
Fundamental Data Structures for Matrix-Free Finite Elements on

Hybrid Tetrahedral Grids

Nils Kohl∗,§, Daniel Bauer∗,†, Fabian Böhm∗,†, and Ulrich Rüde∗,‡

∗
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

†Erlangen National High Performance Computing Center (NHR@FAU), Erlangen, Germany
‡Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), Toulouse, France

§Contact: Nils Kohl (nils.kohl@fau.de)

Abstract

This paper presents efficient data structures for the implementation of matrix-free finite element
methods on block-structured, hybrid tetrahedral grids. It provides a complete categorization of
all geometric sub-objects that emerge from the regular refinement of the unstructured, tetrahedral
coarse grid and describes efficient iteration patterns and analytical linearization functions for the
mapping of coefficients to memory addresses. This foundation enables the implementation of fast,
extreme-scalable, matrix-free, iterative solvers, and in particular geometric multigrid methods by
design. Their application to the variable-coefficient Stokes system subject to an enriched Galerkin
discretization and to the curl-curl problem discretized with Nédélec edge elements showcases the
flexibility of the implementation. Eventually, the solution of a curl-curl problem with 1.6 · 1011 (more
than one hundred billion) unknowns on more than 32 000 processes with a matrix-free full multigrid
solver demonstrates its extreme-scalability.

1 Introduction

The numerical approximation of partial differential equations (PDEs) and their solutions at the extreme
scale is a challenging task that requires the design and implementation of efficient and scalable parallel
algorithms and data structures. Linear systems that arise from discretizations with very fine spatial and
temporal resolution can be subject to billions (109) and even trillions (1012) of unknowns [8]. In such
cases, the solution vector alone requires the allocation of multiple terabytes of main memory. It therefore
renders the explicit storage of the system matrix impossible since it typically requires of the order of a
hundred times more memory [27, 40].

Matrix-free methods are crucial to solving such systems [13, 57, 44, 29, 28, 45, 5, 46, 40]. Since most
iterative solvers only require the result of matrix-vector operations but no explicit access to the matrix
entries, the assembly of the matrix and the evaluation of matrix-vector operations are fused and performed
on-the-fly. On top of the reduced need for storage space, such approaches reduce the pressure on the
memory bandwidth while the arithmetic intensity of the relevant compute kernels increases, favoring the
machine balance of current cache-based architectures [60, 31].

This paper introduces fundamental data structures for the implementation of massively parallel,
matrix-free finite element methods on block-structured triangular and tetrahedral grids. The concepts
herein are implemented in the Hybrid Tetrahedral Grids (HyTeG) finite element framework, building
upon what has been described in [41].1

HyTeG is a re-implementation of the Hierarchical Hybrid Grids (HHG) prototype software [16, 15],
intending to cast the general concepts into a sustainable, extensible software framework. With extreme-
scale applications in mind, the fundamental idea of HHG and HyTeG is to exploit the block-structured
grids to implement fast, matrix-free linear solvers. Block-structured grids enable the construction of
implicit index mappings. This is a critical advantage since it avoids the need for any bookkeeping data
structures or indirect array accesses. Due to the regular refinement algorithm applied to the coarse grid
elements, a grid hierarchy that enables straightforward implementation of geometric multigrid solvers is
embedded into the framework by design. The parallel data structures combined with solvers of optimal
asymptotic complexity using efficient matrix-free linear algebra enable the solution of systems with
trillions (O(1012)) of unknowns on hundreds of thousands of parallel processes [27, 40].

1https://i10git.cs.fau.de/hyteg/hyteg

1

ar
X

iv
:2

30
8.

01
79

2v
1

 [
cs

.C
E

]
 3

 A
ug

 2
02

3

https://i10git.cs.fau.de/hyteg/hyteg

(a) unstructured mesh (b) block-structured mesh (c) structured mesh

Figure 1 Examples of unstructured, block-structured, and structured triangular meshes.

The HHG prototype implementation has successfully demonstrated the performance and extreme
scalability of this approach in a sequence of articles [16, 14, 13, 15, 28, 27, 11, 9, 12, 35, 29, 58, 36,
59]. The new HyTeG framework is a much more powerful reimplementation with more general data
structures enabling much more flexible simulations on block-structured tetrahedral grids [41, 21, 8, 7, 43,
40, 39, 26].

This article provides a description of data structures that enable the implementation of arbitrary finite
element discretizations for matrix-free computations on block-structured tetrahedral grids. Section 2
introduces the underlying block-structured mesh. Section 3 describes the regular refinement algorithm
and categorizes the evolving mesh structure. Section 4 defines an indexing scheme that supports the
implementation of efficient data structures for the implementation of matrix-free compute kernels. Section 5
discusses the design of the actual finite element spaces and matrix-free operators. Finally, Section 6
demonstrates the flexibility of the concept with two illustrative example applications.

2 Domain partitioning

The mesh that approximates the domain determines the requirements for the data structures of a
simulation code. Unstructured meshes (example in Figure 1a) with varying element shapes throughout
the grid are well-suited to approximate complex domain geometries. This comes at a cost since the
data structures must incorporate the necessary bookkeeping to keep track of the connectivity and mesh
shapes over the entire computational domain. Uniformly structured grids (example in Figure 1c) allow
for efficient iteration patterns and data structures that can be optimized for low memory consumption
since their geometry and connectivity are usually implicitly defined.

Uniform patterns of mesh elements provide crucial optimization potential for finite element codes, e.g.,
since the element integration is invariant under translation (given constant PDE coefficients) [15], and
structured iteration patterns favor the implementation of efficient compute kernels on current cache-based
architectures due to predictable memory accesses. Block-structured meshes (example in Figure 1b) are a
tradeoff between adaptability and performance. The coarse elements provide a rough approximation of the
domain. They are then uniformly refined to exhibit a local structure that is exploited for efficient compute
kernels and data structures. HHG and HyTeG are based on this idea and employ block-structured
triangular or tetrahedral elements. Tetrahedral meshes provide more flexibility than hexahedral meshes
due to their superior geometric adaptability but require more complicated data structures.

This paper only deals with triangular and tetrahedral meshes that approximate the physical domain
Ω. The triangulation Th(Ω) of Ω ⊂ Rd is defined as a partition of Ω into triangles (in two dimensions) or
tetrahedrons (in three dimensions) Ti. In particular, Th(Ω) := {T1, . . . , TnE

}, Ti ⊂ Ω open, such that

Ω =
⋃

Ti∈Th(Ω)

T i, (2.1)

Ti ∩ Tj = ∅ for i ̸= j, and (2.2)

T i ∩ T j , i ̸= j is a common

{
vertex or edge if d = 2,

vertex, edge, or face if d = 3.
(2.3)

The mesh size h is indicated by the maximum of the diameters hi of all elements.

2

(a) unstructured mesh (b) macro-primitives (c) graph representation

Figure 2 Unstructured mesh (Figure 2a), the corresponding macro-primitives (Figure 2b), and a possible graph represen-
tation (Figure 2c). Each macro-primitive can be interpreted as a node of a graph. The connectivity of the graph defines the
pairs of macro-primitives that can exchange information with each other. It is usually discretization-dependent and can be
configured as required. Figure 2c illustrates a configuration with (undirected) (graph-)edges that connect macro-vertices
(black nodes) to macro-edges (gray nodes), and macro-edges to macro-faces (white nodes).

Remark 1. Domains with curved boundaries are handled via projection of elements using suitable mapping
techniques, e.g., those described in [30]. In HyTeG, a surrogate approach is used to efficiently approximate
arising integrals. Details are found in, e.g., [11, 10, 21]. See Section 6.2 for a demonstration.

In HyTeG the unstructured coarse mesh is represented by an undirected graph of so-called macro-
primitives. See Figure 2 for a simple 2D example. For each cell, face, edge, and vertex of the coarse
mesh, a macro-cell, macro-face, macro-edge, and macro-vertex data structure is allocated, respectively.
Macro-primitives correspond to the nodes of a graph, with (graph-)edges between neighboring primitives.
It may depend on the particular application which primitives are considered neighbors. For instance, each
macro-cell usually references the neighboring macro-faces, macro-edges, and macro-vertices. However,
for certain discretizations (e.g., discontinuous Galerkin (DG) schemes), references from macro-cells to
neighboring macro-cells are additionally required. Details are found in [41].

On distributed parallel systems, each macro-primitive is assigned to one of the available processes. A
load balancing algorithm determines the distribution via weights for each of the graph’s nodes and edges.
Each process only stores their assigned macro-primitives and metadata about those that are connected to
the local primitives.

Spatially-dependent simulation data is allocated locally on each macro-primitive but can be migrated
dynamically from one process to another one during run time. The migration and parallel re-partitioning
are vital to load balancing, coarse grid agglomeration [19], and in-memory checkpointing [38].

3 Refinement

This section covers the refinement process of the block-structured grid and introduces an indexing scheme
to organize the emerging geometric patterns. All considerations herein build on the refinement algorithm
due to Bey [17].

Remark 2 (Macro- and micro-primitives). To avoid confusion, we refer to the cells, faces, edges, and
vertices that are part of the unstructured coarse mesh as macro-cells, -faces, -edges, and -vertices and
those created during the refinement of a macro-primitive as micro-cells, -faces, -edges, and -vertices.

Remark 3 (Two dimensions). All following structures and indexing schemes apply to two-dimensional
settings by restriction to the xy-plane.

3.1 Regular refinement

The refinement process of an individual tetrahedron is described for a reference tetrahedron. For an
illustration of the structure see Figure 3a. Any tetrahedron from the unstructured coarse grid can be
mapped to the reference tetrahedron.

To create a mesh hierarchy, the volume-primitives (macro-faces in 2D, macro-cells in 3D) are regularly
refined according to [17]. Given the vertices T = [v0, v1, v2, v3] of a tetrahedron, and the midpoints vij of

3

v0 v1

v2

v3

x

y

z

(a) level 0

v2

v3

v1
v0

(b) level 1

v2

v3

v1
v0

(c) level 2

Figure 3 Uniform refinement of the reference tetrahedron according to [17] (i.e., (3.1)). Figure 3a also shows the reference
coordinate system.

v2

v3

v1
v0

(a) inner edge v02 to v13
(as in (3.1))

v2

v3

v1
v0

(b) inner edge v01 to v23

v2

v3

v1
v0

(c) inner edge v03 to v12

Figure 4 Different ways of choosing the inner edge (dashed) during the refinement process of a tetrahedron.

the edges connecting vi and vj , 0 ≤ i, j ≤ 3, i ≠ j, T is divided into the eight subtetrahedra Ti, 1 ≤ i ≤ 8:

T1 := [v0, v01, v02, v03],

T2 := [v01, v1, v12, v13],

T3 := [v02, v12, v2, v23],

T4 := [v03, v13, v23, v3],

T5 := [v01, v02, v03, v13],

T6 := [v01, v02, v12, v13],

T7 := [v02, v03, v13, v23],

T8 := [v02, v12, v13, v23].

(3.1)

This process is recursively applied to the subtetrahedra T1, . . . , T8. The meshes of each refinement
iteration are identified by levels. Level 0 refers to the original, coarse grid tetrahedron T (or the entire
macro-primitive coarse grid without refinement), level 1 to the mesh after one refinement iteration, etc.
Figure 3 illustrates the refinement of a single tetrahedron. Note that this algorithm produces a globally
conforming mesh, i.e., no hanging nodes are introduced at the intersection of two coarse grid tetrahedra.

The rule (3.1) produces different grids depending on the permutation of the vertices v0, . . . , v3 of the
original tetrahedron. Three different possible grids may occur. Starting from the reference tetrahedron,
they are identified by the orientation of the inner edge, as illustrated in Figure 4. The permutation of
the local vertex indices of a macro-element enables the optimization of the refinement process towards
well-shaped elements and simplifies the implementation since the inner edge orientation can be fixed
relative to the reference tetrahedron (in HyTeG, the inner edge always connects v02 and v13 as in (3.1)).

3.2 Micro-primitives

The recursive refinement of the reference tetrahedron, according to [17], introduces a fixed number of
subgroups of micro-primitives. Regardless of the refinement level, each micro-primitive belongs to one

4

v3

v1

v0

(a) micro-vertices,

w(ℓ) = 2ℓ + 1

v0
v1

v3

(b) micro-edges,
subgroup xy,
w(ℓ) = 2ℓ

v0
v1

v3

(c) micro-faces,
subgroup xy-up,
w(ℓ) = 2ℓ − 1

v0
v1

v3

(d) micro-cells,
subgroup II-down,
w(ℓ) = 2ℓ − 1

Figure 5 Illustration of one example subgroup for each micro-primitive type and the corresponding polytope side lengths
w(ℓ) as functions of the refinement level ℓ ≥ 2 (ℓ = 2 in the figures). Illustrations and the corresponding polytope side
lengths w(ℓ) for all subgroups are found in Appendix A, Figures 15 to 17 and Table 1.

of the subgroups. Within each subgroup, micro-primitives are identical up to translation on the same
refinement level and identical up to translation and scaling on different refinement levels.

This categorization yields

• 1 micro-vertex subgroup,

• 7 micro-edge subgroups,

• 12 micro-face subgroups,

• 6 micro-cell subgroups.

Figure 5 illustrates one subgroup of each micro-primitive type after two refinement iterations on the
reference tetrahedron. Figures 15 to 17 (Appendix A) give a complete overview of all subgroups.

Remark 4 (Minumum refinement level). All considerations here are only valid on refinement levels ℓ ≥ 2.
On level ℓ = 0, for instance, there is only one micro-cell subgroup. Generally, on levels 0 and 1, the
refined tetrahedron does not exhibit micro-primitives of all subgroups.

Remark 5 (Similar subgroups). The six subgroups of micro-cells are arranged into pairs, that are identical
up to translation, reflection, and rotation. The naming scheme reflects this categorization (-up and -down
types). Similar properties apply to the micro-face subgroups. See Figures 16 and 17.

The categorization allows for a unique mapping of each element of a subgroup to the set of indices

Itet(w) = {(i, j, k) : i+ j + k < w, i, j, k ∈ Z≥0} , (3.2)

where w ∈ Z>0 is the side length of a corresponding tetrahedral polytope [48]. The side length w is equal
along all macro-edges, and depends on the refinement level ℓ. That dependence may be different for each
subgroup. The triangular polytope is defined by

Itri(w) = {(i, j) : i+ j < w, i, j ∈ Z≥0} . (3.3)

The cardinalities of Itet(w) and Itri(w) are equal to the wth tetrahedral number

Ntet(w) =

w∑
k=1

(
k∑

i=1

i

)
=

w(w + 1)(w + 2)

6
, (3.4)

and the wth triangular number

Ntri(w) =

w∑
k=1

k =
w(w + 1)

2
. (3.5)

The concrete values of w of each subgroup illustrated in Figure 5 are given in the respective captions. A
complete list of values for all subgroups is provided in Table 1.

The mapping of subgroups of micro-primitives to (3.2) facilitates the construction of loop nests and
corresponding index linearization functions, which will be discussed next, in Section 4.

5

micro-primitive subgroup w(ℓ) illustration

vertex - 2ℓ + 1 Figure 15a

edge x 2ℓ Figure 15b
y 2ℓ Figure 15c
z 2ℓ Figure 15d
xy 2ℓ Figure 15e
xz 2ℓ Figure 15f
yz 2ℓ Figure 15g
xyz 2ℓ − 1 Figure 15h

face z-up 2ℓ Figure 16a
z-down 2ℓ − 1 Figure 16b

y-up 2ℓ Figure 16c
y-down 2ℓ − 1 Figure 16d

x-up 2ℓ Figure 16e
x-down 2ℓ − 1 Figure 16f

xyz-up 2ℓ Figure 16g
xyz-down 2ℓ − 2 Figure 16h

xy-up 2ℓ − 1 Figure 16i
xy-down 2ℓ − 1 Figure 16j

yz-up 2ℓ − 1 Figure 16k
yz-down 2ℓ − 1 Figure 16l

cell I-up 2ℓ Figure 17a
I-down 2ℓ − 2 Figure 17b

II-up 2ℓ − 1 Figure 17c
II-down 2ℓ − 1 Figure 17d

III-up 2ℓ − 1 Figure 17e
III-down 2ℓ − 1 Figure 17f

Table 1 Overview of all micro-primitive subgroups and the side lengths w(ℓ) of the corresponding tetrahedral polytopes, as
functions of the refinement level ℓ ≥ 2.

4 Indexing

In the context of finite element discretizations, degrees of freedom (DoFs) are usually associated with
the underlying mesh’s vertices, edges, faces, or volume elements. One or more scalars (e.g., for vector-
valued discretizations or when a finite element discretization associates multiple DoFs with a certain
micro-primitive) are then allocated for each micro-primitive of a specific type. For instance, a P2 finite
element discretization typically associates one DoF per vertex and one per edge.

The coefficients are stored in arrays, and a linearization function has to be defined that uniquely maps
each DoF to a corresponding memory address. Due to the association of DoFs and micro-primitives,
this is accomplished via the construction of a unique mapping of each micro-primitive to an integer.
Such a mapping can generally not be defined analytically on unstructured meshes, and therefore requires
an additional data structure. The critical advantage of (block-) structured meshes is that they enable
the construction of implicit index mappings and avoid the need for any bookkeeping data structures or
indirect array accesses.

The regular structure of each micro-primitive subgroup enables the definition of linearization functions
that only depend on the side length w of the respective polytope. A bijective map tw : Itet(w) →
{0, . . . , Ntet(w)− 1} from the tetrahedral index set (3.2) to an array index can be defined as

tw(i, j, k) := Ntet(w)−Ntet(w − k) +Ntri(w − k)−Ntri(w − k − j) + i, (4.1)

using the cardinalities (3.4) and (3.5) of the index sets (3.2) and (3.3). Figure 6 illustrates the map (4.1)
for the z-down micro-face subgroup. Obviously, other mappings can be constructed.

If the number of DoFs m ∈ Z>0 per micro-primitive is larger than 1, (4.1) cannot directly be used as
a linearization function. Two standard layouts to arrange the corresponding sequences of data sets in
memory are referred to as array of structures (AoS) and structure or arrays (SoA). Here, a structure is a
tuple of m DoFs.

The memory layouts differ in how the structures interleave. The SoA layout enumerates the first
element of each structure sequentially, followed by the second element of each structure, etc., i.e., the first
Ntet array elements correspond to the first DoF of the Ntet micro-primitives. In contrast, the AoS layout

6

v0
v1

v3

(0, 0, 0)
(1, 0, 0)

(2, 0, 0)

(0, 1, 0) (1, 1, 0)

(0, 2, 0)

(0, 0, 1) (1, 0, 1)

(0, 1, 1)

(0, 0, 2)

v0
v1

v3

0
1

2

3 4

5

6 7

8

9

Figure 6 Mapping of polytope coordinates (i, j, k) (left) to consecutive integers (right) via the linearization function
tw(i, j, k) defined in (4.1) for micro-faces of the subgroup z-down on level ℓ = 2 (w = 3).

0 1 2 0 1 2 0 1 2 . . . 0 1 2

p1 p2 p3 pNtet

A
o
S

micro-primitive

DoF index

0 0 0 . . . 0 1 1 1 . . . 1 2 2 2 . . . 2

p1 p2 p3 pNtet p1 p2 p3 pNtet p1 p2 p3 pNtet

0 1 2 m ·Ntet − 1array index

S
o
A

micro-primitive

DoF index

Figure 7 Illustration of the AoS (top) and SoA (bottom) memory layouts for m = 3 DoFs per micro-primitive of one
subgroup. The micro-primitive indices are denoted by pξ = (iξ, jξ, kξ). Array elements of the same color refer to DoFs on
the same micro-primitive, i.e., to DoFs in the same structure.

linearizes each entire structure after the other, i.e., the first m array elements correspond to the m DoFs
of the first micro-primitive. Using (4.1) for the linearization of the micro-primitive indices, the AoS and
SoA linearization functions are defined as

tAoS
w,m(i, j, k, d) = m · tw(i, j, k) + d, (4.2)

and
tSoAw,m(i, j, k, d) = d ·Ntet(w) + tw(i, j, k), (4.3)

respectively, where d ∈ {0, . . . ,m− 1} is the index of the DoF on the micro-primitive with index (i, j, k).
Both layouts are illustrated in Figure 7.

The concrete selection of the iteration pattern and linearization function are crucial for the performance
of the algorithm. Both must be designed to preserve cache locality and to enable efficient vectorization.
However, in general, the iteration pattern cannot be chosen arbitrarily since the access order modification
may influence the underlying algorithm’s properties. For instance, the convergence properties of a
Gauss-Seidel iteration depend on the update pattern [56]. Code Listing 1 lists two example loop nests that
result in entirely consecutive access patterns for the AoS and SoA linearization functions (4.2) and (4.3).
The three loops with counters i, j, and k correspond to an iteration along the Cartesian coordinates x, y,
and z (c.f., Figure 3a). The micro-primitives are traversed first in x-direction, then in y-direction, and
finally in z-direction. The remaining loops in Code Listing 1 iterate over all m allocated scalars on each
micro-primitive.

7

1 // array of structures (AoS)
2 for (int k = 0; k < w; k++)
3 for (int j = 0; j < w - k; j++)
4 for (int i = 0; i < w - k - j; i++)
5 for (int d = 0; d < m; d++) // innermost loop over structure
6 int lin_idx = t_aos(w, i, j, k, d);
7
8 // structure of arrays (SoA)
9 for (int d = 0; d < m; d++) // outermost loop over structure

10 for (int k = 0; k < w; k++)
11 for (int j = 0; j < w - k; j++)
12 for (int i = 0; i < w - k - j; i++)
13 int lin_idx = t_soa(w, i, j, k, d);

Code Listing 1 Loop nests for the iteration over the index set Itet(w) with m DoFs per micro-primitive (see (3.2)). Each
loop nest is structured to preserve consecutive array accesses for the AoS and SoA memory layouts respectively.

(a) micro-vertices, m = 1 (b) micro-edges, m = 2 (c) micro-faces, m = 3 (d) micro-volumes, m = 4

Figure 8 Visualization of the association of DoFs to micro-primitives. The integer m denotes the number of DoFs that
are associated with one micro-primitive, as discussed in Section 4. It is randomly chosen here for illustrative purposes. An
overview of various types of finite element spaces and corresponding DoFs layouts can be found in [3].

5 Matrix-free finite elements

The present section describes the construction of data structures for finite element discretizations based
on the indexing schemes introduced in Sections 3 and 4 and discusses the implementation of matrix-free
operators that act on the corresponding coefficient vectors.

5.1 Function spaces

Finite element functions can be represented by the coefficients of their basis functions. Depending on
the type of function space, one or multiple coefficients (or basis functions, respectively) are logically
associated to respective micro-primitives. Figure 8 illustrates some examples.

HyTeG provides the Function data structure for those constructions. Functions represent coefficient
vectors and the corresponding finite element functions simultaneously. Essential functionality is provided
through various methods, for example, for the computation of linear combinations of coefficient vectors,
for the evaluation of the finite element function anywhere in the domain, or for the calculation of scalar
products of the coefficient vectors.

Functions can be composed to construct additional function spaces. For instance, multiple scalar
Functions can be combined to represent a vector-valued function using the VectorFunction class. An
example composition for the P2 space, with vertex and edge DoFs, is illustrated in Figure 9.

Since HyTeG focuses on geometric multigrid methods, the underlying coefficient vectors are usually
allocated on several levels of the mesh hierarchy. The range of levels is specified during allocation, and
virtually all methods require the user to specify the refinement level to operate on. This embeds the
notion of a grid hierarchy into the framework and allows for the convenient construction of multigrid
methods by design.

5.2 Operator design

The majority of iterative solvers and preconditioners only require the result of the action of an operator
(e.g., matrix-vector multiplication) to a vector. However, they do not need explicit access to the matrix
entries. Since the arithmetic intensity of matrix-vector operations using standard sparse matrix formats

8

v3

v1

v0

Ntet(w(ℓ)) = 35 (micro-vertices)

Ntet(w(ℓ)) = 20 (micro-edges, x)

Ntet(w(ℓ)) = 20 (micro-edges, y)

Ntet(w(ℓ)) = 20 (micro-edges, z)

Ntet(w(ℓ)) = 20 (micro-edges, xy)

Ntet(w(ℓ)) = 20 (micro-edges, xz)

Ntet(w(ℓ)) = 20 (micro-edges, yz)

Ntet(w(ℓ)) = 10 (micro-edges, xyz)

Figure 9 Illustration of the composition of DoFs of several micro-primitive subgroups into one function space data
structure. In this example, one DoF is allocated for each micro-vertex and each micro-edge, corresponding to a P2

discretization. The respective arrays for the individual micro-primitive subgroups are displayed on the right. DoFs that
belong to the same subgroup are allocated contiguously.

is low and does not favor modern computer architectures, and the amount of memory required to store
even sparse matrices for extreme-scale applications is not always available, matrix-free methods are
critical to the efficient solution of extreme-scale problems [13, 57, 44, 29, 28, 45, 5, 46, 40]. The general
idea is to (re-)compute the relevant matrix entries on-the-fly during the operator application instead of
precomputing and storing the entire system matrix. This reduces storage space and bandwidth pressure
since the matrix entries do not have to be loaded from memory at the cost of additional arithmetic
operations [31].

In HyTeG, linear operators are therefore designed with a focus on matrix-free computations. The
underlying block-structured grids enable crucial optimization techniques, outlined below and studied in,
e.g., [16, 27, 9, 40].

The general interface of all operators requires the implementation of an apply() method that applies
the operator to a vector (i.e., to a Function object) and writes the result to a target vector. The apply()
method of a concrete operator in HyTeG comprises two main ingredients:

• The specification of the approximation to the bilinear form on a single element and

• the iteration pattern over the structured mesh on a macro-primitive.

The former defines a routine that computes local element matrices. It is derived from the weak formulation
of the underlying PDE, the finite element function spaces, and the order of the quadrature formula.

The latter specifies how the element matrices are applied to a vector. While different iteration patterns
are often mathematically equivalent, they must be carefully selected to achieve optimal performance.
The performance of an iteration pattern may depend on the memory layout, the type of update rule
(matrix-vector multiplication, relaxation, etc.), the function spaces, the PDE, and the underlying hardware.
To achieve flexibility and maintainability, implementations should be composable, such that, for instance,
optimizations to iteration patterns are independent of bilinear forms.

Two typical iteration patterns for finite element discretizations are illustrated in Figure 10 and
described in the following.

5.2.1 Element-wise

Directly inferred from the standard derivation of the finite element method (FEM), element-wise update
routines iterate over the grid elements. The weak form integrals are evaluated (or approximated) on each
element to construct the local stiffness matrix. To perform a matrix-vector multiplication, this matrix is
multiplied with the DoFs associated with the local element, and the result is added to the destination
vector.

9

(a) element-wise (b) stencil-based

Figure 10 Illustrations of the element-wise and stencil-based update patterns. Each cartoon shows one update step for a
discretization with vertex DoFs as an example. In Figure 10a (element-wise pattern), two elements are traversed, with
read-write access to all associated DoFs. In Figure 10b (stencil-based pattern) two DoFs are traversed, with read-only
access to DoFs marked with empty nodes, and read-write access to the center DoF, marked by a filled node. The iteration
order is not fixed and could be chosen differently than indicated in the figures. To achieve the best possible performance, it
must be selected in accordance with the underlying memory layout.

As an example, consider the standard weak formulation of the Poisson equation. The (global) stiffness
matrix is computed via

aij =

∫
Ω

∇ϕi · ∇ϕj dx =
∑

T∈Th(Ω)

∫
T

∇ϕi · ∇ϕj dx, (5.1)

with basis functions ϕi, and ϕj . The entry a
(T)
kl of the local stiffness matrix A(T) of the element T is

computed as

a
(T)
kl =

∫
T

∇ϕmT (k) · ∇ϕmT (l) dx, (5.2)

where k and l are indices of DoFs associated with the element T . mT (·) maps the element-local indices
of the basis functions to their global indices. The computation of the corresponding entry aij of the
global system matrix may require contributions from elements other than T . So instead of computing aij ,
the result of the matrix-vector product is computed by adding the local element contributions into the
destination vector:

ymT (k) ← ymT (k) +
∑
l

a
(T)
kl xmT (l). (5.3)

Figure 10a illustrates this pattern. Obviously, y has to be appropriately initialized before the iteration.
The advantage of this approach is that operations for the integration only have to be performed once

per element. This includes, for example, calculating the transformation to the reference element.
On the downside, the actual entries aij of the global system matrix are not computed explicitly.

This means that certain matrix-vector operations cannot be performed in this way. In particular, many
preconditioners require access to the diagonal entries of the system matrix. Those usually have to
be precomputed and stored in a vector. More complicated access patterns, such as those required
by Gauss-Seidel-type smoothers, are not suited for strictly element-wise iterations in general. Popular
smoothers that only require matrix-vector products and diagonal entries include the Chebyshev accelerated
Jacobi iteration [1]. Also, element-wise patterns involve multiple store operations per vector entry when
the contributions from multiple elements are summed up. This induces more memory traffic than is
theoretically necessary.

A comprehensive discussion of this element-wise approach can be found in [20, 44, 45], although the
approach in [20] is not matrix-free (the local element matrices are precomputed and stored).

5.2.2 Stencil-based

Instead of iterating over the elements of the grid, stencil-based update patterns iterate over the DoFs of
the destination vector. We can interpret a stencil Si as a bipartite graph that relates an entry yi of the
destination vector to those entries xj of the source vector that correspond to the non-zero entries in row i
of the system matrix:

Si := {(j, aij) : aij ̸= 0}. (5.4)

10

1 // Class template for a stencil -based operator
2 // that exploits the absence of space -dependent coefficients.
3 template < typename P1Form > P1ConstantOperator { ... };
4
5 // The template can be used to implement different operators via a Form object.
6
7 // Laplace operator
8 using P1ConstantLaplaceOperator =
9 P1ConstantOperator < forms:: p1_diffusion_affine_q2 >;

10 // Mass operator (’qe’ indicates analytical integration)
11 using P1ConstantMassOperator = P1ConstantOperator < forms :: p1_mass_affine_qe >;
12
13 // For operators with variable coefficients ,
14 // these optimizations cannot be exploited.
15 // A different implementation must be used.
16 template < typename P1Form > P1ElementwiseOperator { ... };
17
18 // div(k(x) grad) operator with a space -dependent coefficient k.
19 using P1DivKGradElementwiseOperator =
20 P1ElementwiseOperator < forms:: p1_div_k_grad_affine_q3 >;

Code Listing 2 Examples of linear operators in HyTeG. The implementation is opaque to the user, and all listed
operators implement the apply() method to perform the corresponding matrix-vector multiplication. Depending on the
implementation, different additional functionality may be supported, e.g., stencil-based operators can be employed as a
Gauss-Seidel smoother.

The computation of Si requires the evaluation of integrals over all elements that are associated with
yi. Using the same example as for the element-wise case, we get for each row i:

aij =
∑

T∈Th(Ω)

∫
T

∇ϕi · ∇ϕj dx, for all j. (5.5)

The result of a matrix-vector product can then be computed for a single row i by setting

yi ←
∑
j

aijxj . (5.6)

An illustration is shown in Figure 10b.
The advantage of this method is that the entries of the system matrix are computed explicitly, enabling

the implementation of a variety of matrix-vector operations that are not feasible with element-wise patterns
(such as Gauss-Seidel type smoothers). Also, each destination vector entry is written to only once.

On the downside, each update requires the evaluation of integrals on different elements, and elements
are traversed multiple times. Although only a subset of the entries of the local stiffness matrix needs
to be computed on each element, some terms depend on the element itself and are therefore computed
repeatedly.

The performance of stencil-based update patterns has been studied extensively, e.g., in [16, 29, 40].
Neither of the approaches is generally superior. It depends on many factors, such as the underlying

grid structure, the finite element discretization, the desired solver, and the properties of the employed
hardware. In some instances, the element-wise and stencil-based approaches are equivalent. Consider, for
example, standard DG discretizations. Since each DoF is only associated with a single element, there is
no difference between the element-wise iteration and the stencil-based pattern.

5.2.3 Optimizations

Apart from reducing bandwidth pressure and memory consumption, one of the decisive advantages
of matrix-free approaches compared to pure sparse matrix computations is that they can exploit the
underlying properties of the discretization (grid structure, basis functions, etc.) to perform heavy
optimizations. An overview of standard techniques is given below, with examples of operator definitions
implemented in HyTeG in Code Listing 2.

(Block-)Structured grids If the underlying grid is structured, matrix-free routines benefit in multiple
ways. Most importantly, the alignment of the iteration pattern and the memory layout is possible and
enables the exploitation of data locality strategies of modern cache-based processors. In particular, this
avoids scattered memory accesses in favor of contiguous accesses to the linearized data and enables
vectorization. Bandwidth pressure further reduces due to the on-the-fly computation of element vertex
coordinates. On unstructured grids, coordinates must be loaded from memory.

11

Eventually, the evaluation of the integrals can be optimized since the element geometry is known a
priori. The transformations from the computational elements to the reference element can be precomputed
for a small set of different elements and possibly even simplified for specific grids (axis-aligned hexahedral
elements only need to be scaled and translated).

Optimizations that exploit block-structured grids are central to the design and performance of
matrix-free methods in HHG and HyTeG, and are covered in detail in, e.g., [16, 28, 40, 41].

Constant coefficients Additional optimizations is possible depending on the underlying PDE. If
the operator does not involve a variable coefficient, the integration can be simplified or even computed
analytically.

If both the underlying grid is structured and the operator does not involve a variable coefficient, the
element matrices and stencils for each type of element can be precomputed, which translates to only
storing one (or several) rows of the sparse system matrix on each macro-primitive, regardless of the
refinement level. This is arguably one of the most crucial optimizations that can be applied in matrix-free
implementations and is exploited heavily in, e.g., [27, 40].

Surrogates If the grid exhibits a specific structure, but the operator involves a space-dependent
coefficient, the local element matrices and stencil entries are not constant either. A key observation is
that, for sufficiently smooth coefficients, the entries of the local stiffness matrix and the entries of the
stencil also vary smoothly over the domain. Those coefficients can then be approximated, for instance,
via polynomials. Instead of evaluating the weak form integrals to compute a coefficient, the precomputed
surrogate polynomial is evaluated. Obviously, this introduces errors, but if implemented carefully may
drastically reduce the computational effort to obtain the entries of either the local element matrices or
the stencil and still grants a sufficient approximation of the operator. A series of articles emerged from
this idea [11, 9, 10, 12, 21, 22, 23, 24, 25].

Grid-aware precomputation Depending on the discretization and hardware, matrix-free approaches
are not always superior to standard sparse-matrix implementations. As a rule of thumb, matrix-free
implementations for low-order discretizations still exhibit significant pressure on the bandwidth, so it is
unclear a priori, whether matrix-free approaches outperform standard sparse matrix computations [47].
Still, if memory consumption, i.e., storage space, is the limiting resource, matrix-free methods are generally
necessary.

However, the structured access patterns can still be exploited in the non-matrix-free case. Instead of
using a sparse format such as compressed row storage (CRS), the local stiffness matrices or stencils can
be stored in a linearized layout corresponding to the iteration pattern. While this still requires loading
the coefficients from memory, it avoids the frequent indirections associated with standard sparse formats.
This approach is discussed, for example, in [20, 9, 55], and is implemented in HyTeG.

6 Demonstration

This section presents results on the numerical approximation of solutions to two model problems to
demonstrate the flexibility and performance of the presented data structures in nontrivial use cases. The
performance and scalability of both demonstrator applications are subject to ongoing research and are
expected to be analyzed in forthcoming articles. For extreme-scale studies with up to more than a trillion
(1012) DoFs on more than 140 000 processes, we refer to [40, 39].

6.1 Enriched Galerkin elements for the Stokes system

Let Ω ∈ Rd be a bounded domain, f⃗ a given forcing term, and µ a given space-dependent viscosity. We
consider the Stokes system

−∇ · (2µϵ(u⃗)− pI) = f⃗ in Ω,

∇ · u⃗ = 0 in Ω,

u⃗ = g⃗ on ∂Ω,

(6.1)

where u⃗ and p are the velocity and pressure solutions, ϵ(u⃗) = 1
2

(
∇u⃗+ (∇u⃗)T

)
is the symmetric gradient,

and g⃗ the given velocity boundary condition.

12

→

(a) EG velocity element (b) EG pressure element

→

→

→

→

→
→

(c) Nédélec element

Figure 11 Velocity (Figure 11a) and pressure (Figure 11b) elements as employed for the EG discretization of the Stokes
system, and Nédélec element (Figure 11c) used for the discretization of the curl-curl problem. The arrows indicate that the
respective DoFs correspond to vector-valued basis functions.

The Stokes system (6.1) is discretized via the enriched Galerkin (EG) approach described in [61, 62].
This discretization employs a piecewise linear conforming velocity space that is enriched by a vector-valued,
globally discontinuous component:

Xh := P1 ⊕
{
ϕ ∈ [L2(Ω)]d : ϕ|T = cT (x− xT), cT ∈ R, T ∈ Th

}
, (6.2)

where P1 is the standard continuous Galerkin space of piecewise linear elements, and xT is the centroid
of the element T ∈ Th. For the pressure, the P0 piecewise constant space is selected. Figures 11a and 11b
illustrate the corresponding elements and DoFs. A single DoF in the tetrahedron’s volume represents
vector-valued enrichment. The discontinuity in the velocity (which is only in L2(Ω)) enforces a DG weak
formulation and requires the computation of jumps and averages, and edge and face integrals [53].

The discretization is inf-sup stable [61]. Since the enrichment only adds a single additional DoF per
element to the piecewise linear velocity space, it requires far fewer DoFs per element than other inf-sup
stable combinations like the traditional Taylor-Hood pair (P2-P1) and is thus an interesting choice for
extreme-scale applications with billions or trillions of DoFs.

The EG discretization requires the construction of composite spaces, combining scalar vertex DoFs
and vectorial DoFs within the volumes for the velocity, with scalar volume DoFs for the pressure. The
matrix-free operators map between the different spaces, e.g., from P1 to the enrichment space and back.
Furthermore, the DG weak formulation entails integrals over lower-dimensional geometries like edges in
2D and triangles in 3D. Those integrals also lead to dependencies across edges and faces and complicate
the update patterns during the operator application. See [18] for implementation details and further
analysis. Figure 12a illustrates the vertex-centered EG stencil that couples the velocity with itself in 3D.

We showcase the discretization for a Stokes problem with strong viscosity variations, as frequently
encountered in Earth mantle convection models [52, 32]. One test case that mimics this problem
characteristic is the so-called multi-sinker benchmark [49, 54]. A variable number of spherical high-
viscosity inclusions (the sinkers) are randomly placed in a 3D domain. The viscosity rises exponentially
at the boundaries of the sinkers, leading to ill-conditioned problems. Figure 12 visualizes the viscosity
inclusions and the velocity solution computed by HyTeG’s EG implementation.

6.2 Nédélec elements for the curl-curl problem

The (homogeneous) curl-curl problem

α curl curl u⃗+ βu⃗ = f⃗ in Ω,

u⃗× n⃗ = 0 on ∂Ω,
(6.3)

in three dimensions (d = 3), with given f⃗ , and α, β ∈ R+, arises from Maxwell’s equations [34]. Because
standard piecewise Lagrangian elements are not suited for the discretization of (6.3), linear Nédélec

elements of the first kind [50] are used to approximate u⃗ and f⃗ . Figure 11c illustrates the corresponding
vector-valued edge elements. Positioning the DoFs on the edges of the mesh enforces continuity of
tangential components while components normal to cell faces are discontinuous. This matches the amount
of continuity as required for conformity in H(curl) [2]. See [6] for implementation details.

We pick the solid torus as the domain Ω and discretize it with 65 280 macro-cells. Because the
triangulation is only a rough approximation of the curved geometry, a curvilinear mapping is applied [30].
Figure 13a shows the resulting curvilinear mesh on the coarsest level.

13

(a) vertex-centered EG velocity-velocity stencil in 3D (b) sinker benchmark

Figure 12 Illustration of a 3D stencil of the EG discretization and a visualization of the computed solution of the sinker
benchmark. Figure 12a: The vertex-centered stencil represents the coupling of the velocity components at a vertex DoF.
Circles correspond to vertex DoFs; pentagons correspond to volume DoFs. As shown in Figure 11a, 3 DoFs are allocated at
each micro-vertex, and a vectorial DoF is placed in each micro-volume. Figure 12b: Spherical viscosity inclusions and
velocity streamlines of a computed solution of the sinker benchmark. Six randomly placed sinkers exhibit an exponential
viscosity decay of a factor of 103. A multigrid preconditioned MINRES solver has been applied to solve the saddle point
system with roughly 5 · 105 DoFs.

(a) coarse mesh and electric field lines of the solution on
the solid torus

0 1 2 3 4 5 6 7

10−5

10−4

10−3

10−2

6.4 · 105 3.1 · 108 1.6 · 1011

refinement level

∥e⃗
∥ L

2

degrees of freedom

experiment

O(h2)

(b) L2-error grid convergence

Figure 13 Error convergence experiment using linear Nédélec elements of the first kind to solve the curl-curl problem (6.3)
on the toroidal solid, discretized with 65 280 curvilinear macro-tetrahedra. (6.3) is solved using a matrix-free full multigrid
(FMG) solver with 5 V(1,1) cycles per level. The total number of DoFs on the finest level is approximately 1.6 · 1011.

To evaluate the grid convergence of our discretization, we construct an analytic solution with
homogeneous tangential boundary conditions and determine the right-hand-side f⃗ from it. For the sake
of simplicity, we set α = β = 1 in (6.3).

Numerically, we solve the PDE with a matrix-free FMG solver performing five V(1,1) cycles on each
refinement level. Inside the V-cycles, Hiptmair’s hybrid smoother [34] is used. Due to the non-elliptic
nature of (6.3), standard smoothers can only reduce error components orthogonal to the nullspace of
the curl-operator. Remaining error components in the nullspace of the curl-operator must be handled
separately to obtain an effective multigrid scheme. To that end, the residual remaining after smoothing is
determined, lifted to the space of scalar potentials, and discretized by P1 elements. Smoothing again
in potential space removes the remaining oscillating error components. The smoothed P1 vector must
then be transformed back to the space of Nédélec elements, where it is added to the current iterate. We

14

64 512 4096 32 768
100

101

102

103

processes

so
lv
er

ru
n
ti
m
e
/
s

2.5 · 109 DoFs

3.1 · 108 DoFs

linear scaling

(a) strong scaling

64 512 4096 32 768
0

200

400

600

800

3.1 · 108 2.5 · 109 2.0 · 1010 1.6 · 1011

processes

so
lv
er

ru
n
ti
m
e
/
s

degrees of freedom

(b) weak scaling

Figure 14 Strong and weak scalability of the FMG solver for the curl-curl problem (6.3). (6.3) is solved on the toroidal
solid (65 280 curvilinear macro-tetrahedra) on different refinement levels and with varying number of processes. The largest
run comprises roughly 1.6 · 1011 DoFs and is executed on 32 768 cores.

choose Chebyshev smoothers of order 2 [1, 4] in both spaces. This means that one hybrid smoothing step
requires in total three matrix-vector products in the Nédélec space, two matrix-vector products in P1,
and two transfer operations between the spaces. Note that two additional P1 vectors must be allocated.

The system is solved up to refinement level 7, which comprises roughly 1.6 · 1011 DoFs on 32 768
processes. The numerical solution is compared against the known analytic solution and the error is
measured in the L2-norm. The L2-error is expected to reduce quadratically [33, Theorem 5.8, Remark
18]. According to Figure 13b, our convergence results agree with the theory.

For comparison, the same equation with jumping coefficients has recently been solved in [37] with an
algebraic multigrid (AMG) preconditioned conjugate gradient (CG) solver implemented in the ParELAG
miniapplication [51] in MFEM [42]. The authors scaled their system up to 1.4 ·109 DoFs on 4608 processes
and report a total solve time of around three minutes. Furthermore, they used a graded hexahedral mesh
containing distorted elements but no curvilinear transformation.

Next, we assess the strong and weak scalability of our solver. To that end, we solve the same system
on 32 768, 4096, 512, and 64 processes. This corresponds to 256, 32, 4, and 1 compute nodes, respectively.
The results are summarized in Figure 14.

We examine strong scalability for two problem sizes: 2.5 · 109 DoFs (level 5) and 3.1 · 108 DoFs (level
4). In the larger setup, when increasing the number of processes from 512 to 32 768, a parallel efficiency
of 39% is observed. In the smaller case, increasing the processing cores from 64 to 4096 results in a high
parallel efficiency of 61%. Further, solving the small problem (3.1 · 108 DoFs) with 32 768 processes only
yields a parallel efficiency of 9%. This result is the expected strong scaling behavior, given that solving
the system with 4096 processes is a matter of a few seconds. Overall, better strong scalability is mainly
hindered by the runtime on the coarser levels, where the arithmetic workload is very low compared to the
amount of inter-process communication. Note that only a few (< 10) DoFs are allocated per process on
the coarsest grids in both problem setups. Solving the system directly on a higher level (i.e., using a finer
coarse mesh for the FMG solver) might have a positive impact on the scaling results.

On the other hand, weak scaling is not impacted by this effect. This shows in nearly constant runtimes
over the range from 64 to 32 768 processes. Here, the scalability of the coarse grid solver is of less
significance since 85% of the overall runtime is spent on the finest level (level 7).

7 Conclusion

This paper has provided a systematic approach to the design of data structures for arbitrary finite
element discretizations on hybrid tetrahedral grids. It has categorized all geometric structures that emerge
from regular refinement and provided associated illustrations. Particular focus has been put on the
exploitation of the grid structure to enable efficient matrix-free kernels and corresponding memory layouts
for the coefficient vectors, regardless of the element type. The flexibility of the implementation in the

15

finite element framework HyTeG have been showcased via the variable viscosity Stokes system and the
curl-curl problem. Extreme-scalability has been demonstrated via the solution of curl-curl systems with
approximately 1.6 · 1011 unknowns on more than 32000 processes with a matrix-free full multigrid method.
The presented considerations lay the ground for the formalization, generalization, and implementation of
efficient compute kernels for large-scale, matrix-free finite element methods.

Acknowledgments

The authors gratefully acknowledge funding through the joint BMBF project CoMPS2 (grant 16ME0647K).
The authors would like to thank the NHR-Verein e.V.3 for supporting this work/project within the NHR
Graduate School of National High Performance Computing (NHR). The Gauss Centre for Supercomputing
e.V. funded this project by providing computing time on the GCS Supercomputer HPE Apollo Hawk at the
High Performance Computing Center Stuttgart (grant TN17/44103). The authors gratefully acknowledge
the scientific support and HPC resources provided by the Erlangen National High Performance Computing
Center (NHR@FAU) of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). NHR funding
is provided by federal and Bavarian state authorities. NHR@FAU hardware is partially funded by the
German Research Foundation (DFG) – 440719683.

References

[1] M. Adams, M. Brezina, J. Hu, and R. Tuminaro, Parallel Multigrid Smoothing: Polynomial versus Gauss–Seidel,
Journal of Computational Physics 188.2 (July 2003), pp. 593–610, issn: 00219991, doi: 10.1016/S0021-9991(03)00194-
3.

[2] D. N. Arnold, Finite Element Exterior Calculus, Society for Industrial and Applied Mathematics, Philadelphia, PA,
Dec. 2018, isbn: 978-1-61197-553-6 978-1-61197-554-3, doi: 10.1137/1.9781611975543.

[3] D. N. Arnold and A. Logg, Periodic Table of the Finite Elements, Siam News 47.9 (2014), p. 212.

[4] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, Multigrid Smoothers for Ultraparallel Computing,
SIAM J. Sci. Comput. 33.5 (Jan. 2011), pp. 2864–2887, issn: 1064-8275, 1095-7197, doi: 10.1137/100798806.

[5] P. Bastian, E. H. Müller, S. Müthing, and M. Piatkowski, Matrix-Free Multigrid Block-Preconditioners for Higher
Order Discontinuous Galerkin Discretisations, Journal of Computational Physics 394 (Oct. 2019), pp. 417–439, issn:
00219991, doi: 10.1016/j.jcp.2019.06.001.

[6] D. Bauer, Multigrid in H(curl) on Hybrid Tetrahedral Grids, MA thesis, Friedrich-Alexander-Universität Erlangen-
Nürnberg (FAU), 2023.

[7] M. Bauer, S. Eibl, C. Godenschwager, N. Kohl, M. Kuron, C. Rettinger, F. Schornbaum, C. Schwarzmeier, D.
Thönnes, H. Köstler, and U. Rüde, waLBerla: A Block-Structured High-Performance Framework for Multiphysics
Simulations, Computers & Mathematics with Applications 81 (Jan. 2021), pp. 478–501, issn: 08981221, doi: 10.1016/
j.camwa.2020.01.007.

[8] S. Bauer, H.-P. Bunge, D. Drzisga, S. Ghelichkhan, M. Huber, N. Kohl, M. Mohr, U. Rüde, D. Thönnes, and
B. Wohlmuth, TerraNeo — Mantle Convection Beyond a Trillion Degrees of Freedom, in: Softw. Exascale Comput. -
SPPEXA 2016-2019, ed. by H.-J. Bungartz, S. Reiz, B. Uekermann, P. Neumann, and W. Nagel, vol. 136, Lecture
Notes in Computational Science and Engineering, Springer, 2020, pp. 569–610, doi: 10.1007/978-3-030-47956-5_19.

[9] S. Bauer, D. Drzisga, M. Mohr, U. Rüde, C. Waluga, and B. Wohlmuth, A Stencil Scaling Approach for
Accelerating Matrix-Free Finite Element Implementations, SIAM J. Sci. Comput. 40.6 (Jan. 2018), pp. C748–C778,
issn: 1064-8275, 1095-7197, doi: 10.1137/17M1148384.

[10] S. Bauer, M. Huber, S. Ghelichkhan, M. Mohr, U. Rüde, and B. Wohlmuth, Large-Scale Simulation of Mantle
Convection Based on a New Matrix-Free Approach, Journal of Computational Science 31 (Feb. 2019), pp. 60–76, issn:
18777503, doi: 10.1016/j.jocs.2018.12.006.

[11] S. Bauer, M. Mohr, U. Rüde, J. Weismüller, M. Wittmann, and B. Wohlmuth, A Two-Scale Approach for
Efficient on-the-Fly Operator Assembly in Massively Parallel High Performance Multigrid Codes, Applied Numerical
Mathematics 122 (Dec. 2017), pp. 14–38, issn: 01689274, doi: 10.1016/j.apnum.2017.07.006.

[12] S. Bauer, M. Huber, M. Mohr, U. Rüde, and B. Wohlmuth, A New Matrix-Free Approach for Large-Scale
Geodynamic Simulations and Its Performance, in: Computational Science – ICCS 2018, ed. by Y. Shi, H. Fu, Y.
Tian, V. V. Krzhizhanovskaya, M. H. Lees, J. Dongarra, and P. M. A. Sloot, vol. 10861, Springer International
Publishing, Cham, 2018, pp. 17–30, isbn: 978-3-319-93700-7 978-3-319-93701-4, doi: 10.1007/978-3-319-93701-4_2.

[13] B. Bergen, T. Gradl, F. Hulsemann, and U. Rude, A Massively Parallel Multigrid Method for Finite Elements,
Comput. Sci. Eng. 8.6 (Nov. 2006), pp. 56–62, issn: 1521-9615, doi: 10.1109/MCSE.2006.102.

[14] B. Bergen, F. Hulsemann, and U. Rude, Is 1.7× 1010 Unknowns the Largest Finite Element System that Can Be
Solved Today?, in: ACMIEEE SC 2005 Conf. SC05, IEEE, Seattle, WA, USA, 2005, pp. 5–5, isbn: 978-1-59593-061-3,
doi: 10.1109/SC.2005.38.

2https://gauss-allianz.de/en/project/title/CoMPS
3https://www.nhr-verein.de

16

https://doi.org/10.1016/S0021-9991(03)00194-3
https://doi.org/10.1016/S0021-9991(03)00194-3
https://doi.org/10.1137/1.9781611975543
https://doi.org/10.1137/100798806
https://doi.org/10.1016/j.jcp.2019.06.001
https://doi.org/10.1016/j.camwa.2020.01.007
https://doi.org/10.1016/j.camwa.2020.01.007
https://doi.org/10.1007/978-3-030-47956-5_19
https://doi.org/10.1137/17M1148384
https://doi.org/10.1016/j.jocs.2018.12.006
https://doi.org/10.1016/j.apnum.2017.07.006
https://doi.org/10.1007/978-3-319-93701-4_2
https://doi.org/10.1109/MCSE.2006.102
https://doi.org/10.1109/SC.2005.38
https://gauss-allianz.de/en/project/title/CoMPS
https://www.nhr-verein.de

[15] B. Bergen, Hierarchical Hybrid Grids: Data Structures and Core Algorithms for Efficient Finite Element Simulations
on Supercomputers, Advances in Simulation, SCS Publishing House, 2006.

[16] B. K. Bergen and F. Hülsemann, Hierarchical Hybrid Grids: Data Structures and Core Algorithms for Multigrid,
Numer. Linear Algebra Appl. 11.23 (Mar. 2004), pp. 279–291, issn: 1070-5325, 1099-1506, doi: 10.1002/nla.382.

[17] J. Bey, Tetrahedral Grid Refinement, Computing 55.4 (Dec. 1995), pp. 355–378, issn: 0010-485X, 1436-5057, doi:
10.1007/BF02238487.

[18] F. Böhm, Matrix-Free Implementation and Evaluation of the Enriched Galerkin Finite Element Method for the
Stokes Problem with Varying Viscosity, MA thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2023.

[19] A. Buttari, M. Huber, P. Leleux, T. Mary, U. Rüde, and B. Wohlmuth, Block Low-rank Single Precision Coarse
Grid Solvers for Extreme Scale Multigrid Methods, Numer Linear Algebra Appl 29.1 (Jan. 2022), issn: 1070-5325,
1099-1506, doi: 10.1002/nla.2407.

[20] G. F. Carey, E. Barragy, R. McLay, and M. Sharma, Element-by-Element Vector and Parallel Computations,
Commun. appl. numer. methods 4.3 (May 1988), pp. 299–307, issn: 0748-8025, 1555-2047, doi: 10.1002/cnm.
1630040303.

[21] D. Drzisga, B. Keith, and B. Wohlmuth, The Surrogate Matrix Methodology: A Priori Error Estimation, SIAM J.
Sci. Comput. 41.6 (Jan. 2019), A3806–A3838, issn: 1064-8275, 1095-7197, doi: 10.1137/18M1226580.

[22] D. Drzisga, B. Keith, and B. Wohlmuth, The Surrogate Matrix Methodology: A Reference Implementation for
Low-Cost Assembly in Isogeometric Analysis, MethodsX 7 (2020), p. 100813, issn: 22150161, doi: 10.1016/j.mex.
2020.100813.

[23] D. Drzisga, B. Keith, and B. Wohlmuth, The Surrogate Matrix Methodology: Accelerating Isogeometric Analysis of
Waves, Computer Methods in Applied Mechanics and Engineering 372 (Dec. 2020), p. 113322, issn: 00457825, doi:
10.1016/j.cma.2020.113322.

[24] D. Drzisga, B. Keith, and B. Wohlmuth, The Surrogate Matrix Methodology: Low-cost Assembly for Isogeometric
Analysis, Computer Methods in Applied Mechanics and Engineering 361 (Apr. 2020), p. 112776, issn: 00457825, doi:
10.1016/j.cma.2019.112776.

[25] D. Drzisga, U. Rüde, and B. Wohlmuth, Stencil Scaling for Vector-Valued PDEs on Hybrid Grids With Applications
to Generalized Newtonian Fluids, SIAM J. Sci. Comput. 42.6 (Jan. 2020), B1429–B1461, issn: 1064-8275, 1095-7197,
doi: 10.1137/19M1267891.

[26] D. Drzisga, A. Wagner, and B. Wohlmuth, A Matrix-Free ILU Realization Based on Surrogates, ArXiv Prepr.
(2022), doi: 10.48550/ARXIV.2210.15280.

[27] B. Gmeiner, M. Huber, L. John, U. Rüde, and B. Wohlmuth, A Quantitative Performance Study for Stokes
Solvers at the Extreme Scale, Journal of Computational Science 17 (Nov. 2016), pp. 509–521, issn: 18777503, doi:
10.1016/j.jocs.2016.06.006.

[28] B. Gmeiner, U. Rüde, H. Stengel, C. Waluga, and B. Wohlmuth, Performance and Scalability of Hierarchical
Hybrid Multigrid Solvers for Stokes Systems, SIAM J. Sci. Comput. 37.2 (Jan. 2015), pp. C143–C168, issn: 1064-8275,
1095-7197, doi: 10.1137/130941353.

[29] B. Gmeiner, U. Rüde, H. Stengel, C. Waluga, and B. Wohlmuth, Towards Textbook Efficiency for Parallel
Multigrid, Numer. math.: theory methods appl. 8.1 (Feb. 2015), pp. 22–46, issn: 1004-8979, 2079-7338, doi: 10.4208/
nmtma.2015.w10si.

[30] W. J. Gordon and C. A. Hall, Transfinite Element Methods: Blending-function Interpolation over Arbitrary Curved
Element Domains, Numer. Math. 21.2 (Apr. 1973), pp. 109–129, issn: 0029-599X, 0945-3245, doi: 10.1007/BF01436298.

[31] G. Hager and G. Wellein, Introduction to High Performance Computing for Scientists and Engineers, 0th ed.,
CRC Press, July 2010, isbn: 978-1-4398-1193-1, doi: 10.1201/EBK1439811924.

[32] T. Heister, J. Dannberg, R. Gassmöller, and W. Bangerth, High Accuracy Mantle Convection Simulation through
Modern Numerical Methods – II: Realistic Models and Problems, Geophys. J. Int. 210.2 (Aug. 2017), pp. 833–851,
issn: 0956-540X, 1365-246X, doi: 10.1093/gji/ggx195.

[33] R. Hiptmair, Finite Elements in Computational Electromagnetism, Acta Numerica 11 (Jan. 2002), pp. 237–339, issn:
0962-4929, 1474-0508, doi: 10.1017/S0962492902000041.

[34] R. Hiptmair, Multigrid Method for Maxwell’s Equations, SIAM J. Numer. Anal. 36.1 (Jan. 1998), pp. 204–225, issn:
0036-1429, 1095-7170, doi: 10.1137/S0036142997326203.

[35] M. Huber, B. Gmeiner, U. Rüde, and B. Wohlmuth, Resilience for Massively Parallel Multigrid Solvers, SIAM J.
Sci. Comput. 38.5 (2016), S217–S239, doi: 10.1137/15M1026122.

[36] M. Huber, U. Rüde, C. Waluga, and B. Wohlmuth, Surface Couplings for Subdomain-Wise Isoviscous Gradient
Based Stokes Finite Element Discretizations, J Sci Comput 74.2 (Feb. 2018), pp. 895–919, issn: 0885-7474, 1573-7691,
doi: 10.1007/s10915-017-0470-3.

[37] D. Z. Kalchev, P. S. Vassilevski, and U. Villa, Parallel Element-Based Algebraic Multigrid for H(curl) and H(div)
Problems Using the ParELAG Library, SIAM Journal on Scientific Computing 45.3 (June 30, 2023), S371–S400, issn:
1064-8275, 1095-7197, doi: 10.1137/21M1433253.

[38] N. Kohl, J. Hötzer, F. Schornbaum, M. Bauer, C. Godenschwager, H. Köstler, B. Nestler, and U. Rüde,
A Scalable and Extensible Checkpointing Scheme for Massively Parallel Simulations, The International Journal
of High Performance Computing Applications 33.4 (July 2019), pp. 571–589, issn: 1094-3420, 1741-2846, doi:
10.1177/1094342018767736.

[39] N. Kohl, M. Mohr, S. Eibl, and U. Rüde, A Massively Parallel Eulerian-Lagrangian Method for Advection-Dominated
Transport in Viscous Fluids, SIAM J. Sci. Comput. 44.3 (June 2022), pp. C260–C285, issn: 1064-8275, 1095-7197,
doi: 10.1137/21M1402510.

17

https://doi.org/10.1002/nla.382
https://doi.org/10.1007/BF02238487
https://doi.org/10.1002/nla.2407
https://doi.org/10.1002/cnm.1630040303
https://doi.org/10.1002/cnm.1630040303
https://doi.org/10.1137/18M1226580
https://doi.org/10.1016/j.mex.2020.100813
https://doi.org/10.1016/j.mex.2020.100813
https://doi.org/10.1016/j.cma.2020.113322
https://doi.org/10.1016/j.cma.2019.112776
https://doi.org/10.1137/19M1267891
https://doi.org/10.48550/ARXIV.2210.15280
https://doi.org/10.1016/j.jocs.2016.06.006
https://doi.org/10.1137/130941353
https://doi.org/10.4208/nmtma.2015.w10si
https://doi.org/10.4208/nmtma.2015.w10si
https://doi.org/10.1007/BF01436298
https://doi.org/10.1201/EBK1439811924
https://doi.org/10.1093/gji/ggx195
https://doi.org/10.1017/S0962492902000041
https://doi.org/10.1137/S0036142997326203
https://doi.org/10.1137/15M1026122
https://doi.org/10.1007/s10915-017-0470-3
https://doi.org/10.1137/21M1433253
https://doi.org/10.1177/1094342018767736
https://doi.org/10.1137/21M1402510

[40] N. Kohl and U. Rüde, Textbook Efficiency: Massively Parallel Matrix-Free Multigrid for the Stokes System, SIAM J.
Sci. Comput. 44.2 (Apr. 2022), pp. C124–C155, issn: 1064-8275, 1095-7197, doi: 10.1137/20M1376005.

[41] N. Kohl, D. Thönnes, D. Drzisga, D. Bartuschat, and U. Rüde, The HyTeG Finite-Element Software Framework
for Scalable Multigrid Solvers, International Journal of Parallel, Emergent and Distributed Systems 34.5 (Sept. 2019),
pp. 477–496, issn: 1744-5760, 1744-5779, doi: 10.1080/17445760.2018.1506453.

[42] T. Kolev and V. Dobrev, Modular Finite Element Methods (MFEM), Language: en, 2010, doi: 10.11578/DC.
20171025.1248.

[43] H. Köstler, M. Heisig, N. Kohl, S. Kuckuk, M. Bauer, and U. Rüde, Code Generation Approaches for Parallel
Geometric Multigrid Solvers, Analele Univ. Ovidius Constanta - Ser. Mat. 28.3 (Dec. 2020), pp. 123–152, issn:
1844-0835, doi: 10.2478/auom-2020-0038.

[44] M. Kronbichler and K. Kormann, A Generic Interface for Parallel Cell-Based Finite Element Operator Application,
Computers & Fluids 63 (June 2012), pp. 135–147, issn: 00457930, doi: 10.1016/j.compfluid.2012.04.012.

[45] M. Kronbichler and K. Kormann, Fast Matrix-Free Evaluation of Discontinuous Galerkin Finite Element Operators,
ACM Trans. Math. Softw. 45.3 (Sept. 2019), pp. 1–40, issn: 0098-3500, 1557-7295, doi: 10.1145/3325864.

[46] M. Kronbichler, D. Sashko, and P. Munch, Enhancing Data Locality of the Conjugate Gradient Method for
High-Order Matrix-Free Finite-Element Implementations, The International Journal of High Performance Computing
Applications (July 2022), p. 109434202211078, issn: 1094-3420, 1741-2846, doi: 10.1177/10943420221107880.

[47] M. Kronbichler and W. A. Wall, A Performance Comparison of Continuous and Discontinuous Galerkin Methods
with Fast Multigrid Solvers, SIAM J. Sci. Comput. 40.5 (Jan. 2018), A3423–A3448, issn: 1064-8275, 1095-7197, doi:
10.1137/16M110455X.

[48] C. Lengauer, Loop Parallelization in the Polytope Model, in: CONCUR’93, ed. by G. Goos, J. Hartmanis, and
E. Best, vol. 715, Springer Berlin Heidelberg, Berlin, Heidelberg, 1993, pp. 398–416, isbn: 978-3-540-57208-4 978-3-
540-47968-0, doi: 10.1007/3-540-57208-2_28.

[49] D. A. May, J. Brown, and L. L. Pourhiet, pTatin3D: High-Performance Methods for Long-Term Lithospheric
Dynamics, in: SC14 Int. Conf. High Perform. Comput. Netw. Storage Anal. IEEE, New Orleans, LA, USA, Nov.
2014, pp. 274–284, isbn: 978-1-4799-5500-8 978-1-4799-5499-5, doi: 10.1109/SC.2014.28.

[50] J. C. Nedelec, Mixed finite elements in R3, Numer. Math. 35.3 (Sept. 1980), pp. 315–341, issn: 0029-599X, 0945-3245,
doi: 10.1007/BF01396415.

[51] ParELAG Mini Applications in MFEM, url: http://github.com/mfem/mfem/tree/master/miniapps/parelag.

[52] Y. Ricard, Physics of Mantle Convection, in: Mantle Dynamics, ed. by D. Bercovici, vol. 7, Treatise on Geophysics,
Elsevier, 2007, pp. 31–89, doi: 10.1016/B978-0-444-53802-4.00127-5.

[53] B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation,
Society for Industrial and Applied Mathematics, Jan. 2008, isbn: 978-0-89871-656-6 978-0-89871-744-0, doi: 10.1137/
1.9780898717440.

[54] J. Rudi, G. Stadler, and O. Ghattas, Weighted BFBT Preconditioner for Stokes Flow Problems with Highly
Heterogeneous Viscosity, SIAM J. Sci. Comput. 39.5 (Jan. 2017), S272–S297, issn: 1064-8275, 1095-7197, doi:
10.1137/16M108450X.

[55] H. D. Tran, M. Fernando, K. Saurabh, B. Ganapathysubramanian, R. M. Kirby, and H. Sundar, A Scalable
Adaptive-Matrix SPMV for Heterogeneous Architectures, in: 2022 IEEE Int. Parallel Distrib. Process. Symp. IPDPS,
IEEE, Lyon, France, May 2022, pp. 13–24, isbn: 978-1-66548-106-9, doi: 10.1109/IPDPS53621.2022.00011.

[56] U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid, Academic Press, San Diego, 2001, isbn: 978-0-12-
701070-0.

[57] P. E. Vos, S. J. Sherwin, and R. M. Kirby, From h to p Efficiently: Implementing Finite and Spectral/Hp Element
Methods to Achieve Optimal Performance for Low- and High-Order Discretisations, Journal of Computational Physics
229.13 (July 2010), pp. 5161–5181, issn: 00219991, doi: 10.1016/j.jcp.2010.03.031.

[58] C. Waluga, B. Wohlmuth, and U. Rüde, Mass-Corrections for the Conservative Coupling of Flow and Transport
on Collocated Meshes, Journal of Computational Physics 305 (Jan. 2016), pp. 319–332, issn: 00219991, doi: 10.1016/
j.jcp.2015.10.044.

[59] J. Weismüller, B. Gmeiner, S. Ghelichkhan, M. Huber, L. John, B. Wohlmuth, U. Rüde, and H.-P. Bunge,
Fast Asthenosphere Motion in High-resolution Global Mantle Flow Models, Geophys. Res. Lett. 42.18 (Sept. 2015),
pp. 7429–7435, issn: 0094-8276, 1944-8007, doi: 10.1002/2015GL063727.

[60] S. Williams, A. Waterman, and D. Patterson, Roofline: An Insightful Visual Performance Model for Multicore
Architectures, Commun. ACM 52.4 (Apr. 2009), pp. 65–76, issn: 0001-0782, 1557-7317, doi: 10.1145/1498765.1498785.

[61] S.-Y. Yi, X. Hu, S. Lee, and J. H. Adler, An Enriched Galerkin Method for the Stokes Equations, Computers &
Mathematics with Applications 120 (Aug. 2022), pp. 115–131, issn: 08981221, doi: 10.1016/j.camwa.2022.06.018.

[62] S.-Y. Yi, S. Lee, and L. Zikatanov, Locking-Free Enriched Galerkin Method for Linear Elasticity, SIAM J. Numer.
Anal. 60.1 (Feb. 2022), pp. 52–75, issn: 0036-1429, 1095-7170, doi: 10.1137/21M1391353.

18

https://doi.org/10.1137/20M1376005
https://doi.org/10.1080/17445760.2018.1506453
https://doi.org/10.11578/DC.20171025.1248
https://doi.org/10.11578/DC.20171025.1248
https://doi.org/10.2478/auom-2020-0038
https://doi.org/10.1016/j.compfluid.2012.04.012
https://doi.org/10.1145/3325864
https://doi.org/10.1177/10943420221107880
https://doi.org/10.1137/16M110455X
https://doi.org/10.1007/3-540-57208-2_28
https://doi.org/10.1109/SC.2014.28
https://doi.org/10.1007/BF01396415
http://github.com/mfem/mfem/tree/master/miniapps/parelag
https://doi.org/10.1016/B978-0-444-53802-4.00127-5
https://doi.org/10.1137/1.9780898717440
https://doi.org/10.1137/1.9780898717440
https://doi.org/10.1137/16M108450X
https://doi.org/10.1109/IPDPS53621.2022.00011
https://doi.org/10.1016/j.jcp.2010.03.031
https://doi.org/10.1016/j.jcp.2015.10.044
https://doi.org/10.1016/j.jcp.2015.10.044
https://doi.org/10.1002/2015GL063727
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1016/j.camwa.2022.06.018
https://doi.org/10.1137/21M1391353

A Illustrations of all micro-primitive subgroups

v3

v1

v0

(a) micro-vertices

v0
v1

v3

(b) micro-edges, subgroup x

v0
v1

v3

(c) micro-edges, subgroup y

v0
v1

v3

(d) micro-edges, subgroup z

v0
v1

v3

(e) micro-edges, subgroup xy

v0
v1

v3

(f) micro-edges, subgroup xz

v0
v1

v3

(g) micro-edges, subgroup yz

v0
v1

v3

(h) micro-edges, subgroup xyz

Figure 15 Micro-vertices, and all 7 types of micro-edges, illustrated on refinement level 2.

19

v0
v1

v3

(a) subgroup z-up

v0
v1

v3

(b) subgroup z-down

v0
v1

v3

(c) subgroup y-up

v0
v1

v3

(d) subgroup y-down

v0
v1

v3

(e) subgroup x-up

v0
v1

v3

(f) subgroup x-down

v0
v1

v3

(g) subgroup xyz-up

v0
v1

v3

(h) subgroup xyz-down

v0
v1

v3

(i) subgroup xy-up

v0
v1

v3

(j) subgroup xy-down

v0
v1

v3

(k) subgroup yz-up

v0
v1

v3

(l) subgroup yz-down

Figure 16 All 12 types of micro-faces, illustrated on refinement level 2.

20

v0
v1

v3

(a) subgroup I-up

v0
v1

v3

(b) subgroup I-down

v0
v1

v3

(c) subgroup II-up

v0
v1

v3

(d) subgroup II-down

v0
v1

v3

(e) subgroup III-up

v0
v1

v3

(f) subgroup III-down

Figure 17 All 6 types of micro-cells, illustrated on refinement level 2.

21

	Introduction
	Domain partitioning
	Refinement
	Regular refinement
	Micro-primitives

	Indexing
	Matrix-free finite elements
	Function spaces
	Operator design
	Element-wise
	Stencil-based
	Optimizations

	Demonstration
	Enriched Galerkin elements for the Stokes system
	Nédélec elements for the curl-curl problem

	Conclusion
	Illustrations of all micro-primitive subgroups

