
- 1 -

ERROR CONTROL BY PRODUCT CODES IN ARITHMETIC UNITS

Ferruccio BARSI and Maria Cristina PINOTTI

Department of Computer Science and Mathematics

University of Perugia, 06123 Perugia, Italy

{barsi,pinotti}@unipg.it

Abstract. Product (AN) codes constructed in weighted number systems are investigated

with the aim of devising error control features suitable for application in arithmetic units.

The previous theoretical framework, which was derived in the hypothesis of codes defined in

a virtual range M = k A, is restated for any physical interval M = bn, where b is the radix of

the system and n is the number of digits.

Some general properties holding for radix-b-AN codes are reconsidered and necessary

and sufficient conditions for single and double error detection are derived for binary codes

and for a sample non binary case. Single error correction is discussed as well and a fast

error decoding procedure is suggested and implemented.

Finally, modular AN codes are introduced in order to enable the use of product codes in

standard ALU's representing relative integers by means of a radix complement notation. It is

shown that the above properties keep their validity and that concurrent single error

correction can be associated with arithmetic computation without increasing the time spent

for processing.

Index Terms. Arithmetic codes, arithmetic units, error detection and correction, modular

AN codes, product codes, syndrome decoding, weighted AN codes

1. Introduction.

Arithmetic AN codes have been extensively studied in the past literature in both cases of

residue and weighted number system implementations. However, whereas the error detecting

and correcting properties of residue AN codes have been completely derived for errors of

arbitrary multiplicity [1 - 4], the best results reported in the literature for weighted AN codes

are limited to particular cases of single error detection and correction [5 - 12]. Moreover, in

order to easily preserve the arithmetic closure, weighted AN codes have been studied in a

virtual range M = k A different from the natural range bn of a weighted number system. It is

easy to verify [9] that the assumption M = k A increases the hardware and time costs of code

implementation and leads to impractical error detecting and correcting conditions.

In this work, the theory of weighted AN codes is restated for codes ranging in any interval

[0, bn), where b and n indicate the radix and the number of digits of the system, respectively.

Moreover, starting from a new definition of modular AN codes it is shown that single and

- 2 -

double error detection or, alternatively, single error correction can be easily obtained in

conventional ALU's concurrently with the arithmetic processing.

Unfortunately, the problem of detecting and correcting errors of higher multiplicity remain

still unsolved [12 – 17]. However, it is worth noting that the probability of high multiplicity

errors is strongly dependent on the mean time between check and, consequently, it is

sufficiently small whenever the error control is associated with each computational step.

As this work represents the first attempt of using weighted product codes in practice, no

comparison with other solutions is possible.

In what follows, Section 2 reviews the problem of error control in an arithmetic

environment together with the fault - error relationships leading to an arithmetic error model.

Section 3 derives some simple properties holding for errors of arbitrary multiplicity whereas

the problem of single and double error detection is studied in Section 4. In the same Section

4, double error detection in binary systems is analyzed in depth, and error control conditions

are presented in a simple and effective form. Non binary codes are also considered for a

sample, significant case. Section 5 is devoted to the problem of single error correction and

syndrome decoding.

Finally, Sections 6 to 8 are devoted to introduce modular AN codes and to extend the

results of preceding Sections to enable codes implementation in standard ALU's. Single error

correction is presented and it is shown that a correcting procedure can be carried out

concurrently with the arithmetic computation.

2. Arithmetic codes

Let’s recall that a code is said to be arithmetic iff it is closed under an arithmetic operation,

generally the addition. In other terms, C is an arithmetic code iff, for any two codewords c1 ,

c2 and an arithmetic operator "#", c1 # c2 is also a codeword. However, to get more insight

into the difference between transmission and arithmetic codes, it is worthwhile to briefly

reconsider the fault-error relationships and the corresponding error models.

As usual, assume that an information word is represented as a vector X = (xn-1 , xn-2 ,,

x0) and suppose that X is transmitted through a faulty or noisy channel. Let X* = (x*n-1 ,

x*n-2 ,, x*0) be the received word. In the hypothesis that a one-to-one correspondence

exists between each elementary path of the channel and an information word component, the

same correspondence can be assumed between a faulty path in the channel and a wrong

information component. Hence, most authors defined the transmission error as the error

vector

E = X* - X = (x*n-1 - xn-1 , x*n-2 - xn-2 ,, x*0 - x0)

and the error multiplicity as the number of non zero error vector components.

- 3 -

Now, assume that X and Y are two operand to be processed in an arithmetic unit. In this

case, the relations between faults and the error components of the result are unpredictable and

the error vector becomes a function of the fault and of the actual value of the operands.

In fact, consider, as an example, two pair of binary operands (A = 0 0 1 0 1 1 , B = 0 1 0

0 1 1) and (C = 0 1 1 1 1 1, D = 0 0 0 0 0 1). Adding them pairwise yields SAB = 0 1 1 1 1 0

and SCD = 1 0 0 0 0 0, respectively. If a fault occurs i.e., for instance, the carry from the

rightmost position is stacked to "0", adding the above operands will produce the wrong results

S*AB = 0 1 1 1 0 0 and S*CD = 0 1 1 1 1 0 and, evaluating the corresponding error vectors, it

follows that:

EAB = (0, 0, 0, 0, -1, 0) , ECD = (-1, 1, 1, 1, 1, 0)

i.e., the same fault will produce two different error vectors.

This conclusion is somewhat surprising. However, recalling that the error ("-1" for the

carry in the rightmost bit position) is to be processed in the same arithmetic unit as an

additional operand and that the result is defined over the entire information word, it follows

that the measure of the error is to be considered at a word level.

In the example, considering the numerical value of the difference between the wrong and

the correct results (the error values) it follows that, in signed binary notation:

EAB = ECD = - 0 0 0 0 1 0

and the same conclusion is obtained evaluating the error vectors EAB , ECD as binary, signed

digit number representations:

EAB = -1x 2 = - 2 , ECD = -1x 25 + 1x 24 + 1x 23 + 1x 22 + 1x 2 = - 2

i.e.:

EAB = ECD = - 0 0 0 0 1 0

Previous considerations show that the effect of a fault can be unambiguously evaluated by

computing the numerical value of the corresponding error vector.

Evaluating the error multiplicity in arithmetic context is much more difficult than in a

transmission one. In fact, for any given error value, there are more equivalent error vectors

and the error multiplicity cannot be related to the number of non zero error vector

components. The problem is solved by considering the arithmetic error weight which is

obtained according to the following definitions [10].

Definition 2.1. For any integer N , the arithmetic weight War (N) is defined as the

smallest number of non zero terms in an expression for N of the form

N = ± an-1 b n-1 ± an-2 b n-2 ± ± a0

- 4 -

where b is the radix of the system and 0 ≤ ai < b.

Definition 2.2. The arithmetic distance Dar (N1 , N2) between two integers N1 and N2 is

the arithmetic weight of (N1 - N2), i.e.

Dar (N1 , N2) = War (N1 - N2)

Definition 2.3. The multiplicity of an arithmetic error E is defined as its arithmetic weight.

The arithmetic distance is a metric. Thus, the error detecting and correcting properties of

an arithmetic code C having a minimum code distance Dar are the following:

P1: the code C detects arithmetic errors of multiplicity not greater than t iff Dar ≥ t + 1

P2: the code C corrects arithmetic errors of multiplicity not greater than t iff Dar 2 ≥ t + 1

P3: the code C detects arithmetic errors up to a multiplicity tR and, concurrently, corrects

arithmetic errors of multiplicity not greater than tC (tR ≥ tC) iff Dar ≥ tR + tC + 1

Previous results hold in the hypothesis of codes defined in an unlimited numerical range.

In practice, however, numbers and computations are defined in a finite range M = b n, where

b is the radix of the number system and n is the number of digits. Applying the above

Definition 2.2 in a mod M environment, it follows, in general:

Dar (N1 , N2) = War (|N1 - N2 |M) ≠ War (|N2 - N1 |M) = Dar (N2 , N1)

and the symmetry of the metric is no longer satisfied.

To overcome this obstacle, most authors restated preceding definitions as follows.

Definition 2.4. For any integer N , the modular weight WM (N) is given by

WM (N) = min {War (|N |M , War (| - N |M)

Definition 2.5. The modular distance DM (N1 , N2) of two integers N1 and N2 is given by

WM (N1 - N2).

Definition 2.6. The multiplicity of an arithmetic error in a finite range M is defined as its

modular weight.

From Definition 2.4, it is seen that the modular distance satisfies both the positiveness and

the symmetry properties of a metric. In addition, since the triangular inequality is satisfied as

well [9] provided that, as in our case, M = bn, the modular distance DM (N1 , N2) is a metric

and, substituting DM (N1 , N2) for the arithmetic distance Dar (N1 , N2), the arithmetic error

detecting and correcting properties P1 – P3 keep their validity.

- 5 -

3. AN codes in weighted number systems

A product or AN code is defined as a code representing any integer N by the product AN

where A is an integer called the generator of the code. From the definition, it is immediately

verified that:

Theorem 3.1. Given an AN code C, any error E affecting a code word is detected iff E ≠

0 mod A.

In what follows, attention will be focused on product codes implemented in weighted

number systems of fixed radix b. Moreover, in order to minimise the code redundancy, it will

be assumed that (A , b) = 1. The next two conditions hold whose proofs are given in

Appendix.

Theorem 3.2. A necessary condition for an AN code C be t - detecting is

Theorem 3.3. An AN code of generator is t - detecting for t = 1 and t = n - 1, where n

indicates the number of digits of the representation.

4. Single and Double Error Detection
Consider a weighted system with n digits and radix b and let E = ei b i be a single error.

Then a product code C will detect E iff

ei b i ≠ 0 mod A

for arbitrary ei 0, ≠ i = 0, , n -1 , - b < ei < b .

Recalling that it has been assumed that (A , b) = 1, it is trivially derived that C is single

error detecting iff ei ≠ 0 mod A . Then, the following necessary and sufficient condition can

be easily proved.

Theorem 4.1. An AN code constructed in a weighted system of radix b with (A , b) = 1 is

1-detecting iff A ≥ b + 1.

Proof. Necessity. To prove necessity, assume that C is an 1-detecting AN code. Then ei ≠ 0

mod A for any non zero ei , - b < ei < b , i.e., necessarily, A > max |ei | = b - 1. Recalling

that (A , b) = 1, it follows that A ≥ b + 1 and the first part of the theorem is proved.

Sufficiency. To prove sufficiency, assume that A ≥ b + 1. However, this assumption

implies ei ≠ 0 mod A for any non zero ei , - b < ei < b and the proof is completed.

- 6 -

Dealing with double error detection is more difficult than detecting single errors.

A double error E is an error which can be expressed in the form:

E = ei b i + ej b j

and an AN code will be 2 - detecting iff ei b i + ej b j ≠ 0 mod A for any pair ei , ej 0, ≠ i,

j = 0, (n -1), i ≠ j , - b < ei , ej < b .

Recalling the assumption (A, b) = 1 and letting, without loss of generality, i < j , the above

condition can be restated in the form ei + ej b j-i ≠ 0 mod A or, with a slightly different

notation:

ei + ej b k ≠ 0 mod A

 where k = 1, , n -1, ei , ej 0, ≠ - b < ei , ej < b , i, j = 0, (n -1) , i ≠ j.

As the following error detecting conditions will be derived by using number theory tools

and concepts, some useful definitions and properties will be reported for the sake of

completeness.

Definition 4.1. For any integer m 0, the Euler function ≠ φ (m) is the number of positive

integers x, x < |m | , such that (x, m) = 1.

Observing that φ (m) = φ (- m), it follows that attention can be limited to positive integers.

Theorem 4.2. (Euler-Fermat theorem) Given two integers a and m > 1 such that (a, m)

= 1, then a φ(m) ≡ 1 mod m.

Definition 4.2. Given an integer a prime to a positive integer m > 1, the least positive

integer dm such that

a dm ≡ 1 mod m

is called the exponent to which a belongs mod m.

As an example, consider integers - 1, 2 and 3 and let m = 7. Then the exponents to which

the above integers belong mod 7 are 2, 3 and 6, respectively.

Theorem 4.3. Given an integer a prime to a positive integer m > 1, let dm be the exponent

to which a belongs mod m. Then, for positive integers s and t :

a s ≡ a t mod m

iff:

s ≡ t mod dm

Proof. Necessity. Assume, without loss of generality, s ≥ t. The difference (s - t) can be

- 7 -

expressed as:

s - t = dm q + r , 0 ≤ r < dm

As (a, m) = 1, from the congruence a s ≡ a t mod m it follows that

1 ≡ a (s - t) ≡ (a dm) q a r mod m

and, necessarily, r = 0, i.e., s ≡ t mod dm.

Sufficiency. Let s ≡ t mod dm. Then s = t + k dm and, trivially, a s ≡ a t mod m .

Corollary 4.1. Given an integer a prime to a positive integer m > 1, the integers

a , a 2 , a 3, ... , a dm

are distinct mod m.

Proof. For any pair of positive integers (i , j), i ≠ j, 1 ≤ i, j ≤ dm, the congruence a i

≡ a j mod m cannot be verified. To prove this, suppose the contrary. Then, from Theorem 4.3,

a i ≡ a j mod m would imply i ≡ j mod dm, i.e., dm would divide (i - j) and a

contradiction arises.

Theorem 4.4. Given an integer a prime to a positive integer m > 1, if, for a positive

integer τ , 1 ≤ τ < dm

a τ ≡ - 1 mod m

then, necessarily

τ = dm /2

Proof. From the congruence

a τ ≡ - 1 mod m

it follows that

a 2τ ≡ 1 mod m

or, from Theorem 4.3, 2 τ = k dm and, recalling that τ < dm, k = 1 and hence τ = dm /2.

Corollary 4.2. In the hypothesis of Theorem 4.4, dm is even.

Theorem 4.5. Given an integer a prime to a positive integer m > 1, with dm even, if

a dm /2 ≡ - 1 mod m

then, necessarily, for any non negative integer h :

a h ≡ - a h + dm /2 mod m

Proof. The theorem is trivially proved multiplying for a h both sides of the congruence

- 8 -

a dm /2 ≡ - 1 mod m

Theorem 4.6. Given an integer a prime to a positive integer m > 1, if the congruence aτ ≡
 - 1 mod m is never verified for a positive integer τ , 1 ≤ τ < dm , then a h , where h is any

non negative integer, has no additive inverse of the form a k , k 0 in the ring mod ≥ m.

Proof. By contradiction, suppose that the congruence

a h ≡ - a k mod m

is verified for two non negative integers h and k. Assuming, without loss of generality, h > k

and dividing both sides of the congruence by a k , it is obtained

a h - k ≡ - 1 mod m

which contradicts the original hypothesis.

The following Corollary 4.3 is immediate.

Corollary 4.3. Given an integer a prime to a positive integer m > 1, if, for two non

negative integers h and k :

a h ≡ - a k mod m

then

a dm /2 ≡ - 1 mod m

Theorem 4.7. Given an integer a prime to a positive integer m > 1, the multiplicative

inverse of any a h in the mod m ring is a k with

k ≡ - h mod dm

where h and k are non negative integers.

Proof. Observe first that the existence of the multiplicative inverse of a h mod m is

guaranteed as (a, m) = 1 implies (a h, m) = 1. Moreover, by definition of the multiplicative

inverse :

Then, dividing both sides of the congruence by a h* , where 0 ≤ h* ≤ dm , h* ≡ h mod dm :

It is concluded that, in general, the multiplicative inverse of a h will be expressed as a k

with k ≡ dm - h* ≡ - h mod dm.

Definition 4.2. Let m be a positive integer. Then, any integer h such that the exponent to

which it belongs mod m is φ (m) is called a primitive root of m.

- 9 -

Now, we are ready to prove two necessary and sufficient conditions for a weighted AN

code to be 2-detecting (see Appendix for proofs).

The most significant case concerns binary systems for which the general condition for

double error detection

ei + ej b k ≠ 0 mod A

 can be restated in the simpler form:

2 k ≠ ± 1 mod A

with k = 1, ... , n -1.

Theorem 4.8. A binary AN code with (A , 2) = 1 is 2 - detecting iff

• dA ≥ n if dA is odd or dA is even with 2d A /2 ≠ - 1 mod A

• dA 2≥ n if dA is even with 2 d A /2 ≡ - 1 mod A

where dA represents the exponent to which 2 belongs mod A and n is the number of bits of

the code.

As an example, the following Table I shows the least generators A for some increasing

values of n, as derived from Theorem 4.8.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Amin 7 11 11 13 19 19 19 23 23 29 29 29 37 37 37 37 47 47

dA 3 10 10 12 18 18 18 11 11 28 28 28 36 36 36 36 23 23

The validity of Theorem 4.8 is limited to the case of binary systems. A general formulation

holding for arbitrary radix b is still unknown. However, it is possible to derive necessary and

sufficient conditions for double error detection if some additional assumptions are made. To

this purpose, assume that the code generator A is a prime and that the radix b is a primitive

root of A. In these hypotheses, the following Theorem holds.

Theorem 4.9. A weighted AN code of radix b where the generator A is a prime and b is

a primitive root of A is 2 - detecting iff

δ n≥

where n indicates the number of digits and

- 10 -

where and kj (j = u, v) is an integer in [1, A - 1] such that b kj ≡ j mod A.

5. Single Error Correction

Some general conditions leading to double error detection have been presented in

preceding Section 4. From the properties of the arithmetic metric, it is concluded that a

double error detecting code can be used, alternatively, for single error correction. To do this,

let's define first an error figure according to the following definition.

Definition 5.1. Given a product code of generator A and any integer X to be checked, the

number S = |X |A will be defined as the syndrome of X.

Now, suppose that a code C satisfies the conditions for single error correction and assume

that a single error E = e i b i, i = 0, 1, ..., n -1, -b < e i < b affects a legitimate code word X

thus generating a wrong number X' = X + E. To perform correction, the syndrome S = |X' |A

is first computed and:

S ≡ X' = X + E ≡ E = e i b i mod A

As the code C is single error correcting, multiplying (in parallel) the above congruence by

the (n - 1) multiplicative inverses 1/| b i | mod A, there will be one and only one value

s i = S x 1/| b i | ≡ ei mod A

where i = 0, 1, , n - 1 and - b < ei < b . In other terms, recalling preceding limitations,

there will be a unique integer s i such that

• s i ranges in [1, b) i.e., ei = s i or, alternatively:

• s i ranges in [A - b - 1, A) i.e., ei = s i - A .

and the correct number will be reconstructed as

X = X' - E = X' - ei b i

As an example of the application of the procedure, consider a binary product code of

generator A = 19 with n = 7, dA = 18, satisfying conditions of Theorem 4.8. Computing the

multiplicative inverses of 2 i mod A, i = 0, , 6 it is obtained:

1/2 0 mod A = 1

1/2 1 mod A = 10

1/2 2 mod A = 5

1/2 3 mod A = 12

1/2 4 mod A = 6

1/2 5 mod A = 3

- 11 -

1/2 6 mod A = 11

Now, let

X = 0 1 0 1 0 0 02 = 3810

be a legitimate codeword and suppose that a single error

E = - 0 0 1 0 0 0 02 = - 1 x 2 4 = - 1610

 affects integer X thus yielding:

X' = X + E = 0 0 1 0 1 1 02 = 2210

Computing the syndrome of X' , it is obtained:

S = |X' |A = |22|19 = 310

and, multiplying the syndrome by the multiplicative inverses of 2i, I = 1, 2, ,… , 6 it is

derived:

s 0 = 310

s 1 = |S x 1/2 |A = 1110

s 2 = |S x 1/2 2 |A = 1510

s 3 = |S x 1/2 3 |A = 1710

s 4 = |S x 1/2 4 |A = 1810

s 5 = |S x 1/2 5 |A = 910

s 6 = |S x 1/2 6 |A = 1410

Here, only one s i , namely s4 = 1810 belongs to the legitimate error range [1, b), [A - b -

1, A) and, consequently, ei = s i - A. = 18 - 19 = - 1. The error is then reconstructed as E = -

2 4 and the correct value of X becomes:

X = X' - E = 2210 - (- 1610) = 3810

6. Using AN codes in arithmetic units

In Section 3, a product code has been defined as a code representing any integer N by the

product AN for some suitable constant integer A , the generator of the code. The arithmetic

properties of such a code derive from its definition. In fact, assuming that two integers X and

Y are encoded in a product code and then added together, it is obtained:

A X + A Y = A (X + Y)

i.e., adding two code words produces another code word.

In practice, however, integers are defined in a finite range M = bn ≠ k A (where b and n

indicate the radix and the number of digits of the system, respectively), relative integers are

represented in a radix complement notation and computations are carried out mod M.

Consequently, the representation | A Z |M of code words corresponding to relative integers Z

or to the sum of two code words | A X + A Y |M may produce results which are no more code

words.

- 12 -

In the past literature, most authors solved this problem by limiting their consideration to

non negative integers and by assuming a code range M = k A , to be implemented in a

physical range bn ≥ M.

However, a direct approach to AN codes constructed in standard arithmetic units is

possible. In fact, suppose that integers X in the range [- m , m) are considered and

represented by means of a product code of generator A. The code words XA = A X will range

in [- A m, A m) and, representing by means of a complement notation in the range M = bn ,

2 A m ≤ M < 2 A (m + 1) it will be obtained:

X = | XA |M = | A X |M

or, recalling the complement notation protocol:

X ≡ 0 mod A if 0 ≤ X < m , i.e., 0 | ≤ XA |M = XA < M /2

M - X ≡ 0 mod A if - m ≤ X < 0 , i.e., M /2 | ≤ XA |M = M + XA < M

Now, suppose that the representations of two legitimate code words X = | XA |M = | A X |M

and Y = | YA |M = | A Y |M are added and let S = | X + Y |M be the representation of their sum.

Once again, recalling the basic elements of computer arithmetic, it is concluded that

S ≡ 0 mod A if 0 ≤ S < M /2

M - S ≡ 0 mod A if M /2 ≤ S < M

in the absence of arithmetic overflow and

S ≡ 0 mod A if M /2 ≤ S < M

M - S ≡ 0 mod A if 0 ≤ S < M /2

if overflow occurred.

Conversely, any representation Z can be recognized to be legitimate (i.e., corresponding to

the representation of a code word or to the correct sum of two code words) if:

Z ≡ 0 mod A and 0 ≤ Z < M/2

M - Z ≡ 0 mod A and M /2 ≤ Z < M

whereas, if an overflow is detected:

Z ≡ 0 mod A and M /2 ≤ Z < M

M - Z ≡ 0 mod A and 0 ≤ Z < M /2

Preceding considerations define modular AN codes in conventional ALU’s and prove that

the arithmetic properties of product codes are preserved according to the following definitions

and properties.

Definition 6.1. In a modular A N code representing integers in [- m , m) in the range M

= bn , 2 A m ≤ M < 2 A (m + 1), by means of a complement notation, any integer X , 0 ≤

- 13 -

X < M, will be recognized to be a code word iff:

X ≡ 0 mod A if 0 ≤ X < M /2

M - X ≡ 0 mod A if M /2 ≤ X < M

Property 6.1. In the absence of an arithmetic overflow, the sum S = | X + Y |M of any two

code words X and Y is also a code word.

Property 6.2. Let S = | X + Y |M be the sum of any two code words X and Y . Then, if

an arithmetic overflow occurs

S ≡ 0 mod A if M /2 ≤ S < M

M - S ≡ 0 mod A if 0 ≤ S < M /2

Definition 6.2. In a modular A N code representing integers in [- m , m) in the range M

= bn , 2 A m ≤ M < 2 A (m + 1), by means of a complement notation, any integer Z , 0 ≤

Z < M, will be referred to as a legitimate representation if

Z ≡ 0 mod A or Z ≡ M mod A

Now, let X be a codeword or the sum of any two codewords and suppose that an error E, -

M < E < M, affects the legitimate information X thus generating in [0, M) the wrong

number X* :

X* = X + E

In order to devise the conditions for detecting E , consider the following two cases for X.

Case 1

X ≡ 0 mod A. In this case, the error will be detected iff

X* ≠ 0 mod A i.e., E ≠ 0 mod A

and

X* ≠ M mod A i.e., E ≠ M mod A

Case 2

X ≡ M mod A. In this case, the error will be detected iff

X* ≠ 0 mod A i.e., E ≠ - M mod A

and

X* ≠ M mod A i.e., E ≠ 0 mod A

However, as far as errors E are considered in the range (- M , M), to each E in the range

(0, M), there corresponds a mod M equivalent E* = - (M - E) in (- M , 0) for which

E* ≡ E mod M

- 14 -

and, conversely, to each error in the range (- M , 0), there corresponds in (0, M) a mod M

equivalent error E* = E + M for which

E* ≡ E mod M

Now, observing that two errors which are mod M equivalent have the same modular

weight, consider a pair {E , E* } and suppose, without loss of generality, that E > 0.

Then, if E ≠ 0 mod A , il follows E* ≠ - M mod A and, if E ≠ M mod A , il follows

E* ≠ 0 mod A .

Preceding considerations prove the following Theorem 3.1.

Theorem 6.1. Given a modular AN code C, any error corresponding to a mod M

equivalent pair {E , E* }, - M < E, E* < M affecting a code word or the sum of two code

words will be detected iff

E ≠ 0 mod A

and

E* ≠ 0 mod A

7. Error detection and correction in arithmetic units

In a mod M arithmetic unit, M = bn (where b and n indicate the radix and the number of

digits of the system), let E be a single error in the range (-M, M) for which, according to

Definition 2.6:

|E |M = εi bi or |- E |M = εi bi

i.e.,

E = ± εi bi , 0 < εi < b

or, equivalently:

E = ei bi

with - b < ei < b , i = 0, , n - 1.

From Theorem 6.1, observing that |E *|M = |E |M , it is concluded that a single error is

detected iff

ei b i ≠ 0 mod A for any ei 0, ≠ i = 0, , n -1 , - b < ei < b .

As a consequence, Theorem 4.1 can be restated as follows.

- 15 -

Theorem 7.1. A modular AN code constructed in a weighted system of radix b with (A, b)

= 1 is 1-detecting iff A ≥ b + 1.

Similarly, consider a double error E in the range (- M, M) for which, according to

Definition 2.6:

|E |M = εi b i ± εj b j or |- E |M = εi b i ± εj b j

with 0 < εi , εj < b , 0 < εi b i ± εj b j < M or, equivalently:

E = ei b i + ej b j

for - b < ei , ej < b , i, j = 0, (n -1), i ≠ j , ei , ej 0.≠

Once again, observing that |E *|M = |E |M , it is concluded from Theorem 6.1 that a

modular AN code is 2 - detecting iff ei b i + ej b j ≠ 0 mod A . Recalling the assumption (A ,

b) = 1 and letting, without any loss of generality, i < j , the 2 - detecting condition can be

restated in the form:

ei + ej b k ≠ 0

 where k = 1, , n -1, ei , ej 0, - b < ≠ ei , ej < b , i, j = 0, (n -1) , i ≠ j.

It is immediate to realise that the results of Theorems 4.8 and 4.9 apply to modular AN

codes. In particular, Theorem 4.8 takes the form:

Theorem 7.2. A binary modular AN code with (A , 2) = 1 detects double errors or,

alternatively, corrects single errors affecting a codeword or the sum of any two codewords iff

• dA ≥ n if dA is odd or dA is even with 2d A /2 ≠ - 1 mod A

• dA 2≥ n if dA is even with 2 d A /2 ≡ - 1 mod A

where dA represents the exponent to which 2 belongs mod A and n is the number of the bits

of the code.

8. Single Error Correction in arithmetic units

In this Section, the results reported in Section 5 will be extended to consider single error

correction in standard ALU's.

To this purpose, the definition of the syndrome will slightly modified to consider the

number representations, i.e., the non negative integers X = | A X |M :

S = |X |A

And, from Definition 6.1 and Properties 6.1 and 6.2, X will be recognized to be legitimate iff:

S = 0 or S = |M |A

- 16 -

Now, suppose that a code C satisfies conditions of Theorem 7.2 and assume that a single

error E = e i b i, i = 0, 1, ..., n -1, -b < e i < b, affects a legitimate representation X thus

generating a wrong number X' = X + E. Then, for the syndrome S :

S ≡ e i b i mod A or S ≡ Μ + e i b i mod A

As the code C is single error correcting, multiplying the above congruences, in parallel, by

the (n - 1) multiplicative inverses 1/| b i | mod A, there will be one and only one value si for

which

s i = |S x 1/| b i | | A ≡ ei mod A

or

si = |S x 1/| b i | | A ≡ M + ei mod A

with i = 0, 1, , n - 1 and - b < ei < b . In other terms, there will be a unique si such

that:

• s i ranges in [1, b) and ei = s i or in [A - b + 1, A) and ei = s i - A

or, alternatively:

• si is in (|M |A, |M + b |A) and ei = |si - M | A or in (|M - b | A , |M | A) and ei = - |

s*i - M | A .

and the correct number will be reconstructed as

X = X' - E = X' - ei b i

As an example, consider a binary product code of generator A = 23 with n = 11, dA = 11,

M = 2048 representing integers in the range [- 1024, 1024) and satisfying the conditions of

Theorem 7.2. In this system, the multiplicative inverses of 2 i mod A, i = 0, , 10 are:

1/2 0 mod A = 1

1/2 1 mod A = 12

1/2 2 mod A = 6

1/2 3 mod A = 3

1/2 4 mod A = 13

1/2 5 mod A = 18

1/2 6 mod A = 9

1/2 7 mod A = 16

1/2 8 mod A = 8

1/2 9 mod A = 4

1/2 10 mod A = 2

Now, consider two code words X = 1 0 1 0 1 1 1 1 1 0 0 = 140410 and Y = 0 1 1 1 1 0 1 1 1 0

1 = 98910 for which X ≡ 0 mod A and Y ≡ M mod A and let Z be their sum

- 17 -

Z = |X + Y |M = 0 0 1 0 0 1 1 1 0 0 1 = 34510.

If a single error E = - 25 = 1 1 1 1 1 1 0 0 0 0 0 = - 3210 affects Z, the wrong result Z'' = 0 0 1

0 0 1 1 1 0 0 1 = 31310 will be generated with syndrome S = |313|23 = 14.

Multiplying S by the multiplicative inverses of 2 i mod A, i = 0, , 10, it is derived:

s 0 = |14 x 1|23 = 14

s 1 = |14 x 12|23 = 7

s 2 = |14 x 6|23 = 15

s 3 = |14 x 3|23 = 19

s 4 = |14 x 13|23 = 21

s 5 = |14 x 18|23 = 22

s 6 = |14 x 9|23 = 11

s 7 = |14 x 16|23 = 17

s 8 = |14 x 8|23 = 20

s 9 = |14 x 4|23 = 10

s 6 = |14 x 2|23 = 5

Only one s i , namely s 5 = 2210 satisfies the conditions of the procedure (e5 = - 1) and the

correct value of Z becomes:

Z = X' - E = |31310 + 2510|M = 34510

It is worth noting that, besides correcting errors, the procedure enables concurrent

detection of additive overflow. In fact, it can be applied to recover a legitimate representation

which can be finally checked to see if the representation is also a codeword.

- 18 -

Appendix

Proof of Theorem 3.2

Proof. For an AN code be t-detecting, it is necessary that the arithmetic weight of any

multiple of the code generator A satisfies the inequality War (k A) ≥ t + 1. To prove this,

suppose, by contradiction, that War (k* A) < t + 1. Then, there would exist a multiple of A :

where τ ≤ t , and, consequently, the error E = k* A of multiplicity not greater than t could

not be detected.

Observing that the Hamming (and, necessarily, the arithmetic) weight of any generator is at

most t , the theorem follows.

Proof of Theorem 3.3

Proof. Before proving the theorem, observe that (b i , ∑
j= 0

s

b j) = 1 for arbitrary i and s..

Showing that the theorem holds for t = 1 is immediate as, for any single error E = ei b i ,

the congruence:
 e i b i ≡ 0 mod (b +1)

 is never verified because (b i, 1 + b) = 1 and - b < ei < b.

To prove the last part of the theorem, assume t = n - 1 and let E be an error of multiplicity

t :

where - b < e ij < b , e ji 0 , 0 ≠ ≤ ij ≤ n - 1. As n = t + 1, it follows that:

- b n + b ≤ E ≤ b n - b

Assuming, by contradiction, that the code is not t - detecting implies that there exists at

least an undetectable error

with k 0. Then, recalling the range of the error ≠ E , it is obtained:

∣k∣≤⌊ bn−bbt+ 1−1
b−1 ⌋=⌊max∣E∣

A ⌋<b−1

Now, observe that has (t +1) = n terms, each consisting of a power of b , whereas E has

only (n - 1) similar terms. Let b u be the lacking power of b in E, with u 0.≠

 Recalling preceding equality:

 E

and, necessarily:

- 19 -

As ranges in and ∑
i=0

u

b i=b
u+1−1
b−1

<b−1 , the assumption h = 0 would imply k = 0, i.e.,

no error.

On the other hand, the complementary assumption |h | 1 would imply that preceding≥

equality could not be verified. In fact, recalling that |k | ≤ b - 2 :

or, as :

To complete the proof, consider the case where u = 0. It follows that:

and a contradiction arises as k ≤ b - 2 cannot be a multiple of b.

Proof of Theorem 4.8

Proof. Necessity. If the code is 2 - detecting, the following congruence will never be

verified:

2τ ≡ ± 1 mod A , 1 ≤ τ ≤ n - 1

As the congruence:

2τ ≡ + 1 mod A

has a solution for τ = k dA, k being a non negative integer, then, necessarily:

max τ < dA

or, equivalently:

 n ≤ dA

Similarly, the complementary congruence:

2τ ≡ - 1 mod A

is not to be verified in the hypothesis of a 2-detecting code. On the other hand, in general, this

congruence can be satisfied only if dA is even and, if a solution exists, it is of the form

τ = (2k + 1) dA /2

Hence, once again, necessarily:

max τ < dA /2

or, equivalently:

n ≤ dA /2

Sufficiency. Suppose that the condition of the theorem holds and assume, by contradiction,

that the code is not 2 - detecting. Then, there will exist an integer τ in the range [1, n - 1]

such that:

 2τ ≡ ± 1 mod A

- 20 -

However, the congruences 2τ ≡ 1 mod A and 2τ ≡ - 1 mod A imply, respectively, τ = k

dA and τ = (2k + 1) dA /2 and a contradiction follows.

Proof of Theorem 4.9

Proof. Before proving the theorem, observe first that, as b is a primitive root of A and A

is a prime, then dA = φ (A) = A - 1. This implies that, for any j in [1, A - 1] there exists an

integer kj in the same range [1, A - 1] for which b kj ≡ j mod A.

Necessity. If the code is 2 - detecting, the congruence

ei b τ ≡ ± ej mod A

will never hold for every τ ranging in [1, n - 1] and i, j = 0, ...,. n - 1, i ≠ j, - b < ei, ej < b.

Referring to the absolute error values εi = |ei | and εj = |ej |, preceding congruence is

equivalent to the following:

εi b τ ≡ ± εj mod A

with εi, εj in [1, b - 1] and τ ranging again in [1, n - 1].

Now, let kεi and kεj be two integers in [1, A - 1] such that b kεi ≡ εi mod A and b kεj ≡ εj

mod A . Substituting for εi, εj in the above congruences yields:

b kεi b τ ≡ b kεj mod A (4.9.1)

b kεi b τ ≡ - b kεj mod A (4.9.2)

From Theorem 4.3 it follows that Congruence (4.9.1) is verified iff

τ ≡ (k εj - k εi) mod dA (4.9.1')

Similarly, recalling Theorem 4.5, Congruence (4.9.2) will be restated as

b k εi b τ ≡ b kε j+dA /2 mod A

and, from the same Theorem 4.3 , Congruence (4.9.2) will be verified iff

 τ ≡ (k εj - k εi) + dA /2 mod dA (4.9.2')

As a conclusion, the code will be 2 - detecting provided that

 τ ≡ (k εj - k εi) mod dA /2 (4.9.3)

will never hold.

Now, observe that, for k εj = k εi, i.e., εi = εj , Congruence (4.9.3) becomes:

- 21 -

 τ ≡ 0 mod dA /2 (4.9.3)

or, recalling that τ 1, ≥ τ = h dA /2, where h is a positive integer. Hence, for the code be 2 -

detecting, necessarily:

max τ = n - 1 < dA /2 = (A - 1)/2 (4.9.4)

In the complementary hypothesis where k εj ≠ k εi, i.e., εi ≠ εj, from Congruence (4.9.3)

and (4.9.4) it follows that
τ = |k εj - k εi| dA /2

and, necessarily, for the code be 2 - detecting

max τ = n - 1 < minεi,εj : εi≠εj |k εj - k εi| dA /2

This complete the proof of the necessity.

Sufficiency. Suppose that the condition of the Theorem holds and, by contradiction,

assume that the code is not 2 - detecting. Then, there will be two integers εi , εj in [1, b - 1]

such that

εi b τ ≡ ± εj mod A

with 1 ≤ τ ≤ n - 1 or, equivalently, recalling the above notations

b kεi b τ ≡ b kεj mod A (4.9.1)

b kεi b τ ≡ - b kεj mod A (4.9.2)

In order to Congruence (4.9.1) or Congruence (4.9.2) be verified the congruence

τ ≡ (k εj - k εi) mod dA

or congruence
 τ ≡ (k εj - k εi) + dA/2 mod dA

must hold. However:

• if k εj = k εi, then τ = dA or τ = dA /2

• if k εj ≠ k εi , then τ = |k εj - k εi| dA or τ = |k εj - k εi| dA/2

In both cases, a contradiction follows and the proof is completed.

- 22 -

References

[1] D. M. Mandelbaum, "Error correction in residue arithmetic", IEEE Trans. Comput.,

vol. C - 21, pp. 538 - 545, June 1972

[2] F. Barsi and P. Maestrini, "Error detection and correction by product codes in residue

number systems", IEEE Trans. Comput., vol. C-23, pp. 915 - 924, Sept. 1974

[3] D.M. Mandelbaum, "On a class of arithmetic codes and a decoding algorithm", IEEE

Trans. Inform. Theory, vol. IT - 22, pp. 85 - 88, Jan. 1976

[4] F. Barsi and P. Maestrini, "Improved decoding algorithm for arithmetic residue codes",

IEEE Trans. Inform. Theory, vol. IT - 24, pp. 640 - 643, Sept. 1978

[5] A. Shiozaki, “Single Asymmetric Error-Correcting Cyclic AN Codes”, IEEE Trans.

Comput., Vol. C-31, pp. 554 – 555, June 1982

[6] R. Shimada, Y. Ohkura, J. Aoe, “Nonbinary Arithmetic AN Codes Using Odd Radix

Expressions”, IEEE Trans. Comput., vol. C-34, pp. 1050 – 1056, November 1985

[7] D. T. Brown, "Error detecting and error correcting binary codes for arithmetic

operations", IRE Trans. Electron. Comput., vol. EC - 9 , pp 333 - 337, Sept. 1960

[8] T.R.N. Rao and A.K. Trehan, "Single error correcting non binary arithmetic codes",

IEEE Trans. Inform. Theory, vol. IT - 16, pp. 604 - 608, Sept. 1970

[9] T.R.N. Rao, Error Coding for Arithmetic Processors, Academic Press, New York, 1974

[10] T.R.N. Rao and E. Fujiwara, Error-Control Coding for Computer Systems, Prentice

Hall Series in Computer Engineering, Englewood Cliffs, New Jersey, 1989

[11] W.W. Peterson and E.J. Weldon, Jr., Error Correcting Codes, Cambridge MIT Press,

1972

[12] J.L. Massey and O.N. Garcia, "Error correcting codes in computer arithmetic", in

Advances in Information System Sciences, ed. J.L. Tow, vol. 4, pp. 273 - 326, Plenum Press,

New York, 1971

[13] M. Goto and T. Fukumura, “Nonbinary AN Codes with Distance not less than five”,

IEEE Trans. Inform. Theory, vol .IT-19, pp. 129 – 134, January 1973

[14] A.C.L. Chiang and I.S. Reed, “Arithmetic Norms and Bounds of the Arithmetic AN

Codes”, IEEE Trans. Inform. Theory, vol. IT-16, pp.470 – 476, July 1970

[15] R.M. Roth and G. Seroussi, “Reduced – Redundancy Product Codes for Burst Error

Correction”, IEEE Trans. Inform. Theory, vol. IT-44, pp.1395 – 1406, July 1998

[16] H. Xu and F. Takawira, “A new structure of single parity check product codes”,

Proceedings of the IEEE AFRICON 2004, pp 67 – 70

[17] S.A. Miri and A.K. Khandani, “On structure and decoding of product codes”,

Proceedings of ISIT 2000, Sorrento, Italy

