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Abstract: We examine a new approach to building decision tree by intro-
ducing a geometric splitting criterion, based on the properties of a family of
metrics on the space of partitions of a finite set. This criterion can be adapted
to the characteristics of the data sets and the needs of the users and yields
decision trees that have smaller sizes and fewer leaves than the trees built with
standard methods and have comparable or better accuracy.
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1 Introduction

Decision trees constitute one of the most popular classification techniques in
data mining and have been the subject of a large body of investigation. The
typical construction algorithm for a decision tree starts with a training set of
objects that is split recursively. The successive splits form a tree where the sets
assigned to the leaves consist of objects that belong almost entirely to a single
class. This allows new objects that belong to a test set to be classified into a
specific class based on the path induced by the object in the decision tree which
joins the root of the tree to a leaf.

Decision trees are useful classification algorithms, even though they may
present problems related to overfitting and excessive data fragmentation that
results in rather complex classification schemes.

A central problem in the construction of decision trees is the choice of the
splitting attribute at each non-leaf node. We show that the usual splitting
criterion (the information gain ratio, or the similar measure derived from the
Gini index) are special cases of a more general approach. Furthermore, we
propose a geometric criterion for choosing the splitting attributes that has the
advantage of being adaptable to various data sets and user needs.
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2 Partition Entropies

A metric on a set S is a mapping d : S ×S −→ R≥0 such that d(s, t) = 0 if and
only if s = t, d(s, t) = d(t, s) and d(s, u) + d(u, t) ≥ d(s, t) for every s, t, u ∈ S.
The last inequality is known as the triangular inequality.

A metric space is a pair (S, d), where S is a set and d is a metric on S.
The betweenness relation defined by the metric space (S, d) is a ternary

relation R on the set S defined by (s, u, t) ∈ R if d(s, u) + d(u, t) = d(s, t). We
denote the fact that (s, u, t) ∈ R by [sut] and we say that u is between s and t.

We explore a natural link that exists between random variables and parti-
tions of sets that allows the transfer of certain probabilistic and information-
theoretical notions to partitions of sets.

A partition of a set S is a non-empty collection π of non-empty subsets of
S, π = {Bi | i ∈ I} such that for every i, j ∈ I, i 6= j implies Bi ∩ Bj = ∅ and⋃

i∈I Bi = S. We refer to the sets Bi as the blocks of π.
Let PART(S) be the set of partitions of a set S. The class of all partitions

of finite sets is denoted by PART. The one-block partition of S is denoted by
ωS . The partition {{s} | s ∈ S} is denoted by ιS .

If π, π′ ∈ PART(S), then π ≤ π′ if every block of π is included in a block of
π′. Clearly, for every π ∈ PART(S) we have ιS ≤ π ≤ ωS .

π′ covers π if π ≤ π′ and there is no partition θ ∈ PART(S) such that
π < θ < π′. This fact is denoted by π ≺ π′. It is known [Ler81] that π ≺ π′ if
and only if π′ is obtained from π by fusing two blocks of this partition into a
new block.

For every two partitions π, σ both inf{π, σ} and sup{π, σ} in the partial
ordered set (PART(S),≤) exist. Namely, if π = {Bi | i ∈ I} and σ = {Cj | j ∈
J}, then inf{π, σ} is the partition:

π ∧ σ = {Bi ∩ Cj | Bi ∩ Cj 6= ∅, i ∈, j ∈ J}.
The supremum π ∨ σ = sup{π, σ} can be described using a bipartitite graph
G having {Bi | i ∈ I} ∪ {Cj | j ∈ J} as set of vertices. An edge (Bi, Cj)
exists only if Bi ∩ Cj 6= ∅. If C is a connected component of G note that⋃{B ∈ π | B ∈ C} =

⋃{C ∈ σ | C ∈ C}; we denote this set by DC. The
family of sets {DC | C is a connected component of G} is a partition of the set
S. It is easy to verify that this is exactly π ∨ σ.

It is not difficult to show that (PART(S),≤) is an upper semimodular lattice;
in other words if π, σ are two distinct partitions such each covers π ∧ σ, then
π ∨ σ covers both π and σ.

If S, T are two disjoint and nonempty sets, π ∈ PART(S), σ ∈ PART(T ),
where π = {A1, . . . , Am}, σ = {B1, . . . , Bn}, then the partition π + σ is the
partition of S ∪ T given by π + σ = {A1, . . . , Am, B1, . . . , Bn}.

Whenever the “+” operation is defined, then it is easily seen to be associa-
tive. In other words, if S, U, V are pairwise disjoint and nonempty sets, and
π ∈ PART(S), σ ∈ PART(U), τ ∈ PART(V ), then π + (σ + τ) = (π + σ) + τ .
Observe that if S, U are disjoint, then ιS + ιU = ιS∪U . Also, ωS + ωU is the
partition {S, U} of the set S ∪ U .

2



If π = {B1, . . . , Bm}, σ = {C1, . . . , Cn} are partitions of two arbitrary sets
S,U , respectively, then we denote the partition {Bi×Cj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}
of S × U by π × σ. Note that ιS × ιU = ιS×U and ωS × ωU = ωS×U .

Let π ∈ PART(S) and let C ⊆ S. Denote by πC the “trace” of π on C given
by πC = {B ∩ C|B ∈ π such that B ∩ C 6= ∅}. Clearly, πC ∈ PART(C); also, if
C is a block of π, then πC = ωC .

A subset T of S is pure relative to a partition π ∈ PART(S) if πT = ωT . In
other words, T is pure relative to a partition π if T is included in some block of
π.

In [Dar70] the notion of β-entropy of a probability distribution p = (p1, . . . , pn)
was defined as:

Hβ(p) =
1

21−β − 1

(
m∑

i=1

pβ
i − 1

)
,

where p1 + · · ·+ pn = 1 and pi ≥ 0 for 1 ≤ i ≤ n. In the same reference it was
observed that Shannon’s entropy H(p) can be obtained as limβ→1 Hβ(π).

In [SJ02] we offered a new interpretation of the notion of entropy for finite
distributions as entropies of partitions of finite sets. Our approach takes advan-
tage of the properties of the partial order of the lattice of partitions of a finite
set and makes use of operations defined on partitions.

We defined the Hβ entropy for β ∈ R, β > 0 as a function Hβ : PART(S) −→
R≥0 that satisfies conditions:

(P1) If π, π′ ∈ PART(S) are such that π ≤ π′, then H(π′) ≤ H(π).

(P2) If S, T are two finite sets such that |S| ≤ |T |, then H(ιS) ≤ H(ιT ).

(P3) For every disjoint sets S, T and partitions π ∈ PART(S), and σ ∈ PART(T )
we have:

H(π + σ) =
( |S|
|S|+ |T |

)β

H(π) +
( |T |
|S|+ |T |

)β

H(σ) + H({S, T}).

(P4) If π ∈ PART(S) and σ ∈ PART(T ), then H(π × σ) = Φ(H(π), H(σ)),

where Φ : R2
≥0 −→ R≥0 be a continuous function such that Φ(x, y) = Φ(y, x),

Φ(x, 0) = x for x, y ∈ R≥0.
We have shown in [SJ02] that if π = {B1, . . . , Bn} ∈ PART(S), then

Hβ(π) =
1

21−β − 1

(
m∑

i=1

( |Bi|
|S|

)β

− 1

)
.

In the special case, when β → 1 we have:

Hβ(π) = −
m∑

i=1

|Bi|
|S| · log2

|Bi|
|S| .
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The axiomatization also implies a specific form of the function Φ. Namely, if
β 6= 1 it follows that Φ(x, y) = x + y + (21−β − 1)xy. In the case of Shannon
entropy, obtained using β = 1, we have Φ(x, y) = x + y for x, y ∈ R≥0.

Note that if |S| = 1, then PART(S) consists of a unique partition (ωS = ιS)
and Hβ(ωS) = 0. Moreover, for an arbitrary finite set S we have Hβ(π) = 0 if
and only if π = ωS . Indeed, let U, V be two finite disjoint sets that have the
same cardinality. Axiom (P3) implies:

Hβ(ωU + ωV ) =
(

1
2

)β

(H(ωU ) + Hβ(ωV )) + Hβ({U, V }).

Since ωU + ωV = {U, V } it follows that Hβ(ωU ) = Hβ(ωV ) = 0.
Conversely, suppose that Hβ(π) = 0. If π < ωS there exists a block B of of

π such that ∅ ⊂ B ⊂ S. Let θ be the partition θ = {B,S −B}. It is clear that
π ≤ θ, so 0 ≤ Hβ(θ) ≤ Hβ(π) which implies Hβ(θ) = 0. This, in turn yields:

( |B|
|S|

)β ( |S −B|
|S|

)β

− 1 = 0

Since the function f(x) = xβ + (1 − x)β is concave for β > 1 and convex for
β < 1 on the interval [0, 1], the above equality is possible only if B = S or if
B = ∅, which is a contradiction. Thus, π = ωS .

These facts suggest that for a subset T of S the number Hβ(πT ) can be used
as a measure of the purity of the set T with respect to the partition π. If T is
π-pure, then πT = ωT and, therefore, Hβ(πT ) = 0. Thus, the smaller Hβ(πT ),
the more pure the set T is.

The largest value of Hβ(π) when π ∈ PART(S) is achieved when π = ιS ; in
this case we have:

Hβ(ιS) =
1

21−β − 1

(
1

|S|β−1
− 1

)
.

Axiom (P3) can be extended as follows.

Theorem 2.1 Let S1, . . . , Sn be n pairwise disjoint finite sets, S =
⋃n

i=1 Si

and let π1, . . . , πn be partitions of S1, . . . , Sn, respectively.
We have:

Hβ(π1 + · · ·+ πn) =
n∑

i=1

( |Si|
|S|

)β

Hβ(πi) + Hβ(θ),

where θ is the partition {S1, . . . , Sn} of S.

Proof. The argument is by induction on n ≥ 2. The basis case, n = 2,
reduces to Axiom (P3). Suppose that the statement holds for n − 1 and let
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T =
⋃n−2

i=1 (S). We have π1 + · · ·+ πn−1 ∈ PART(T ) and

Hβ(π1 + · · ·+ πn−1 + πn)
= Hβ((π1 + · · ·+ πn−1) + πn)

=
( |T |
|S|

)β

Hβ(π1 + · · ·+ πn−1) +
( |Sn|
|S|

)β

Hβ(πn) + Hβ({T, Sn})
(by Axiom (P3))

=
( |T |
|S|

)β
(

n−1∑

i=1

( |Si|
|T |

)β

Hβ(πi) + Hβ(θ′)

)
+

( |Sn|
|S|

)β

Hβ(πn) + Hβ({T, Sn})

(by the inductive hypothesis),

where θ′ = {S1, . . . , Sn−1} ∈ PART(T ). Note that θ = θ′ + πn. Therefore, we
have:

Hβ(π1 + · · ·+ πn)

=
n∑

i=1

( |Si|
|S|

)β

Hβ(πi) +
( |T |
|S|

)β

Hβ(θ′) +
( |Sn|
|S|

)β

Hβ(πn) + Hβ({T, Sn})

=
n∑

i=1

( |Si|
|S|

)β

Hβ(πi) + Hβ(θ′ + πn)

=
n∑

i=1

( |Si|
|S|

)β

Hβ(πi) + Hβ(θ).

3 Conditional β-Entropy of Partitions and Met-
rics on Partitions

The β-entropy defines naturally a conditional entropy of partitions. We note
that the definition introduced here is an improvement over our previous defi-
nition given in [SJ02]. Starting from conditional entropies we will be able to
define a family of metrics on the set of partitions of a finite set and study the
geometry of these finite metric spaces.

Definition 3.1 Let π, σ ∈ PART(S) and let σ = {C1, . . . , Cn}. The β-conditional
entropy of the partitions π, σ ∈ PART(S) is the function H : PART(S)2 −→ R≥0

defined by:

Hβ(π|σ) =
n∑

j=1

( |Cj |
|S|

)β

Hβ(πCj )
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Observe that Hβ(π|ωS) = Hβ(π) and that Hβ(ωS |π) = Hβ(π|ιS) = 0 for
every partition π ∈ PART(S). Also, we can write:

Hβ(ιS |σ) =
n∑

j=1

( |Cj |
|S|

)β

Hβ(ιCj
) =

1
21−β − 1


 1
|S|β−1

−
n∑

j=1

( |Cj |
|S|

)β

 , (1)

where σ = {C1, . . . , Cn}. The conditional entropy can be written explicitly as:

Hβ(π|σ) =
m∑

j=1

( |Cj |
|S|

)β n∑

i=1

1
21−β − 1

[( |Bi ∩ Cj |
|Cj |

)β

− 1

]

=
1

21−β − 1

m∑

i=1

n∑

j=1

(( |Bi ∩ Cj |
|S|

)β

−
( |Cj |
|S|

)β
)

, (2)

where π = {B1, . . . , Bm}.
Theorem 3.2 Let π, σ be two partitions of a finite set S. We have Hβ(π|σ) = 0
if and only if σ ≤ π.

Proof. Suppose that σ = {C1, . . . , Cn}. If σ ≤ π, then πCj = ωCj for 1 ≤ j ≤ n
and, therefore,

Hβ(π|σ) =
n∑

j=1

( |Cj |
|S|

)β

Hβ(ωCj ) = 0.

Conversely, suppose that

Hβ(π|σ) =
n∑

j=1

( |Cj |
|S|

)β

Hβ(πCj ) = 0.

This implies Hβ(πCj ) = 0 for 1 ≤ j ≤ n, which means that πCj = ωCj for
1 ≤ j ≤ n by a previous remark. This means that every block Cj of σ is
included in a block of π. so σ ≤ π.

The next statement is a generalization of a well-known property of Shannon’s
entropy.

Theorem 3.3 Let π, σ be two partitions of a finite set S. We have:

Hβ(π ∧ σ) = Hβ(π|σ) + Hβ(σ) = Hβ(σ|π) + Hβ(π),

Proof. Suppose that π = {B1, . . . , Bm} and that σ = {C1, . . . , Cn}. Observe
that

π ∧ σ = πC1 + · · ·+ πCn = σB1 + · · ·+ σBm .

Therefore, by Theorem 2.1 we have:

Hβ(π ∧ σ) =
n∑

j=1

( |Cj |
|S|

)β

Hβ(πCi) + Hβ(σ),
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which implies
Hβ(π ∧ σ) = Hβ(π|σ) + Hβ(σ).

The second equality has a similar proof.
The β-conditional entropy is dually monotonic with respect to its first argu-

ment and is monotonic with respect to its second argument, as we show in the
following statement:

Theorem 3.4 Let π, σ, σ′ ∈ PART(S), where S is a finite set. If σ ≤ σ′, then
Hβ(σ|π) ≥ Hβ(σ′|π) and Hβ(π|σ) ≤ Hβ(π|σ′).
Proof. Since σ ≤ σ′ we have π ∧ σ ≤ π ∧ σ′, so Hβ(π ∧ σ) ≥ Hβ(π ∧ σ′) by
Axiom (P1). Therefore,

Hβ(σ|π) + Hβ(π) ≥ Hβ(σ′|π) + Hβ(π),

by Theorem 3.3, which implies Hβ(σ|π) ≥ Hβ(σ′|π).
For the second part of the theorem it suffices to prove the inequality for

partitions σ, σ′ such that σ ≺ σ′. Without restricting the generality we may
assume that σ = {C1, . . . , Cn−2, Cn−1, Cn} and σ′ = {C1, . . . , Cn−2, Cn−1∪Cn}.
Thus, we can write:

Hβ(π|σ′)

=
n−2∑

i=1

( |Ci|
|S|

)β

Hβ(πCi) +
( |Cn−1 ∪ Cn|

|S|
)β

Hβ(πCn−1∪Cn)

=
n−2∑

i=1

( |Ci|
|S|

)β

Hβ(πCi) +
( |Cn−1|+ |Cn|

|S|
)β

Hβ(πCn−1 + πCn).

By Axiom (P3) we can further write:

Hβ(π|σ′)

=
n−2∑

i=1

( |Ci|
|S|

)β

Hβ(πCi) +
( |Cn−1|+ |Cn|

|S|
)β

·
[ ( |Cn−1|

|Cn−1|+ |Cn|
)β

Hβ(πCn−1) +
( |Cn|
|Cn−1|+ |Cn|

)β

Hβ(πCn) +

Hβ({Cn−1, Cn})
]

= Hβ(π|σ) +
( |Cn−1|+ |Cn|

|S|
)β

Hβ({Cn−1, Cn})
≥ Hβ(π|σ).

Corollary 3.5 Since Hβ(π) = Hβ(π|ωS) it follows that if π, σ ∈ PART(S),
then Hβ(π) ≥ Hβ(π|σ).
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Proof. We observed that Hβ(π) = Hβ(π|ωS). By the second part of Theo-
rem 3.4, ωS ≥ σ yields the desired inequality.

The next statement that follows from the previous theorem is useful in Sec-
tion 5.

Corollary 3.6 Let ξ, θ, θ′ be three partitions of a finite set S. If θ ≥ θ′, then

Hβ(ξ ∧ θ)−Hβ(θ) ≥ Hβ(ξ ∧ θ′)−Hβ(θ′).

Proof. By Theorem 3.3 we have:

Hβ(ξ ∧ θ)−Hβ(ξ ∧ θ′) = Hβ(ξ|θ) + Hβ(θ)−Hβ(ξ|θ′)−Hβ(θ′).

The monotonicity of Hβ(|) in its second argument means that: Hβ(ξ|θ) −
Hβ(ξ|θ′) ≥ 0, so Hβ(ξ ∧ θ) − Hβ(ξ ∧ θ′) ≥ Hβ(θ) − Hβ(θ′), which implies
the desired inequality.

The behavior of β-conditional entropies with respect to the “addition” of
partitions is discussed in the next statement.

Theorem 3.7 Let S be a finite set, π, θ be two partitions of S, where θ =
{D1, . . . , Dh}. If σi ∈ PART(Di) for 1 ≤ i ≤ h, then

Hβ(π|σ1 + · · ·+ σh) =
h∑

i=1

( |Di|
|S|

)β

Hβ(πDi |σi).

If τ = {F1, . . . , Fk}, σ = {C1, . . . , Cn} be two partitions of S, and let πi ∈
PART(Fi) for 1 ≤ i ≤ k. Then,

Hβ(π1 + · · ·+ πk|σ) =
k∑

i=1

( |Fi|
|S|

)β

Hβ(πi|σFi) + Hβ(τ |σ).

Proof. Suppose that σi = {E`
i | 1 ≤ ` ≤ pi}. The blocks of the partition

σ1 + · · · + σh are the sets of the collection
⋃h

i=1{E`
i | 1 ≤ ` ≤ pi}. Thus, we

have:

Hβ(π|σ1 + · · ·+ σh) =
h∑

i=1

pi∑

`=1

( |E`
i |

|S|
)β

Hβ(πE`
i
).

On the other hand, since (πDi)E`
i

= πE`
i
, we have:

h∑

i=1

( |Di|
|S|

)β

Hβ(πDi |σi) =
h∑

i=1

( |Di|
|S|

)β pi∑

`=1

( |E`
i |

|Di|
)β

Hβ(πE`
i
)

=
h∑

i=1

pi∑

`=1

( |E`
i |

|S|
)β

Hβ(πE`
i
),

which gives the first equality of the theorem.
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To prove the second part observe that (π1+· · ·+πk)Cj = (π1)Cj +· · ·+(πk)Cj

for every block Cj of σ. Thus, we have:

Hβ((π1 + · · ·+ πk|σ) =
n∑

j=1

( |Cj |
|S|

)β

Hβ((π1)Cj + · · ·+ (πk)Cj ).

By applying Theorem 2.1 to partitions (π1)Cj
, . . . , (πk)Cj

of Cj we can write:

Hβ((π1)Cj
+ · · ·+ (πk)Cj

) =
k∑

i=1

( |Fi ∩ Cj |
|Cj |

)β

Hβ((πi)Cj
) + Hβ(Cj).

Thus,

Hβ((π1)Cj
+ · · ·+ (πk)Cj

)

=
n∑

j=1

k∑

i=1

( |Fi ∩ Cj |
|S|

)β

Hβ((πi)Cj
) +

n∑

j=1

( |Cj |
|S|

)β

Hβ(τCj
)

=
k∑

i=1

( |Fi|
|S|

)β n∑

j=1

( |Fi ∩ Cj |
|Fi|

)β

Hβ((πi)Fi∩Cj ) + Hβ(τ |σ)

=
k∑

i=1

( |Fi|
|S|

)β

Hβ(πi|σFi) + Hβ(τ |σ),

which is the desired equality.
In [dM91] L. de Mántaras proved that Shannon’s entropy generates a metric

d : PART(S)2 −→ R2 given by d(π, σ) = H(π|σ) + H(σ|π), for π, σ ∈ PART(S).
We extend his result to a class of metrics that can be defined by β-entropies,
thereby improving our earlier results [SJ03]. To this end we need the following
statement:

Theorem 3.8 Let π, σ, τ be three partitions of the finite set S. We have:

Hβ(π|σ ∧ τ) + Hβ(σ|τ) = Hβ(π ∧ σ|τ).

Proof. Suppose that σ = {C1, . . . , Cn} and τ = {D1, . . . , Dp}. We observed
already that

σ ∧ τ = σD1 + · · ·+ σDp = τC1 + · · ·+ τCn .

Consequently, by Theorem 3.7, we have

Hβ(π|σ ∧ τ) = Hβ(π|σD1 + · · ·+ σDp)

=
p∑

l=1

( |Dl|
|S|

)β

Hβ(πDl
|σDl

).

Also, we have

Hβ(σ|τ) =
p∑

l=1

( |Dl|
|S|

)β

Hβ(σDl
).
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The last two equalities imply:

Hβ(π|σ ∧ τ) + Hβ(σ|τ) =
p∑

l=1

( |Dl|
|S|

)β

(Hβ(πDl
|σDl

) + Hβ(σDl
))

=
p∑

l=1

( |Dl|
|S|

)β

Hβ(πDl
∧ σDl

)

(by Theorem 3.3)

=
p∑

l=1

( |Dl|
|S|

)β

Hβ((π ∧ σ)Dl
)

= Hβ(π ∧ σ|τ),

which is the equality we seek to prove.

Corollary 3.9 Let π, σ, τ be three partitions of the finite set S. Then, we have:

Hβ(π|σ) + Hβ(σ|τ) ≥ Hβ(π|τ).

Proof. By Theorem 3.8, the monotonicity of β-conditional entropy in its second
argument and the dual monotonicity of the same in its first argument we can
write:

Hβ(π|σ) + Hβ(σ|τ) ≥ Hβ(π|σ ∧ τ) + Hβ(σ|τ)
= Hβ(π ∧ σ|τ)
≥ Hβ(π|τ),

which is the desired inequality.
We can show now a central result:

Theorem 3.10 The mapping dβ : PART(S)2 −→ R≥0 defined by: dβ(π, σ) =
Hβ(π|σ) + Hβ(σ|π) for π, σ ∈ PART(S) is a metric on PART(S).

Proof. A double application of Corollary 3.9 yields:

Hβ(π|σ) + Hβ(σ|τ) ≥ Hβ(π|τ),
Hβ(σ|π) + Hβ(τ |σ) ≥ Hβ(τ |π).

Adding these inequality gives

dβ(π, σ) + dβ(σ, τ) ≥ dβ(π, τ),

which is the triangular inequality for dβ .
The symmetry of dβ is obvious and it is clear that dβ(π, π) = 0 for every

π ∈ PART(S).
Suppose now that dβ(π, σ) = 0. Since the values of β-conditional entropies

are non-negative this implies Hβ(π|σ) = Hβ(σ|π) = 0. By Theorem 3.2 we

10



have both σ ≤ π and π ≤ σ, respectively, so π = σ. Thus, dβ is a metric on
PART(S).

It is clear that dβ(π, ωS) = Hβ(π) and dβ(π, ιS) = H(ιS |π).
The behavior of the distance dβ with respect to partition addition is dis-

cussed in the next statement.

Theorem 3.11 Let S be a finite set, π, θ be two partitions of S, where θ =
{D1, . . . , Dh}. If σi ∈ PART(Di) for 1 ≤ i ≤ h, then

dβ(π, σ1 + · · ·+ σh) =
h∑

i=1

( |Di|
|S|

)β

dβ(πDi , σi) + Hβ(θ|π).

Proof. The theorem follows directly from Theorems 3.7 and ??.

4 The Metric Geometry of the Partition Space

The distance between two partitions can be expressed using distances relative
to the total partition or to the identity partition. Indeed, note that for π, σ ∈
PART(S), where π = {B1, . . . , Bm} and σ = {C1, . . . , Cn} we have:

dβ(π, σ) =
1

(21−β − 1)|S|β


2

n∑

i=1

m∑

j=1

|Bi ∩ Cj |β −
n∑

i=1

|Bi|β −
m∑

j=1

|Cj |β

 , (3)

In the special case, when σ = ω we have:

dβ(π, ω) =
1

(21−β − 1)|S|β
(

2
n∑

i=1

|Bi|β −
n∑

i=1

|Bi|β − |S|β
)

=
1

(21−β − 1)|S|β
(

n∑

i=1

|Bi|β − |S|β
)

.

Similarly, we can write:

d(ι, σ) =
1

(21−β − 1)|S|β


|S| −

n∑

j=1

|Cj |β

 .

We have the following result:

Theorem 4.1 Let π, σ ∈ PART(S) be two partitions. We have:

dβ(π, σ) = 2 · dβ(π ∧ σ, ωS)− dβ(π, ωS)− dβ(σ, ωS)
= dβ(ιS , π) + dβ(ιS , σ)− 2 · dβ(ιS , π ∧ σ).
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Proof. Starting from the expression of the distance we can write:

dβ(π, σ) + dβ(π, ωS) + dβ(σ, ωS)

=
1

(21−β − 1)|S|β


2

n∑

i=1

m∑

j=1

|Bi ∩ Cj |β −
n∑

i=1

|Bi|β −
m∑

j=1

|Cj |β

 +

1
(21−β − 1)|S|β

(
n∑

i=1

|Bi|β − |S|β
)

+
1

(21−β − 1)|S|β




m∑

j=1

|Cj |β − |S|β



=
2

(21−β − 1)|S|β




n∑

i=1

m∑

j=1

|Bi ∩ Cj |β − |S|β



= 2 · dβ(π ∧ σ, ωS).

The proof of the second equality is similar and is omitted.

Corollary 4.2 Let θ, τ be two partitions from PART(S). If θ ≤ τ and we have
either dβ(θ, ωS) = dβ(τ, ωS) or dβ(ιS , θ) = dβ(ιS , τ), then θ = τ .

Proof. Observe that if θ ≤ τ , then Theorem 4.1 implies

dβ(θ, τ) + dβ(τ, ωS) = dβ(θ, ωS),

and
dβ(θ, τ) = dβ(ιS , τ)− dβ(ιS , θ).

Suppose that dβ(θ, ωS) = dβ(τ, ωS). Since dβ(τ, ωS) = dβ(θ, ωS) it follows that
dβ(θ, τ) = 0, so θ = τ .

If dβ(ιS , θ) = dβ(ιS , τ) the same conclusion can be reached immediately.

Theorem 4.3 Let π, σ ∈ PART(S). The following statements are equivalent:

1. σ ≤ π;

2. we have [σ, π, ωS ] in the metric space (PART(S), dβ);

3. we have [ιS , σ, π] in the metric space (PART(S), dβ).

Proof. We prove that Part (1) implies both Parts (2) and (3). Suppose that
σ ≤ π. By Theorem 4.1, since σ ∧ π = σ we have both

dβ(π, σ) = dβ(σ, ωS)− dβ(π, ωS)
= dβ(ιS , π)− dβ(ιS , σ),

which are equivalent to [σ, π, ωS ] and [ιS , σ, π], respectively.
Conversely, suppose that [π, σ, ωS ], that is,

dβ(π, σ) + dβ(σ, ωS) = dβ(π, ωS).

12



Theorem 4.1 implies dβ(π, ωS) = dβ(π∧σ, ωS). Since π∧σ ≤ π, by Corollary 4.2,
we have π = π ∧ σ, so π ≤ σ. Thus, the second statement of the theorem
implies the first. Finally, the betweenness [ιS , π, σ] means that dβ(ιS , π) =
dβ(ιS , σ) + dβ(σ, π), which implies dβ(ιS , σ) = dβ(ιS , π ∧ σ). By the same
Corollary 4.2 we obtain the equality σ = π ∧ σ, so σ ≤ π. This shows that the
third statement implies the first.

Metrics generated by β-conditional entropies are closely related to lower
valuations of the upper semi-modular lattices of partitions of finite sets. This
connection was established in [Bir73] and studied in [BL95, Bar78, Mon81].

A lower valuation on a lattice (L,∨,∧) is a mapping v : L −→ R such that
v(π ∨ σ) + v(π ∧ σ) ≥ v(π) + v(σ) for every π, σ ∈ L. If the reverse inequality
is satisfied, that is, if v(π ∨ σ) + v(π ∧ σ) ≤ v(π) + v(σ) for every π, σ ∈ L, then
v is referred to as an upper valuation.

If v ∈ L is both a lower and upper valuation, that is, if v(π∨σ)+v(π∧σ) =
v(π) + v(σ) for every π, σ ∈ L, then v is a valuation on L. It is known [Bir73]
that if there exists a positive valuation v on L, then L must be a modular lattice.
Since the partition lattice of a set is an upper-semimodular lattice that is not
modular ([Bir73]) it is clear that positive valuations do not exist on partition
lattices. However, lower and upper valuations do exist, as shown next:

Theorem 4.4 Let S be a finite set. Define the mappings vβ : PART(S) −→ R
and let wβ : PART(S) −→ R be by vβ(π) = dβ(ιS , π) and wβ(π) = dβ(π, ωS),
respectively, for π ∈ PART(S). Then, vβ is a lower valuation and wβ is an
upper valuation on the lattice (PART(S),∨,∧).

Proof. Theorem 4.1 allows us to write:

dβ(π, σ) = vβ(π) + vβ(σ)− 2vβ(π ∧ σ)
= 2wβ(π ∧ σ)− wβ(π)− wβ(σ),

for every π, σ ∈ PART(S).
If we rewrite the triangular inequality dβ(π, τ) + dβ(τ, σ) ≥ dβ(π, σ) using

the valuations vβ and wβ we obtain:

vβ(τ) + vβ(π ∧ σ) ≥ vβ(π ∧ τ) + vβ(τ ∧ σ),
wβ(π ∧ τ) + wβ(τ ∧ σ) ≥ wβ(τ) + wβ(π ∧ σ),

for every π, τ, σ ∈ PART(S). If we choose τ = π ∨ σ the last inequalities yield:

vβ(π) + vβ(σ) ≤ vβ(π ∨ σ) + vβ(π ∧ σ)
wβ(π) + wβ(σ) ≥ wβ(π ∨ σ) + wβ(π ∧ σ),

for every π, σ ∈ PART(S), which shows that vβ is a lower valuation and wβ is
an upper valuation on the lattice (PART(S),∨,∧).
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5 Metrics and Data Mining

We begin by defining the notion of object system as a triple S = (S, H, C), where
S is a finite set referred to as the training set, H = {A1, . . . , An} is a finite set
of mappings of the form Ai : S −→ Di called the features of S for 1 ≤ i ≤ n, and
C : S −→ D is the classification function. The sets D1, . . . , Dn are supposed
to contain at least two elements and they are referred as the domains of the
attributes A1, . . . , An.

A set of attributes X, X ⊆ H generates a mapping ℘X : S −→ ⋃′{Di |
Ai ∈ X}, defined by ℘X(t) = {(A(t), A) | A ∈ X} for every t ∈ S, where

⋃′

denotes the disjoint union of a family of sets; we refer to ℘X as the projection on
X of S. Projections define partitions on the set of objects in a natural manner;
namely if X is a set of attributes, a block Bv of the partition πX is a non-empty
set of the form {t ∈ S|℘X(t) = v}, where v is an element of the range of ℘X .

To introduce formally the notion of decision tree we start from the notion
of tree domain. A tree domain is a non-empty set of sequences D over the set
of natural numbers N that satisfies the following conditions:

1. every prefix of a sequence s ∈ D also belongs to D, and

2. for every m ≥ 1, if (p1, . . . , pm−1, pm) ∈ D, then (p1, . . . , pm−1, q) ∈ D for
every q ≤ pm.

The elements of D are called the vertices of D. If u and v are vertices of D
and u is a prefix of v, then we refer to v as a descendant of u and to u as an
ancestor of v. If v = ui for some i ∈ N, then we call v an immediate descendant
of u and u an immediate ancestor of v. The root of every tree domain is the
null sequence λ. A leaf of D is a vertex of D with no immediate descendants.

Let S be a finite set and let D be a tree domain. An S-tree is a function
T : D −→ P(S) such that T(λ) = S, and if u1, . . . , um are the descendants of a
vertex u, then the sets T(u1), . . . , T(um) form a partition of the set T(u).

A decision tree for an object system S = (S, H, C) is an S-tree T, such that
if the vertex v has the descendants v0, . . . , vm, then there exists an attribute
A ∈ H (called the splitting attribute in v) such that {T(vi) | 1 ≤ i ≤ m} is the
partition πA

T(v).
Thus, each descendant vi of a vertex v corresponds to a value a of the

attribute A that was used as a splitting attribute in v. If λ = v1, v2, . . . , vk = u
is the path in T that was used to reach the vertex u, Ai1 , Ai2 , . . . , Aik−1 are
the splitting attributes in v0, v1, . . . , vk−1 and a1, a2, . . . , ak−1 are the values
that correspond to v2, . . . , vk, respectively, then we say that u is reached by the
selection:

Ai1 = a1 ∧ · · · ∧Aik−1 = ak−1.

It is desirable that the leaves of a decision tree contain C-pure or almost
C-pure sets of objects. In other words, the objects assigned to a leaf of the tree
should, with few exceptions, have the the same value for the class attribute C.
This amounts to asking that for each leaf w of T we must have Hβ(πC

Sw
) as

14



close to 0 as possible. To take into account the size of the leaves note that the
collection of sets of objects assigned to the leafs is a partition κ of S and that
we need to minimize: ∑

w

( |Sw|
|S|

)β

Hβ(πC
Sw

),

which is the conditional entropy H(πC |κ). By Theorem 3.2 we have H(πC |κ) =
0 if and only if κ ≤ πC , which happens when the sets of objects assigned to the
leafs are C-pure.

The construction of a decision tree Tβ(S) for an object system S = (S, H,C)
evolves in a top-down manner according to the following high-level description
of a general algorithm [TSK05]. The algorithm starts with an object system
S = (S, H, C), a value of β and with an impurity threshold ε and it consists of
the following steps:

1. If Hβ(πC
S ) ≤ ε, then return T as an one-vertex tree; otherwise go to 2.

2. Assign the set S to a vertex v, choose an attribute A as a splitting attribute
of S (using a splitting attribute criterion to be discussed in the sequel)
and apply the algorithm to the object systems (Sa1 ,H, C), . . . , (Sap ,H,C),
where Sai = {t ∈ S | A(t) = ai} 6= ∅. Let T1, . . . , Tp the decision trees
returned for the systems S1, . . . , Sp, respectively. Connect the roots of
these trees to v.

Note that if ε is sufficiently small and if Hβ(πC
S ) ≤ ε, where S = T(u) is the

set of objects at a node u, then there is a block Qk of the partition πC
S that is

dominant in the set S. We refer to Qk as the dominant class of u.
Once a decision tree T is built it can be used to determine the class of a new

object t 6∈ S such that the attributes of the set H are applicable. If Ai1(t) =
a1, . . . , Aik−1(t) = ak−1, a leaf u was reached through the path v1, . . . , vk = u,
and a1, a2, . . . , ak−1 are the values that correspond to v2, . . . , vk, respectively,
then t is classified in the class Qk, where Qk is the dominant class at leaf u.

The description of the algorithm shows that the construction of a decision
tree depends essentially on the method for choosing the splitting attribute. We
focus next on this issue.

Classical decision tree algorithms make use of the information gain criterion
or the gain ratio to choose splitting attribute. These criteria are formulated
using Shannon’s entropy, as their designations indicate.

In our terms, the analogue of the information gain for a vertex w and an
attribute A is: Hβ(πC

Sw
) − Hβ(πC

Sw
|πA

Sw
). The selected attribute is the one

that realizes the highest value of this quantity. When β → 1 we obtain the
information gain linked to Shannon entropy. When β = 2 one obtains the
selection criteria for the Gini index using the CART algorithm [BFOS98].

The monotonicity property of conditional entropy shows that if A,B are two
attributes such that πA ≤ πB (which indicates that the domain of A has more
values than the domain of B), then Hβ(πC

Sw
|πA

Sw
) ≤ Hβ(πC

Sw
|πB

Sw
), so the gain

for A is larger than the gain for B. This highlights a well-known problem of
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choosing attributes based on information gain and related criteria: these criteria
favor attributes with large domains, which in turn, generate bushy trees. To
alleviate this problem information gain was replaced with the information gain
ratio defined as:

Hβ(πC
Sw

)−Hβ(πC
Sw
|πA

Sw
)

Hβ(πA
Sw

)
,

which introduces the compensating divisor Hβ(πA
Sw

).
We propose replacing the information gain and the gain ratio criteria by

choosing as splitting attribute for a node w an attribute that minimizes the
distance dβ(πC

Sw
, πA

Sw
) = Hβ(πC

Sw
|πA

Sw
) + Hβ(πA

Sw
|πC

Sw
). This idea has been

developed by L. de Mántaras in [dM91] for the metric d1 induced by Shannon’s
entropy. Since one could obtain better classifiers for various data sets and
user needs using values of β that are different from one, our approach is an
improvement of previous results.

Besides being geometrically intuitive, the minimal distance criterion has the
advantage of limiting both conditional entropies Hβ(πC

Sw
|πA

Sw
) and Hβ(πA

Sw
|πC

Sw
).

The first limitation insures that the choice of the splitting attribute will provide
a high information gain; the second limitation insures that attributes with large
domains are not favored over attributes with smaller domains.

Suppose that in the process of building a decision tree for an object system
S = (S,H, C) we constructed a stump of the tree T that has m leaves and
that the sets of objects that correspond to these leaves are S1, . . . , Sn. This
means that we created the partition κ = {S1, . . . , Sn} ∈ PART(S), so κ =
ωS1 + · · ·+ ωSn . We choose to split the node vi using as splitting attribute the
attribute A that minimizes the distance dβ(πC

Si
, πA

Si
). The new partition κ′ that

replaces κ is

κ′ = ωS1 + · · ·+ ωSi−1 + πA
Si

+ ωSi+1 + · · ·+ ωSn .

Note that κ ≥ κ′. Therefore, we have:

dβ(πC ∧ κ, κ) = dβ(πC ∧ κ, ωS)− dβ(κ, ωS)
(because [πC ∧ κ, κ, ωS ])

= Hβ(πC ∧ κ)−Hβ(κ)
≥ Hβ(πC ∧ κ′)−Hβ(κ′)

(by Corollary 3.6)
= dβ(πC ∧ κ′, κ′).

This shows that as the construction of the tree advances the current partition κ
gets closer to the partition πC ∧ κ. More significantly, as the stump of the tree
grows, κ gets closer to the class partition πC . Indeed, by Theorem 3.11 we can
write:

dβ(πC , κ) = dβ(πC , ωS1 + · · ·+ ωSn)

=
n∑

j=1

( |Sj |
|S|

)β

dβ(πC
Sj

, ωSj ) + Hβ(θ|πC),
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where θ = {S1, . . . , Sn}. Similarly, we can write:

dβ(πC , κ′) = dβ(πC , ωS1 + · · ·+ ωSi−1 + πA
Si

+ ωSi+1 + · · ·+ ωSn
)

=
n∑

j=1,j 6=i

( |Sj |
|S|

)β

dβ(πC
Sj

, ωSj
) +

( |Si|
|S|

)β

dβ(πC
Si

, πA
Si

) + Hβ(θ|πC).

These equalities imply:

dβ(πC , κ)− dβ(πC , κ′) =
( |Si|
|S|

)β (
dβ(πC

Si
, ωSi

)− dβ(πC
Si

, πA
Si

)
)

=
( |Si|
|S|

)β (
Hβ(πC

Si
)− dβ(πC

Si
, πA

Si
)
)
.

If the choices of the node and the splitting attribute are made such that:

Hβ(πC
Si

) > dβ(πC
Si

, πA
Si

),

then the distance between πC and the current partition κ of the tree stump will
decrease. Since the distance between πC ∧ κ and κ decreases in any case when
the tree is expanded it follows that the “triangle” determined by πC , πC ∧ κ,
and κ will shrink during the construction of the decision tree.

6 Experimental Results

We tested our approach on a number of data sets from [BM98]. Due to space
limitations we included only the results shown in Figure 1 which are fairly typ-
ical. Decision trees were constructed using metrics dβ , where β varied between
0.25 and 2.50. Note that for β = 1 the metric algorithm coincides with the
approach of de Mántaras.

In all cases, accurracy was assessed through 10-fold cross-validation. We also
built standard decision trees using the J48 technique of the well-known WEKA
package [WF05], which yielded the following results:

Standard J4.8
Data Set accuracy size leaves
Audiology 77.88 54 32
Hepatitis 83.87 21 11

Primary-tumor 39.82 88 47
Vote 94.94 7 4

The experimental evidence shows that β can be adapted such that accuracy
is comparable, or better than the standard algorithm. The size of the trees and
the number of leaves show that the proposed approach to decision trees results
consistently in smaller trees with fewer leaves.
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Audiology
β accuracy size leaves

2.50 53.54 53 36
2.25 54.42 53 36
2.00 54.87 54 37
1.75 53.10 47 32
1.50 76.99 29 19
1.25 78.32 29 19
1.00 76.99 29 19
0.75 76.99 29 19
0.50 76.99 29 19
0.25 78.76 33 21

Hepatitis
β accuracy size leaves

2.50 81.94 15 8
2.25 81.94 9 5
2.00 81.94 9 5
1.75 83.23 9 5
1.50 84.52 9 5
1.25 84.52 11 6
1.00 85.16 11 6
0.75 85.81 9 5
0.50 83.23 5 3
0.25 82.58 5 3

Primary-tumor
β accuracy size leaves

2.50 34.81 50 28
2.25 35.99 31 17
2.00 37.76 33 18
1.75 36.28 29 16
1.50 41.89 40 22
1.25 42.18 38 21
1.00 42.48 81 45
0.75 41.30 48 27
0.50 43.36 62 35
0.25 44.25 56 32

Vote
β accuracy size leaves

2.50 94.94 7 4
2.25 94.94 7 4
2.00 94.94 7 4
1.75 94.94 7 4
1.50 95.17 7 4
1.25 95.17 7 4
1.00 95.17 7 4
0.75 94.94 7 4
0.50 95.17 9 5
0.25 95.17 9 5

Figure 1: Experimental Results

7 Conclusion and Future Work

We introduced a family of metrics on the set of partitions of a finite set that can
be used for a new splitting criterion for building decision trees. In addition to
being more intuitive than the classic approach, this criterion results in decision
trees that have smaller sizes and fewer leaves than the trees built with standard
methods, and have comparable or better accuracy.

The value of β that results in the smallest trees seems to depend on the
relative distribution of the class attribute and the values of the feature attributes
of the objects. We believe that further investigations should develop numerical
characteristics of data sets that allow predicting “optimal” values for β, that is,
values that result in the smallest decision trees for data sets.

Another future direction is related to clustering algorithms. Since clusterings
of objects can be regarded as partitions, metrics developed for partitions present
an interest for the study of the dynamics of clusters, as clusters are formed
during incremental algorithms [SSK04], or as data sets evolve.
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