based parallel solution based on the four-splitting technique to solve the
OBST problem for example on another cluster. If we obtain the same result that was
archived on the MatriCS platform then this could guide us to determine this number.
Otherwise, we will deduce that the ideal number of fragmentations depends on the
platform where the parallel algorithm is executed.

To achieve this goal, we have built a cluster consisting of four compute nodes. Each
node is a Raspberry Pi 4 computer model B composed of a 64-bit quad-core Cortex-A72
processor with 8GB of RAM and an operating system Raspbian GNU/Linux 11. All
nodes are interconnected with Cat8 Ethernet cable through a TP-Link router (model
TL-SG108E) providing 16Gbps throughput and the inter-processor communication
has been ensured by OpenMPI version 4.1.2.

Figures 13a and 13b compare the overall computation time and global communi-
cation time of 4s on thirty-two processors while solving the OBST problem by per-
forming one, two, three, four, and five fragmentations on the MatriCS platform and
on our Raspberry Pi cluster. It is obvious to notice that whatever the cluster, 4s
progressively reduces the global communication time when the number of fragmen-
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Figure 13. Comparison of the overall computation time and the global communication time for n ∈
{8192, 12288, 16384}, p = 32, and k ∈ {1, . . . , 5} while solving the OBST problem with the four-splitting

technique on on the MatriCS platform and our Raspberry Pi cluster

tations rises. However on the Raspberry Pi cluster, the performance of 4s degrades
when adding the overall computation time at the fifth fragmentation for n = 8192 and
n = 12288 because the global communication time did not reduce enough to keep the
good performance. For example when n = 12288 in Table 5, the speedup is equal to
1.64 when k = 1, and increases up to 2.71 when k = 2, up to 3.03 when k = 3, up to
3.33 when k = 4, but the speedup narrows down to 3.24 when k = 5. This result is due
to the fact that the Raspberry Pi cluster does not have a communication network as
fast as the MatriCS platform. Indeed, an additional fragmentation is no longer neces-
sary from the fourth fragmentation. Thus, since the network is not very fast, excessive
communication caused a drop in performance. In summary, we deduce that the ideal
number of fragmentations depends on the architecture where the CGM-based parallel
solution is executed.

Another relevant observation can be seen on the Raspberry Pi cluster in Figure
13b, where the total execution time of 4s gradually decreases after five successive
fragmentations when n = 16384. As shown in Table 5, the speedup is equal to 2.20
when k = 1, and increases up to 2.64 when k = 2, up to 2.75 when k = 3, up to
2.95 when k = 4, and up to 3.08 when k = 5. This is due to the fact that when
the input data size increases, fragmentations are more and more required until the
performance gain is not significant or drops. However, as seen earlier, the performance
of 4s degrades at the fifth fragmentation for n = 8192 and n = 12288. Consequently,
we infer that the ideal number of fragmentations also depends on the input data size.

6. Conclusion

We presented in this paper a CGM-based parallel solution to solve the optimal binary
search tree problem using the four-splitting technique. It is a partitioning technique
consisting of subdividing the dynamic graph into subgraphs (or blocks) of variable
size and splitting large-size blocks into four subblocks. It enables processors to start
the evaluation of blocks as soon as possible to minimize their latency time, which is
the largest part of the global communication time. Our CGM-based parallel solution
requires O

(
n2/
√
p
)

execution time with O
(
k
√
p
)

communication rounds. Experimen-
tal results showed a good agreement with theoretical predictions since it significantly
decreases the global communication time compared to the solution using the irregu-
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lar partitioning technique [16] (and thus minimizes the total execution time). It also
minimizes the number of communication rounds and balances the load of processors
as well as the irregular partitioning technique. We also conducted experimentations to
determine the ideal number of times the size of the blocks must be subdivided. The
results showed that this number depends on the input data size and the architecture
where the solution is executed. It would be interesting to undertake the challenge to
determine this number before starting or during computations since it depends on the
architecture where the solution is executed. It would be also interesting to apply our
partitioning techniques on shared-memory architectures and GPU architectures.
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