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Abstract. Product (AN) codes constructed in weighted number systems are investigated 

with the aim of devising error control features suitable for application in arithmetic units.  

The previous theoretical framework, which was derived in the hypothesis of codes defined in  

a virtual range M = k A, is restated for any physical interval  M = bn, where b is the radix of  

the system and n is the number of digits.

Some general properties holding for radix-b-AN codes are reconsidered and necessary  

and sufficient conditions for single and double error detection are derived for binary codes 

and for a sample non binary case. Single error correction is discussed as well and a fast  

error  decoding procedure is suggested and implemented.

Finally, modular AN codes are introduced in order to enable the use of product codes in 

standard ALU's representing relative integers by means of a radix complement notation. It is  

shown  that   the  above   properties  keep  their  validity  and  that  concurrent  single  error 

correction can be associated with arithmetic computation without increasing the time spent  

for processing.

Index Terms. Arithmetic codes, arithmetic units, error detection and correction, modular  

AN codes, product codes, syndrome decoding, weighted AN codes

1. Introduction. 

Arithmetic AN codes have been extensively studied in the past literature in both cases of 

residue and weighted number system implementations. However, whereas the error detecting 

and correcting properties of residue AN codes  have been completely derived for errors of 

arbitrary multiplicity [1 - 4], the best results reported in the literature for weighted AN codes 

are limited to particular cases of single error detection and correction [5 - 12]. Moreover, in 

order to easily preserve the arithmetic closure, weighted AN codes have been studied in a 

virtual range M  = k A  different from the natural range bn of a weighted number system. It is 

easy to verify [9] that the assumption M  = k A  increases the hardware and time costs of code 

implementation and leads to impractical error detecting and correcting conditions.

In this work, the theory of weighted AN codes is restated for codes ranging in any interval 

[0, bn), where b  and n  indicate the radix and the number of digits of the system, respectively. 

Moreover, starting from a new definition of modular AN codes  it is shown that single and 
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double  error  detection  or,  alternatively,  single  error  correction  can  be  easily  obtained  in 

conventional ALU's concurrently with the arithmetic processing.

Unfortunately, the problem of detecting and correcting errors of higher multiplicity remain 

still unsolved [12 – 17]. However, it is worth noting that the probability of high multiplicity 

errors  is  strongly  dependent  on  the  mean  time  between  check  and,  consequently,  it  is 

sufficiently small whenever the error control is associated with each computational step.

As this work represents the first attempt of using weighted product codes in practice, no 

comparison with other solutions is possible.

In  what  follows,  Section  2  reviews  the  problem  of  error  control  in  an  arithmetic 

environment together with the fault - error relationships leading to an arithmetic error model. 

Section 3 derives some simple properties holding for errors of arbitrary multiplicity whereas 

the problem of single and double error detection is studied in Section 4. In the same Section 

4, double error detection in binary systems is analyzed in depth, and error control conditions 

are presented in a simple and effective form. Non binary codes are also considered for a 

sample, significant case. Section 5 is devoted to the problem of single error correction and 

syndrome decoding. 

Finally, Sections 6 to 8 are devoted to introduce  modular AN codes and to extend the 

results of preceding Sections to enable codes implementation in standard ALU's. Single error 

correction  is  presented  and  it  is  shown  that  a  correcting  procedure  can  be  carried  out 

concurrently with the arithmetic computation.

2. Arithmetic codes

Let’s recall that a code is said to be arithmetic iff it is closed under an arithmetic operation, 

generally the addition. In other terms, C is an arithmetic code iff, for any two codewords c1 , 

c2  and an arithmetic operator "#", c1  # c2  is also a codeword. However, to get more insight 

into the difference between transmission and arithmetic codes,  it  is  worthwhile  to briefly 

reconsider the fault-error relationships and the corresponding error models.

As usual, assume that an information word is represented as a vector  X  = (xn-1 , xn-2 , ...., 

x0 ) and suppose that X  is transmitted through a faulty or noisy channel. Let  X*  = (x*n-1 , 

x*n-2 , ....,  x*0 ) be the received word. In the hypothesis that a one-to-one correspondence 

exists between each elementary path of the channel and an information word component, the 

same correspondence can be assumed between a faulty  path in the channel  and a wrong 

information component.  Hence,  most  authors  defined the  transmission  error as  the  error 

vector

E  = X*  - X  = (x*n-1  - xn-1 , x*n-2  - xn-2 , ...., x*0  - x0 )

and the error multiplicity as the number of non zero error vector components.
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Now, assume that X  and Y are two operand to be processed in an arithmetic unit. In this 

case, the relations between faults and the error components of the result are unpredictable and 

the error vector becomes a function of the fault and of the actual value of the operands. 

In fact, consider, as an example, two pair of binary operands (A  = 0 0 1 0 1 1 ,  B  = 0 1 0 

0 1 1) and (C  =  0 1 1 1 1 1, D  = 0 0 0 0 0 1). Adding them pairwise yields SAB  = 0 1 1 1 1 0 

and  SCD  = 1 0 0 0 0 0, respectively. If a fault occurs i.e., for instance, the carry from the 

rightmost position is stacked to "0", adding the above operands will produce the wrong results 

S*AB  = 0 1 1 1 0 0 and S*CD  = 0 1 1 1 1 0 and, evaluating the corresponding error vectors, it 

follows that: 

EAB  = (0, 0, 0, 0, -1, 0) ,    ECD  = (-1, 1, 1, 1, 1, 0)

i.e., the same fault will produce two different error vectors. 

This conclusion is somewhat surprising. However, recalling that  the error ("-1" for the 

carry  in  the  rightmost  bit  position)  is  to  be  processed  in  the  same arithmetic  unit  as  an 

additional operand and that the result is defined over the entire information word, it follows 

that the measure of the error is to be considered at a word level. 

In the example, considering the numerical value of the difference between the wrong and 

the correct results (the error values ) it follows that, in signed binary notation:

EAB  = ECD  = - 0 0 0 0 1 0

and the same conclusion is obtained evaluating the error vectors EAB , ECD as binary, signed 

digit number representations:

EAB  =  -1x 2 = - 2 ,    ECD  = -1x 25 +  1x 24 + 1x 23 + 1x 22 + 1x 2 = - 2

i.e.: 

EAB  = ECD  = - 0 0 0 0 1 0

Previous considerations show that the effect of a fault can be unambiguously evaluated by 

computing the numerical value of the corresponding error vector. 

Evaluating the error multiplicity in arithmetic context is much more difficult  than in a 

transmission one. In fact, for any given error value, there are more equivalent error vectors 

and  the  error  multiplicity  cannot  be  related  to  the  number  of  non  zero  error  vector 

components.  The problem is  solved  by  considering  the  arithmetic  error  weight which  is 

obtained according to the following definitions [10].

Definition 2.1.  For  any integer  N ,  the arithmetic  weight  War  (N )  is  defined as the 

smallest number of non zero terms in an expression for N  of the form

N  = ± an-1 b n-1  ± an-2 b n-2  ± ..... ± a0 
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where b  is the radix of the system and 0   ≤ ai  < b.

Definition 2.2. The arithmetic distance Dar (N1 , N2 ) between two integers N1  and N2  is 

the arithmetic weight of (N1  - N2 ), i.e.

Dar (N1 , N2 ) = War (N1 - N2 )

Definition 2.3. The multiplicity of an arithmetic error E is defined as its arithmetic weight.

The arithmetic distance is a metric. Thus, the error detecting and correcting properties of 

an arithmetic code C  having a minimum code distance Dar  are the following:

P1: the code C  detects arithmetic errors of multiplicity not greater than t  iff Dar   ≥ t  + 1

P2: the code C  corrects arithmetic errors of multiplicity not greater than t  iff Dar  2 ≥ t  + 1

P3: the code  C detects arithmetic errors up to a multiplicity  tR  and, concurrently, corrects 

arithmetic errors of multiplicity not greater than tC  (tR   ≥ tC ) iff Dar   ≥ tR  + tC  + 1

Previous results hold in the hypothesis of codes defined in an unlimited numerical range. 

In practice, however, numbers and computations are defined in a finite range M  = b n, where 

b is  the  radix of  the  number  system and  n is  the  number  of  digits.  Applying  the  above 

Definition 2.2 in a mod M environment, it follows, in general:

Dar  (N1 , N2 ) = War  (|N1  - N2 |M )  ≠ War  (|N2   - N1 |M ) = Dar  (N2 , N1 ) 

and the symmetry of the metric is no longer satisfied. 

To overcome this obstacle, most authors restated preceding definitions as follows.

Definition 2.4. For any integer N , the modular weight WM  (N ) is given by 

WM  (N ) = min {War  (|N |M , War  (| - N |M )

Definition 2.5. The modular distance DM  (N1 , N2 ) of two integers N1  and N2  is given by 

WM  (N1  - N2 ).

Definition 2.6. The multiplicity of an arithmetic error in a finite range M  is defined as its 

modular weight.

From Definition 2.4, it is seen that the modular distance satisfies both the positiveness and 

the symmetry properties of a metric. In addition, since the triangular inequality is satisfied as 

well [9] provided that, as in our case, M  = bn, the modular distance DM (N1 , N2  ) is a metric 

and, substituting DM (N1 , N2) for the arithmetic distance Dar  (N1 , N2 ), the arithmetic error 

detecting and correcting properties P1 – P3 keep their validity. 
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3. AN codes in weighted number systems

A product or AN code is defined as a code representing any integer N  by the product AN 

where A is an integer called the generator of the code. From the definition, it is immediately 

verified that:

Theorem 3.1. Given an AN code C, any error E  affecting a code word is detected iff E ≠ 

0 mod A.

In what  follows,  attention will  be focused on product  codes implemented in  weighted 

number systems of fixed radix b. Moreover, in order to minimise the code redundancy, it will 

be assumed that   (A ,  b )  = 1.  The next  two conditions  hold whose proofs are  given in 

Appendix.

Theorem 3.2. A necessary condition for an AN code C be t  - detecting is 

 

Theorem 3.3. An AN code of generator   is t  - detecting for t  = 1 and t  = n  - 1, where n 

indicates the number of digits of the representation.

4. Single and Double Error Detection
Consider a weighted system with n digits and radix b and let E  = ei b i be a single error. 

Then  a product code C  will detect E iff 

ei b i  ≠ 0 mod A

for arbitrary ei   0,  ≠ i  = 0, .... , n  -1 ,  - b  < ei  < b . 

Recalling that it has been assumed that  (A , b ) = 1, it is trivially derived that C is single 

error detecting iff ei ≠ 0 mod A . Then, the following necessary and sufficient condition can 

be easily proved.

Theorem 4.1. An AN code constructed in a weighted system of radix b  with (A , b ) = 1 is 

1-detecting iff A  ≥ b  + 1.

Proof. Necessity.  To prove necessity, assume that C is an 1-detecting AN code. Then ei ≠ 0 

mod A  for any  non zero ei , - b < ei < b , i.e., necessarily,   A  > max |ei | = b  - 1.  Recalling 

that (A , b ) = 1, it follows that A   ≥ b  + 1 and the first part of the theorem is proved.

Sufficiency.  To prove sufficiency, assume that  A   ≥ b  + 1. However, this assumption 

implies ei ≠ 0 mod A  for any  non zero ei , - b  < ei  < b  and the proof is completed.
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Dealing with double error detection is more difficult than detecting single errors.

A double error E  is an error which can be expressed in the form:

E  = ei b i  + ej b j 

and an AN code will be 2 - detecting iff  ei b i  + ej b j  ≠ 0 mod A   for any  pair ei , ej   0,  ≠ i,  

j  = 0, .... (n  -1), i   ≠ j ,  - b  < ei , ej  < b . 

Recalling the assumption (A, b ) = 1 and letting, without loss of generality, i < j , the above 

condition can be restated in the form ei +  ej  b j-i  ≠ 0 mod A  or,  with a slightly different 

notation:

ei  + ej b k  ≠ 0 mod A 

 where k  = 1, ..... , n  -1,  ei , ej   0, ≠ - b  < ei , ej  < b ,  i, j  = 0, .... (n  -1) , i   ≠ j.

As the following error detecting conditions will be derived by using number theory tools 

and  concepts,  some  useful  definitions  and  properties  will  be  reported  for  the  sake  of 

completeness.

Definition 4.1. For any integer m   0, the Euler function ≠ φ (m ) is the number of positive 

integers x, x  < |m | , such that (x, m ) = 1. 

Observing that φ (m ) = φ (- m ), it follows that attention can be limited to positive integers.

Theorem 4.2. (Euler-Fermat theorem) Given two integers a  and m  > 1 such that (a, m ) 

= 1, then a φ(m ) ≡ 1 mod m.

Definition 4.2. Given an integer  a  prime to a positive integer  m  > 1, the least positive 

integer dm  such that 

a  dm ≡ 1 mod m

is called the exponent to which a  belongs mod m.

As an example, consider integers - 1, 2 and 3 and let m  = 7. Then the exponents to which 

the above integers belong mod 7 are 2, 3 and 6, respectively.

Theorem 4.3. Given an integer a  prime to a positive integer m  > 1, let dm be the exponent 

to which a  belongs mod m.  Then, for positive integers s  and t :

a s  ≡  a t  mod m 

iff:

s  ≡ t   mod dm

Proof.  Necessity.  Assume, without loss of generality, s   ≥ t.  The difference (s - t )  can be 
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expressed as:

s  - t  = dm q  +  r ,  0   ≤ r  < dm

As (a, m ) = 1, from the congruence a s  ≡ a t  mod m   it follows that 

1 ≡ a (s - t )  ≡ (a  dm ) q  a r  mod m

and, necessarily, r  = 0, i.e.,  s   ≡ t   mod dm.

Sufficiency.  Let  s   ≡  t   mod dm. Then  s  = t  + k  dm  and, trivially,   a s  ≡  a t  mod m .

Corollary 4.1. Given an integer a  prime to a positive integer m  > 1, the integers 

a , a 2 ,  a 3,   ... ,  a  dm 

are distinct mod m.

Proof.  For any pair of positive integers (i , j ),  i   ≠ j,  1   ≤ i, j   ≤ dm, the congruence  a i 

≡ a j  mod m  cannot be verified. To prove this, suppose the contrary. Then, from Theorem 4.3, 

a  i  ≡  a  j  mod  m  would imply  i  ≡ j  mod  dm,  i.e.,  dm  would divide (  i -  j  ) and a 

contradiction arises.

Theorem 4.4.  Given an integer  a  prime to a positive integer  m  > 1, if, for a positive 

integer  τ  , 1  ≤ τ   < dm

a τ  ≡ - 1 mod m

then, necessarily

τ   = dm /2

Proof.  From the congruence

a τ  ≡ - 1 mod m

it follows that 

a 2τ  ≡ 1 mod m

or, from Theorem 4.3, 2 τ  = k  dm  and, recalling that τ  < dm, k  = 1 and hence τ  = dm /2.

Corollary 4.2. In the hypothesis of Theorem 4.4, dm  is even.

Theorem 4.5. Given an integer a  prime to a positive integer m  > 1, with dm  even,  if 

a  dm /2 ≡ - 1 mod m 

then, necessarily, for any non negative integer h :

a h ≡ - a h  + dm /2 mod m

Proof.   The theorem is trivially proved multiplying for a h  both sides of the congruence   
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a  dm /2 ≡ - 1 mod m 

Theorem 4.6. Given an integer a prime to a positive integer m  > 1, if the congruence aτ  ≡
 - 1 mod m  is never verified for a positive integer  τ  , 1  ≤ τ   < dm , then a h , where h  is any 

non negative integer, has no additive inverse of the form a k  , k    0 in the ring mod ≥ m.

Proof.  By contradiction, suppose that the congruence

a h  ≡ - a  k   mod m

is verified for two non negative integers h  and k.  Assuming, without loss of generality, h  > k 

and dividing both sides of the congruence by a k , it is obtained 

a h - k  ≡ - 1 mod m

which contradicts the original hypothesis.

The following Corollary 4.3 is immediate.

Corollary  4.3. Given an integer  a prime to  a  positive integer  m > 1,  if,  for  two non 

negative integers h  and k  :

a h  ≡ - a  k   mod m

then

a  dm /2 ≡ - 1 mod m 

Theorem 4.7.  Given an integer  a  prime to a positive integer  m  > 1, the multiplicative 

inverse of any a h  in the mod m   ring is a k  with 

k   ≡ - h  mod dm

where h  and k  are non negative integers.

Proof.  Observe first that the existence of the multiplicative inverse of  a  h  mod  m  is 

guaranteed as (a, m ) = 1 implies (a h, m ) = 1. Moreover, by definition of the multiplicative 

inverse   :

 

Then, dividing both sides of the congruence by a h* , where 0  ≤ h*   ≤ dm , h*  ≡ h  mod dm :

  

It is concluded that, in general, the multiplicative inverse of a h  will be expressed as a k 

with  k  ≡ dm  - h*  ≡ - h  mod dm.

Definition 4.2. Let m  be a positive integer. Then, any integer h  such that the exponent to 

which it belongs mod m  is φ (m ) is called a primitive root of m.
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Now, we are ready to prove two necessary and sufficient conditions for a weighted AN 

code to be 2-detecting (see Appendix for proofs).

The most significant case concerns binary systems for which the general condition for 

double error detection

ei  + ej b k  ≠ 0 mod A 

 can be restated in the simpler form:

2 k ≠ ± 1 mod A

with k  = 1, ... , n  -1.

Theorem 4.8. A binary AN code with (A , 2) = 1 is 2 - detecting iff

• dA   ≥ n   if dA  is odd or dA  is even with  2d A /2 ≠ - 1 mod A

• dA   2≥ n   if dA  is even  with 2 d A /2  ≡ - 1 mod A

where dA  represents the exponent to which 2 belongs mod A  and n  is the number of bits of 

the code.

As an example, the following Table I shows the least generators  A  for some increasing 

values of n, as derived from Theorem 4.8.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Amin 7 11 11 13 19 19 19 23 23 29 29 29 37 37 37 37 47 47

dA 3 10 10 12 18 18 18 11 11 28 28 28 36 36 36 36 23 23

The validity of Theorem 4.8 is limited to the case of binary systems. A general formulation 

holding for arbitrary radix b is still unknown. However, it is possible to derive necessary and 

sufficient conditions for double error detection if some additional assumptions are made. To 

this purpose, assume that the code generator A  is a prime and that the radix b  is a primitive 

root of A. In these hypotheses, the following Theorem holds.

Theorem 4.9. A weighted AN code of radix b  where the generator A  is a prime and b  is 

a primitive root of A  is 2 - detecting iff

δ  n≥

where n  indicates the number of digits and 
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where   and kj  ( j = u, v) is an integer in [1, A  - 1] such that b kj  ≡ j  mod A.

5. Single Error Correction

Some  general  conditions  leading  to  double  error  detection  have  been  presented  in 

preceding  Section  4.  From the properties  of  the  arithmetic  metric,  it  is  concluded that  a 

double error detecting code can be used, alternatively, for single error correction. To do this, 

let's define first an error figure according to the following definition.

Definition 5.1. Given a product code of generator A  and any integer X  to be checked, the 

number S  = |X |A will be defined as the syndrome of X.

Now, suppose that a code C satisfies the conditions for single error correction and assume 

that a single error E  = e i b i, i  = 0, 1, ..., n -1, -b  < e i  < b  affects a legitimate code word X 

thus generating a wrong number X'  = X + E.  To perform correction, the syndrome S  =  |X' |A 

is first computed and:

S   ≡ X'  = X  + E  ≡ E   = e i b i  mod A

As the code C is single error correcting, multiplying (in parallel) the above congruence by 

the (n  - 1) multiplicative inverses 1/| b i | mod A, there will be one and only one value

s i  = S  x 1/| b i | ≡ ei   mod A

where i  = 0, 1, .... , n  - 1  and  - b  < ei  < b .  In other terms, recalling preceding limitations, 

there will be a unique integer s i   such that

• s i   ranges in [1, b ) i.e.,  ei   = s i    or, alternatively:

• s i  ranges in [A  - b  - 1,  A ) i.e.,   ei   = s i  - A . 

and the correct number will be reconstructed as

X  = X'   - E  =  X'  - ei  b i

As an example of the application of the procedure,  consider a binary product  code of 

generator A  = 19 with n  = 7, dA = 18,  satisfying conditions of Theorem 4.8. Computing the 

multiplicative inverses of 2 i  mod A,  i  = 0, ... .. , 6 it is obtained:

1/2 0  mod A = 1

1/2 1  mod A = 10

1/2 2  mod A = 5

1/2 3  mod A = 12

1/2 4  mod A = 6

1/2 5  mod A = 3
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1/2 6  mod A = 11

Now, let 

X  =  0 1 0 1 0 0 02  = 3810

be a legitimate codeword and suppose that a single error 

E  = -  0 0 1 0 0 0 02 = - 1 x 2 4  = - 1610 

 affects integer X  thus  yielding:

X'  = X  + E  =  0 0 1 0 1 1 02  = 2210

Computing the syndrome of X' ,  it is obtained:

S = |X'  |A  =  |22|19 = 310

and, multiplying the syndrome by the multiplicative inverses of 2i,  I  = 1,  2,  ,… ,  6 it  is 

derived:

s 0  = 310

s 1  = |S x 1/2  |A = 1110

s 2  = |S x 1/2 2  |A = 1510

s 3  = |S x 1/2 3  |A = 1710

s 4  = |S x 1/2 4  |A = 1810

s 5  = |S x 1/2 5  |A = 910

s 6  = |S x 1/2 6  |A = 1410

Here, only one s i , namely s4  = 1810  belongs to the legitimate error range [1, b), [A - b  - 

1, A ) and, consequently,  ei   = s i  - A. = 18 - 19 = - 1. The error is then reconstructed as E  = - 

2 4  and the correct value of X   becomes:

X  = X'  - E  = 2210 - ( - 1610) = 3810

6. Using AN codes in arithmetic units

In Section 3, a product code has been defined as a code representing any integer N  by the 

product AN  for some suitable constant integer A , the generator of the code. The arithmetic 

properties of such a code derive from its definition. In fact, assuming that two integers X and 

Y are encoded in a product code and then added together, it is obtained:

A X  + A Y  = A  (X  + Y )

i.e., adding two code words produces another code word.

In practice, however, integers are defined in a finite range M = bn   ≠ k A (where b  and n 

indicate the radix and the number of digits of the system, respectively), relative integers are 

represented  in  a  radix  complement  notation  and  computations  are  carried  out  mod  M. 

Consequently, the representation | A Z  |M  of code words corresponding to relative integers Z 

or to the sum of two code words  | A X + A Y  |M  may produce results which are no more code 

words. 
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In the past literature, most authors solved this problem by limiting their consideration to 

non negative integers and by assuming a code range  M  =  k A ,  to be implemented in a 

physical range bn   ≥ M.  

However,  a  direct  approach  to  AN codes  constructed  in  standard  arithmetic  units  is 

possible.  In  fact,  suppose  that  integers  X  in  the  range  [-  m ,  m  )  are  considered  and 

represented by means of a product code of generator A.  The code words XA  = A X  will range 

in [ - A m,  A m ) and, representing by means of a complement notation  in the range M  = bn , 

2 A m    ≤ M  < 2 A (m  + 1)  it will be obtained:

X  = | XA |M  = | A X  |M

or, recalling the complement notation protocol:

X  ≡ 0 mod A  if  0  ≤ X  < m  , i.e., 0  | ≤ XA |M  = XA  < M /2

M  - X  ≡ 0 mod A  if  - m   ≤ X  < 0 , i.e., M /2   | ≤ XA |M = M +  XA  < M

Now, suppose that the representations of two legitimate code words X  = | XA |M = | A X  |M 

and Y  = | YA |M = | A Y |M  are added and let S  = | X + Y |M  be the representation of their sum. 

Once again, recalling the basic elements of computer arithmetic, it is concluded that 

S  ≡ 0 mod A  if  0  ≤ S  < M /2

M  - S  ≡ 0 mod A  if  M /2   ≤ S  < M

in the absence of arithmetic overflow and

S  ≡ 0 mod A  if  M /2   ≤ S  < M

M  - S  ≡ 0 mod A  if  0  ≤ S  < M /2

if overflow occurred.

Conversely, any representation Z can be recognized to be legitimate (i.e., corresponding to 

the representation of a code word or to the correct sum of two code words) if:

Z  ≡ 0 mod A  and 0  ≤ Z  < M/2

M  - Z  ≡ 0 mod A  and M /2   ≤ Z  < M

whereas, if an overflow is detected:

Z  ≡ 0 mod A  and  M /2   ≤ Z  < M

M  - Z  ≡ 0 mod A  and  0  ≤ Z  < M /2

Preceding considerations define modular AN codes in conventional ALU’s and prove that 

the arithmetic properties of product codes are preserved according to the following definitions 

and properties.

Definition 6.1. In a modular A N code representing integers in [- m , m  ) in the range M 

= bn ,  2 A m    ≤ M  < 2 A (m  + 1), by means of a complement notation, any integer X  , 0 ≤ 
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X  < M,  will be recognized to be a code word iff:

X  ≡ 0 mod A  if  0  ≤ X  < M /2

M  - X  ≡ 0 mod A  if M /2   ≤ X  < M

Property 6.1. In the absence of an arithmetic overflow, the sum S  = | X + Y |M  of any two 

code words X  and Y   is also a code word.

Property 6.2. Let S  = | X + Y |M    be  the sum of any two code words X  and Y . Then, if 

an arithmetic overflow occurs 

S  ≡ 0 mod A  if  M /2   ≤ S  < M

M  - S  ≡ 0 mod A  if  0  ≤ S  < M /2

Definition 6.2. In a modular A N code  representing integers in [- m , m  ) in the range M 

= bn ,  2 A m    ≤ M  < 2 A (m  + 1), by means of a complement notation, any integer Z  , 0 ≤ 

Z  < M,  will be referred to as a legitimate representation if

Z  ≡ 0 mod A  or Z  ≡ M  mod A  

Now, let X   be a codeword or the sum of any two codewords and suppose that an error E, - 

M  <  E  <  M, affects the legitimate information  X  thus generating in [0,  M ) the wrong 

number X* :

X*  = X  + E

In order to devise the conditions for detecting E , consider the following two cases for X.

Case 1 

X  ≡ 0 mod A. In this case, the error will be detected iff

X*   ≠  0 mod A    i.e., E  ≠ 0 mod A

and

X*   ≠ M  mod A    i.e., E   ≠ M  mod A

Case 2

X  ≡ M  mod A. In this case, the error will be detected iff

X*   ≠ 0 mod A    i.e., E   ≠ - M  mod A

and

X*   ≠ M  mod A    i.e., E   ≠ 0 mod A

However, as far as errors E  are considered in the range ( - M , M ), to each E  in the range 

(0, M ), there corresponds a mod M  equivalent  E*  = - (M  - E ) in ( - M , 0) for which

E*   ≡ E  mod M
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and, conversely, to each error in the range (-  M , 0), there corresponds in (0,  M ) a mod M 

equivalent error E*  = E  + M  for which

E*   ≡ E  mod M

Now, observing that  two errors which are mod  M  equivalent  have the  same modular 

weight, consider a pair {E , E* } and suppose, without loss of generality, that E  > 0.

Then, if E  ≠ 0 mod A , il follows E*  ≠ - M  mod A   and, if E  ≠ M  mod A , il follows 

E*  ≠ 0 mod A .

Preceding considerations prove the following Theorem 3.1.

Theorem  6.1. Given  a  modular  AN  code  C,  any  error  corresponding  to  a  mod  M 

equivalent pair  {E , E* }, - M  < E, E*  < M  affecting a code word or the sum of two code 

words will be detected iff

E   ≠ 0 mod A

and

E*  ≠ 0 mod A

7. Error detection and correction in arithmetic units

In a mod M arithmetic unit, M = bn (where b and n  indicate the radix and the number of 

digits of the system), let  E  be a single error in the range (-M,  M ) for which, according to 

Definition 2.6:

|E |M  = εi  bi   or  |- E |M  = εi  bi  

i.e., 

E  = ± εi  bi   ,  0 < εi  <  b 

or, equivalently: 

E  = ei  bi 

with  - b  < ei  <  b ,  i  = 0, .... , n  - 1.

From Theorem 6.1, observing that  |E *|M  = |E |M , it is concluded that a single error is 

detected iff 

ei b i  ≠ 0 mod A   for any ei   0,  ≠ i  = 0, .... , n  -1 ,  - b  < ei  < b .

As a consequence, Theorem 4.1 can be restated as follows.
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Theorem 7.1. A modular AN code constructed in a weighted system of radix b  with (A, b) 

= 1 is 1-detecting iff A  ≥ b  + 1.

Similarly, consider  a  double  error  E  in  the  range (-  M,  M )  for  which,  according to 

Definition 2.6:

|E |M  =  εi b i  ± εj b j   or  |- E |M  =  εi b i  ± εj b j  

with   0 < εi , εj  <  b  ,  0 < εi b i  ± εj b j  <  M   or, equivalently:

E  = ei b i  + ej b j 

for - b  < ei , ej  < b  , i, j  = 0, .... (n  -1), i   ≠ j , ei , ej   0.≠

Once again, observing that  |E *|M  = |E |M , it  is concluded from Theorem 6.1 that a 

modular AN code is 2 - detecting iff  ei b i  + ej b j   ≠ 0 mod A . Recalling the assumption (A , 

b ) = 1 and letting, without any loss of generality, i   < j , the 2 - detecting condition can be 

restated in the form:

ei  + ej b k  ≠ 0

 where k  = 1, ..... , n  -1,  ei , ej   0, - b  < ≠ ei , ej  < b ,  i, j  = 0, .... (n  -1) , i   ≠ j.

It is immediate to realise that the results of Theorems 4.8 and 4.9 apply to modular AN 

codes. In particular, Theorem 4.8 takes the form:

Theorem 7.2.  A binary  modular  AN code with  (A ,  2)  =  1 detects  double  errors  or, 

alternatively, corrects single errors affecting a codeword or the sum of any two codewords iff

• dA   ≥ n   if dA  is odd or dA  is even with  2d A /2 ≠ - 1 mod A

• dA   2≥ n   if dA  is even  with 2 d A /2  ≡ - 1 mod A

where dA  represents the exponent to which 2 belongs mod A  and n  is the number of the bits 

of the code.

8. Single Error Correction in arithmetic units

In this Section, the results reported in Section 5 will be extended to consider single error 

correction in standard ALU's. 

To this  purpose,  the  definition of  the  syndrome will  slightly  modified to  consider  the 

number representations, i.e., the non negative integers X  = | A X  |M  :

S  = |X |A 

And, from Definition 6.1 and Properties 6.1 and 6.2, X  will be recognized to be legitimate iff:

S  = 0 or S  = |M |A 
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Now, suppose that a code C satisfies conditions of Theorem 7.2  and assume that a single 

error E  = e i  b i, i  = 0, 1, ..., n -1, -b  < e i  < b,  affects a legitimate representation X thus 

generating a wrong number X'  = X + E.  Then, for the syndrome S  :

S   ≡ e i b i  mod A    or    S   ≡ Μ  + e i b i  mod A

As the code C is single error correcting, multiplying the above congruences, in parallel, by 

the (n  - 1) multiplicative inverses 1/| b i | mod A, there will be one and only one value si  for 

which

s i  = |S  x 1/| b i | | A ≡ ei   mod A

or

si  = |S  x 1/| b i | | A ≡ M  + ei   mod A

with i  = 0, 1, .... , n  - 1  and  - b  < ei   < b .  In other terms, there will be a unique si   such 

that:

• s i   ranges in [1, b ) and ei   = s i    or  in [A  - b  + 1,  A ) and  ei   = s i  - A  

or, alternatively:

• si   is in (|M  |A, |M  + b  |A ) and  ei   = |si   - M  | A or in ( |M  - b | A , |M | A ) and  ei   = - |

s*i   - M  | A . 

and the correct number will be reconstructed as

X  = X'   - E  =  X'  - ei  b i

As an example, consider a binary product code of generator A  = 23 with n  = 11, dA = 11, 

M  = 2048 representing integers in the range [ - 1024, 1024 ) and satisfying the conditions of 

Theorem 7.2. In this system, the multiplicative inverses of 2 i  mod A,  i  = 0, ... .. , 10 are:

1/2 0  mod A = 1

1/2 1  mod A = 12

1/2 2  mod A = 6

1/2 3  mod A = 3

1/2 4  mod A = 13

1/2 5  mod A = 18

1/2 6  mod A = 9

1/2 7 mod A = 16

1/2 8 mod A = 8

1/2 9  mod A = 4

1/2 10  mod A = 2

Now, consider two code words X  = 1 0 1 0 1 1 1 1 1 0 0 = 140410 and Y  = 0 1 1 1 1 0 1 1 1 0 

1 = 98910 for which X  ≡ 0  mod A  and  Y  ≡ M   mod A  and let Z be their sum  
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Z  = |X + Y |M = 0 0 1 0 0 1 1 1 0 0 1 = 34510.

If a single error E  = - 25 = 1 1 1 1 1 1 0 0 0 0 0 = - 3210 affects Z, the wrong result Z'' = 0 0 1 

0 0 1 1 1 0 0 1 = 31310 will be generated with syndrome S  = |313|23 = 14. 

Multiplying S by the multiplicative inverses of 2 i  mod A,  i  = 0, ... .. , 10, it is derived:

s 0  = |14 x 1|23 = 14

s 1  = |14 x 12|23 = 7

s 2  = |14 x 6|23 = 15

s 3  = |14 x 3|23 = 19

s 4  = |14 x 13|23 = 21

s 5  = |14 x 18|23 = 22

s 6  = |14 x 9|23 = 11

s 7  = |14 x 16|23 = 17

s 8  = |14 x 8|23 = 20

s 9  = |14 x 4|23 = 10

s 6  = |14 x 2|23 = 5

Only one s i , namely s 5  = 2210  satisfies the conditions of the procedure (e5  = - 1) and the 

correct value of  Z   becomes:

Z  = X'  - E  = |31310 + 2510|M = 34510 

It  is  worth  noting  that,  besides  correcting  errors,  the  procedure  enables  concurrent 

detection of additive overflow. In fact, it can be applied to recover a legitimate representation 

which can be finally checked to see if the representation is also a codeword.
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Appendix

Proof of Theorem 3.2

Proof.  For an AN code be  t-detecting, it is necessary that the arithmetic weight of any 

multiple of the code generator A  satisfies the inequality War (k A )  ≥ t  + 1. To prove this, 

suppose, by contradiction, that  War  (k* A ) < t  + 1. Then, there would exist a multiple of A :

 

where τ   ≤ t , and, consequently, the error E  = k* A  of multiplicity not greater than t  could 

not be detected. 

Observing that the Hamming (and, necessarily, the arithmetic) weight of any generator    is at 

most t , the theorem follows. 

Proof of Theorem 3.3

Proof.  Before proving the theorem, observe that (b i , ∑
j= 0

s

b j ) = 1 for arbitrary i and s..

Showing that the theorem holds for t  = 1 is immediate as, for any single error  E = ei b i , 

the congruence:
 e i b i  ≡ 0 mod (b +1)

 is never verified because (b i, 1 + b ) = 1 and - b  < ei  < b. 

To prove the last part of the theorem, assume  t = n - 1 and let E  be an error of multiplicity 

t :

 

where - b  < e ij  < b , e ji   0 , 0  ≠ ≤ ij   ≤ n  - 1. As n  = t  + 1, it follows that:

- b n  + b   ≤ E   ≤ b n  - b

Assuming, by contradiction, that the code is not  t - detecting implies that there exists at 

least an undetectable error 

 

with k   0. Then, recalling the range of the error ≠ E , it is obtained:

∣k∣≤⌊ bn−bbt+ 1−1
b−1 ⌋=⌊max∣E∣

A ⌋<b−1

Now, observe that   has (t +1) = n  terms, each consisting of a power of b , whereas E  has 

only (n  - 1) similar terms. Let  b u  be the lacking power of b in E, with u   0.≠

 Recalling preceding equality:

 E

and, necessarily:
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As   ranges in   and ∑
i=0

u

b i=b
u+1−1
b−1

<b−1 , the assumption h  = 0 would imply k  = 0, i.e., 

no error. 

On the other hand, the complementary assumption |h |  1 would imply that preceding≥  

equality could not be verified. In fact, recalling that |k |  ≤ b  - 2 :

 

or, as   :

 

To complete the proof, consider the case where u  = 0. It follows that:

 

and a contradiction arises as k   ≤ b  - 2 cannot be a multiple of b.

Proof of Theorem 4.8

Proof.  Necessity.  If the code is 2 - detecting, the following congruence will never be 

verified:

2τ  ≡ ± 1 mod A , 1  ≤ τ    ≤ n  - 1

As the congruence:

2τ  ≡ + 1 mod A 

has a solution for τ  = k  dA,  k  being a non negative integer, then,  necessarily:

max τ   < dA 

or, equivalently:

 n   ≤ dA

Similarly, the complementary congruence:

2τ  ≡ - 1 mod A 

is not to be verified in the hypothesis of a 2-detecting code. On the other hand, in general, this 

congruence can be satisfied only if dA  is even and, if a solution exists, it is of the form 

τ  = (2k  + 1) dA /2  

Hence, once again, necessarily:

max τ  < dA /2

or, equivalently:

n   ≤ dA /2

Sufficiency.  Suppose that the condition of the theorem holds and assume, by contradiction, 

that the code is not 2 - detecting. Then, there will exist an integer τ   in the range [1, n  - 1] 

such that:

 2τ  ≡ ± 1 mod A
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However, the congruences 2τ  ≡  1 mod A  and 2τ ≡ - 1 mod A imply, respectively,  τ  = k 

dA   and  τ  = (2k + 1) dA /2 and a contradiction follows.

Proof of Theorem 4.9

Proof.  Before proving the theorem, observe first that, as b  is a primitive root of A  and A 

is a prime, then dA  = φ (A ) = A  - 1. This implies that, for any j  in [1, A  - 1] there exists an 

integer kj  in the same range [1, A  - 1] for which b kj  ≡ j  mod A.

Necessity.  If the code is 2 - detecting, the congruence

ei  b τ   ≡ ± ej  mod A

will never hold for every τ   ranging in [1, n  - 1] and i, j  = 0, ...,. n  - 1, i   ≠ j, - b  < ei, ej < b. 

Referring  to  the  absolute  error  values  εi =  |ei  |  and  εj  =  |ej  |,  preceding  congruence  is 

equivalent to the following: 

εi b τ  ≡ ± εj mod A

with εi, εj in [1, b - 1] and τ   ranging again in [1, n  - 1].

Now, let kεi and kεj be two integers in [1, A  - 1] such that b kεi  ≡ εi  mod A and b kεj ≡ εj 

mod A . Substituting for εi, εj  in the above congruences yields:

b kεi  b τ   ≡  b kεj  mod A (4.9.1)

b kεi  b τ  ≡ - b kεj  mod A (4.9.2)

From Theorem 4.3  it follows that Congruence (4.9.1) is verified iff 

τ   ≡ (k εj   - k εi ) mod dA (4.9.1')

Similarly, recalling Theorem 4.5, Congruence (4.9.2) will be restated as 

b k εi  b τ  ≡ b kε j+dA /2  mod A 

and, from the same Theorem 4.3 , Congruence (4.9.2) will be verified iff

 τ   ≡ (k εj  - k εi) + dA /2  mod dA (4.9.2')

As a conclusion, the code will be 2 - detecting provided that 

 τ  ≡ (k εj  - k εi)  mod dA /2 (4.9.3)

will never hold.

Now, observe that, for k εj  = k εi, i.e.,  εi = εj , Congruence (4.9.3) becomes:
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 τ  ≡ 0  mod dA /2 (4.9.3)

or, recalling that τ    1, ≥ τ  = h  dA /2, where h  is a positive integer. Hence, for the code be 2 - 

detecting, necessarily:

max τ  = n  - 1 < dA /2 = (A  - 1)/2 (4.9.4)

In the complementary hypothesis where k εj   ≠ k εi, i.e.,  εi  ≠ εj, from Congruence (4.9.3) 

and (4.9.4) it follows that
τ  = |k εj  - k εi| dA /2 

and, necessarily, for the code be 2 - detecting

max τ   = n  - 1 < minεi,εj : εi≠εj |k εj  - k εi| dA /2 

This complete the proof of  the necessity.

Sufficiency.  Suppose  that  the  condition  of  the  Theorem holds  and,  by  contradiction, 

assume that the code is not 2 - detecting. Then, there will be two integers εi , εj in [1, b  - 1] 

such that

εi b τ  ≡ ± εj mod A

with 1  ≤ τ   ≤ n  - 1 or, equivalently, recalling the above notations

b kεi b τ  ≡  b kεj  mod A (4.9.1)

b kεi  b τ  ≡ - b kεj  mod A (4.9.2)

In order to Congruence (4.9.1) or Congruence (4.9.2) be verified the congruence

τ   ≡ (k εj  - k εi) mod dA

or congruence
 τ   ≡ (k εj  - k εi) + dA/2 mod dA

must hold. However:

• if k εj  = k εi, then τ  = dA or τ  = dA /2 

• if k εj   ≠ k εi , then τ  = |k εj  - k εi| dA or τ  = |k εj  - k εi| dA/2

In both cases, a contradiction follows and the proof  is completed.
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