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Abstract: In this document, we study the problem of assigning transmission and sens-
ing ranges to the nodes of a wireless sensor network so as to minimize power consumption
while ensuring broadcasting task or sensing process. A first novelty is that our model takes
into account both the transmission and the reception costs when evaluating the energy con-
sumption of a broadcasting task. We establish a new analytical model and derive lower and
upper bounds on region covering. Moreover, we show that the lower bound is asymptotically
optimal and can be approached up to e.
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Résumé : Ce rapport étudie le probléme de ’affectation des puissances au sein d’un réseau
de senseurs afin de minimiser 1’énergie consommée par une opération de diffusion ou par
les opérations de mesures. Un des apports majeurs de notre approche est qu’elle prend en
compte & la fois le colt en émission et en réception. Nous établissons un modéle analytique
et présentons des bornes inférieures et supérieures. De plus, nous montrons que ces bornes
peuvent étre approchées i e.

Mots-clés : Optimisation, énergie, réseau de capteurs, sans fil, diffusion
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1 Introduction

Sensor networks are made viable by the tremendous advances and convergence of micro-
electro-mechanical systems (MEMS), wireless communication technologies and digital elec-
tronics. Sensor networks are composed of a large number of tiny devices or sensors [6, 12, 14].
Each sensor contains an integrated sensor, a processor, a radio and an energy battery. Wire-
less sensor networks can be really useful in many civil and military areas for collecting,
processing and monitoring environmental data [1, 15].

Sensor nodes are power constrained as each node operates with a limited energy budget.
Moreover, since battery recharge is not always an available option, the lifetime of the entire
network is a critical issue. Classical approaches such as low power hardware design provide
individual solutions but remain insufficient for the energy constrained sensor systems. The
energy consumption optimization of a sensor network is a really complex challenge. It
involves a cut in the energy consumption of single sensor nodes but also requires global
solutions in order to maximize the lifetime of the entire sensor network. The network
lifetime can be increased through the introduction of energy aware mechanisms into each
stage of a wireless sensor design, dissemination and operation.

There has been an increased awareness of energy efficient protocol need for battery-
powered devices in recent years [9, 21, 23]. Though the optimization of the sensor network
lifetime must take place at each stage, we focus mainly on the sensing and communication
levels. Indeed, data transmission and reception using a wireless medium appears to be a
highly energy consuming process. More precisely, our work is focused on a specific com-
munication pattern called broadcast, where data is distributed from a source node to all
other network nodes. Broadcast is a common and frequent process during a sensor network
lifetime. It is useful for auto organization, parameter/data dissemination, or control reg-
ulation [3, 11, 19]. Conventional energy aware protocols manage the energy consumption
by adjusting the transmission power of sensor nodes. Nodes are assumed to adapt their
transmission power to the minimum required to sustain communication.

Several protocols have been proposed to adapt and manage the transmission ranges
in sensor networks. All papers use and reference a simple energy model [18, 16, 13]. In
this model, the amount of energy required to transmit data is proportional to the number
of emitted bits and depends on both the communication range and the distance power
gradient (see section 2). Note that regarding this model, reception of a message is not a low
cost operation and can not be neglected in comparison to the transmission cost. Indeed, the
amount of energy needed for a reception is in the same order of magnitude as the one needed
for transmission and is also proportional to the number of received bits. In consequence,
energy aware protocols should not only try to reduce communication ranges [2, 4, 5, 7, 8,
21, 22, 23] but should also minimize the number of transmission and reception operations
for each message. In this research report, we look at the determination of minimum-cost
(i.e., minimum energy consumption) broadcast and sensing schemes. Our main contribution
is to take into account both the transmission and reception costs and to derive analytical
bounds to the minimum energy broadcast and minimum energy sensing problems.
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4 Chelius € Fleury & Mignon

The remaining of this report is structured as follow. In section 2, we present a model
for communication and energy consumption in sensor networks. As opposed to the main
previous works, we emphasis on the fact that the reception of a message is not a low cost
operation. In section 3, 4 and 6, we derive upper and lower bounds for the minimum
energy broadcast and sensing problems. We show some efficient covers and compute their
energy consumption in 5. We also show in 4 that any given region can be covered with an
asymptotically optimal cover. Finally, section 7 summarizes our work and points out several
future research directions.

2 A discrete model

The connectivity of a wireless network clearly depends on the transmission power of all
hosts. We assume that each node is able to choose and tune its own power level, not to
exceed some maximum value ¥.x. It is generally and reasonably assumed in all previous
works on the power assignment problem [7, 8, 21, 23] and stated in books on principles of
wireless communication [13, 16] that the power e(u) required by a host u to correctly send
data to another host v satisfies the relation:

e(u)

d(u,v)e >

where d(u,v) is the distance between u an v, a > 1 is the distance-power gradient, v > 1
is the transmission-quality parameter. Note that in an "ideal" environment, « is generally
equal to 2 but typically takes value between 2 and 4, depending on the characteristics of
the communication medium. Without loss of generality, we will assume trough all the paper
that the threshold v (which depends on factors such as signal parameters, noise level...) is
equal to 1.

Radio mode | Power consumption (mW)
Transmit 14.88
Receive 12.50
Idle 12.36
Off 0.016

Table 1: Radio power characterization (taken in [17]).

We assume the use of omnidirectionnal antennas. Thus, due to the intrinsic broadcast
nature of the wireless medium, all nodes that fall within the communication range of a given
transmitting node u are able to receive its transmission. This broadcast property of the
wireless medium is called Wireless Multicast Advantage by [23]. Tt is clear that traditional
models considering a "link based" approach are not relevant for wireless networks since
links are not isolated anymore. Thus, when a node transmits, all its neighbors receive the
signal. A general model will be 1 — port half duplex in reception (a host can only receive

INRIA
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or transmit one message at a time) and A — ports half duplex in emission (when sending, a
host automatically sends its message towards all its neighbors) [10].

Keeping this transmission model in mind, we will model a wireless network using a
directed graph G = (V, E). Each node u € V is assigned a transmission power ¥,, < ¥ ax.
Each directed edge e = (u,v) € E is assigned a transmission cost w,, € R' equal to the
minimum power needed to sustain the link (u,v). We note I'(u) = {v € V]wyp < Ymax}
the neighbors of node u (i.e., all nodes that fall into the maximum transmission range of
node u). We note C(u) = {v € V|wy,, < ,} the covered of node u (i.e., all nodes that fall
into the transmission range 1, of node u) and all nodes of C(u) are said to be covered by
node u. By definition, if node w is transmitting at maximal power ¥ax, all nodes of I'(u)
are going to be covered by w.

As stated in the introduction, several papers [13, 18, 16] points out the fact that receiving
data via a wireless interface consumes a non negligible amount of energy. More precisely, this
amount of energy consumed in reception is in the same order of magnitude as the amount
of energy needed to send data (See Table 1). Thus, it appears really important to take
into account both the transmitting cost and the receiving cost in a communication. In this
report, one of the main goal is to study minimum energy broadcast trees. Given a root node
r, the challenge is to find a set of relay nodes and a power assignment such that all nodes
v € V are covered and such that the amount of consumed energy is minimum. A power
assignment is a function r:

r: Vo — [0, %max]
veV +— .

If we note A the amount of energy consume in reception by one node, the total amount of
energy consumed by the power assignment is:

D e+ Y AC(w)

ueV ueV

3 Mathematical definitions

In order to derive lower and upper bounds on the energy needed to cover a given area of the
plane, we are first going to consider that we have a continuous density of sensors as in [].
This mean that sensors are informally dispatched in the plane. model model is inpired from
the works made in [20]. We also need to introduce some notations and definitions. In this
whole report, if P is a point of R? and » € RT, we call D(P,r) the closed disk of center P
and radius r. We also call A a subset of the real plane R2.

Definition 1 A cover of A, (also noted A cover), is a set of disks R = {D(P;,r;),P; €
A,r; € RY i € I}, indezed by a countable set I, such that:
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1. The union of the disks of R contains A.
2. Any compact of the plane only meets a finite number of disks of R.
The points P; are called the emitters of R.

For the rest of this section, we fix a A cover: R = {D(P;,r;),i € I}. If P;, P; are two

emitters of R, we say that P; can transmit to P; if there is a sequence i = ig,i1,...,%, = J
of elements in I verifying, for all k =0, . 1 P, .. € D(P;, ,ri,).

Definition 2 We say that a cover R is:
e centralized if there is at least one emitter that can transmit to all emitters.

e connex if all emitters can transmit to all emitters.

3.1 Constants and cost calculus
Now, we fix three positive non-null constants, 7., A and p, which are given by the model:
e 7. is the relative emission cost, in mW /m?.
e ) is the reception cost consumed by a node (in mW /individual).
e p is the number of nodes per square meter in the region A.
We deduce the two following constants:
e 7. = \.p is the relative reception cost, in mW /m?.
e 7 =7, + 7, is the relative complete cost of the model, in mW /m?.
Now, let P; be an emitter of R; we can compute the following different costs considering P;:
e Emitting cost of P; = Tem‘iz
e Reception cost induced by P; = Trﬂ"f’%
e Complete cost of P; = 7mr?
Finally, for the entire cover R, we fix the originate of the plane O and define:

Definition 3 The absolute cost of a cover R is:

Z complete cost of emitter P;
iel

The relative cost of a cover R is:

i D icr P,eD(0,1) complete cost of emitter P;
PR Area(An D(0,1))

INRIA
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Remark: The limit does not necessarily exist (it is easy to create covers such that there is
no limit). This is why we have to consider the limit sup. In this report, and for problems
addressed, covers we will consider have a relative regularity (see the examples in section 5)
and they will admit a limit.

The absolute cost can be infinite if the region A to cover is not bounded and if the

emitters radius do not decrease fast enough. The relative cost can be infinite if, for example,
the emitters radius (or the number of emitters) increase in a cubic manner as ¢ tends to
infinity.
Remark: In this article, we suppose that the repartition of individuals is homogeneous. If
it is not the case, we have to replace the constant p by an integrable function p: A — R™.
The reception cost of an emitter P; becomes [ D(Pir) Ap(x,y)dzdy. Finally, the relative
reception cost is replaced by a relative reception cost function T, = Ap.

4 Main results

The aim of this mathematical study is the following:
Finding a centralized A cover with the smallest relative cost.

In the following, only the complete relative cost constant 7 will be used. We fix a closed
subset A of R2.

Theorem 1
1. The relative cost of any A cover is superior or equal to 7.
2. For all € > 0, there is a connex A cover whose relative cost is between T and T + €.
3. There is a connex cover of the plane whose relative cost is equal to 7.

We will prove this theorem in section 6. In the following section, we first present some
examples of centralized, connex or basic plane covers.

5 Cover examples

All presented examples are periodical or semi-periodical covers such as defined below:

5.1 Periodical covers

Definition 4 A cover R indexed by I is said to be periodical if there is a finite set J C I
and two vectors u,v of R? such that:

R = Uim,myezz{ D(Pj + mu +nv,7;),j € J}
We say that R is the cover of period {D(P;,rj),j € J} generated by u and v.

RR n° 5072
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Note that we do not assume that two disks D;, D; indexed by different indexes are
distinct. If this is the case, the cost of the two emitters is counted twice.

To compute the relative cost of a periodical cover, we can consider a compact B C R?
such that R? = U(m,n)ez2 (B + mu +nv) and such that the interiors of B and B + mu + nv
are disjoint for all (m,n) € Z2. (For example, we can choose B to be the parallelogram of
vertices {0, u,v,u + v}). Then, we have:

Proposition 1 The relative cost of R is:

Yjes Ty
Area(B) 4 )

PROOF : Let b be the area of B. As t tends to infinity, the number of B translations
contained in {D(O,t)} is equal to ’7—52 + O(t) (because B exactly tiles D(O,t) except for a
stripe, at the disk edge, which area is O(t)). Since for all translated of B, there is exactly one
copy of the cover period, the number of center of each period disks contained in {D(O,t)}

is also equal to: ”—;2 + O(t). As a consequence, the relative cost is:

(= + 0W)-(Ljesmr3)

2

Relative cost = lim

5.2 Semi-periodical covers

Definition 5 Consider a periodical cover R of period {D1,..., Dy} generated by u and v.
Consider a partition of Z2 in r disjoint subsets: 72 = Z, U ---U Z,.

We can obtain a new cover by shifting each disk D; + mu + nv in a regular manner
according to the membership of (m,n) to one of the Z;. Precisely, if we have kr vectors wj,

we give: ¥j € J,(m,n) € Z2, if j € J; then DY = Dj+mu+nv+w;;. We also define
R = {D})mm, jym,n € JxZ*}. If R’ is a plane cover, we say that it is semi-periodical of

period J, generated by u and v, and modified according to the partition Z1,...,Z,. and the
shifting vectors wj ;.

Proposition 2 The relative cost of a semi-periodical cover is identical to the relative cost
of any periodical cover the semi-periodical cover is derived from.

PROOF : Translations do not change anything while passing to the limit 0

INRIA
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5.3 Square covers

The covers that we call here “square covers” are semi-periodical covers generated by the
canonical vectors e; = (1,0) and ea = (0,1). We give four examples in order to illustrate
previous definitions.

5.3.1 Simple square cover

It is the periodical cover {D(O,/2)}, generated by the canonical vectors e; = (1,0) and

es = (0,1), and depicted in figure 1. It is not centralized. To compute its cost with
formula (1), we consider the square B of vertices {(£1,+1)} and compute:
2 2
cost(R1) = ﬁ(;/;) = gT ~1,5717.

Figure 1: Simple square cover (cost ~ 1,5717).

5.3.2 Connex square cover

We increase the radius of the precedent cover such that all disks contain the nearest emitters.
We get cover Ra, of period {D(0O,2)}, generated by the canonical vectors e; = (1,0) and
es = (0,1), and depicted in figure 2. To compute its cost, we consider the same square B as
for Ri:

dmd
cost(Ry) = %T = 77 ~ 3,142r.

5.3.3 Centralized square cover I

The first cover of this type is the semi-periodical cover presented in figure 3. It is still
generated by vectors e; and es, and the period we consider is: {D; = D(0,v?2), Dy =

RR n° 5072
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g
RuBNS NP

Figure 2: Connex square cover (cost ~ 3,1427).

D(0,2 — +/2)}. The partition of Z? is Z; U Z, U Z3 U Z, with
€ Z1ifn>0
€ Zyifn<0
€ Zzifn=0and m>0
€ Zijifn=0and m<0

(m,n)

In each of these zones, the big disk D; does not move, while the small disk D, is shifted
on the bottom, on the top, on the left or on the right in order to allow the emitter in the
middle of a square to transmit to the emitter in the middle of the following square. We do
not present here the shifting vectors which can be easily computed.

The result is a centralized non-connex cover R3 which cost is computed using formula (1):

cost(Ry) = T2 ATV o 5

4
~ 1,84r.

5.3.4 Centralized square cover II

In the previous cover, transmission between the square centers is provided by the presence
of small circles of radius 2 — /2. By using twice more small circles and dividing their radius
by 2, we can ensure transmission at a lower cost. We get cover R4 given in figure 4.

It is a semi-periodical cover that is derived from the periodical cover generated by the
canonical vectors and the following period: {D; = D(0,v2),Ds = D(O, 2*2\/5),D3 =

D(0, #)} Its cost is:

2
/2 ) 2-1242 o
cost(R4) = mv2 425 T = ! 2\/§7r7

4 8
~ 1,638

INRIA
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Figure 3: Centralized square cover I (cost ~ 1,847)

5.4 Hexagonal covers

Hexagonal covers are semi-periodical covers generated by vectors u = ( %, @) and v =
(0,/3).

Let us call B the hexagon of center (0,0) which six vertices are (1,0), (—1,0), (+3, i@)
The area of B is %5 and the translations of B by Zu + Zv tile the plane.

5.4.1 Simple hexagonal cover

It is cover R of period {D(O, 1)} generated by the group Zu+ Zv where v and v are defined
as above. It is depicted in figure 5.
Based on formula (1), its cost is:

w12 2

cost(R5) = —=7=—+=7=~1,210T.
3\/§
Sy 3\/§

RR n° 5072



Chelius € Fleury & Mignon

Q \ % \ %
) \ \

.. '

-/ \-/ \-

IIIII



Minimum Energy Broadcast 13

5.4.2 Connex hexagonal cover

To construct a connex cover, we could, as for the connex square cover, increase the radius
of the previous cover. We would have to consider a radius of v/3 instead of 1, and the cost
of the cover would be %7‘(’7’ ~ 3,6287.

Instead, we can choose to keep the same radius but to move the circle to the hexagon
vertices.

We get the periodical cover R depicted in figure 6. Its period is {D((1,0), 1), D((3, @), 1)},
it is generated by v and v, and its cost is twice the one of cover Rs, i.e.:

4
cost(Rg) = %’T ~ 2 418,

N AN ANT /N
Q\YAVIAY\YAVIAY\YA'A
AV,\VA/AV,\V,AVAY
\AIAY\YAIAY‘\AVA
AVA\VA/AVA\VAAVAY
NAVAAVAVAAVAVA

Figure 6: Connex hexagonal cover (cost ~ 2,4187)

5.4.3 Centralized hexagonal cover
It is cover R7 given in figure 7. It is semi-periodical and derived from the periodical cover
generated by vectors u, v and the following period: {D; = D(O,1), D2 = D(O, \/52_1 ), D3 =
D(0, Y31},

Its cost is:

71?4 2m(¥31)2 6 2v3
3\2/§ - 3\/—
~ 1,533r.

cost(R7) =

RR n° 5072



14 Chelius € Fleury & Mignon

Figure 7: Centralized hexagonal cover (cost ~ 1,5337).

6 Theorem’s proof

Examples presented above show that, starting from a non-centralized cover, we can construct
a centralized one by adding “small circles” to connect emitters between each other. This is
the process that was used to derive covers R3 and R4 from cover R , or to construct cover
R7 from cover Rs. Moreover, reducing the small circles radius and increasing their number
reduce the cover cost as shown in the transition from cover R3 to cover R4. This main idea
leads the theorem’s proof.

Definition 6 Let R be a cover (non centralized) of a region A. We call link for a cover R
any set of disks L such that R U L is a centralized cover of A.

Lemma 3 Let R be a cover of A, with a relative cost v, and ¢ a non-null positive real.
There is a link L for R such that: cost (RUL) <y +e.

PRrOOF : First consider two emitters P and @ at distance d of each other. We can suppose
that P = (0,0) and @ = (d,0). Let n > 2 be an integer. We can connect P and @ using n

circles of radius % centered in

(0,0),(%,0),...,(ﬂl,O),...,(d,O).

n— n —

The additional cost (absolute) of these circles is nw(—%-)27. When n tends to infinity,

n—1
the additional cost becomes as small as desired.

INRIA
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Now consider the disk D,, of radius n centered at the origin. The number of emitters of R
contained in D; is finite. In consequence, the method explained above allows us to connect
all these emitters using a set of disks £, which a total added cost inferior to $Area(D;NA).

Similarly, we can connect all emitters of R U £; contained in Dy by a set of disks Lo
with a total cost inferior to 53 Area(Dy N A).

This way, we build a succession of sets £,, such that, for all n, emitters of RUL; U---UL,,
contained in D,, are connected, and such that the cost of £,, is inferior to 5 Area(D, N A).

Then, we set L= L1 ULy U---UL,. The relative cost of L is equal to:

cost(RUL) < cost(R) + cost(L)
— X D cost(£)
= cost(R) + }LIETOQ Area(D, N A)
ST &Area(D; N A)

l' ) i=1 2t
i RIET(E Area(D, N A)

IN

n

1
< 7+1imsup€(2§):7+5.
ot o

By construction, the cover R U L is connex. 0

6.1 Theorem when A is a square

The first point of the theorem is obvious since the whole region A is covered by disks of R.
For the second point, we first suppose that A is the square [—1,1] x [—1,1]. We give two
lemmas:

Lemma 4 There is a sequence of disks D, contained in A, which interiors are pairwise
disjoint and such that lim,,__, ;- Area(D,,) = Area(A).

PRrOOF : Let us fix D; = D(O, 1), the unique disk tangent to the four sides of A. In every
corner of A, there is an uncovered region bounded by three arcs: two sides of the square
(which are circles of infinite radius), and the boundary of D;. These three circles are tangent
to each others, and we take D- to be the Soddy disk associated to these three circles (i.e. the
unique disk tangent to these three circles). This partly fill the corner, but creates three new
(smaller) uncovered regions still in the corner, each of them being limited by three tangent
circles. We can repeat the process, partly filling each new region by a Soddy circle (in the
four corners). It is known that the union of all the Soddy circles has the same area as the
square and —by construction— their interiors are pairwise disjoint. O

Lemma 5 Let B C R? be a compact. For each 1 > 0 there is a cover R(n) of B such that
Cost(R(n)) < ar Area(B) + e(n)

where o = % is the density of the simple hexagonal cover and lim, o e(n) = 0.

RR n° 5072
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ProoF : Let R'(n) = {Dy,l € L} be the hexagonal cover of R? by disks of diameter 1. The
relative cost of R'(n) is ar. We fix now:

The set R(n) is a cover of B contained in the set
B(n) = {z € R?,distance(z, B) < n},

and, then, its cost is less than arArea(B(n)). Since Area(B(n)) tends to Area(B) as 1 tends
to zero, this concludes the proof of the lemma. 0

We come now to the proof of the theorem, an ¢ being fixed. Consider the sequence of
disks D,, as in lemma 4 and note a, = 4 — Area(D, U ---U D,,) (the area of the uncovered
region of A). Take n € N such that a,, < 2.

Fix B = A—UJ_,D; and choose a cover R(n) of B as in lemma 5 above such that
Cost(R(n)) < arArea(B) +¢.

Fix the cover P = R(n) U (Ui, D;). We have:

Cost(P) = Cost (R) + Cost(Ul~, D;)
< «arArea(B) + ¢ + TArea(Uj-, D;)
= atapt+e+7(4—a,)
< de+4r.
It follows that the relative cost of P is less than 7 + ¢, which concludes the proof. 0.

6.2 Theorem’s sketch of proof for the remaining points
6.2.1 If the region A is not a square

Fix a (small) n > 0 and consider a plane tiling by squares of diagonal length 7. Let S be
the set of such squares B satisfying BN A # ().

Recover each square of S by a cover of cost less than 7 + /2 and whose disks are of
diameter less than 7 (we did this in the preceding section).

The union of all such square covers of S is a cover P of A, contained in A(2n) = {z €
R?, dist(x, A) < 2n}.

If A is a compact, A(2n) also is, and the total cost of P is less than (7+4¢/2)Area(A(27)).
Since lim, g Area(A(2n)) = Area(A) We can take n such that

Area(A(2n)) < Area(A) <1 + m) .

With this choice, Cost(P) < Area(A)(r + ¢), as wished.
If A is not compact, the same idea still works, when considering the limit.

INRIA
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6.2.2 A plane cover with a cost equal to 7

This is the last point of the Theorem.

We first consider a connex cover P,, of the crown D(O,n)— D(O,n—1) with a cost equal
to (14 €¢/2™)7. Then, we connect one disk of P,_; to one disk of P, by a little link £,, of
cost inferior to (1/(2n + 1))7. The plane cover, reunion of all P,, and L,, is connex and its
cost is inferior to:

> (Area(D,,) — Area(D,,—1))(1 + ﬁ)q_

lim

n—-+00 Area(Dn)
" 20+1)/(2i 4+ 1
= lim 7+ 2= ™ Z+2)/( rt )7'
n—>+00 ™

. n
= 74+ lim —71
n—s 400 TL2

= T

7 Conclusion

In this report, we have provided novel contributions and addressed several issues concerning
the design of energy efficient broadcast and sensing algorithms for sensor networks. We
have proposed a novel approach since it is the first time that both the transmission and
the reception costs are taken into account in the evaluation of the energy consumption of a
broadcasting task. We also gave a new analytical model for sensor networks where the use
of a continuous distribution of nodes allows the derivation of upper and lower bounds on
region covering. Based on this theory, we are able to prove that the derived lower bound is
asymptotically optimal. This model also allowed us to propose energy efficient sensing and
broadcast strategies and to develop a simple energy efficient broadcast algorithm.

For the future, possible extensions of this work are open to investigation. In order to
closely follow the reality of sensor networks, we are currently investigating the integration
of discrete levels of energy in our mathematical model. These levels would replace the
continuous range of possible transmitting powers we are currently using. Once again, the
challenge is to adapt our continuous theory to a pseudo discrete case.
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