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Abstract. Wi-Fi and smartphone based positioning technologies are 
play-ing a more and more important role in Location Based Service (LBS) 
indus-tries due to the rapid development of the smartphone market. 
However, the low positioning accuracy of these technologies is still an 
issue for indoor positioning. To address this problem, a new method for 
improving the in-door positioning accuracy was developed. The new 
method initially used the Nearest Neighbor (NN) algorithm of the 
fingerprinting method to iden-tify the initial position estimate of the 
smartphone user. Then two distance correction values in two roughly 
perpendicular directions were calculated by the pass loss model based 
on the two signal strength indicator (RSSI) values observed. The errors 
from the path loss model were eliminated through differencing two 
model-derived distances from the same access point. The new method 
was tested and the results were compared and as-sessed against that of 
the commercial Ekahau RTLS system and the NN algorithm. The 
preliminary results showed that the positioning accuracy has been 
improved consistently after the new method was applied and the root 
mean square accuracy was improved to 3.4 m from 3.8 m of the NN 
algorithm.   
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1. Introduction 

With the rapid development of smartphone and Wi-Fi technologies, more 
and more people are dependent on their phones as the sole source of tele-
communication and entertainment. These technologies are also a growing 
means of connecting with each other instead of using email and other tradi-
tional social media. Various sensors, such as global positioning system 
(GPS) receivers, accelerometers, gyroscopes, digital compasses, cameras, 
Wi-Fi, and Bluetooth, have been embedded in smartphones for not only 
communications and entertainment, but also location-based services (LBS). 
Wi-Fi has become a default feature for all smartphones in recent years. As a 
result, wireless local area network (WLAN) technology experiences signifi-
cant development due to the rapid increasing demand from the smartphone 
industry. For example, the WLAN world market grew more than 20% in 
2012, topping US $4 billion in annual revenue (Machowinski, 2013). Wi-Fi 
market revenues are forecasted to approach US $12 billion in 2017, a 57% 
increase over 2012 revenues (Donovan, 2013). Wi-Fi based positioning us-
ing smartphones is therefore playing a key role in the commercial market. 
However, the low positioning accuracy is still an issue for Wi-Fi based posi-
tioning due to the signal fluctuation caused by various interferences, how to 
improve the positioning accuracy of Wi-Fi based systems is the main focus 
of this research.   

2. Typical Indoor Positioning Technologies 

A number of typical indoor positioning technologies are overviewed in this 
section. The advantages and challenges of Wi-Fi and smartphone technolo-
gies, and the commonly used measurement and estimation methods are 
investigated.  

1.1 2.1. Why Wi-Fi and Smartphones? 

Many positioning technologies or systems can be used for tracking people 
and asset in an indoor environment. During the past decades, typical indoor 
positioning technologies such as Wi-Fi, smartphone, Bluetooth, Radio Fre-
quency IDentification (RFID), infrared, ultrasonic and inertial navigation 
system (INS) or inertial measurement unit (IMU) have been investigated by 
researchers for their potential applications and positioning capabilities. 
Bluetooth is commonly used for short-range wireless communications and 
has low power consumption (Zandbergen, 2009). It has become more pop-
ular for location tracking after Bluetooth 4.0 was released which has a long-
er reading range and a shorter connection time. RFID uses radio waves to 
transmit a tag identity to its reader so that the carrier of the tag can be 



 

 

tracked wirelessly (Bai et al., 2012). Infrared is often used for short-range 
communication between infrared embedded devices; however, infrared 
cannot penetrate walls, which makes it very difficult to be used between 
rooms. Ultrasonic can be used to detect objects and measure distances, but 
the condition of line-of-sight (LoS) is required. INS/IMU is a self-contained 
navigation technique (Woodman, 2007, Retscher et al., 2012) and usually 
only provides reliable solutions for a short period of time because its meas-
urement errors rapidly enlarge over time and thus it is difficult to separate 
or mitigate errors from the navigation signals (Hide, 2003).  

Compared with these technologies, Wi-Fi has a major advantage of making 
use of the existing Wi-Fi infrastructure of an enterprise, which leads to cost 
and time savings. Today, Wi-Fi based real time location system (RTLS) so-
lution is one of the two major market shareholders in the global RTLS mar-
ket and holds a very promising future (ResearchAndMarkets, 2014).  

Smartphones have been used as miniaturised portable computers for years. 
Various smartphone built-in sensors, which were originally designed for 
communications and entertainment, have been adopted for LBS. GPS re-
ceivers have been well integrated into smartphones and their positioning 
performance is reliable for outdoor environments. However, it has issues in 
indoor environments due to the signal attenuation. In this case, Wi-Fi 
based positioning technology can be an alternative.  

Currently, a number of Wi-Fi and smartphone based commercial RTLS sys-
tems are available in the market, e.g. Aeroscout, WhereNet, Newbury and 
Ekahau (Aeroscout, 2013, WhereNet, 2013, Newbury, 2013, Ekahau, 2013). 
The Ekahau RTLS system can run over existing Wi-Fi infrastructure and 
uses the fingerprinting algorithm to estimate the location of the peo-
ple/object tracked. It has been deployed in many commercial fields and is 
the only system that has a client software package (Bhaumik, 2010). Thus, 
Ekahau was tested for comparison with the positioning accuracy of our new 
method in this research. 

1.2 2.2. Main Challenges of Wi-Fi based Indoor Positioning 

The main challenge of Wi-Fi and smartphone based positioning is the low 
positioning accuracy due to the fluctuation of the received signal strength 
indicator (RSSI) values, which is caused by a range of interferences. Apart 
from the channel related interferences, the main factors affecting the RSSI 
values are from the surrounding people and objects, e.g. Wi-Fi signals can 
be absorbed by water and reflected by metals (Villinger, 2012, Harwood, 
2009). A human body, consisting of about 70% water, may in some cases 
partly or fully block the signals; a metal wall affects the signal propagation 
more than a wooden wall. The surrounding environmental effect is also the 



 

 

Method Time synchronisation No. of receivers required LoS Accuracy

ToA Mobile object and all receivers ≥ 3 receivers Yes High

TDoA All receivers ≥ 2 receivers Yes High

AoA Not required Antenna array required Yes Medium

RSSI Not required ≥ 3 receivers No Medium

most difficult factor to be modeled due to the complexity of the indoor envi-
ronment. Another major affecting factor is radio interference from the de-
vices nearby, such as microwave ovens, baby monitors or garage door open-
ers. Different wireless cards also have different effects on signal strength 
because different vendors use different hardware (e.g. antennae) and differ-
ent methods to measure the radio frequency (RF) energy. In fact, the RSSI 
values from a wireless access point (AP) may fluctuate all the time. Phones 
from different manufacturers, the same type of phones but with different 
versions, and even two phones that are exactly the same model, could all 
have different RSSI values at a certain time point at the same detecting lo-
cation. The fluctuation of the RSSI values could seriously affect the posi-
tioning accuracy. 

1.3 2.3. Measurements and Estimation Methods  

Four types of measurement models are commonly used for indoor position-
ing, which are time of arrival (ToA), time difference of arrival (TDoA), angle 
of arrival (AoA) and RSSI-based models. The RSSI-based model has more 
popularity than the other three. Their main characteristics are compared in 
Table 1. 

 

 

 
 

Table 1. Comparison of four measurement models 

Cell of origin (CoO), trilateration and fingerprinting are the three most 
commonly used location estimation methods for indoor positioning. Gener-
ally, CoO is not used as much as the other two methods due to its lower ac-
curacy results. Its accuracy depends on the means of implementation.  

Trilateration usually requires three or more AP connections and the user’s 
position estimate is derived from multiple distances (i.e. ≥ 3 distances) be-
tween the user being tracked and the surrounding APs using the observed 
RSSI values. The observed RSSI values can be affected by the output power 
of the transmitter, the sensitivity of the receiver, the antennae gains at both 
ends of the path, and the path loss of the signal as it travels through the air 
from the transmitter to the receiver. The distances between the user to the 
APs can be calculated by the following path loss model (Greg Durgin, 1998, 
Cisco System, 2008): 

d    
                                                                

            (1) 



 

 

Method Accuracy Advantage Disadvantage

CoO
Low to 

medium
Simple algorithm

Discrete positions; accuracy depends on the size 

of cells; a large number of devices are required

Trilateration Medium
Continuous positioning; no training 

phase required

At least three receivers are required; poor 

accuracy may occur, caused by environmental 

effects

Fingerprinting
Medium to 

high

Continuous positioning; environmental 

effects are considered in training phase
Poor accuracy in dynamic environments

where  

d:  distance between the transmitter and receiver in meters; 
RXPWR:  transmitter output power in dB; 
TXPWR:  detected RSSI in dB; 
LossTX:  sum of all transmitter-side cable and connector losses in dB; 
GainTX: transmitter-side antenna gain in dBi; 
LossRX:  sum of all receiver-side cable and connector losses in dB; 
GainRX:  receiver-side antenna gain in dBi; 
PL1Meter:  reference path loss in dB for the desired frequency when the  

receiver-to transmitter distance is 1 meter, (Miguel, 2014);  
n: path loss exponent for the environment; 
s: standard deviation associated with the degree of shadow fad-

ing present in the environment.  

However, significant errors may occur during the above distance calculation 
due to the complexity of the surrounding environment. Therefore, trilatera-
tion is more suitable for a large space indoor environment.  

The fingerprinting method generally consists of two phases: off-line train-
ing phase and localisation phase. The deterministic and probabilistic tech-
niques are often used for position estimation in fingerprinting method 
(Beom-Ju et al., 2010). During the off-line training phase, RSSI values are 
observed at each of a range of known points, which are also called reference 
points (RP), from each RP’s surrounding APs. Then these observed datasets 
are all stored in a database (DB) called fingerprinting DB. While in the lo-
calisation phase, a set of user’s RSSI observations from its surrounding APs 
are observed and compared with the datasets stored in the fingerprinting 
DB for identification of best matched dataset in the DB. The position of the 
RP associated with best matched dataset is taken as the location estimate. 
The comparison of the three methods is displayed in Table 2.  

 

 

 

 

 

Table 2. Comparison of three most commonly used position estimation methods 

3. New Positioning Method 

A new Wi-Fi based indoor positioning method was developed in this re-
search for improving the positioning accuracy of the fingerprinting ap-



 

 

proach based on the nature of the spatial correlation of Wi-Fi signal propa-
gation.  

1.4 3.1. Idea Development 

The inspiration idea for the new positioning method was originally from a 
test result from the single wireless AP-connection location tracking 
(SWAPLT) test. The test was originally designated to track a user location at 
a certain time based on a single AP connection. An area of 1000 m2, 11 APs 
(red spots), and 30 test points (green spots) were selected for the test (see 
Figure 1).  

 

 

 

 

 

 

 

Figure 1. Testing environment for the SWAPLT test 

Eleven Voronoi Polygons were created first by the ArcMAP software and 
were then adjusted based on the floor layout and an on-site correction pro-
cess. A final unique AP-polygon pair was identified for each AP and all the 
strongest RSSI values collected within the polygon were considered from its 
associated AP. These paired relationship data were then stored into a data-
base and used for determining which polygon a user was located in at the 
location tracking stage. The SWAPLT test showed that stronger signals pre-
sented more stability and consistency. Therefore, the new method started 
from identifying a surrounding AP with the strongest RSSI value as the ini-
tial AP (named APinit hereafter), which was used for the later calculations of 
the new method. 

Another characteristic for the new method to be based on is the spatial cor-
relation of the Wi-Fi signal propagation, that is, the propotion of the RSSI 
values observed and their corresponding distances calculated is trustworthy 
for two points which are close to each other (e.g. < 1.5 m, depending on the 
RP reslution). It is indicated that the point with a stronger RSSI value 
observed from an AP is closer to the AP than another point, and vice versa; 
the two errors in the distances to the AP obtained from the path loss model 
can be considered as the same.  



 

 

Other Wi-Fi signal features were also considered during the development of 
the new method. For example, a weak Wi-Fi signal may present less stabil-
ity and reliability, which should be considered during the positioning pro-
cess. Based on the specification of the AP products, signals with the RSSI 
values greater than -70 dB were presumed for better consistency and posi-
tioning operation. Furthermore, an empirical RSSI threshold of -85 dB was 
adopted for rejection of ineffective RSSI values in the tests for our new 
method. The -85 dB was also the RSSI threshold adopted in the Ekahau 
RTLS system. 

1.5 3.2. Development of the New Method 

In relation to the above principles, the new method started from the Near-
est Neighbour (NN) algorithm of the fingerprinting method. In the training 
phase, at each RP, 5 effective observations including the RSSI value and 
MAC address from each of selected surrounding APs were collected at a 1-
second sampling rate, then the mean of the observed RSSI values (  ̅ ) for 
each RP was calculated. An example of   ̅  at the kth RP can be expressed 
as:  

  ̅        ̅̅ ̅̅ ̅̅
   
        ̅̅ ̅̅ ̅̅

   
   , …,     ̅̅ ̅̅ ̅̅

   
      (2) 

The mean of RSSI observations for each RPs were saved to the fingerprint-
ing DB. It should be noted that an 8-second data collection period of time 
was used for 5 effective observations in case that some of the RSSI values 
were out of the RSSI threshold and more data collection time was needed.  

During the location detection phase, a RSSI dataset from the smartphone 
user was observed as Susr = (       

   ,        
   , …,        

   ), then Susr was 
compared with the   ̅  values stored in the DB using the following equation: 

   √∑         
        ̅̅ ̅̅ ̅̅

   
      

                            (3) 

where n is the number of selected surrounding APs at RPk;    is the differ-
ence between Susr and   ̅  . The location of RP with the minimum   value, 
which is also called the best matched RP, was taken as the user’s initial 
estimate (Pinit) (e.g. RP3 in Figure 2). The AP which had the strongest RSSI 
value observed at Pinit was identified as APinit (e.g. AP5 in Figure 2).  Let APp 
(e.g. AP4 in Figure 2) be the roughly perpendicular AP that satisfies the fol-
lowing conditions: 1) the distance between Pinit and APp < 40 m; 2) 60o ≤ 
 APinit-Pinit-APp ≤ 1200 or 240o ≤  APinit-Pinit-APp ≤ 3000; and 3) the RSSI 
value received at Pinit from APp ≥ -70 dB. If more than one such AP candi-
dates are available, the AP that has the strongest RSSI value is selected. 
After the APp is determined, a virtual perpendicular AP (APper) is defined by 
the following geometry configuration process: 1)  APinit-Pinit-APper=900 or 



 

 

 APinit-Pinit-APper=2700; 2) | APp-Pinit-APper|≤ 300; and 3) the distance of 
Pinit-to-APper =Pinit-to-APp. 

The next step was calculating the difference (Δd1) between the distance (  
̅̅ ̅) 

of Pinit-to-APinit and the distance (  ) of P-to-APinit, and also the difference 
(Δd2) between the distance (  

̅̅ ̅) of Pinit-to-APper and the distance (  ) of P-
to-APper using Equations 1, and 4 or 5.  

           
̅̅ ̅    (4) 

           
̅̅ ̅    (5) 

where P(x, y) is the user’s position. Δd1 and Δd2 are called distance correc-
tion value (DCV) in the two typical directions defined as aforementioned 
and also shown in Figure 2. It is noted that if there is no effective APp 
found, then only one correction value (i.e. Δd1) will be applied. 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Diagram for the correction in the new method 

In the last step, the two corresponding known (true) distances of Pinit-to-
APinit (D1) and Pinit-to-APper (D2) were corrected by adding the DCV values to 
obtain the radial parameters r1 and r2 using Equations 6 and 7 respectively 
(and also see Figure 2, r1 is the distance of P1-to-APinit and r2 is the distance 
of P2-to-APper). Then the two circles with the radii of r1 and r2 expressed by 
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Equations 8 and 9 were used to solve for P(x, y) and the intersection point 
closer to Pinit was regarded as the final estimate of P(x, y).  

r1 = D1 + Δd1     (6) 

r2 = D2 + Δd2     (7) 

r1 = √                                             (8) 

r2 = √        
           

                        (9) 

where (xinit, yinit) and (xper, yper) are the coordinates of APinit and APper re-
spectively.  

The final result estimation for the method is in fact an error correction pro-
cess to the Pinit. The core part of the method is to take fully into account the 
difference of the RSSI values and use the observation derived values for the 
calculation of   

̅̅ ̅ and   
̅̅ ̅, although the true distances D1 and D2 are known. 

In this case, the distance errors from the path loss model are eliminated for 
these two points which are close to each other (e.g. Pinit and P in Figure 2), 
and therefore the DCV can be considered as the true difference based on the 
difference of the RSSI values observed. The flowchart diagram in Figure 3 
describes the overall procedure of the new method. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Overall procedure of the new method 



 

 

4. Testing and Result Evaluation 

1.6 4.1. Test Environmental Setup 

A testing environment was established in the RMIT Indoor Positioning Lab 
for us to conduct the tests of Ekahau RTLS System, NN algorithm and our 
new method, as shown in Figure 2. The testing environment was made up 
like a real world public area such as a shopping mall. Five Linksys WAP54G 
wireless APs were installed in the area to form a fully controlled WLAN en-
vironment. A HP Elite Book 2560P was used as the server machine and a 
HTC One smartphone as the client-side device. A total of 24 RPs were 
marked covering most of the testing area at a 2m × 2m grid resolution. 
These RPs were also used as test points (TP) later on during the location 
detection phase of the new method. 

1.7 4.2. Test of Ekahau RTLS  

The Ekahau RTLS Controller (ERC) was installed on the HP laptop as a 
remote server, and the Ekahau Site Survey (ESS) was installed for defining 
the wireless network plan, conducting a site survey and establishing a fin-
gerprinting DB (see Figure 4a). The Ekahau Positioning Client (EPC) virtu-
al software was installed on the smartphone as a virtual tag, Figure 4b 
shows the EPC’s operation and configuration interface.  

 

 

 

 

 

 

 

 

 

Figure 4. (a) The walking path for training data collection in the test area; (b) The opera-

tion (left) and configuration (right) interface of the EPC 

During the user position detection phase, the smartphone was placed at 
each of the 24 TPs, their real time position estimates were displayed on the 
Ekahau Vision Client Monitor interface. With the assistance of the Ekahau 
Software Developer's Kit, a java-based application program was developed 

(a)    (b)  



 

 

RPs in DB AP1 AP2 AP3 AP4 AP5 δ (dB)

02 -41 -53 -73 -44 -43 10.2

03 -45 -53 -69 -42 -41 4.1

04 -48 -55 -68 -43 -40 4.6

08 -55 -57 -55 -40 -42 15.6

17 -67 -58 -43 -49 -43 33.3

22 -65 -47 -47 -54 -45 31.3

⁞ ⁞ ⁞ ⁞ ⁞ ⁞

Detected at P -47 -52 -67 -40 -39

RP3The minimum δ is 4.1 dB, RP3 therefore was selected as the initial position P init

True distance 

D  (m)

Estimated distance              

(m)

Estimated distance 

d   (m)

   Δd = d -     

        (m)
r = D + Δd Final P(x, y )

D 1  = 3.15  = 1.50 d1  = 1.25 Δd1  = -0.25 r 1  = 2.90

D 2  = 5.68  = 1.64 d2  = 1.37 Δd2  = -0.28 r 2  = 5.40

nearer intersection point 

of the circles (r1 & r2)

  

 ̅

  

 ̅

to record the location estimates from all the TPs. The RMS positioning ac-
curacy obtained from the Ekahau RTLS is 3.9 m. 

1.8 4.3. Test of the New Method 

The same testing environment as for Ekahau was used for this test. The test 
included two main stages: 

1. Fingerprinting DB generation and initial position estimation 

At each RP, the observations values from the surrounding 5 APs were col-
lected. Probing behavior of the test client should be as close as possible to 
that of the clients to be tracked. The mean of the 5 effective RSSI observa-
tions for each RP were saved to the fingerprinting DB. 

During the user detection phase, a smartphone was placed at a TP (the true 
position of which was known), and the RSSI values from all the 5 APs were 
received as S (-47, -52, -67, -40, -39). Then S was compared with those 
  ̅  stored in the DB using Equation 2, and RP3, AP5 and AP4 were deter-
mined as Pinit, APinit and APp respectively (see Table 3 for an example). Fi-
naly APper was defined accordingly. 

 

 

  

 

 

 

 

Table 3. Part of the data used for comparison and Pinit determination 

2. Corrections to the initial estimate 

Table 4 showed  the calculation and result including intermediate values for 
the correction to Pinit. 

 

 

 

Table 4. Positioning determination result 

The statistical  RMS accurcy (    ) of all the TPs was 3.4 metres, which was 
calculated by: 



 

 

      √
 

 
 ∑          

          
 ]  

       (10) 

where m is the total number of TPs tested, (xk, yk) and (xek, yek) are the true 
and estimated coordinates at TPk respectively. 

1.9 4.4. Results Evaluation 

The commercial Ekahau RTLS, the NN algorithm and the new method were 
tested in the same testing environment. Figure 5 shows the comparison of 
their test results in terms of positioning accuracy of the same 24 TPs. 

The RMS accuracy of the 24 TPs for the three scenarios are 3.9 m, 3.8 m 
and 3.4 m respectively, i.e., after the new method was employed, the posi-
tioning accuracy was improved to 3.4 m from 3.8 m of the NN algorithm.  

 

 

 

 

 

 

Figure 5. Comparison of accuracy results from Ekahau RTLS, NN algorithm and the new 

method 

The accuracy of 3.9 m of the Ekahau RTLS result is within the range of 3—5 
m as claimed in its product manual. The accuracy of 3.8 m of NN is slightly 
better, however, it cannot be drawn by this minor difference that NN is 
better than Ekahau RTLS in general. However, the new positioning method 
has shown a noticeable and consistent improvement compared with the 
other two approaches.  

5. Conclusion and Future Work 

This paper presents a new indoor positioning method based on Wi-Fi and 
smartphone technologies and the fingerprinting estimation method. The 
test results have shown that the new method effectively and consistently 
improved positioning accuracy at a level of nearly half a metre. Moreover, 
the new method also have advantages such as flexibility and expendability 
for further development, as well as ease to be integrated with other 
positioning systems. 



 

 

Future work will include performance assessment for various grid resolu-
tions of RPs, and investigation of the variation of RSSI observations from a 
particular AP at different time. 
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