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This is a supporting document that contains the presentation of a proof for each approximation

presented in the paper (Appendix A).

Appendix A: Proofs of the Approximations
Proof of Approzimation 1. We first obtain the maximum a posteriori (MAP) estimates of the

unknown demand parameters p and o?. Specifically, the MAP estimate for p, which we denote by

fi, maximizes the posterior density function p(u,c?|xy, s, ..., x,) with respect to the parameter p;
i.e., i = argmax, logp(u,0®|z1,T,...,2,). Since the logarithm of the posterior density function,
log p(u, 0|1, ®a,. .., x,) is proportional to

(Vn +3)
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we identify i as a result of solving the following equation for u:

Ologp(u, 02|x1, T2y ..., Tp 1
( |31 : ) = _7H”(M_Mn):0-
1

o2
Because this equation is satisfied for u — u, =0, we obtain i as equivalent to .

Similarly, the MAP estimate for the parameter 0%, which we denote by G2, is given by argmax_»

log p(p,0%|21, 22, ..., x,). Therefore, 32 solves the following equation for o?:
ANogp(, 021,29, ... 1,) 1 ¢2
— — (~m+3)+2) =0
do? 202 (vn+3)+ o2

Since this equation is equal to zero for o2 = (?/(v, +3), we obtain 5% as equivalent to ¢*/(v, +3).
We are now ready to prove Approximation 1. We know that the mean simulation output response

g(p, 0?) is asymptotically normal with mean g(j,,¢?/(v, +3)) and variance 3X/3', where 3 contains
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the first-order derivatives of g(u,0?) with respect to p and ¢, which are evaluated at their MAP
estimates. Therefore, it will be sufficient to obtain 333’ for the proof of the approximation.

We first start with obtaining 3. Taking the derivative of g(u,o?) := ®[(I — u)/o] with respect to
the demand parameters p and o2 provides

dg(p,o) 1 (I—p dg(p,o) p—I (I—p
o 0’¢ o and do2 203 ¢ o ’

As a result of evaluating these expressions at the MAP estimates of ;1 and o2, we obtain

9g(p,0) _ Vn+3¢((f—un)\/m>
op  lp=p,02=52 Cn Cn ’
dg(p,0) _ (un—f)(vn+3)3/2¢((I—un)\/m>.
002 |p=ji,02=52 2¢3 Cn

We continue with the derivation of X as follows:
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_ 2p ho2_s2 dpdo? 02052
1 _ pn=f,04=ac p=[i,0°=0
Opdo? i 02— 9252 0?52
Because
810gp(:u’ O'2|.CL'1,.T2, s 7xn)
) = - (N - Nn)
I
Ologp(p, 02| w1, @, ..., 3y,) 1
= ——Hkn,
0% o2
dlogp(p, 0?1, e, ... 1) 1
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we identify 3 as equivalent to [(?/[k, (v, +3)] 0; 0 2¢2/ (v, + 3)?3]. Thus, we obtain

v, ! 2 v Vn n
fyn+ ¢< n+ VonF3(I— un)) nn(§:+3) 0 Y n+ ¢< + Von 3 ))
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which further simplifies to

2 (I_Mn)(yn+3)1/2 1 (I_Nn)2
o) (2 15)

completing the proof of the approximation. [




Proof of Approximation 2. Since the posterior density function of the lognormal demand random
variable is identical to the posterior density function of the normal demand random variable,
the derivation of Approximation 1 follows except with a mean simulation response function of
91, 0%) = ®(log(I) — w)/o]. O

Proof of Approximation 3. In a similar manner, the asymptotic approximation to the amount
of demand parameter uncertainty in the Type-2 service-level variance is given by 3X3 with 3 :=
[B1 B2]. Since the posterior density function of the unknown demand parameters p and o is indepen-
dent of the type of the service level chosen, we again identify X as [(?/[k, (v, +3)] 0; 0 2¢2/ (v, +3)3].
Thus, the amount of demand parameter uncertainty in the Type-2 service-level variance is given
by B82C2/[Kn(vn + 3)] +282¢2 (v, + 3)® with 8, and B, derived as follows:

First, we characterize the mean simulation response function of the Type-2 service level by

g9(n,0*) = E {ming?(, d }

— /;f(x;u,a2)d:r+/loo f(x;pu,0?)du,

where f(x;p,0?) is defined by o~ '¢((z — p) /o).
The first-order derivative of g(u,c?) with respect to p is given by

dg(p,0®) 1 (I—p\ I [T (z—p T —p
o= () [ () e () e

The evaluation at the MAP estimates of y and o using the definition of o, (I;p1,0) as [, (z—

w)/x ¢((x —p)/o) de provides

__(Vn+3)1/2
NRTIN

B y 1/2 U 3/2
0 =) (vn +3) ]+I N =)

Cn G

The first-order derivative of g(u,c?) with respect to o2 is given by

T I I /""(w—W { (sc—m?}
- — —expl ——(z — dx + expl ————— o dx.
(V2ro?)? /1 x p{ 202( 2 } 2v/2mo’ Jp x P 202
. .. ) N ~1/2 V2(I—p)/(20) 7t (i —
Using the definition of 042(] W, o) =27 s dt, as(Iip,0) =[x exp{—(z
1)?/(20%) Yz, and ay(I;p,0) == [ (x — p)*x " exp{—(z — pn)?/(20> )}da:, this expression can be

further simplified as

! 1 . (n—1) (I — p)?
T dno? (1—a(l;p,0 ))+2(1+a2(l,u,a))+mexp{ 2o }
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By evaluating this expression at the MAP estimates of ;1 and o2, we obtain
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which is the expression given in Approximation 3. [



