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QTIP: Quick simulation-based adaptation of Traffic
model per Incident Parameters

Inon Peled, Raghuveer Kamalakar, Carlos Lima Azevedo, Francisco C. Pereira

Abstract—Current data-driven traffic prediction models are
usually trained with large datasets, e.g. several months of speeds
and flows. Such models provide very good fit for ordinary road
conditions, but often fail just when they are most needed: when
traffic suffers a sudden and significant disruption, such as a road
incident. In this work, we describe QTIP: a simulation-based
framework for quasi-instantaneous adaptation of prediction mod-
els upon traffic disruption. In a nutshell, QTIP performs real-time
simulations of the affected road for multiple scenarios, analyzes
the results, and suggests a change to an ordinary prediction
model accordingly. QTIP constructs the simulated scenarios per
properties of the incident, as conveyed by immediate distress
signals from affected vehicles. Such real-time signals are provided
by In-Vehicle Monitor Systems, which are becoming increasingly
prevalent world-wide. We experiment QTIP in a case study of a
Danish motorway, and the results show that QTIP can improve
traffic prediction in the first critical minutes of road incidents.

Index Terms—Simulation, incidents, model adaptation, In-
Vehicle Monitor Systems (IVMS), Intelligent Transportation
Systems (ITS).

I. INTRODUCTION

Non-recurrent traffic disruptions are a major source of travel
delays and air pollution in urban environments (Vlahogianni
et al., 2010; Tupper et al., 2012). As urban traffic around the
world increases constantly, main roads encounter more vehicle
breakdowns, crashes, adverse weather, and large public events
(Kwon, Mauch & Varaiya, 2006). Consequently, a growing
amount of resources is being invested world-wide in the study
and treatment of traffic incidents (Mir & Filali, 2016; F.-Y.
Wang, 2010; Kong et al., 2013; Bertini, Rose & El-Geneidy,
2005).

Prediction models form a key component of traffic incident
management for both short-term operations and long-term
planning (Ben-Akiva, Bierlaire, et al., 1998). Nevertheless,
research into traffic prediction has concentrated mostly on
incident-free conditions (Castro-Neto et al., 2009; Salamanis
et al., 2017). In addition, prediction models in practical use
often rely on commonly available traffic data streams, as e.g.
generated by mobile sensors and on-road cameras (Wu et al.,
2012). Alas, such models are slow to adapt to sudden traffic
disruptions, during which effective incident treatment is most
needed.

Emails: {inonpe, climaz, camara}@dtu.dk, raghu1112@gmail.com.
All authors are with the Department of Technology, Management and

Economics, Technical University of Denmark (DTU), 2800 Kgs. Lyngby,
Denmark.

Manuscript submitted to Journal of Simulation.

A. The Challenge: Just-in-Time Model Adaptation

Under ordinary conditions, speeds and travel times tend to
follow consistent trends, hence real-time predictions can be
made to often come close to actual values. However, under
non-recurrent disruptions, the accuracy of real-time predictions
can deteriorate greatly, and dedicated methods are needed
for increased accuracy (Chung & Recker, 2013). Indeed,
immediate adaptation of traffic prediction models to sudden
disruptions using real-time data has so far been a largely un-
solved problem. Several approaches to online model adaptation
have been proposed (Wu et al., 2012; Castro-Neto et al., 2009;
Ni, He & Gao, 2014), showing that model adaptation is needed
to prevent significant deviation of predicted values (e.g., mean
speed) from actual measurements. Nevertheless, these existing
approaches all assume a time buffer for adaptation, namely,
they yield an adapted model only after collecting online traffic
data for a few minutes following an incident.

Nowadays, however, more and more vehicles are be-
ing equipped with In-Vehicle Monitoring Systems (IVMS)
(Viereckl, Ahlemann & Koster, 2016; EU European Com-
mission, 2015), which communicate real-time distress signals
upon vehicle breakdown. IVMS thus offers a two-fold opportu-
nity for online model adaptation: (1) immediate triggering, and
(2) additional information about the particular circumstances
of the incident. While predicting the occurrence of traffic
incidents remains a challenge in itself (Katrakazas, Quddus
& W. Chen, 2018), this paper provides empirical evidence for
the possibility of quick model adaptation once an incident is
known to have occurred.

B. Our Contributions

The prime contribution of this paper is QTIP: a novel
framework for Quick Adaptation of Traffic Model per Incident
Parameters. The novelty here lies in the combination of two
traditionally separate approaches for traffic modeling, namely:
data-driven machine learning and classic transport engineering
methods. To realize the benefits of this combination, let us now
present the two approaches and their complementary aspects.

Given a modeling problem (e.g., speed prediction in this
paper), data-driven machine learning uses algorithms to auto-
matically extract useful patterns from corresponding observa-
tion data. The data consists of response variables (e.g., speed)
and explanatory variables (e.g., time of day and weather).
The algorithms themselves may be either parametric or non-
parametric, depending on whether or not they assume a partic-
ular functional relationship between response and explanatory
variables. Machine Learning algorithms thus serve as black
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boxes that take structured data as input and yield trained
models as output.1

On the other hand, classic transport engineering methods
are more principled and oriented towards incorporation of
"behavior" in modeling. For instance, analytical formulations
of dynamic traffic assignment (Boyce, Lee & Ran, 2001) use
origin-destination matrices and network topology to assign
traffic flows on the network, and micro-simulators for traffic
modeling rely on detailed specification of driver behavior (e.g.,
safety distance, braking, lane changing, rubbernecking) and
road conditions (e.g. presence of pedestrians, ratio of heavy to
light vehicles). Such methods are thus concerned with detailed
specification of the problem through white boxes which allow
close access to underlying dynamics.

QTIP, the proposed traffic modeling framework, takes ad-
vantage of both these approaches in a manner that depends
on road conditions. Under normal traffic conditions, QTIP
yields a purely data-driven model which is constructed from
historical observations of ordinary traffic, as is common prac-
tice. For abnormal traffic conditions, however, QTIP generates
multiple simulations, which reflect the likely range of specific
properties of the road incident, and uses their output as
data for fitting a specialized machine learning model for the
incident. QTIP thus enables the use of powerful machine
learning methods not only under normal and repetitive traffic
conditions, but also in the first critical minutes of non-recurrent
incidents.

In conclusion, we hereby enumerate all contributions of this
paper.

1) QTIP: a solution methodology for quasi-instantaneous
adaptation of traffic prediction models, based on a
novel combination of traditionally separate modeling
approaches: "black-box" machine learning and "white-
box" transport engineering methods.

2) Empirical case study for a major motorway in Denmark
measurably demonstrates:

a) The uniqueness of each incident.
b) The degradation of prediction models under road

incidents.
c) The potential of QTIP in mitigating this degrada-

tion.
3) Code for generating and analyzing simulated

scenarios given incident information is shared in
https://github.com/inon-peled/qtip_code_pub.

C. Paper Organization

The rest of this paper is organized as follows. Section
II provides a literary review of current solutions for real-
time incident modeling. Section III then describes the QTIP
framework, and section IV defines a case study for evaluating
QTIP. Section V provides the results of the case study, and
section VI concludes with a summary of our findings.

1We are oversimplifying here for the sake of the argument, as there are
also “white-box” machine learning approaches, such as Probabilistic Graphical
Models (Peled, Rodrigues & Pereira, 2019).

II. CURRENT SOLUTIONS, GAPS AND OPPORTUNITIES

In this section, we first review current solutions for model-
ing atypical traffic conditions, and the usefulness of simula-
tions for studying incident conditions. Then, we motivate the
necessity of online incident simulations for timely adaptation
of data-driven prediction models. Finally, we describe a newly
emerging source of real-time incident information, which is
highly useful for just-in-time modeling.

A. Current Methods for Traffic Prediction Under Atypical
Conditions

Accurate short-term traffic prediction is essential for proac-
tive applications of Intelligent Transport Systems (ITS), such
as Advanced Traveller Information Systems, Dynamic Route
Guidance, and Traffic Control (Guo, Krishnan & J. Polak,
2012). Non-recurrent road incidents disrupt normal traffic
patterns, and so increase uncertainty about the near future state
of traffic, which thus becomes more challenging to predict.
Nevertheless, traffic prediction literature has dealt much more
with normal conditions than with incident conditions (Castro-
Neto et al., 2009; Salamanis et al., 2017).

The few studies which do cater for both ordinary and
incident conditions often use exclusively the data-driven ap-
proach (J. Zhang et al., 2011). Salamanis et al. (Salamanis
et al., 2017) analyze 10 years of traffic flow and incident data
under the assumption that incidents can be categorized into
easily identifiable classes, and cluster the data accordingly.
Thereafter, they fit k-Nearest Neighbors (kNN), Support Vec-
tor Regression (SVR), and Autoregressive Integrated Moving
Average (ARIMA) models to each cluster, and conclude that
5 minute prediction accuracy improves when selecting a best
performing model per traffic in the preceding hour. In (Guo,
J. W. Polak & Krishnan, 2010; Guo, Krishnan & J. Polak,
2012; Guo, Krishnan & J. Polak, 2014), Guo et al. successively
improve a set of tools for traffic prediction under normal
and incident conditions. Their data-driven framework boosts
performance through data smoothing and error feedback, and
they consistently obtain that under abnormal traffic conditions,
kNN-based methods outperform other prediction models, such
as SVR, Artificial Neural Network (ANN), and Gaussian
Processes (GP). The data-driven models by Salamanis et al.
and Guo et al. are thus trained offline, and do not use real-time
information from incidents.

Real-time model adaptation to abrupt changes in traffic
conditions has been an active research subject in recent years.
Wu et al. (Wu et al., 2012) develop an Online Boosting
Non-Parametric Regression (OBNR) model for transitioning
between normal and incident conditions. OBNR is thus non-
parametric, and relies on historical records for online adapta-
tion. Castro-Neto et al. (Castro-Neto et al., 2009) show that
under atypical conditions, Online Support Vector Regression
(OL-SVR) outperforms Gaussian Maximum Likelihood, Holt
exponential smoothing, and ANN. The prediction quality of
OL-SVR gradually improves as data from Vehicle Detector
Stations accumulates over time. Ni et al. (Ni, He & Gao, 2014)
offer social network Twitter as a source of real-time informa-
tion, which can improve prediction accuracy for traffic around

https://github.com/inon-peled/qtip_code_pub
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large crowd events. Nevertheless, incorporating social data into
real-time traffic analysis incurs some practical challenges, such
as the need to collect, clean and fuse social data from multiple
sources (Zheng et al., 2016).

B. Studying the Effects of Road Incidents through Simulations

Simulations are a widely used tool for studying both the
short-term and long-term effects of road incidents (Owens et
al., 2010). For short-term effects, Henchey et al. (Henchey et
al., 2014) use simulations to study emergency response, while
Hawas et al. (Hawas, 2007) replicate real-world accidents to
analyze car-following models. For long-term effects, Wirtz et
al. (Wirtz, Schofer & Schulz, 2005) study micro-simulations
of incidents for proactive planning, while Baykal-Gursoy et al.
(Baykal-Gursoy et al., 2006) use micro-simulations to compare
strategies of traffic incident management, and Dia et al. (Dia,
Gondwe & Panwai, 2006) simulate an Australian highway to
measure the socio-economic impacts of incidents.

These former studies, as opposed to this paper, do not deal
with online interfacing of simulations with machine learning
for model adaptation. Standing in contrast in this respect is
a line of works by Ben Akiva et al. (Ben-Akiva, Koutsopou-
los & Mukundan, 1994; Ben-Akiva, Bierlaire, et al., 1998;
Ben-Akiva, Bierlaire, et al., 2002; Ben-Akiva, Koutsopoulos,
Antoniou, et al., 2010; Lu et al., 2015) over DynaMIT:
a framework for online traffic modeling through real-time
simulations. However, DynaMIT is concerned with modeling
traffic conditions on a network-wide level (e.g., the overall
state of congestion in a city) in the context of interactions
between transport demand and supply. Conversely, this paper
focuses on incident conditions in a purposely constrained
environment and assumes only limited prior knowledge of
transport demand. Our proposed solution framework is thus
complementary to the overall vision of DynaMIT, and we
indeed suggest to incorporate it as a component in DynaMIT
(Section VI-C).

C. Motivation for Incorporating Simulations in Real-Time
Incident Modeling

Real-time data-driven prediction models take advantage of
the relative stability of conditions over short, consecutive
intervals. For example, explanatory variables such as time-
of-day, day-of-week, effects of seasonal trends, and weather
typically change very little over 5 consecutive minutes. Hence
the closer a data-driven model is to real-time resolution, the
lower is its necessary complexity (e.g., non-linearity, more
explanatory variables), as the effects from trends and context
are already incorporated in the current time window.

In contrast, when an incident happens, the correlation
structure between response and explanatory variables changes
abruptly, in a manner which is unique to the incident char-
acteristics. For example, when an incident occurs, the mean
speed in the current time interval may significantly change
its pattern of dependency on speeds in recent time intervals,
in the affected link and in its neighboring links. As such,
there are advantages to treating incidents separately from other

atypical conditions, through a dedicated prediction modeling
framework.

On one hand then, data-driven prediction models tend to
break under the sudden change of correlation structure brought
about by an incident. On the other hand, such models could
perform well if their input data adequately pertained to the
given incident. Unfortunately, historical road incident data is
often deficient or altogether missing (Kumar & Toshniwal,
2015).

At first sight, it may seem worthwhile to try and overcome
this lack of data by pre-generating sufficiently many incident
simulations offline. However, such attempts would in fact
be impractical, because every incident involves too many
varying parameters (e.g., location, road attributes, weather
conditions, lane occupancy levels, vehicles involved, proximity
to control systems, etc.). Consequently, only a very restricted
subset of all possible combinations of incident parameters can
be covered offline, and a data-driven model trained in such
manner will necessarily underperform on some out-of-sample
scenarios.

It follows that to successfully take advantage of data-driven
methods, a framework for prediction modeling under real-
time incidents must generate online data which corresponds
to the unique parameters of each incident occurrence. This
motivates us to consider real-time simulations as a means of
generating such data online. For these online simulations, we
next describe a useful and globally emerging source of real-
time incident information.

D. Real-Time Incident Data for Online Modeling

As the vision of always-connected cars (V2X) progresses
worldwide (Siegel, Erb & Sarma, 2018), active In-Vehicle
Monitor Systems (IVMS) are becoming increasingly prevalent
nowadays (Viereckl, Ahlemann & Koster, 2016; Brandl, 2016).
In fact, certain IVMS systems are now mandatory by law,
e.g. the European Union now mandates that the eCall system
be installed in every new vehicle (EU European Commission,
2015). Real-time signals from IVMS are designed to indicate
the status and location of vehicles, and in particular, the
occurrence of malfunctions and crashes (Digicore Australia,
2017).

Therefore, IVMS delivers not only immediate indication
of incident occurrence, but also rich information about the
particular properties of the incident. In the next section, we
present a framework which employs IVMS signals in real-time
simulations for corresponding prediction model adaptation.

III. THE QTIP GENERIC FRAMEWORK

A. Overall Framework

In this section, we present the framework of QTIP, and
illustrate how it differs from current solutions. In the remaining
sections thereafter, we evaluate several different instances
of this framework against an experimental case study, and
show how QTIP can address the first critical minutes of road
incidents.

Fig. 1 summarizes the main components of our QTIP
framework. The input to QTIP consists of common data about



4

Fig. 1. QTIP Framework.

traffic – e.g. from road sensors, mobile sensors, and weather
stations – and incident-specific information from IVMS. QTIP
uses both data streams to output a traffic prediction model, as
follows.

On one hand, when no incident is known to have oc-
curred, QTIP directly yields model Mordinary , which is fit for
incident-free conditions. For example, Mordinary can be any
desired data-driven model, pre-trained on historical records
and consistently updated on recent traffic data.

On the other hand, upon receiving IVMS signals from
vehicles involved in a road incident, QTIP yields an adapted
traffic prediction model Mabnormal by executing multiple sim-
ulations. Let us now elaborate on the purpose of these incident
simulations and the manner in which they are implemented.

The purpose of the incident simulations is to cover a
range of unobserved explanatory variables that determine how
severely the incident affects its surroundings. In this paper,
we use two such variables as example: level of road usage
(i.e., "traffic demand") at the moment of the incident, and
the precise position of the incident. Each executed simulation
thus pertains to a different combination of possible values
for the unobserved variables, while also accounting for the
observed information in the IVMS distress signals, e.g., time
of occurrence, number of signals, and general location on the
road network.

The simulations are then implemented through two main
steps. First, a simulated environment of the affected road (e.g.,
the motorway in our case study) is constructed and calibrated
to resemble its real-world structure. This step requires a
dedicated solution component, which we denote in Fig. 1
as Ψ, and which we purposely leave out to future work.

Admittedly, we do not intend to offer here a complete and
operational solution, but rather provide a theoretical study
of challenges and benefits in extracting value from real-time
signals with limited incident information. This study does
show that even partial incident information – e.g., one that
lacks data about current traffic demand – can still be useful for
noticeably improving traffic prediction quality. We also note
that pre-calibrated simulation environments can be prepared in
advance for roads that are known to be incident-prone, so that
QTIP is ready to simulate real-time incidents per their unique
characteristics. In fact, the QTIP case study in this paper uses
such a pre-calibrated simulation environment for an incident-

prone motorway in Denmark.
Once the simulated environment (namely, the affected road)

is constructed and calibrated, the second step is to use it
for executing the desired simulations. To this end, we use
PTV VISSIM as the underlying micro-simulation engine and
utilize its Component Object Model (COM)-based Application
Programming Interface (API). Through this API, we bootstrap
each simulation in real-time per the corresponding variable
values – both observed and unobserved – and run all simula-
tions in parallel. QTIP then uses the simulation results to fit
and output Mabnormal, the adapted prediction model.

B. Advantages of QTIP over Existing Solutions

Let us now highlight several desirable properties of the
QTIP framework, which current solutions lack to some extent,
as reviewed in Section II. First and foremost, QTIP is designed
to readily take advantage of information from the incident
itself, as the change in correlation structure between response
and explanatory variables is unique to each incident. And so,
whereas the prediction quality of e.g. OL-SVR (Castro-Neto
et al., 2009) gradually improves over time, QTIP yields a
completely adapted model shortly after incident parameters are
known. As we show in section IV, a few incident parameters
could indeed be enough for QTIP to yield an effective new
model.

Second, QTIP is agnostic to the specific form of models
Mordinary and Mabnormal. These models can thus be chosen
freely, e.g. as parametric and interpretable models, as we
further elaborate in Section III-C. Hence whereas OBNR (Wu
et al., 2012) is non-parametric, QTIP easily allows insights into
how a prediction model changes when adapted to different
traffic conditions. Furthermore, OBNR relies on historical
records for online adaptation, whereas QTIP does not require
past examples of incidents to yield an adapted model.

In fact, QTIP is also agnostic to the specifics of its input
traffic data, which can thus consist of both sensor readings and
relevant feeds from social networks, as suggested by Ni et al.
(Ni, He & Gao, 2014). Nevertheless, while QTIP welcomes
such contextual information, its immediate response relies only
on signals which originate directly from the road incident.

Overall then, none of the current solutions relies primarily
and systematically on real-time information about the incident
itself. It is thus questionable whether discrete data-driven
approaches, such as the clustering method of Salamanis et
al. (Salamanis et al., 2017), can solve the problem of abrupt
changes to traffic correlation structure. Furthermore, as QTIP
employs real-time simulations, it can be used as a component
within other systems for real-time Dynamic Traffic Assign-
ment, such as DynaMIT (Lu et al., 2015).

C. Model Selection

As mentioned above, the traffic models in QTIP can be
freely chosen, hence this work focuses on proof-of-concept
of the working principles of QTIP. We also note that, as
observed in (Tune, Roughan & Cho, 2016), the range of
traffic models is already too large to examine in detail here.
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Consequently, we refrain from making particular recommen-
dations on specific model types for modeling ordinary and
abnormal traffic conditions. However, for completeness of
description, we now provide several effective guidelines for
model selection; a broader discussion of model selection is
available in (Claeskens, Hjort, et al., 2008).

Model selection entails a choice between several model
classes, such as:

• Parametric vs. non-parametric modeling (Smith, B. M.
Williams & Oswald, 2002), namely, particular functional
form vs. flexible form.

• Simple vs. complex models (Hoogendoorn & Bovy,
2001), e.g., as measured by number of parameters: a
sufficient number is needed to properly generalize to
unseen data, while an improper number might lead to
under-fitting or over-fitting.

• Interpretable vs. opaque models (W. Wang et al., 2020):
the former may allow better explanation of the captured
patterns, but restricts the range of applicable models; the
latter allows less in-depth insights, but admits a wider
selection of models.

• Standalone models vs. ensemble methods (Li, X. Chen
& L. Zhang, 2014): the latter may improve accuracy
by combining the strengths of multiple models, but also
requires further weight tuning and might introduce un-
necessary complexity.

Accordingly, we later experiment with models from several
different classes. Moreover, as the method of estimating model
parameters is also a matter of choice, we experiment with both
Maximum Likelihood Estimation (Section IV-E) and Bayesian
Inference (Section V-F).

Once several models are selected for comparison, they can
be compared using measures of goodness of fit (D’Agostino,
1986), including:

• Prediction quality analysis, e.g., via Mean Error measures
or Coefficient of Determination.

• Statistical tests of similarity between fit and expected
distribution, e.g., via Analysis of Variance or hypothesis
tests, such as the Kolmogorov-Smirnov Test and Pear-
son’s Chi-Squared Test.

For example, in this work, we compare models based on min-
imization of MSD, MAE and RMSE (Section V-D) between
model predictions and test observations.

In addition, there exist various Information Criteria (IC)
for model selection, based on theoretically optimal tradeoffs
between model simplicity and fit accuracy (Tune, Roughan
& Cho, 2016). Different IC employ different assumptions
about the modeled data, and popular IC examples include the
Akaike Information Criterion, Bayesian Information Criterion,
and Minimum Description Length. In this work, measures of
prediction quality suffice for choosing between the models,
hence we do not employ additional IC.

In summation, for traffic modeling in QTIP too, we advise
to follow the systematic guidelines of model selection as
above. Furthermore, we next describe a proof-of-concept case
study for evaluating QTIP, where we employ various models
of speed prediction in a motorway. The case study thus

constitutes an example of using QTIP itself to select between
models through simulations, particularly for accident-prone
roads. This simulation-based manner of model selection can
be augmented by incorporating additional historical data about
other roads in the traffic network, including records of past
accidents.

We note that while speed prediction alone does not suffice
for incident treatment by traffic practitioners, the principles of
simulation-based model adaptation in the case study extend to
other traffic models – such as traffic flow, trip delays, public
transport disruptions, and risk of secondary incidents – which
together are highly useful for incident management. The speed
prediction models that we study can also provide road users
with real-time information about the occurrence and effect of
incidents, which is useful for route planning and estimation of
trip time.

IV. CASE STUDY FOR EVALUATING QTIP

In this section, we present experiments to evaluate the per-
formance and capabilities of a specific application of QTIP. As
a case study, we use the Hillerød Motorway, a highly utilized
and often congested highway in Denmark, and compare the
performance of a model adapted by QTIP vs. a non-adapted
model in incident conditions.

A. Overall Design of Experiments

To evaluate the QTIP framework, we first need to decide
which type of models Mordinary and Mabnormal are used (see
Fig. 1). We chose to evaluate three types of models separately:
Linear Regression (LR), Deep Neural Network (DNN), and
Gaussian Processes (GP). Whereas LR is linear and para-
metric, DNN and GP are non-linear and non-parametric. For
each prediction model type, we pre-train Mordinary on a set
of incident-free simulations, which we describe in the next
section. In this manner, we generate different demand and road
conditions in the training set, and can test how the proposed
model types differ in performance.

Finally, we compare between the simple, non-adaptive
model Mordinary and QTIP on several incident scenario
experiments (see Fig. 2). In the present work, all considered
incident scenarios are represented as blocks on a given road
link. Each scenario differs in: (1) the location of road blocks
in the link; (2) the location of road blocks in lanes; (3) the
number of road blocks; and (4) the demand in terms of traffic
volume.

For each incident scenario, we generate multiple replica-
tions, independently and with stochastic perturbations. Each
replication serves as a single, independent experiment. To re-
flect real-time operation, QTIP receives in each experiment the
simulated speed measurements, averaged in 1 min intervals,
in three links: the link where road blocks would appear, its
uplink, and its downlink, as in Fig. 3.

Before the road blocks manifest, QTIP predicts future mean
speeds through the already pre-trained Mordinary , i.e. without
adaptation. When the road blocks appear, QTIP receives no-
tification of their location, similarly to IVMS distress signals.
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Fig. 2. In our experiments of incident conditions, we run QTIP to obtain
Mabnormal for different incident scenarios independently.

Fig. 3. The Study Link S where we simulate incidents on the Hillerød
Motorway, its uplink U , and downlink D. Traffic on these links flows uni-
directionally north-to-south.

QTIP then quickly creates model Mabnormal using "on-the-
fly" simulations, and uses it for subsequent predictions.

To clarify, note that each experiment involves two different
types of simulations. One is the simulation that emulates
the ground truth, which provides QTIP with input of actual
traffic. The other simulations are those which QTIP executes
internally "on-the-fly" to construct Mabnormal. QTIP uses such
internal simulations to consider "what-if" values of unknown
incident parameters, which the distress signal does not in-
dicate. For example, the distress signal does not carry the
current demand level, hence while the actual demand may be
"medium", QTIP internally considers all of "low", "medium",
and "high" as possible demand levels in predictions. To keep
this separation clear, we shall refer to the two types of simula-
tions as "ground-truth simulations" and "what-if simulations",
respectively.

B. The Road Network

The Hillerød motorway is located in Sjælland region in
the Greater Copenhagen Area (Fig. 4) and is known for
recurrent congestion and significant impacts of incidents on
traffic conditions. 604 accidents were recorded in the past 5
years (2012-17) in the total 35.9 km of its length. Furthermore,
several towns and cities served by this motorway – Farum,
Værløse and Gladsaxe – have planned to complete several
developments by 2020 (Danish Ministry of Transportation,

Fig. 4. The Hillerød Motorway: data collection points as white circles (left),
and locations of entries and exits (right).

TABLE I
VEHICLE COUNTS, MONDAY 2016-JUN-20 7-8 AM

Location Entrance Exit
Farum N 3171 Network start point
Farum C 544 No exit point
Værløse 937 100
Bagsværd 852 544
Værebrovej 351 312

2017), which will increase significantly the traffic on the
corridor.

For this work, we focus on the stretch between Farum N
and Værebrovej in the North/South direction, as in Fig. 4. The
test network is in total 11 km long and consists of signalized
ramps, five interchanges and a two-lane carriage. 36.5% of all
observed accidents (i.e. 220 records) in the past 5 years were in
this stretch, 5.3% of which resulted in injuries and/or fatalities.
The recurrent congestion and disruptions already motivated the
implementation of a 3 km Hard Shoulder Running stretch,
active during the morning peak hours (Lund Andersen, 2016).

C. Data for Calibration

To calibrate the simulated environment, we used three types
of data, all from the Danish Road Directorate2: flows, average
speed, and travel times, by link and in time intervals of 15
minutes (see Table I for vehicle volumes aggregated by hour).
The data originates from eight online data collection points
along the motorway, shown as white circles in Fig. 4.

For this paper demonstration, it sufficed to gather a limited
data set of field measurements. As a calibration set, we used
measurements from the 7-8 AM period of the weekdays of
June 20 to 24, 2016. As a separate validation set, we used the
preceding week, namely June 13 to 17, 2016. As demand input
for the simulator, we constructed two Origin-Destination (OD)
matrices: one for light vehicles, and one for heavy vehicles.
We also conducted on-field data collection to measure some
network attributes, such as speed limits and signal timings.

2Mastra and Hastrid databases, http://www.vejdirektoratet.dk/

http://www.vejdirektoratet.dk/
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D. Construction and Calibration of Simulated Environment

The simulator we use in this study is PTV VISSIM3.
VISSIM is widely applied in practice for modeling of trans-
portation systems, reproduction of freeway driving conditions,
analysis of traffic operations, and studying of incident condi-
tions (Gomes, May & Horowitz, 2004; Katrakazas, Quddus &
W. Chen, 2018).

For constructing the simulated network, we used Open-
StreetMap4 and Google Earth5 along with the above-
mentioned field observations. For creating the signal systems
which control the inflow of the network, we used VISVAP,
VISSIM’s add-on for traffic signal controls and traffic man-
agement systems 6. As no control pre-set configuration was
available, we performed manual tuning of fixed signaling
cycles to match both the field observations and the recorded
flow data.

For car-following behavior, we used the Wiedemann 99
model as in (Aghabayk et al., 2013). This is controlled in
VISSIM through parameters CC0 . . . CC9, together with two
look ahead/back distribution parameters (PTV Group, 2017).
For lane change behavior, we considered seven parameters,
which represent acceleration distribution during lane changing
manoeuvres, how far in advance each driver can anticipate the
next exit/weaving/lane drop, and how aggressively that driver
changes lanes to reach there. (Gomes, May & Horowitz, 2004).

We calibrated the simulated environment offline through a
manual iterative process, as per (Park & Won, 2006), while
following the Danish Guidelines (Danish Road Directorate,
2010) for model evaluation. Because microscopic traffic sim-
ulators are characterized by a large number of parameters
(usually to represent different driving behaviors), we carried
out a sensitivity analysis to select a subset of parameters to
calibrate, following the method in (Manjunatha, Vortisch &
Mathew, 2013), which VISSIM also uses for similar perfor-
mance measures (delays, flows and speeds). Note that in our
simulated road network, there is essentially only one route
from each origin to destination, thus relaxing the impact of
route choice parameters.

For each iteration in the calibration process, we ran enough
replications until reaching a level of confidence for the average
travel times, mean speeds, and vehicle flows at the data
collection points (Hollander & Liu, 2008). As Measures of Ef-
fectiveness (MOEs) for quality of calibration, we used Rooted
Mean Squared Normalized Error (RMSNE) for speeds and
travel times, and Geoffrey’s E. Havers’ value (GEH) for flows
(Hollander & Liu, 2008):

RMSNE = (e1/o1 + · · ·+ en/on)
0.5
/n0.5 (1)

GEH =
(
2e21/p1 + · · ·+ 2e2n/pn

)0.5
(2)

where for all i = 1..n: ei = mi−oi and pi = mi+oi, such that
oi is the value actually observed and mi is the corresponding
value in simulation. As described previously in Section IV-C,
we used a separate set of data measurements for validation.

3http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim/
4https://www.openstreetmap.org/
5https://www.google.com/earth/
6http://www.traffic-inside.com/tag/visvap-en/

(a)

(b)

(c)

Fig. 5. Results of calibration: speeds (5a, 5b) and travel times (5c). In 5c,
"calibration" and "validation" correspond to the data sets defined in Section
IV-C.

From the sensitivity analysis, we identified 9 parameters
which had the most impact on the Measures of Effectiveness.
We have calibrated these parameters as summarized in Table
II.

Per Florida Department of Transportation, 2014, a traf-
fic model is acceptably calibrated when the MOEs yield
RMSNE < 0.15 and GEH < 5. Eventually, we have
obtained the following measurements of calibration quality:

• RMSNE = 0.12 for speeds and for travel times.
• GEH < 2 for traffic counts.
• Less than 1 min difference between simulated and

observed mean travel times for each stretch of road, as
shown in Fig. 5c. In particular, the end-to-end mean travel
time that the calibrated model attains is 8.23 min, which
is close to 8.6 min actually measured on-field.

• Stretch-to-stretch mean speeds close to measured speeds,
as reflected in Fig. 5a and Fig. 5b.

Finally, it is worth noting that several advanced offline
calibration approaches have been proposed in the literature,
tackling the complexities of large scale calibration (C. Zhang,
Osorio & Flötteröd, 2017) and the high dimensionality of both
input and output performance measures (Ciuffo & Azevedo,
2014). Yet, for the purpose of the case study at stake, the
method we used above provided satisfactory performance.

http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim/
https://www.openstreetmap.org/
https://www.google.com/earth/
http://www.traffic-inside.com/tag/visvap-en/


8

TABLE II
FINAL CALIBRATED PARAMETERS

Parameter Unit Calibration Range Calibrated Value
Desired Speed Distribution km/h 50 . . . 110 80− 110
Reduced Speed Areas km/h 20 . . . 30 20
Emergency Stop Distance (LC) m 5 . . . 50 Varies by Link Connector
Lane Change Distance for Weaving Areas (LC) m 200 . . . 500 Varies by Link Connector
Maximum Deceleration for Breaking m/s2 3 . . . 8 3.0
Waiting Time Before Diffusion s 10 . . . 60 60
Standstill Distance (CC0) m 1.5, 2.0, 2.5 3
Headway Time (CC1) s 0.9, 1.0, 1.1 1
Safety Distance Reduction Factor 0.1 . . . 0.6 0.1

Fig. 6. In our experiments, road blocks appear at one of three locations on
the Study Link, and occupy one or two lanes.

E. Experiments

Having calibrated the simulated environment, we are now
ready to execute experiments. Recall that we independently
experiment with three different instances of QTIP: LR, DNN,
and GP.

1) Details Common to All Experiments: Each QTIP experi-
ment begins with constructing Mordinary . To this end, we first
run 150 incident-free simulations – 50 for each demand level:
low, medium, and high – and fit Mordinary on the output of
these simulations. Next, we proceed to run incident scenarios.
In each scenario, an obstacle appears at 7:10 AM on the study
link S, and disappears at 7:40 AM. This affects traffic not only
in S, but also in its uplink U and downlink D, as shown in
Fig. 3.

Fig. 6 illustrates the various options for incident positions in
our experiments, as following. Each incident scenario involves
either 1 or 2 road blocks in one of three locations on S: Start,
Center, or End. Each road block is positioned on one of the
three lanes of S: Left, Middle, or Right. Two simultaneous
road blocks occupy either the same lane, one right after the
other (spaced by 10m), or different lanes, in which case they
are located next to each other. In addition, each scenario
involves one of three demand levels: low, medium, or high.
Hence in total, the number of distinct incident scenarios is

81 = 3× 3× (B(3, 1) +B(3, 1) +B(3, 2)) , (3)

where B(a, b) = a!/(b!(a−b)!) is the binomial coefficient, and
the terms on the right-hand side correspond respectively to the

number of options for: demand, location, single blocked lane,
two blocks in same lane, and two blocks in different lanes.

For each of these 81 incident scenarios, we generate in
VISSIM 5 ground-truth simulations, replicated with perturba-
tions, as we soon explain. Finally, we test QTIP independently
on each ground-truth simulation in two different modes: one
where the distress signals carry high precision location, and
one where location precision is low. QTIP knows which
specific lanes are blocked only in high precision mode, in
which case it could possibly yield more accurate predictions.

When QTIP receives notification of an incident, it generates
100 what-if simulations, and uses their results to fit Mabnormal

as a piece-wise prediction model. The first piece pertains to
the first 6 critical minutes immediately after the appearance
of road blocks, and the second piece pertains to the time until
the incident is cleared. Mabnormal also takes into account
the number of minutes which have passed since incident
occurrence, as variable Taccident.

To recap so far, three sets of simulations are involved:
incident-free (for Mordinary training), incident ground-truth
(used as benchmark "real" measurements), and incident what-
if (created by QTIP to train Mabnormal). To account for the
stochastic nature of traffic, we apply perturbations to each
simulation as follows: before running any simulation, we
perturb its input OD matrix A independently as Ã, so that
Ãij = c̃ijAij , where c̃ij ∼ N (1, 0.2). To simulate different
demand levels, we also scale Â = ĉÃ, so that ĉ = 0.7, 1.0, 1.3
for low, medium, and high demand, respectively. The simu-
lation then runs with Â as its OD matrix. Note that medium
demand corresponds to the same demand as we have measured
on-field earlier, with an added stochastic component.

All simulations yield as output 1 min mean speeds in
links S,D,U (Fig. 3). Models Mordinary and Mabnormal

receive this output in the form of vectors, as follow-
ing. At any time point, let Sk, Uk, Dk denote the 1 min
mean speed k minutes earlier in links S,U,D, respec-
tively. For each of 6:50, 6:51, . . . , the corresponding vector
is [S5, S6, U5, U6, D5, D6], and S0 is the response variable.
That is, to predict the 1 min mean speed on S, the models
use the 1 min mean speeds 5 and 6 minutes beforehand on
links S,D,U . The vectors do not include speeds earlier than
6 minutes, because adding such information did not improve
prediction quality in our experiments.
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Fig. 7. Structure of Deep Neural Networks in our experiments.

2) Experiments with Linear Regression: Linear Regression
(LR) assumes the following linear relationship between the
response variable S0 and the explanatory variables:

S0 = βS5 S5 + βS6 S6 + βU5 U5 + βU6 U6 + βD5 D5 + βD6 D6 , (4)

where β’s are trainable parameters. We train this model using
Ordinary Least Squares (OLS) to obtain the parameters that
minimize the sum of squared differences between observed
and predicted values of S0, as detailed in Weisberg, 2005.

3) Experiments with Gaussian Processes: Whereas LR
is a parametric modeling method, Gaussian Process (GP)
regression is non-linear and non-parametric. GP assumes that
the relationship between S0 and the explanatory variables is
an unknown function, drawn from a multivariate Gaussian
distribution,

N (0,K) , (5)

where for the given n observations, K is a n-by-n covariance
matrix, so that for any two vectors xi, xj (i, j ∈ 1..n), Ki,j

expresses the similarity between xi and xj .
As a prior distribution, we define the elements of K through

the commonly used RBF kernel function,

Ki,j = exp(−0.5l2 (xi/τ, xj/τ)
2
) , (6)

where l2 ( ) denotes the Euclidean distance norm, and τ is a
scaling factor. To cover a wide range of scaling factors, we
experiment with τ ∈ {0.1, 1, 2, 4, 8, 9, . . . , 16}. Each model is
then trained through Maximum Likelihood Estimation (MLE),
as detailed in C. K. Williams & Rasmussen, 2006.

4) Experiments with Deep Neural Networks: The Deep
Neural Network (DNN) models in our experiments are para-
metric and non-linear, and are structured as in Fig. 7. These
models pass an input vector x = [S5, S6, U5, U6, D5, D6]
through a succession of densely connected hidden layers, and
finally output the sum of the results as the predicted value of
S0. Each of the h hidden layers consists of g sigmoid units,
each structured as:

σ(x) =
1

1 + exp(−wTx)
, (7)

where w is a vector of trainable parameters, and h, g are hyper-
parameters that we specify below. For example, if h = 2 and

g = 5, then the DNN models the relationship between x and
S0 as:

S0 =σ1,2 ([σ1,1 (x) , . . . , σ5,1 (x)]) +

σ2,2 ([σ1,1 (x) , . . . , σ5,1 (x)]) +

· · ·+
σ5,2 ([σ1,1 (x) , . . . , σ5,1 (x)]) , (8)

where σi,j denotes the i’th sigmoid in the j’th hidden layer.
We have experimented with h ∈ {1, 2} hidden layers, each

consisting of g ∈ {5, 10} sigmoids. Each model is trained
with backpropagation for a maximum of 100 epochs, using
Mean Squared Error as loss function, mini batches of size 100,
the Adam optimizer, and a 10% validation split to monitor
overfitting. For more details of this training procedure, we
kindly refer the reader to Kingma & Ba, 2014.

5) Model Complexity: Before proceeding to the experimen-
tal results, let us compare the three model types in terms
of computational complexity. Generally speaking, LR is the
simplest of the three because it incorporates few parameters.
DNN and GP, however, are not directly comparable: GP
is non-parametric and scales cubically with the number of
input vectors, whereas the complexity of fitting DNN models
depends on the number of epochs and mini-batches. The
complexity of prediction, however, is quite similar across all
model types, i.e., it takes roughly the same time to generate
predictions from any of the models once trained.

V. RESULTS

We now provide the results of the experiments that we
constructed in Section IV. The results will show that for a
wide range of incident cases, the information in IVMS signals
suffices for Mabnormal to reduce prediction errors significantly
and timely. While analyzing the results, we also provide
some insights into the behavior of traffic under incidents,
and examine how prediction quality deteriorates if model
adaptation is not performed.

A. Real-Time Performance of QTIP

We executed all experiments on a server with 16 GB of
memory and an Intel i7-2600 CPU, clocked at 3.40 GHz.
It took QTIP at most 45 s to simulate 15 min, for any
single what-if simulation. Once QTIP has executed all what-
if simulations, it required only a few more seconds to fit an
LR model Mabnormal on their results. Hence when all what-if
simulations are executed in parallel, QTIP can yield an adapted
model Mabnormal within 1 min, just in time for handling the
first critical minutes of the incident. It should also be noted that
recently developed methods for GPU acceleration of micro-
simulations (Heywood et al., 2018) may further cut down these
running times.

B. Comparison of Predictive Performance

For each model type among GP, DNN, and LR, Table
III summarizes the predictive quality of the best performing
model as measured through mean RMSE (Eq. 11) over all
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TABLE III
BEST PERFORMING MODEL OF EACH TYPE. VALUES CLOSER TO ZERO ARE

BETTER, BEST VALUES ARE HIGHLIGHTED IN BOLD.

Mean RMSE
Model Type Lanes Known Lanes Unknown
GP τ = 8 13.928 23.676
DNN h = 2, g = 10 6.328 9.145
LR 6.290 8.878

experiments. As may be expected, all models perform better
when blocked lanes are known than otherwise.

LR is the best performing model type when lanes are either
known or unknown. GP performs much worse than both LR
and DNN, possibly because of inappropriate choice of kernel
function or overfitting to train data. The poor fit of GP may
thus be alleviated through, e.g., incorporating a periodic kernel
function or applying regularization techniques (Roberts et al.,
2013). The predictive performance of DNN is a little worse
than that of LR, as we next explain.

The small differences in predictive performance between
LR and DNN could be caused by a number of reasons. First,
the dataset at hand may conform better to linear (LR) than
non-linear (DNN) patterns, although this could change if more
explanatory variables are added or if substituting for a larger
dataset. Second, while the training methods of both models
are based on stochastic optimization, training a DNN through
backpropagation typically requires more delicate tuning than
training LR through OLS. It could thus be that finer selection
of DNN hyper-parameters, such as via Bayesian Optimization
(Snoek, Larochelle & Adams, 2012), would yield a better
performing DNN model. Finally, the DNN models can be
made more powerful through a change of structure, e.g., by
stacking Recurrent units for time series data (Ho, Xie & Goh,
2002), thus adding memory capabilities that LR does not
possess.

While further improvement of the models is intriguing
in itself, it is nevertheless superfluous for the objectives of
this paper. First, LR, DNN, and GP are commonly used
model types for traffic modeling, and they demonstrate (Table
III) that higher precision of incident location indeed yields
better predictions across all model types. Second and more
importantly, the particular choice of model types is less
important for proof-of-concept purposes, as the results we next
present successfully convey the fundamental message of this
paper: that model degradation under incidents can be mitigated
through just-in-time, simulation-based adaptation. Third, as
explained in Section II-C, the main source of complexity for
modeling under incidents is, in any case, the sudden change
of variable correlation structure, regardless of model form. We
thus defer model improvements to future work (Section VI-C),
and focus next on the predictive performance of QTIP with
LR, the best performing model.

C. Closer Look at Several Representative Incident Scenarios

While analyzing the results of our experiments, we have
observed several different behaviors of the mean speed under

incidents. We now illustrate these behaviors by selecting and
visualizing several representative scenarios, for both cases of
known and unknown blocked lanes. For each representative
scenario, we plot in Fig. 8 the time series of 1 min ground-
truth speed, averaged over all ground-truth simulations of that
scenario. For further analysis, we also plot the predictions of
Mabnormal when applied to each of these averaged time series.

First, we see in Fig. 8 that mean speed in the Study Link
S mostly drops after the onset of an incident (8b, 8d, 8e, 8f),
but less frequently, it can also gradually increase (8a). This
exceptional phenomenon occurs when the road blocks appear
at the start of the link, so that vehicles which eventually enter
the link can then flow freely. We also see that the standard
deviation of mean speed typically exhibits more variation
when only 1 lane is blocked (8a, 8b, 8d, 8e) than when 2
different lanes are blocked (8f). This is because 2 blocked
lanes bring about a level of congestion, such that queued
vehicles travel in similarly low speeds, whereas speeds are
more variable when only 1 lane is blocked. Finally, we see
that the predictions of Mabnormal often come close to the
actual mean speed during the incidents. Indeed, we next show
that Mabnormal mostly outperforms Mordinary in incident
scenarios.

D. Model for Ordinary Conditions Degrades under Incidents

Let us now measure what happens if QTIP is unavailable, so
that only Mordinary is used for traffic prediction. To this end,
we compare the performance of LR Mordinary on incident-
free simulations vs. incident simulations. The performance
measurements we use are: Mean Signed Deviation (MSD),
Mean Absolute Error (MAE), and Rooted Mean Squared Error
(RMSE). These are defined as following for any set of vectors
V = {v1, . . . , vN} , where for vi ∈ V , ri is the model
estimation minus the actual value of the response value.

MSD = (r1 + · · · rN ) /N , (9)
MAE = (|r1|+ · · · |rN |) /N , (10)

RMSE =
((
r21 + · · · r2N

)
/N
)0.5

. (11)

For incident-free simulations, we apply 10-fold cross val-
idation, and obtain Fig. 9, which illustrates the prediction
accuracy of Mordinary for each vector from incident-free
simulations. We see that Mordinary is mostly accurate in
predicting speeds under incident-free conditions, as we might
expect, because traffic in highways flows in a rather regular
manner when no disruptions occur.

Next, we measure how worse Mordinary performs on in-
cident conditions, for which it was not trained. The results
are summarized in Table IV, and we see that Mordinary

deteriorates in comparison with its performance under normal
conditions. The deterioration occurs whether or not Mordinary

has access to information about uplink U and downlink D. For
the former option, Fig. 9c depicts the tendency of Mordinary

to overestimate the actual mean speed in study link S.
To further reason about this deterioration, we next visualize

how Mordinary performs on an the average incident time
series, where each lag is the 1 min mean speed, averaged over
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Representative examples of behavior of mean speed in Study link S under different incident scenarios, and performance of Mabnormal.

TABLE IV
PERFORMANCE OF Mordinary UNDER NORMAL VS. INCIDENT

CONDITIONS

Conditions U and D MSD MAE RMSE

Normal with −0.183 3.555 4.839
w/o −0.025 3.693 5.259

Incident with 3.040 6.862 9.513
w/o 0.440 5.913 9.085

all ground-truth simulations. Fig. 10 shows how Mordinary

fails to predict the average incident time series, either with or
without information about U and D. In the former case, the
predictions of Mordinary on the average incident time series
do not even converge to the typical speed at the second phase
of the incidents. Upon examining simulations output, it seems
that this lack of convergence is caused by an increase in mean
speed in D while congestion forms in S.

In fact, we also see in Fig. 10 the three typical phases of the
mean speed under road incidents, as following. The first phase
immediately follows the onset of the incident, at which time
the mean speed drops sharply for a few minutes. In the second
phase, the mean speed stabilizes, while the incident is still in
place. The third phase immediately follows the clearing of the
incident, at which time the mean speed increases sharply for a

few minutes, resuming the trend it had just before the incident.

E. Improvement of Predictive Performance with QTIP

We have shown that Mordinary deteriorates significantly
under incident conditions, which further expresses the need for
just-in-time model adaptation. Therefore, we now measure the
performance gain when using the adapted Mabnormal instead
of Mordinary in the first 6 minutes of each incident scenario.
To this end, we calculate the relative RMSE improvement for
each scenario, as:

RMSE (Mordinary)− RMSE (Mabnormal)

RMSE (Mordinary)
, (12)

where RMSE(M) is the RMSE of predictions of model M
for the corresponding scenario. Positive values correspond to
lower prediction error of Mabnormal vs. Mordinary, namely
better performance of Mabnormal.

Fig. 11 visualizes the relative RMSE improvement for each
incident scenario. We see that Mabnormal mostly outperforms
Mordinary , whether or not QTIP knows the exactly blocked
lanes. Moreover, we see that when QTIP knows which lanes
are blocked, the prediction quality of Mabnormal considerably
increases. Averaging all the values in Fig. 11, we obtain
that the mean relative RMSE improvement over all incident
scenarios is 28.74%.



12

(a) (b) (c)

Fig. 9. Performance of Mordinary under normal and abnormal traffic conditions in our experiments. All plots show predicted vs. ground-truth mean speed,
such that accurate predictions lie on the diagonal line. Under normal conditions, Mordinary performs better when its input contains information about the
uplink U and downlink D (9a) than without this information (9b). For incident conditions, 9c shows the density of scattered points. The predictive performance
of Mordinary degrades considerably under incidents, and it tends to over-estimate the mean speed, as also reflected in the Mean Signed Deviation (MSD).

Fig. 10. Degradation of Mordinary when applied to the average incident
time series, either with or without input from uplink U and downlink D.

We also see in Fig. 11 a few exceptional cases, in which
Mordinary outperforms Mabnormal. Most of these cases have
the following in common: two adjacent vehicles block the
same lane, demand is low, and location precision is low. Such
circumstances are illustrated in Fig. 8c, where we see that
traffic disruption is then rather minor, so that the behavior of
the mean speed remains rather stable when the incident occurs.
Hence in such circumstances, on one hand, the uninformed
Mordinary performs well. On the other hand, QTIP does not
know that the two distress signals originate from vehicles on
the same lane, and so generates what-if simulations also for
two different blocked lanes. Consequently, in such circum-
stances, QTIP trains Mabnormal to predict a disruption greater
than actual.

F. Transfer Learning

In the above experiments, Mabnormal is fit afresh for each
scenario. Nevertheless, as Mordinary incorporates knowledge
about historical traffic, it could be beneficial to give Mabnormal

access to this knowledge during training. In other words,
Mabnormal could possibly benefit from some form of transfer
learning (Pan & Yang, 2009).

To explore this possibility, we next carry out additional
experiments, where the linear coefficients of Mabnormal are
based on the coefficients of Mordinary. In these additional
experiments, we again use the same 81 incident scenarios as in
Section IV-E1, when QTIP either knows or does not know the
precisely blocked lanes. This time, however, we use Bayesian
Inference (Peled, Rodrigues & Pereira, 2019) to obtain βββ ∈ Rk,
the linear coefficients of Mabnormal.

1) Bayesian Setup: In each experiment, the prior on the
coefficients of Mabnormal is a multivariate Gaussian,

p(βββ) = N
(

βββ | µµµ, σ2
βIk
)
, (13)

where µµµ ∈ Rk is the coefficients of Mordinary , Ik is the k×k
identity matrix, and σβ is a hyper-parameter. Hence without
further evidence about incidents, Mabnormal is initially similar
to Mordinary. When such evidence is given as features X ∈
Rn×k and corresponding observations y ∈ Rn, the likelihood
of the observations is

p(y | X, βββ, σy) = N
(
y | Xβββ, σ2

yIn
)
, (14)

where σy is another hyper-parameter. In this Section, we
fix σβ = 1 and σy = 1; we have also experimented with
significantly higher and lower values of σβ and σy , but
obtained no noticeable change in results.

By Eqs. (2.113)–(2.117) in Bishop (2006, Section 2.3), the
posterior on Mabnormal coefficients is

p(βββ | y) = N
(

βββ

∣∣∣Σ{XT (σ−2
y In

)
y +

(
σ−2
β Ik

)
µµµ

}
,Σ
)
,

(15)

where Σ ∈ Rk×k is

Σ =
(
σ−2
β Ik + XT (σ−2

y In
)
X
)−1

. (16)

We thus use the posterior mean of Eq. 15 as the fitted
coefficients of Mabnormal.
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Fig. 11. Relative improvement of RMSE of Mabnormal over Mordinary in the first 6 minutes of incidents, when QTIP either knows or does not know
which lanes are blocked. All models use Linear Regression, and higher values correspond to greater improvement.

2) Experiments and Results: The experiments in this Sec-
tion allow us to study how an increasing amount of simulated
incident information affects Bayesian Mabnormal vs. freshly
fit Mabnormal. For each incident scenario i, we first indepen-
dently generate 5 ground truth simulations of the incident,
which we later use for evaluating the models. Then for each i
and j = 1, 2, . . . , 10, we have QTIP independently generate j
what-if simulations, on which we train each model. Because
each training simulation involves stochastic variations, we re-
peat the experiment 30 times for each i, j, evaluate the RMSE
of each model’s predictions vs. the ground truth observations,
and average the 30 evaluations.

Fig. 12 on page 14 depicts the results for known lanes,
whereas Fig. 13 on page 15 depicts the results for un-
known lanes. Each plot corresponds to a different incident
scenario and illustrates RMSE for Bayesian Mabnormal, fresh
Mabnormal, and Mordinary, which does not utilize incident
simulations and thus appears fixed. We limit the plots to
j = 1..5 training simulations, because both Mabnormal models
typically perform closely for j ≥ 6.

We see that compared to fresh Mabnormal, Bayesian
Mabnormal mostly obtains lower average RMSE and lower
standard deviation for j ≤ 4 simulations. Hence by trans-
ferring knowledge from Mordinary , Bayesian Mabnormal can
take better advantage of a low number of training simulations

than can fresh Mabnormal, which has no such knowledge.
However, there are a few occasions where modeling afresh

is more advantageous, e.g., scenarios “L,S,B,B” in Fig. 12
and “L,S,T,T” in Fig. 13. In addition, when QTIP generates
exceedingly few training simulations (j ≤ 2), Mordinary

often outperforms both Mabnormal models. In conclusion,
transfer learning can be advantageous in situations where
QTIP resources are reasonably limited, e.g., when only a few
computational nodes are available for parallel execution of
what-if simulations.

VI. SUMMARY OF KEY POINTS AND FUTURE WORK

We have presented the QTIP framework for real-time model
adaptation under non-recurrent traffic disruptions. QTIP is
motivated by both a problem and an opportunity. The problem
is that traffic prediction models must be adapted in real-time
to properly deal with abnormal road conditions, yet current
solutions fall short of addressing this need. The opportunity
arises from In-Vehicle Monitoring Systems (IVMS), which
provide immediate indication and information about incident
occurrence.

Under incident conditions, QTIP generates the data required
for model adaptation from real-time simulations of the affected
road. The simulations take advantage of IVMS as source
of real-time incident information, while QTIP allows free
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Fig. 12. Average RMSE (km/h, vertical axis) as the number of training simulations increases (horizontal axis), when QTIP knows which lanes are blocked.
The shaded areas are ±1 standard deviation around the average. Titles pertain to incident scenarios, as: demand level (High, Medium, Low), location on link
(Start, Center, End), 1st and 2nd blocked lanes (Top, Middle, Bottom, None).
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Fig. 13. Average RMSE (km/h, vertical axis) as the number of training simulations increases (horizontal axis), when QTIP does not know which lanes are
blocked. The shaded areas are ±1 standard deviation around the average. Titles pertain to incident scenarios, as: demand level (High, Medium, Low), location
on link (Start, Center, End), 1st and 2nd blocked lanes (Top, Middle, Bottom, None).
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choice of the complementary data-driven prediction models.
Our solution methodology thus combines two traditionally
distinct approaches to problem modeling: "black box" machine
learning algorithms on one hand, and “white box” transport
engineering methods on the other hand.

A. Findings and Implications
To evaluate QTIP, we have devised a proof-of-concept case

study where incident conditions are represented as sudden
road blocks on a major motorway in Denmark. We have
then experimented QTIP with several model types: Linear
Regression, Gaussian Processes, and Deep Neural Networks.
Following are our main empirical findings.

1) Our results verify measurably both the degradation in
predictive quality if no model adaptation is performed,
and the gain in predictive quality when QTIP is used
for model adaptation (Section V-D). Additionally and as
may be expected, the adapted prediction model improves
when more incident parameters are known, regardless of
model type (Section V-E).

2) In most cases, the adapted model outperforms the non-
adapted model, so that the mean relative RMSE im-
provement over all cases is 28.74% (Fig. 11). There
are also a few edge cases, where the non-adapted model
performs better than QTIP, as we explain in Section V-E.

3) As each simulation runs in under a minute on our single-
PC platform, QTIP could yield an adapted model in real-
time through parallel execution (Section V-A).

Our findings thus imply that the long-standing problem of
instantaneous model adaptation under incident occurrence is
becoming more tractable, as In-Vehicle Monitoring Systems
are increasingly deployed. This improvement in accuracy
further implies real-world benefits for more effective incident
management, and in particular, our findings suggest consider-
able positive impact in circumstances of high traffic demand,
during which efficient traffic management is most important.
Nevertheless, it is hard to assess the impact of this paper on
traffic policy making, e.g., in terms of passenger time savings
or the gains of quicker emergency response. Rather, this is a
proof-of-concept study with the objective of delivering a key
theoretical message: that the suggested solution approach pro-
motes the prospect of just-in-time prediction model adaptation.

B. Limitations
Every prediction framework has its limitations, and so does

QTIP. For demonstrating the full potential of QTIP, this work
examines the best case, namely 100% availability of IVMS
signals. Indeed, global trends suggest high adoption rate of
IVMS in upcoming years. In addition, QTIP currently depends
on an external module for calibration of simulations. Never-
theless, roads which are particularly prone to incidents may
be pre-calibrated offline. It should also be noted that IVMS
signals alone cannot resolve an inherent difficulty of traffic
prediction: that full observability of network state requires a
number of road sensors much larger than is typically available.
As such, any solution based wholly on simulations may yield
a sub-optimal adapted model, no matter how many simulations
it employs.

C. Future Work

The above discussion raises several interesting directions for
future work:

• It is expected that the adoption of IVMS technology will
happen gradually. Thus, the performance of QTIP may
be measured under varying, lower rates of availability of
such signals.

• The current QTIP framework can be extended to other
test cases, i.e. road types, road conditions, and larger
networks, to test e.g. other demand conditions and effects
of route choice. It can also be extended to other traffic
disruption types. All of these extensions may ultimately
yield different predictive performances in QTIP.

• In large-scale network scenarios, the computational per-
formance of QTIP may worsen. Methods for parallel
simulations, sub-network selection, or multi-scale frame-
works can be tested within QTIP to achieve timely
prediction improvements.

• The integration of QTIP with existing systems for real-
time traffic management (Kong et al., 2013; Lu et al.,
2015) can be piloted, to assess performance in practical
deployment conditions.

• The data-driven prediction models used in this paper can
be further enhanced as described in Section V-B, and
additional model types can be experimented with, e.g.,
ARIMA or Gradient Boosting (Y. Zhang & Haghani,
2015).

• Finally, we also point out that the integration of online
calibration within QTIP may provide increased prediction
power to the overall framework (Fig. 1). The past 15
years have been rich in online calibration of meso- and
microscopic simulators (Antoniou, Ben-Akiva & Kout-
sopoulos, 2007; Qin & Mahmassani, 2004; Prakash et al.,
2018), and further work is needed to evaluate real-time
performance and additional benefits of QTIP with online
calibration.
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