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Deep Learning Methods for Fingerprint-Based
Indoor Positioning: A Review

Fahad Alhomayani and Mohammad H. Mahoor

Abstract—Outdoor positioning systems based on the Global
Navigation Satellite System have several shortcomings that have
deemed their use for indoor positioning impractical. Location
fingerprinting, which utilizes machine learning, has emerged
as a viable method and solution for indoor positioning due
to its simple concept and accurate performance. In the past,
shallow learning algorithms were traditionally used in location
fingerprinting. Recently, the research community started utilizing
deep learning methods for fingerprinting after witnessing the
great success and superiority these methods have over tradi-
tional/shallow machine learning algorithms. This paper provides
a comprehensive review of deep learning methods in indoor
positioning. First, the advantages and disadvantages of various
fingerprint types for indoor positioning are discussed. The solu-
tions proposed in the literature are then analyzed, categorized,
and compared against various performance evaluation metrics.
Since data is key in fingerprinting, a detailed review of publicly
available indoor positioning datasets is presented. While incorpo-
rating deep learning into fingerprinting has resulted in significant
improvements, doing so, has also introduced new challenges.
These challenges along with the common implementation pitfalls
are discussed. Finally, the paper is concluded with some remarks
as well as future research trends.

Index Terms—Deep learning, indoor positioning, location fin-
gerprinting, machine learning, review.

I. INTRODUCTION

OVER the past two decades, the limitations satellite-
based outdoor positioning systems (e.g., GPS, Galileo,

GLONASS) have for indoor use [1] led researchers to propose
a wide variety of indoor positioning systems. Indoor position-
ing or indoor localization is the process of determining one’s
indoor location with respect to a predefined frame of reference.
Indoor navigation relies on positioning updates to reach a
target location from the current location. All indoor positioning
systems are designed to provide location information. Some
go a step further to provide navigation capabilities.

While the notion of location is broad, location information
can generally be presented in one of four ways: physically,
absolutely, relatively, and symbolically [2], [3]. Physical loca-
tion is obtained with respect to a global reference frame (e.g.,
latitude and longitude in the geographic coordinate system).
Absolute location is expressed with respect to a local reference
frame and the resolution of the frame depends on grid size.
Relative location expresses the user’s proximity to known
landmarks in the environment. Symbolic location expresses
location in a natural-language way, thus, providing abstract
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information of where the user is (e.g., in the living room, in
the kitchen, etc.).

A common theme in early indoor positioning systems is
an infrastructure-based nature. In other words, early systems
provide positioning by relying on specialized equipment that
has to be deployed throughout the environment and carried
by users. Such equipment include ultrasonic transmitters,
infrared badges, and Radio Frequency IDentification (RFID)
tags [2], [3]. In contrast, the most recent systems are either
infrastructure-free or take advantage of the already deployed
infrastructure (e.g., WiFi Access Points (APs)). These systems
rely on the various sensors and modules found in users’ smart-
phones to provide indoor positioning [4], [5]. Infrastructure-
free positioning systems do not necessitate deployed hardware
in the environment to operate. Examples of such systems in-
clude magnetic field-based systems and camera-based systems
(if artificial markers are not required for positioning).

Designing an indoor positioning system has remained a
challenging task since indoor environments are very complex
and are often characterized by non-line-of-sight (NLoS) set-
tings, moving people and furniture, walls of different den-
sities, and the presence of different indoor appliances that
alter indoor signal propagation. Nevertheless, the demand for
more complete solutions is higher than ever before. This
demand is fueled by a multitude of potential applications
and services enabled by indoor positioning. Indoor positioning
is a key enabling technology for many domains including
indoor location-based services (ILBS) [6], the internet of
things (IoT) [7], ambient assisted living (AAL) [8], indoor
emergency responders navigation [9], and occupancy detection
for the energy-efficient control of buildings [10]. Attempting
to satisfy the demand, researchers are forced to compromise
between different design criteria (e.g., accuracy, precision,
privacy, scalability, complexity, cost, etc. [3]). To date, no
universally agreed upon solution has emerged to solve the in-
door positioning problem. Because of this, indoor positioning
research is vibrant. Researchers share their work in dedicated
conferences such as, the International Conference on Indoor
Positioning and Indoor Navigation (IPIN); the International
Conference on Ubiquitous Positioning, Indoor Navigation and
Location-Based Services (UPINLBS); and the Workshop on
Positioning, Navigation and Communication (WPNC). As seen
in Fig. 1, the body of literature published in these conferences’
proceedings, as well as at other venues and in other journals,
continues to grow each year.

This paper provides a comprehensive review of deep learn-
ing methods for fingerprint-based indoor positioning with the
objective of covering the developments of this area of research
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Fig. 1. The number of published articles in IEEE Xplore by year (from
2009 to 2019) where authors used “indoor positioning”, “indoor
localization”, or “indoor navigation” as a keyword.

from its inception to its current state and beyond. Wherever
appropriate, topics are presented in a chronological context
and special emphasis is given to clear pioneers and major
milestones.

A. The Fingerprinting Approach to Indoor Positioning

Various approaches for indoor positioning have been pro-
posed over the years. The main methods introduced include
angulation, lateration, proximity detection, pedestrian dead
reckoning, and location fingerprinting. Amongst these, the
latter has recently received significant attention as a straight-
forward, inexpensive, and accurate approach for indoor po-
sitioning. Location fingerprinting, also referred to as scene
analysis, or fingerprinting, employs low-power sensors that are
integrated into smartphones and exploits existing infrastruc-
ture, such as WiFi APs, to achieve high positioning accuracy
even in NLoS settings. The location of these APs is not
a prerequisite for positioning, which eliminates the need to
model complex indoor signal propagation [11]. Moreover,
fingerprinting systems are immune to accumulated positioning
errors caused by Inertial Measurement Unit (IMU) drifts [12].

The concept of fingerprinting is identifying indoor spatial
locations based on location-dependent measurable features
(location fingerprints). There are different types of finger-
prints such as radio frequency fingerprints [13], magnetic
field fingerprints [14], image fingerprints [15], and hybrid
fingerprints [16]. Radio frequency fingerprints, particularly
WiFi fingerprints, are, undoubtedly, the most used fingerprints.

From an implementation perspective, the fingerprinting ap-
proach to indoor positioning is a two-phase process that con-
sists of an offline phase and an online phase. During the offline
phase, site surveying, in which the fingerprints of the area
of interest are sampled at predefined reference points (RPs),
is performed. The fingerprints are sampled using smartphone
sensors. For example, the WiFi module and the magnetometer
are used to collect received signal strength (RSS) and magnetic
field fingerprints, respectively. The sampled fingerprints, along
with their corresponding coordinates, are stored in a database.
The data is then used to train a machine learning algorithm
to learn a function that best maps the sampled fingerprints to
their correct coordinates. The learned function is then used
during the online phase to infer a user’s coordinates given the
measured fingerprints at the user’s location. The process of
fingerprinting is visually depicted in Fig. 2.

The main source of error in fingerprinting systems is due to
location ambiguity. Location ambiguity refers to the problem
of different RPs exhibiting similar fingerprints [17]. Local
ambiguity occurs when adjacent RPs have similar fingerprints,
while global ambiguity occurs when distant RPs have similar
fingerprints. As discussed later, different fingerprint types may
suffer from one ambiguity more than the other. For example,
WiFi fingerprints are generally immune to global ambiguity
but prone to local ambiguity, while the contrary is true for
magnetic field fingerprints.

Based on the number of samples needed for online posi-
tioning, a given system can be classified as either one-shot or
multi-shot [18]. In a one-shot system, a location is estimated
using only a single fingerprint sample; while in a multi-shot
system, two or more samples (i.e., consecutive measurements)
are required to refine the positioning estimate. Due to the
time spent obtaining the additional samples and the pre/post-
processing involved, multi-shot systems are generally slower
but more accurate than one-shot systems.

Shallow learning algorithms such as k-Nearest Neighbor
(kNN), Naı̈ve Bayes, and Decision Trees have traditionally
been utilized for location fingerprinting [19]–[22]. The re-
search community is rapidly shifting towards deep learning-
based fingerprinting after witnessing the tremendous success
that deep learning methods have achieved in a multitude of
research fields and applications.

B. Why Deep Learning for Fingerprinting
Listed below are some powerful deep learning algorithms

properties and their positive implications on location finger-
printing:

1) Deep learning techniques often provide an end-to-end
solution where the task of feature extraction is automat-
ically performed and implicitly embedded in the archi-
tecture, avoiding the need for hand-engineered features,
a time-consuming and knowledge-demanding process.
This property is particularly crucial when dealing with
high-dimensional and not-easily extractable features that
are required for radio frequency and image fingerprint-
ing.

2) Deep learning is well-known for effectively and effi-
ciently processing massive amounts of raw data, a task
otherwise difficult, if not impossible. In fact, the predic-
tive performance of deep learning algorithms enhances
with increased training samples. Consequently, there is
no limit to the amount of fingerprint data used for
training.

3) The parametric nature of deep learning, where compu-
tational complexity does not depend on dataset size and
the ability to parallelize computation using Graphical
Processing Units (GPUs) results in infinitesimal infer-
ence latency (in the orders of milliseconds or less),
makes deep learning algorithms ideal for real-time po-
sitioning applications. However, this often comes at the
expense of a prolonged training phase.

4) Deep learning is the method of choice for classifica-
tion/regression problems in which the nature of bound-
aries describing the features in input space is highly
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Fig. 2. A graphical representation of the fingerprinting approach to indoor positioning.

complex and nonlinear. This is the case in fingerprinting
where the overarching goal is to distinguish between
spatial locations that are, in many cases, separated by a
few centimeters or less.

5) Deep learning is well-suited for transfer learning which
involves transferring knowledge from pre-trained net-
works to minimize data collection and training efforts.
Therefore, a fingerprinting system can be realized with
minimal cost. In this regard, unsupervised and semi-
supervised deep learning methods have also proven suc-
cessful when the fingerprint data is scarce or unlabeled.

II. REVIEW SCOPE, RELATED WORK, AND
CONTRIBUTIONS

A. Review Scope

While deep learning started to gain momentum in 2006,
after Hinton et al. [23] made a historic breakthrough in training
deep architectures, the intersection between deep learning and
fingerprinting didn’t take place until almost a decade later.
The exponentially increasing body of literature ever since mo-
tivated the composition of this review. The aim of this review
is to provide researchers and practitioners with the current
solutions and how they compare, potentials, and challenges
of this ever-expanding area of research. To this end, over
40 research papers, published between 2015 and 2019, where
deep learning methods were leveraged for fingerprinting, were
identified. These papers were selected based on scientific qual-
ity, originality, and significance. Scientific quality is ensured
by reviewing a paper only if it was published in a peer-
reviewed, reputable journal or conference proceedings. The
originality criterion ensures that priority is given to papers
studying topics that have received little to no attention. In this
sense, if two identified papers discuss very similar topics, then
a higher priority for inclusion is given to the paper that was
published first. Significance is assessed by means of citation
counts. Specifically, if a paper has not received any non-self
citations within 18 months of publication, it receives lower
priority for inclusion. The scope of the review is specific in
nature since this paper does not review fingerprinting based
on shallow learning nor does it review areas where deep
learning is used with other positioning methods. The deep
learning methods covered in this paper are Autoencoders
(AEs), Convolutional Neural Networks (CNNs), Deep Belief

Networks (DBNs), Fully Connected (FC) Networks, Gener-
ative Adversarial Networks (GANs), and Recurrent Neural
Networks (RNNs). Providing a discussion on these methods
is beyond the scope of this paper. Readers looking for details
about deep learning may refer to [24]. The acronyms and
abbreviations used throughout the paper are listed in Table
I.

B. Related Work

Since the field of indoor positioning is not novel, over the
years several articles have been published that generally review
the field [3], [25]–[28] or review it from different angles such
as the positioning approach used [29]–[31], the underlying
technology utilized [17], [30], [32], or the application domain
tackled [9], [33]. While all these works are remarkable, none
of them discussed deep learning-based indoor positioning.

From a deep learning standpoint, Mohammadi et al. [34]
and Zhang et al. [35] recently reviewed deep learning ap-
proaches and use cases in the context of IoT big data and
streaming analytics, and mobile and wireless networks, re-
spectively. Both works marginally introduced deep learning-
based indoor positioning. However, an in-depth review where
solutions are analyzed, categorized, and compared was not
provided.

To the extent of our knowledge, this is the first study
dedicated to reviewing the recent adoption of deep learning
methods in fingerprint-based indoor positioning.

C. Contributions and Paper Organization

This article’s contributions are in line with its general
organization:

• Section III overviews various fingerprint types and dis-
cusses their advantages and disadvantages for indoor
positioning.

• Since data is at the core of every fingerprinting system,
whether based on deep or shallow learning, Section
IV provides an elaborate review of indoor positioning
datasets that are currently publicly available. Using differ-
ent variables, datasets are compared to help researchers
and practitioners choose the dataset that best fits their
implementation goals.

• Section V introduces a performance evaluation frame-
work for deep learning-based fingerprinting systems. The
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TABLE I
ACRONYMS AND ABBREVIATIONS

AAL Ambient Assisted Living

AE Autoencoder

AoA Angle of Arrival

AP Access Point

BIM Building Information Model-
ing

BLE Bluetooth Low Energy

BS Base Station

CDF Cumulative Distribution Func-
tion

CGAN Conditional Generative Adver-
sarial Network

CIR Channel Impulse Response

CNN Convolutional Neural Network

CPU Central Processing Unit

CSI Channel State Information

DAE Denoising Autoencoder

dBm decibel-milliwatts

DBN Deep Belief Network

DRL Deep Reinforcement Learning

FC Fully Connected

FLOP Floating-Point Operation

GAN Generative Adversarial Net-
work

GLONASS GLObal NAvigation Satellite
System

GPS Global Positioning System

GPU Graphical Processing Unit

GRU Gated Recurrent Unit

LAR Locomotion Activity Recogni-
tion

HMM Hidden Markov Model

ILBS Indoor Location-Based Ser-
vices

IMU Inertial Measurement Unit

IoT Internet of Things

IPIN
The International Conference
on Indoor Positioning and In-
door Navigation

kNN k-Nearest Neighbor

LED Light Emitting Diode

LoS Line-of-Sight

LSTM Long Short-Term Memory

LTS Localization and Tracking Sys-
tem

MAE Mean Absolute Error

MIMO Multiple-Input Multiple-
Output

MSE Mean Squared Error

µT microtesla

M2M Machine-to-Machine

NLoS Non-Line-of-Sight

OFDM Orthogonal Frequency-
Division Multiplexing

ONNX Open Neural Network Ex-
change

RFID Radio Frequency IDentifica-
tion

RGB Red-Green-Blue

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

RP Reference Point

RSS Received Signal Strength

SAE Stacked Autoencoder

SDAE Stacked Denoising Autoen-
coder

SfM Structure-from-Motion

SIFT Scale-Invariant Feature
Transform

SURF Speeded Up Robust Features

SVM Support Vector Machine

TTFF Time-To-First-Fix

URLLC Ultra-Reliable and Low-Latency
Communication

UUID Universally Unique Identifier

UWB Ultra-Wide Band

VAE Variational Autoencoder

VLC Visible Light Communication

WkNN Weighted k-Nearest Neighbor

WNIC Wireless Network Interface Card

WSN Wireless Sensor Network

framework consists of five metrics that can be used to
evaluate the quality of a given system from different
aspects.

• Section VI thoroughly investigates current deep learning-
based fingerprinting solutions proposed in the literature.
For the convenience of analysis, these solutions are
categorized based on the fingerprint type they employ
and subcategorized based on the deep learning model
they exploit. Additionally, all solutions are evaluated and
compared using the evaluation framework described in
Section V.

• Having reviewed the literature, Section VII identifies
common pitfalls to avoid when designing a deep learning-
based fingerprinting system and highlights the implemen-
tation challenges that have yet to be addressed.

• Section VIII suggests future research directions and con-
cludes the review.

III. INDOOR FINGERPRINT TYPES

This section provides an overview of different fingerprint
types that are used for indoor positioning. For each fingerprint
type, its advantages and disadvantages for indoor positioning
are discussed first, followed by a brief account of the first doc-
umented time of using it for indoor positioning. The fingerprint
types include Radio Frequency (WiFi, BLE, and Cellular),
Magnetic Field and IMU, Image, Hybrid, and Miscellaneous
(Ultra-Wide Band (UWB), Visible Light, RFID, and Acoustic).

A. Radio Frequency Fingerprints

1) WiFi Fingerprints

The family of IEEE 802.11 Wireless Local Area Network
(WLAN) standards, commonly known as WiFi, operate in two
unlicensed bands: the 2.4GHz and 5GHz bands. WiFi was de-
signed to provide high-speed wireless networking and Internet
connectivity; thus, it is optimized for communication rather
than localization. Nevertheless, using WiFi for localization is
a natural choice because of its widespread adoption in user
devices and the ubiquity of WiFi APs. Moreover, no additional
infrastructure is required to realize localization, making WiFi
fingerprinting a cost-effective solution.

WiFi fingerprints are formed by extracting RSS values from
all visible APs in an environment. Thus, one drawback of WiFi
fingerprinting is the time it takes to complete a scanning cycle.

Depending on hardware/software limitations, this process can
take several seconds [36]. This becomes problematic when
the user is moving. Movement may lead to smearing the
fingerprint across space [18]. Another drawback of using WiFi
fingerprints is associated signal interference. Many indoor
appliances such as microwave ovens, cordless phones, and
wireless baby monitors operate in the same bands as WiFi.
This often leads to high variability in RSS measurements, even
when recorded at the same location [36]–[38].

In 2000, Microsoft Research proposed RADAR [13], a
system widely known as the first WiFi fingerprinting system.
The system collects RSS measurements at the AP side instead
of the user side; thus, it is a tracking system. The kNN
algorithm, with a Euclidean distance similarity metric, is used
to compute a user’s position. RADAR designers demonstrated
that a user’s orientation, the value of k, and the number of
samples in the offline and online phases affect localization
accuracy. The superiority of fingerprinting over lateration was
also demonstrated. Fingerprinting achieved a median localiza-
tion error of 2.94m compared to 4.3m achieved by lateration.
Later, a Viterbi-like algorithm was proposed to enhance the
system’s tracking ability [39]. The median error was reduced
to 2.37m.

Currently, there is a trend in exploiting richer informa-
tion enabled by orthogonal frequency-division multiplexing
(OFDM) through Channel State Information (CSI). CSI in-
cludes the amplitude and phase of each subcarrier from each
antenna. CSI is a function of the combined effect of multipath,
shadowing, power decay, and fading on a signal propagating
from a transmitter to receiver. Since many subcarriers are
available for each antenna, positioning using a single AP
is feasible [40], [41]. Moreover, CSI values have proven to
be more stable than RSS values as demonstrated in Fig. 3.
However, the main drawback of using CSI for fingerprinting
is that most WNICs do not provide means for conveniently
extracting CSI values. Impractical solutions, such as hacking
into device drivers, are commonly followed for data collection.
At the time of writing this paper, no implementation that uses
a smartphone to collect CSI data exists.

2) BLE Fingerprints

Bluetooth Low Energy (BLE), also known as Bluetooth
Smart or Bluetooth 4.0, is a popular wireless technology
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for low-power, machine-to-machine (M2M) communication. It
has 40, 2MHz wide channels that operate in the same 2.4GHz
radio band as WiFi [43]. Since the Bluetooth Special Interest
Group introduced it in 2010, it has received widespread adop-
tion with over 800 million BLE-enabled devices shipped in
2019 alone [44]. One of the main driving forces behind its pop-
ularity are BLE beacons. BLE beacons are small, inexpensive,
and portable (battery-powered) transmitters that are used in a
multitude of applications, including indoor positioning. Some
beacons allow for the adjustment of transmission parameters
such as transmission frequency, power, and bit rate. Beacons
use three widely spaced channels to broadcast advertising
messages that contain the beacon’s Universally Unique Iden-
tifier (UUID) and its transmission power in decibel-milliwatts
(dBm). These messages are used by proximity-based position-
ing systems to provide positioning and navigation services.
[45]. Two widely used industry protocols for BLE include
Apple’s iBeacon and Google’s Eddystone.

Regarding fingerprinting, Faragher and Harle [18] investi-
gated the feasibility of using BLE fingerprints for fine-grained
indoor positioning. They conducted extensive experiments
from which they reported several findings. First, the power
draw on smartphones is much lower for BLE than WiFi.
Second, BLE has a much higher scan rate than WiFi which
makes BLE more suitable for user navigation and tracking
applications. Third, if enough BLE beacons are strategically
deployed in an environment, then the positioning accuracy
could easily surpass that obtained by the existing WiFi infras-
tructure. However, BLE signals are more vulnerable to channel
gain and fast fading than WiFi signals. As a result, BLE
measurements fluctuate severely over time. The use of three
channels (compared to one in WiFi) exacerbates this problem
due to the wide spacing between these channels. Additionally,
monitoring the battery level of the deployed BLE beacons to
ensure uninterrupted services is still a major challenge [45].
Table II compares some of the technical specifications of a
typical WiFi AP and BLE beacon.

σ of normalized amplitude

C
D

F

Fig. 3. CDF of the standard deviations of CSI and RSS amplitudes for 150
locations using 50 measurements at each location. Figure reproduced from
[42].

TABLE II
WIFI AP VS. BLE BEACON

WiFi AP† BLE beacon‡

Battery powered No Yes

Max. power consumption (W) 12.7 0.01

Max. transmit power (dBm) 20 0

Max. range (m) 250 50

Weight (kg) 1.020 0.047

Cost ($) ≈ 100.00 ≈ 30.00
†TP-Link EAP245 AP ‡Aruba LS-BT20 beacon

3) Cellular Fingerprints

The use of cellular-based indoor positioning has primarily
been motivated by the E-911 regulation imposed by the U.S.
Federal Communications Commission (FCC) [46]. The most
recent regulation mandates require cellular network operators
to provide emergency call positioning within a 50m horizontal
accuracy [47] and 3m vertical accuracy [48]. Due to the lack
of access to proprietary cellular data, such as time and angle
measurements, most academic solutions to cellular indoor
positioning are either fingerprinting- or triangulation-based [1].

From a fingerprinting perspective, cellular-based fingerprint-
ing has several advantages over WiFi/BLE fingerprinting. First,
unlike WiFi and BLE, cellular signals operate in licensed
bands which means they are less prone to interference. Second,
not every cellphone necessarily supports WiFi/BLE; however,
every cellphone, by definition, comes equipped with a cellular
modem. Third, the typical coverage of cellular base stations
(BSs) ranges from hundreds of meters to tens of kilometers
which is orders of magnitude greater than WiFi APs/BLE bea-
cons. Fourth, there is no deployment cost associated with using
cellular signals for fingerprinting since BSs are deployed and
maintained outside the localization environment. Nonetheless,
cellular fingerprinting has its drawbacks: First, cellular signals
are not designed to penetrate deep inside buildings, often
resulting in blind spots due to the shadowing effect. Second,
BSs are often deployed on macro-cell layouts (Fig. 4) in which
the overlap between the coverage area of neighboring BSs is
kept to a minimum [46], resulting in few fingerprints for any
given area. Third, standard-compliant modems can only report
the RSS measurements from up to seven BSs [49], limiting the
number of measured fingerprints to seven at any given time.

Historically, the first to exploit cellular RSS fingerprints for
indoor positioning was Otsason et al. in 2005 [50]. They used
a special modem that provided RSS measurements from up to
35 2G BSs. Experimental results conducted in three buildings
demonstrated a median positioning error ranging from 2.48m
to 5.44m using the kNN algorithm.

B. Magnetic Field and IMU Fingerprints

The complex distortions of Earth’s magnetic field, caused
by steel structures and reinforced concrete, form unique spatial
signatures that can be used to construct magnetic maps of in-
door environments. These signatures have been experimentally
proven to be very stable over long periods [52]. They have also
been proven to vary significantly across space (in the orders
of a few centimeters or less) [53]. This property of temporal
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Fig. 5. Two measurements taken two months apart of the magnetic field
strength along a 46m long corridor.

stability and spatial instability, as depicted in Fig. 5, provides
the basis for using the distortions as location fingerprints.

Magnetic field fingerprints are omnipresent and do not
require the deployment of special infrastructure, such as APs
in the case of RSS fingerprinting, to be realized. Moreover,
a smartphone’s magnetometer, which measures fingerprints
in microtesla (µT), consumes far less energy than its WiFi
or Bluetooth modules [4]. As a result, magnetic field fin-
gerprinting has attracted researchers since it appears to be a
promising alternative for indoor positioning. However, most
smart devices come equipped with triaxial magnetometers,
meaning that the resultant fingerprints only have three features.
These features are orientation-dependent because they are
measured with respect to the device’s reference frame (Fig.
6). Consequently, the features are further reduced to two if
no restrictions are posed on a smartphone’s orientation during
the online phase. An orientation independent measure is the
magnitude of the magnetic field. However, the magnitude is
a single component and using it as a fingerprint can lead
to global ambiguity. Another drawback of a magnetic field
fingerprint is the vulnerability to magnetic interference caused
by objects such as elevators and vending machines.

Among the first to realize that an electronic compass’
incorrect heading information can be used as a signature for
indoor localization was Suksakulchai et al. in 2000 [14].
They mounted an electronic compass on top of a service
robot “HelpMate” and collected the heading information as the
robot traversed a corridor. The next time the robot traversed
the corridor, it matched its measured heading information
with the pre-collected information; if a match was found,
the robot could determine its position. In 2011, Gozick et
al. [52] used mobile phones’ built-in magnetometers to build
magnetic maps of corridors inside buildings. These maps were
constructed with the phones’ y-axes parallel to the north and

Y

X
Z

Fig. 6. Illustration of the X, Y, and Z axes relative to a typical smartphone.
Figure adapted from [54].

prior knowledge of the corridors’ steel pillars locations. The
authors used the magnitude of the magnetic field as a feature
to differentiate between the different pillars (magnetic land-
marks). They showed that the magnetic signatures collected
by different mobile phones with different sampling rates have
the same pattern.

C. Image Fingerprints

Using images for indoor localization is viable because most
smart devices are armed with cameras. Like magnetic- and
cellular-based localization, image-based localization does not
depend on infrastructure for operation. Nonetheless, in some
scenarios, cameras may not be allowed indoors due to privacy
and security concerns [55]. Furthermore, image fingerprints
are the largest in terms of memory footprint and number of
features. For example, compare an image fingerprint captured
by an iPhone 7, a fingerprint with 12 million features and a
memory footprint of 6 MB (stored as a .jpg file), to a WiFi
fingerprint with 127 features and a memory footprint of 4 KB
(stored as a .txt file). Therefore, to reduce the number of
features for training, image-based localization systems often
re-size images to a lower resolution and use cropping to select
only the region of interest. Additionally, image compression
techniques should be considered when relying on a remote
server for positioning or when the available bandwidth for
transmission is limited [56].

As seen in Fig. 7, the methods used for image-based
localization can be generally divided into indirect and direct
methods [57]. Indirect methods cast the localization problem
as an image retrieval task in which the query image is matched
against previously collected images, thus, providing coarse
pose information (i.e., position and orientation of the camera).
Direct methods, on the other hand, treat the localization
problem as a regression task where camera pose is directly
estimated from a query image. The main source of positioning
error is caused by perceptual aliasing [58], in which two
images of two different places appear similar due to lighting
conditions or repetitive structures and surfaces. To alleviate
this issue, many solutions rely on classical feature-detection
algorithms such as Scale-Invariant Feature Transform (SIFT),
Affine-SIFT, and Speeded Up Robust Features (SURF) to
extract robust, invariant features [59]–[62]. While powerful,
such algorithms are computationally expensive and require
the additional step of feature-matching, instigating positioning
latencies in the order of seconds if not minutes [59], [63], [64].

One of the earliest attempts of image-based indoor posi-
tioning was conducted by Starner et al. in 1998 [15]. The
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pose regression
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Fig. 7. The two main approaches to image-based indoor positioning (i.e.,
indirect and direct).
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images captured by two hat-mounted cameras, one facing
forward and the other downward, were used for positioning
by employing a Hidden Markov Model (HMM) to model a
user transitioning between adjacent rooms. Primitive features
were used, composed of the mean value of the red, green,
blue, and luminance pixels. A room classification accuracy of
82% was achieved inside a 14-room testbed.

D. Hybrid Fingerprints

A hybrid fingerprinting system is a system that utilizes two
or more fingerprint types for positioning. Hybrid fingerprinting
systems aim to improve overall performance which can take
the form of:

1) Improved accuracy: Combining different fingerprint
types provides additional location-specific information.
It increases feature dimensionality, resulting in a richer
feature set that, in turn, enhances location discrimina-
tion. This is often demonstrated in literature by quanti-
fying the gain in positioning accuracy obtained by using
multimodal fingerprints instead of unimodal fingerprints
[16]. Nonetheless, cautious handling of sensor synchro-
nization and data fusion is essential to minimize the
impact on response time [65].

2) Improved energy efficiency: Since different sensors vary
in their power requirements, low-power sensors can
be exploited to enhance the energy efficiency of an
otherwise less-efficient system. This concept is visually
illustrated in Fig. 8 however, this requires optimal sensor
scheduling since degradation in positioning accuracy is
expected if the time allocated for WiFi/BLE scanning
isn’t enough to detect all APs/beacons necessary for
positioning [30]. Another way of enhancing energy effi-
ciency is to activate sensors only when needed. To help
decide when to activate/deactivate sensors, IMU and
other sensor measurements can be analyzed to identify
a user’s state (stationary vs. walking) [66], as well as a
phone’s state (handheld vs. in-pocket) [67].

3) Improved availability: Hybrid fingerprints form the basis
for opportunistic localization [68]. The idea of oppor-
tunistic localization is to maximize a system’s availabil-
ity through the exploitation of all available fingerprint
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Fig. 8. An illustration of how hybrid fingerprints can reduce energy
consumption. The upper plot represents a system that uses WiFi-only
fingerprints, while the lower plot represents a system that uses a
combination of WiFi, BLE, and magnetic field fingerprints. The scan
rate/period is the same for both systems.

types in a given environment, without relying on specific
infrastructure. It can be viewed as a fallback solution in
case some fingerprint types cannot be obtained due to
infrastructure maintenance/failure. The main drawback
of opportunistic localization is its high implementation
complexity.

SurroundSense, proposed by Azizyan et al. in 2009 [16],
is recognized by many as the first hybrid fingerprinting sys-
tem. The system combines multiple fingerprint types, such
as sound, visible light, WiFi, and image fingerprints, to
increase location discernibility. Evaluation results across 51
stores/shops demonstrated the system’s ability to provide
symbolic positioning with 87% accuracy. This is an increase
of 24%, 17%, and 13% in positioning accuracy over WiFi,
sound-and-WiFi, and sound-light-image fingerprints, respec-
tively. However, the system’s design is very complicated
because it involves several filtering, formatting, matching,
clustering, and audio/image processing modules.

E. Miscellaneous Fingerprints

1) UWB Fingerprints

Ultra-Wide Band (UWB) is a wireless technology designed
for high-bandwidth, short-range (<10m) communication. It
works by transmitting ultra-short pulses (<1 ns) across a wide
spectrum of frequency bands (>500MHz). Although the FCC
permitted the operation of UWB in 2002 [69], slow progress
in standardizing the technology has limited its adoption in
consumer devices [70]. Concerning indoor positioning, UWB
has proved superior to other wireless technologies, specifically
for lateration-based approaches, due to its high time delay
resolution and, hence, multipath resilience [71].

2) Visible Light Fingerprints

The emergence of Visible Light Communication (VLC)
recently enabled Light Emitting Diode (LED)-based indoor
positioning [17]. Due to the high directivity of visible light,
LED-based positioning systems can provide sub-meter accu-
racy (based on lateration/angulation) [17]. Moreover, LEDs
are low-cost, energy-efficient, provide stable performance, and
have a long lifetime (∼50, 000 hours). However, one drawback
is the degradation of performance in NLoS conditions since
VLC is inherently an LoS technology. Also, the coverage of
such systems is low because visible light cannot penetrate
opaque objects such as walls and panel partitions. Also, in
green buildings, where, during the day, lighting is provided
by sunlight, an LED-based positioning system may not be a
practicable solution.

3) RFID Fingerprints

Radio Frequency IDentification (RFID) is a wireless tech-
nology designed to retrieve data from transponders in prox-
imity. Unlike WiFi or Bluetooth, RFID is not supported on
mobile devices. Thus, RFID-based applications assume the
deployment of dedicated infrastructure (RFID readers and
tags). This makes RFID an unappealing and costly option
for positioning. Nevertheless, due to their energy-efficient
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and durable operation, RFID has been widely used for asset
management and access control [72].

4) Acoustic Fingerprints

The least popular indoor positioning systems are acoustic-
based. This is due to the many challenges that arise when
using acoustic signals for indoor positioning such as the strong
attenuation of aerial acoustic signals, the limited bandwidth
of microphones, the various interferences in the audible band,
the short operation distance, and the associated sound pollution
[73]. Nevertheless, given how water, as a propagation medium,
favors acoustic over radio frequency and light signals, acoustic
signals are widely used for underwater positioning [74].

IV. INDOOR POSITIONING DATASETS

This section provides a detailed review of datasets that are
used to develop and benchmark fingerprinting systems. The
datasets were selected based on various criteria, the most
important of which was their suitability for training deep
learning models from scratch. Deep learning is inherently a
data-intensive endeavor. In other words, one of the major
drawbacks of deep learning is its need for large datasets for
training. Therefore, a dataset must at least contain thousands
of location-tagged instances to qualify for review. Small-
scale datasets, such as those described in [75]–[78] were
omitted from this review. However, small-scale datasets can be
used to fine-tune pre-trained models as demonstrated in [78].
Other selection criteria included scientific quality, novelty, and
potential application domains. Eleven datasets were identified
and categorized into four categories according to the data types
that they represent: radio frequency, magnetic field, image, and
hybrid.

The first category, radio frequency, comprises four datasets
of RSS fingerprints collected from either off-the-shelf smart
devices or custom-built devices. The second category, mag-
netic field, contains two datasets of annotated magnetic field
and IMU measurements captured using smartphones. The third
category, image, contains two datasets of image fingerprints
with accurate and precise position and pose information. The
fourth category, hybrid, includes three labeled datasets of
heterogeneous data simultaneously recorded using the same
smart devices. The datasets within each group are described
in ascending order by publication date. Table III provides a
side-by-side comparison of all discussed datasets with respect
to the collection environment, while Table IV compares the
datasets with respect to the sampling nature and collection
platform. Table V highlights some of the datasets’ pros and
cons and provides the download link for each dataset.

A. Radio Frequency Datasets

UJIIndoorLoc:

The UJIIndoorLoc dataset [87], proposed in 2014, is well
known for being the first publicly available RSS dataset. It was
created to address the lack of a common dataset for comparing
state-of-the-art WiFi fingerprinting systems. The data were
collected from three adjacent multi-floor buildings (4-5 floors)

of the Jaume I University campus. A single RP was placed at
the center of each room and in front of the door(s) leading
to the rooms. 25 smart devices carried by 20 participants
were used to collect over 20, 000 discrete samples from 933
RPs. Each sample is comprised of 520 RSS measurements
corresponding to the 520 APs scattered across the buildings
along with ground truth information, such as building and floor
numbers, latitude and longitude, a timestamp, and user and
device labels. The RSS value of a detected AP ranged from
0dBm (very strong signal) to −104dBm (very weak signal).
Undetected APs were given an artificial value of +100dBm.
On average, 27 APs were detected per RP. 5% of the collected
samples were dedicated as a separate testing set. The authors
provided a baseline of an 89.92% hit rate and a 7.9m mean
error using the kNN classifier (with k = 1 and a Euclidean
distance metric).

Dataset described in [79]:

The dataset described in [79] was collected over fifteen
months. The primary goal of creating the dataset was to
provide researchers with the data needed to study a system’s
robustness against short/long-term WiFi signal variations.
Short-term variations are caused by multipath and shadowing
while long-term variations are caused by environment and
network changes. Data was collected using a smartphone on
two identical floors (3rdand 5th) of a 12×18m2 library wing
with 106 RPs per floor. At each RP, consecutive samples
facing the same directions were collected, multiple times a
month. During a month, 15% of the samples collected were
allocated for training while the remaining 85% were allocated
for testing, except for the samples collected during the first
month (73% training and 27% testing). A total of 63, 504
samples were collected by last month. Each sample consisted
of a timestamp, ground truth floor number, RP coordinates, and
the RSS values of all detected APs over the entire period (i.e.,
starting with 77 APs at month 1 and ending with 448 APs at
month 15). Recently, the authors updated the dataset to include
40, 080 new samples corresponding to an additional collection
period of ten months with 172 newly detected APs. Supporting
scripts in MATLAB, that allow for loading a desired set based
on filtering criteria, are provided.

Dataset described in [80]:

The dataset by Byrne et al. [80] contains approximately
fourteen hours of annotated wearable measurements acquired
from four single- and two-floor residential homes with four
to eleven rooms. At each residence, a custom-built, wrist-
worn transmitter sent accelerometer measurements, via BLE
radio (in advertising mode), which were then received by
several custom-built anchor nodes deployed throughout the
residence. Upon reception, each node records the RSS of the
advertised packet and timestamps it. Ground truth location
labels were provided through fiducial floor tags that were
placed one meter apart throughout the home. A downward-
facing camera, strapped to a participant’s navel area, auto-
matically captured the floor tags as the participant traversed
them. At each floor tag, data were collected facing each of
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TABLE III
A SIDE-BY-SIDE COMPARISON OF THE DATASETS WITH RESPECT TO THE COLLECTION ENVIRONMENT

Dataset (Year) Type Buildings Floors Rooms Corridors Area (m2 ) RPs Spacing of RPs (m)

Radio Frequency

UJIIndoorLoc (2014) University buildings 3 13 254 - 108,703 933 -

[79] (2018) University library 1 2 - - 432 212 -

[80] (2018) Residential homes 4 7 34 - 350 194 1

[81] (2018) A research facility 1 1 8 1 237 277 0.6

Magnetic Field and IMU

UJIIndoorLoc-Mag (2015) A research lab 1 1 1 8 260 - -

MagPIE (2017) University buildings 3 3 - - 960 - -

Image

7-Scenes (2013) An office space 1 1 7 - 36.5 - -

Warehouse (2018) A warehouse 1 1 - - 875 - -

Hybrid

[82] (2016) A research facility 1 1 3 3 185 325 0.6

PerfLoc (2016) Office; Industrial warehouses; Subterranean structure 4 7 - - 30,000 900+ -

[83] (2019) - 1 1 4 2 651 70 -

TABLE IV
A SIDE-BY-SIDE COMPARISON OF THE DATASETS WITH RESPECT TO THE SAMPLING NATURE AND THE COLLECTION PLATFORM

Samples Platform

Dataset (Year) Type Rate (Hz) Training Testing Features Collection side Devices Type OS Orientation

Radio Frequency

UJIIndoorLoc (2014) Discrete - 19,938 1,111 520 User 25 Smartphone; Tablet Android Not provided

[79] (2018) Discrete - ∼15,500 ∼88,000 620 User 1 Smartphone Android Provided for only two directions

[80] (2018) Discrete; Continuous 5; 25 ∼730,000 - varies Nodes 8 or 11 Raspberry Pi - Provided

[81] (2018) Discrete; Continuous 10 ∼2,820,000 - varies User; Nodes 1 to 11 Raspberry Pi; Smartphone Android Provided

Magnetic Field and IMU

UJIIndoorLoc-Mag (2015) Continuous 10 270 11 9 User 2 Smartphone Android Provided

MagPIE (2017) Continuous 50; 200 591 132 9 User 2 Smartphone Android Provided

Image

7-Scenes (2013) Discrete; Continuous - 26,000 17,000 307,200 User 1 Kinect RGB-D camera - Provided

Warehouse (2018) Discrete; Continuous - 202,224 262,570 307,200 User 8 Web camera - Provided

Hybrid

[82] (2016) Discrete 10 36,795 - varies User 2 Smartphone; Smartwatch Android Provided

PerfLoc (2016) Discrete; Continuous from 0.3 to 100 varies private varies User 4 Smartphone Android Provided

[83] (2019) Discrete - 1,010,640 - 16 Nodes 5 Raspberry Pi - Provided for only one angle

TABLE V
THE PROS, CONS, AND DOWNLOAD LINK FOR EACH DATASET

Dataset (Year) Pros Cons Download Link

UJIIndoorLoc
(2014)

Unique in terms of the area covered, the number of RPs surveyed, and the
number of devices used in data collection.

No orientation information was provided which may lead to inconsistent measurements
[84].

https://archive.ics.uci.edu/ml/datasets/
ujiindoorloc

[79] (2018) Samples were collected over 25 months which helps study temporal signal
variations for the development of systems robust to these variations.

Samples were collected facing only two opposing direction for each RP. Didn’t specify
whether environment changes have occurred during the collection period. https://doi.org/10.5281/zenodo.1309317

[80] (2018) Since data were collected from private residential homes and from various
activity zones, it is appealing for studying indoor tracking in support of AAL. Not suited for studying smartphone-based indoor positioning. https://doi.org/10.6084/m9.figshare.

6051794.v5

[81] (2018) Data was collected from both user and node sides. Various scenarios and
transmission powers were explored. The samples corresponding to a user/node sending signals to itself were not filtered out. http://wnlab.isti.cnr.it/localization

UJIIndoorLoc-Mag
(2015)

Data collection was repeated several times over the same path which makes
it easier to detect noise and outliers in the measurements.

Provides very few calibration points since ground truth location information was only
recorded at the beginning and end of each line segment.

http://archive.ics.uci.edu/ml/datasets/
UJIIndoorLoc-mag

MagPIE (2017)
Data were collected with and without the placement of live loads. Orientation
of the smartphone kept fixed throughout which is key for consistent magnetic
field measurements.

Relied on Google Tango for ground truth measurements which has proven to be an
unreliable source for accurate measurements [85]. http://bretl.csl.illinois.edu/magpie/

7-Scenes (2013) Includes depth images which is compelling as smartphones equipped with
depth cameras have recently started to appear in the market.

Each room has its own coordinate system which is contrary to real life scenarios in which
an indoor environment composed of multiple rooms share the same coordinate system.

https://www.microsoft.com/en-us/
research/project/rgb-d-dataset-7-scenes/

Warehouse (2018) Various testing scenarios and highly accurate and precise ground truth
measurements. Requires more than 30 GB of memory space to store the entire dataset. https://www.iis.fraunhofer.de/warehouse

[82] (2016) Contains samples collected from a smartwatch. Additionally, magnetic field
data was collected from rooms rather than corridors only.

The arrival and departure timestamps of some RPs are missing and the WiFi fingerprints
were collected from the smartphone only.

http://wnet.isti.cnr.it/software/
Ipin2016Dataset.html

PerfLoc (2016)
Most diversified in terms of the data types collected. Moreover, data were
collected to comply with most of the testing and evaluation criteria as
specified by the ISO/IEC 18305:2016 standard.

Non-uniform sampling rates across smartphones resulted in asynchronous data samples.
Also, data is not directly accessible as there is a steep learning curve to decode the data
before start using it [86].

https://perfloc.nist.gov/

[83] (2019) Well-suited for studying indoor tracking using hybrid measurements. More-
over, the dataset contains Xbee measurements and has over 1 million samples.

Orientation is provided around a single axis only (i.e., yaw/heading angle). Not suited for
studying smartphone-based indoor positioning. http://www.gatv.ssr.upm.es/∼abh/

the four cardinal directions to account for the shadowing
effect imposed by the participant’s body. Additionally, the
dataset incorporated samples generated from both scripted and
unscripted scenarios. Scripted scenarios represented walking
rapidly or slowly throughout the residence while unscripted
scenarios represented participants carrying out their normal
daily living routine. The dataset also contains annotated data
collected from “activity zones” (i.e., certain locations coincide
with certain activities, such as cooking in the kitchen, eating at
the dining table, or relaxing on the sofa). In total, the dataset
contains around 730, 000 samples. Python scripts for loading

the dataset form the repository are provided.

Dataset described in [81]:

The dataset by Baronti et al. [81] was introduced as a
general-purpose dataset that can be used for positioning, track-
ing, proximity/occupancy detection, and social interaction de-
tection. Data collection was performed inside a 16.6×14.3m2

research facility consisting of eight rooms, a connecting cor-
ridor, and 277 RPs spaced 0.6m apart. Each room contained
a Raspberry Pi equipped with two BLE modules. One module
continuously listened for signals while the other transmitted

https://archive.ics.uci.edu/ml/datasets/ujiindoorloc
https://archive.ics.uci.edu/ml/datasets/ujiindoorloc
https://doi.org/10.5281/zenodo.1309317
https://doi.org/10.6084/m9.figshare.6051794.v5
https://doi.org/10.6084/m9.figshare.6051794.v5
http://wnlab.isti.cnr.it/localization
http://archive.ics.uci.edu/ml/datasets/UJIIndoorLoc-mag
http://archive.ics.uci.edu/ml/datasets/UJIIndoorLoc-mag
http://bretl.csl.illinois.edu/magpie/
https://www.microsoft.com/en-us/research/project/rgb-d-dataset-7-scenes/
https://www.microsoft.com/en-us/research/project/rgb-d-dataset-7-scenes/
https://www.iis.fraunhofer.de/warehouse
http://wnet.isti.cnr.it/software/Ipin2016Dataset.html
http://wnet.isti.cnr.it/software/Ipin2016Dataset.html
https://perfloc.nist.gov/
http://www.gatv.ssr.upm.es/~abh/
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advertisements at 10Hz. Similarly, mobile users carrying a
smartphone (as a receiver) and a BLE tag (as a transmitter)
were employed to enable data collection both ways (i.e.,
from user to anchor nodes and vice versa). Six scenarios
were used for data collection: “survey”, “localization”, and
four “social”. In the survey scenario, the user stood over
each RP and collected data along the +x, +y, −x, and
−y directions. The localization scenario represented a user
walking a predefined path (i.e., continuous sampling). The
social scenarios represented two/three users walking from
their offices, attending meetings, and returning to their of-
fices. For each scenario, three runs of data collection were
performed, corresponding to three transmission powers (i.e.,
3dBm, −6dBm, and −18dBm). Each sample consists of a
timestamp, transmitter ID, receiver ID, and RSS value. Ground
truth location information is provided through a separate file
that maps timestamps to the coordinates of the RPs. Overall,
the dataset has around 2, 820, 000 samples.

B. Magnetic Field Datasets

UJIIndoorLoc-Mag:

The creators of the UJIIndoorLoc dataset introduced the
UJIIndoorLoc-Mag dataset in 2015 [88]. The aim was to
provide a common dataset for the evaluation of magnetic field
fingerprinting systems as they became increasingly popular.
Unlike UJIIndoorLoc, the data contained in UJIIndoorLoc-
Mag was collected in a much smaller area (a single 15×20m2

office space). A smartphone was used to collect continuous
samples along the office’s eight corridors at a sampling rate
of 10Hz. Each continuous sample represents walking along a
predefined path composed of multiple straight-line segments.
The data collection process involved several predefined paths
where sampling over each path was repeated multiple times
yielding a total number of 281 continuous samples (or 40, 159
discrete captures). Each discrete capture incorporated times-
tamped, raw measurements from the phone’s magnetometer,
accelerometer, and orientation sensor along its three axes (Fig.
6). Ground truth location information was recorded at the
beginning and end of each continuous sample and turning
points (i.e., the end of a segment and the beginning of another).
The authors used a subset of the dataset to provide a baseline
of a 7.23m mean error using the kNN classifier (with k = 1
and a Euclidean distance metric).

MagPIE:

The Magnetic Positioning Indoor Estimation (MagPIE)
dataset [89] is, by far, the largest dataset for studying and
comparing approaches to magnetic and inertial indoor posi-
tioning. The data were collected from three different university
buildings. A smartphone, either handheld or mounted on a
wheeled robot, was used to collect 723 continuous samples
equaling 51 km of total distance traveled. The sampling rate
was 50Hz for magnetometer data and 200Hz for accelerom-
eter and gyroscope data. To account for soft/hard iron biases,
the dataset provides calibrated measurements as opposed to
raw magnetic field measurements. A separate smartphone was

used to provide ground truth location information by running
Google Tango, an augmented reality platform for mobile
devices (discontinued March 2018). Data were collected under
two scenarios (i.e., with and without the placement of “live
loads”). Live loads are certain objects, commonly found inside
buildings, that may affect the magnetometer’s measurements.
However, the number of live loads placed, their description,
and their ground truth location information were not provided.

C. Image Datasets

7-Scenes:

The 7-Scenes dataset, introduced by Microsoft Research
in 2013 [90], has been widely used for image-based lo-
calization. It is composed of Red-Green-Blue images and
their corresponding depth images (collectively called RGB-
D images) of seven small-scale indoor scenes. Each scene
typically consists of a single room (e.g., office, kitchen). The
spatial volume of these scenes ranges from 2m×0.5m×1m to
4m×3m×1.5m. All images were captured using a handheld
Kinect RGB-D camera at 640×480 resolution. Ground truth
position and orientation information was provided by the
SLAM-based KinectFusion system. The number of training
images for each scene ranges from 1, 000 to 7, 000 while the
number of testing images ranges from 1, 000 to 5, 000. Overall,
the dataset contains 26, 000 training images and 17, 000 testing
images. The dataset is considered challenging for positioning
algorithms due to notable motion blur, variations in camera
pose, and because scenes contain many ambiguous texture-
less features.

Warehouse:

Warehouse [91] is a dataset created for the development
and benchmarking of image-based localization systems in
industrial settings. For data collection, the authors utilized
eight web cameras mounted on special platforms that placed
them at 45◦ increments. Each camera captured RGB images at
640×480 resolution inside a 25×35m2 industrial warehouse.
Each image is labeled with a sub-millimeter position and sub-
degree orientation information using a laser-based reference
system. Two trajectories, intended to uniformly cover the
area, were followed to obtain over 200, 000 training images.
The testing images were collected over carefully designed
trajectories aimed at evaluating different aspects of the po-
sitioning system such as its ability to generalize and respond
to environmental changes and scaling and its robustness to
local and global ambiguity. The authors provided baselines
of 1.08m to 6.76m mean errors (depending on the testing
trajectory) using the CNN-based, pre-trained PoseNet [64].

D. Hybrid Datasets

Dataset described in [82]:

Barsocchi et al. [82] collected WiFi, magnetometer, and
IMU data from an indoor environment composed of three
rooms of different sizes and three corridors of different
lengths. Data collection was performed by concurrently wear-
ing two synchronized smart devices: a smartphone and a
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smartwatch. A fixed sampling rate of 10Hz was used for
both devices. The smartphone was held at chest-level of the
person collecting the data, with the screen facing up, while
the smartwatch was wrist-worn. Data were collected over
two campaigns from 325 uniformly distributed and regularly
spaced RPs covering a surface area of 185m2. The ground
truth coordinates of these points, along with arrival and
departure timestamps at each point, are included in the dataset.
In total, the dataset contains over 36, 000 discrete instances.

PerfLoc:

For PerfLoc [92], data were collected based on guidance
from the ISO/IEC 18305:2016 international standard for test-
ing and evaluating Localization and Tracking Systems (LTSs)
[93]. The standard specifies that localization systems should be
evaluated under different environmental and mobility settings.
Hence, the data includes timestamped samples collected from
four different buildings (including a subterranean structure)
using different mobility modes such as walking, running,
walking backward, crawling, and sidestepping. Four Android-
based smartphones, strapped to the upper arms of the person
collecting the data, were employed to collect data from the
900+ RPs placed throughout the buildings. Diverse data were
collected including: WiFi, cellular, GPS, and all other available
sensor data for a given smartphone (e.g., magnetic field, accel-
eration, temperature, pressure, humidity, light intensity, etc.).
The sampling rate ranged from 0.3Hz to 100Hz, depending on
the data type sampled and the smartphone’s brand and model.
The authors provide a private testing set through an online web
portal where developers can upload their location estimates
and get real-time feedback on their system’s performance.

Dataset described in [83]:

The dataset by Belmonte-Hernández et al. [83] contains
Xbee, BLE, WiFi, and orientation measurements collected in
a 31×21m2 area comprised of four rooms and two corridors.
The data were collected using five Raspberry Pi receivers
that were strategically placed in the environment. The entire
environment was divided into seventy rectangular cells of
different sizes, ranging from 1.5×1.42m2 to 2.56×1.9m2. At
least five minutes of measurement was recorded for each cell in
all 360 degrees. A person wearing a Raspberry Pi transmitter
attached to their hip would stand at the center of cells to
complete data collection. These received measurements were
then synchronized and labeled with the coordinates of the
cells’ centers. Overall, the dataset has about one million
samples.

V. FINGERPRINTING EVALUATION METRICS

A major challenge in indoor positioning is the lack of a uni-
versal evaluation framework to fairly compare the performance
of different indoor positioning systems [4], [5], [29]. This
is primarily owed to the subtle nature of indoor positioning
in general and fingerprinting in particular. For example, the
performance of WiFi fingerprinting systems is affected by a
plethora of variables [36], [37], including:

• Hardware: orientation, directionality, and type of wireless
network interface card (WNIC),

• Spatial: the distance between receiver and AP,
• Temporal: time and period of measurement,
• Interference: radio frequency interference caused by other

devices,
• Human: user’s presence, orientation, mobility,
• Environment: building types and construction materials.

Researchers often end up comparing their results to other self-
reported results because it is too much of an effort to reproduce
implementations for the sake of comparison. This is especially
true if the implementation compared against is ill-defined due
to a lack of complete disclosure of materials and methods,
both of which are essential for reproducibility.

Nonetheless, the proposal of public datasets and the or-
ganization of indoor positioning competitions, such as the
IPIN [94] and Microsoft [95] competitions, are significant
steps towards overcoming these limitations. In addition to
acting as neutral grounds for comparison, such initiatives
help researchers avoid the costs required for the setup and
maintenance of experimental testbeds. A recent attempt to
define standards for localization is the proposal of the ISO/IEC
18305:2016 standard [93]. The standard defines various Test
and Evaluation (T&E) procedures for LTSs with an emphasis
on fire-fighter scenarios. While valuable, the standard has sev-
eral shortcomings as pointed out by the International Standards
Committee of IPIN [96]. Also, the standard is useful for end
users, but not fully useful for either developers or researchers
[97]. Since there seems to be no consensus among the research
community, how to define benchmarks, evaluation metrics, and
standards is still open to interpretation.

This section sheds light on five evaluation metrics that are
necessary for characterizing deep learning-based fingerprinting
systems. These are accuracy, precision, complexity, cost, and
scalability. These metrics constitute an evaluation framework
that will be used in the next section to qualitatively compare
systems. Note, however, that the metrics do not measure mu-
tually exclusive properties since explicit/implicit correlations
between them generally exist. For example, the cost of site
surveying and the accuracy of a system is controlled by the
density of RPs and the density of collected fingerprints per
RP; the denser the RPs and fingerprints, the more time and
money is spent on site surveying, and the more accurate the
system is expected to perform.

A. Accuracy

Accuracy is the most reported metric in indoor positioning.
It is a quantity that reflects how close a system’s measure-
ments are to ground truth measurements. The mean absolute
error (MAE), which is the average 2D/3D Euclidean distance
between ground truth and predicted locations, has been widely
adopted as an accuracy metric as well as the mean squared
error (MSE) and the root mean squared error (RMSE). The
classification accuracy, or hit rate, of floors, rooms, and/or
RPs has also been used to reflect the accuracy of a system.
Last, in deep learning-based fingerprinting, top-N accuracy
has been used as an accuracy metric. In top-N accuracy, a



JOURNAL OF LOCATION BASED SERVICES 12

prediction is considered correct if the correct class is among
the N highest probable classes predicted by the system. Note
that top-1 accuracy is the same as conventional classification
accuracy.

B. Precision

An important metric that relates to accuracy is precision.
Precision captures the agreement between a system’s estimates
over several independent trials. Quantiles of error, which mea-
sure the fraction of trials in which a system produced a certain
error (e.g., an error of ≤ 2.3m 95% of the time), are often
used as a precision metric. Additionally, the minimum and
maximum positioning errors produced by a system represent
its error bounds. However, a Cumulative Distribution Function
(CDF), or a histogram of the error, is more informative since
they represent the distribution of error over all trials. The
standard deviation (σ), as well as the variance (σ2) of the error,
have also been utilized as precision metrics. In deep learning-
based fingerprinting, the confusion matrix serves as an error
distribution from which precision can be easily extracted.

C. Complexity

In indoor positioning, complexity often refers to a sys-
tem’s computational complexity. Since deriving the analytic
complexity formula of different indoor positioning systems is
usually an arduous task [3], [27], other complexity measures
are considered instead. For example, in deep learning-based
fingerprinting, training and response times, as well as charac-
teristics about the network’s parameters (e.g., their number
or the memory space they occupy), have all been utilized
as computational complexity indicators. Training time must
be considered because updating a fingerprint database neces-
sitates re-training the system. Response time is the elapsed
time between requesting and receiving a location estimate
after training is complete. A system that delegates positioning
inference to the server-side must account for the round-trip
latency in the response time. Training and response times are
hardware-specific assessments. A more independent measure
of computational complexity is the number of floating-point
operations (FLOPs) that are required to produce a location
estimate. Additionally, an important factor to consider is the
sample preparation time. Sample preparation time refers to the
time it takes to acquire and process a sample for positioning.

D. Cost

The total cost of a fingerprinting system includes both initial
and subsequent costs. Initial costs are one-time expenditures
related to the initial establishment of the system. These in-
clude infrastructure acquisition/installment and site surveying
costs. Systems that exploit existing infrastructure, such as the
WiFi APs used for communication, are thus considered cost-
effective. Subsequent costs are recurring expenditures that are
required to keep the system up and running. Examples of such
expenditures include cloud server rental, energy consumption,
fingerprint database updates, and infrastructure repair and
maintenance.

E. Scalability

The scalability of a fingerprinting system describes its
ability to grow and manage demand increase. The demand
can take the form of an increase in the area to be covered by
the system (e.g., from a single floor to multi-floor to multi-
building). The coverage area can be expanded by surveying
the new areas and deploying additional hardware (e.g., WiFi
APs or BLE beacons) as needed. Sometimes the accuracy of
a system needs to be improved. Deploying additional APs
or beacons will generally improve accuracy because location
discernibility will increase with increased features. However,
both coverage area expansion and improved accuracy lead to
increased installation and maintenance costs. In this paper, the
testbed size of a system is used to show the scale in which
it can operate. Another form of demand increase that is more
challenging to manage is an increase in the entities to be local-
ized such as hundreds or thousands of localization requests in
a busy airport or shopping mall. Given the dynamic nature of
this increase (i.e., temporary spikes in requests), mechanisms
for managing workloads, where resources are expanded on-
demand, need to be implemented. A scalable system must also
account for device and user heterogeneity since different users
use different smartphones and have different heights, walking
patterns, and holding preferences.

VI. DEEP LEARNING-BASED INDOOR POSITIONING
SOLUTIONS

This section provides an in-depth review of existing fin-
gerprinting solutions based on deep learning methods. As
illustrated in Fig. 9, these solutions are classified using a two-
level taxonomy (i.e., based on the fingerprint type employed
and further subdivided based on the deep learning model used).
The fingerprint types include Radio Frequency (WiFi, BLE,
and Cellular), Magnetic Field and IMU, Image, Hybrid, and
Miscellaneous (UWB, Visible Light, RFID, and Acoustic).
The deep learning methods include AE, CNN, DBN, FC,
GAN, and RNN.

Table VI summarizes and compares the reviewed solutions
based on the performance evaluation metrics discussed in the
previous section. The table entries are populated based on
information extracted directly from corresponding papers.

It should be noted that the results presented in the table
are not good indicators for comprehending which solution is
better than another. These solutions have been implemented
in different testbeds that differ in size, number of RPs, the
granularity of RPs, number of training/testing samples, etc.
To draw safe conclusions, all solutions should be implemented
in the same testbed, which is not feasible. Nevertheless, these
results still provide valuable insight into how a solution could
perform in practical applications or settings.

A. Radio Frequency Fingerprints

1) WiFi Fingerprints

DBN-based Solutions:

Wang et al. [42], [106] proposed DeepFi, a system that em-
ploys CSI-amplitude fingerprints to provide indoor positioning
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Fingerprint Type

Radio Frequency Magnetic
Field and IMU Image Hybrid Miscellaneous

WiFi BLE Cellular UWB Visible Light RFID Acoustic

AE
[98]–[102]

CNN
[103]–[105]

DBN
[42], [106]–[109]

GAN
[110], [111]

RNN
[112]

AE
[113], [114]

CNN
[115]

CNN
[116]

FC
[117], [118]

CNN
[119]–[121]

RNN
[122], [123]

CNN
[64], [78], [124]–

[126]

AE
[127]

CNN
[128]–[130]

FC
[83]

RNN
[131]

DBN
[132]

FC
[133]

DBN
[134]

CNN
[135]

Fig. 9. A two-level taxonomy is followed where solutions are classified based on the fingerprint type and then sub-classified based on the deep learning
model.

using a single AP. The idea was to have a dedicated DBN for
every training RP in the environment. Each DBN is trained
only on the fingerprints collected at its corresponding location.
Parameters are first initialized using the greedy algorithm and
then fine-tuned using reconstruction loss. A single fingerprint
represents a network packet sent by an AP and received by
a modified WNIC. Both the AP and WNIC communicate via
three antennas and a total of 90 values are extracted per packet,
corresponding to 30 subcarriers per antenna. In the online
phase, Bayes’ Law obtains a posterior probability for every
RP using a uniform prior and a likelihood based on a Radial
Basis Function which takes, as input, the distance between
the measured fingerprint and the reconstructed fingerprint.
The final position estimation is taken as a weighted average
of all RPs and their corresponding posterior probabilities.
The experimental evaluation took place in a line-of-sight
(LoS) environment (a 7×4m2 empty living room) and an
NLoS environment (a 9×6m2 cluttered computer lab), where
each environment is equipped with a single AP. A total
of 50 RPs (38 training and 12 testing) and 80 RPs (50
training and 30 testing), arranged in a grid layout with 0.5m
spacing, were used for the LoS and NLoS environments,
respectively. Due to the harsher propagation conditions in the
NLoS environment, better positioning accuracy was obtained
for the LoS environment. Positioning errors of 0.94m and
1.80m were achieved for the LoS and NLoS, respectively.
The positioning accuracy of DeepFi was compared with two
benchmark schemes, FIFS [41] and Horus [137], which use
probabilistic approaches for positioning based on CSI and RSS
fingerprints, respectively. Overall, an increase in positioning
accuracy of 23% and 33% was achieved over FIFS and Horus,
respectively. However, the memory requirement of DeepFi
grows linearly with additional training RPs since the weights
of every DBN must be stored separately. Also, the heavy
probabilistic implementation during the online phase resulted
in a response time of 2.56 s, making DeepFi unfit for real-time
positioning applications. The impact of different parameters on
positioning accuracy was investigated; the authors concluded
that denser training RPs, more antennas, and more packets,
generally lead to improved accuracy.

Wang et al. also proposed PhaseFi [107], [108], a system
that uses CSI-phase fingerprints to provide indoor positioning
using a single AP. Unlike CSI-amplitude measurements, raw
CSI-phase measurements cannot directly be used for posi-

tioning since they contain significant noise and phase offsets.
Therefore, pre-processing is required to obtain calibrated phase
measurements. PhaseFi was developed and tested under similar
conditions to DeepFi. PhaseFi achieved a positioning error of
1.08m for the LoS environment and 2.01m for the NLoS
environment, which is slightly inferior to that obtained by
DeepFi.

Later, Wang et al. proposed BiLoc [109], a system that
combines CSI-amplitude fingerprints with the estimated Angle
of Arrivals (AoAs) to enhance positioning accuracy. Both
measurements were obtained using two modified WNICs
operating in the 5GHz radio band. The authors resorted to
this band because firmware limitations prevented them from
obtaining accurate AoA measurements in the 2.4GHz band.
The positioning scheme used in BiLoc is like that used in
DeepFi and PhaseFi, except that BiLoc requires an additional
DBN to process AoA information. A parameter, ρ, used in the
online phase, controls the influence each modality has on the
positioning. The evaluation settings are slightly different from
those used in DeepFi and PhaseFi. The NLoS environment
had fewer RPs (15 training and 15 testing) since grid spacing
increased to 1.8m. The LoS environment was replaced by a
2.4×24m2 corridor that had 20 RPs (10 training and 10 test-
ing) arranged in a straight line with 1.8m spacing. The impact
of varying ρ on positioning accuracy was investigated. For the
NLoS environment, the authors concluded that both modalities
should have equal influence since they complemented each
other. However, for the LoS environment, given that all RPs
were in 1D, the influence of AoA should be minimized
since AoA measurements have limited contribution in such
a scenario. Overall, BiLoc outperformed DeepFi by 24% in
positioning accuracy, but its prediction latency increased by
70%. Also, BiLoc requires double the amount of memory
space compared to DeepFi or PhaseFi.

CNN-based Solutions:

Chen et al. [103] proposed ConFi, a system that uses
CSI images and a single AP for indoor positioning. Since
CNNs are best suited for image classification, the authors
transformed CSI-amplitude measurements into RGB images
and called them “CSI images.” The three channels of a CSI
image correspond to the information obtained from three
antennas. Each channel has 30×30 pixels. Column pixels
represent information extracted from the 30 subcarriers while
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TABLE VI
A SUMMARY AND COMPARISON OF THE REVIEWED FINGERPRINTING SOLUTIONS

Work
and
year

Purpose Model and
framework Accuracy Precision Complexity Cost Scalability

WiFi Fingerprinting Solutions

[42],
[106]
2015

CSI-amplitude finger-
printing using a single
AP

DBN + prob-
abilistic refin-
ing

positioning errors of 0.94m and
1.80m for LoS and NLoS envi-
ronments, respectively

CDF is provided; positioning errors
of ≤ 1.6m and 2.1m 80% of
the time for LoS and NLoS environ-
ments, respectively; σ of 0.56m
and 1.34m for LoS and NLoS en-
vironments, respectively

requires a measurement win-
dow of 5s before computing
an output + 2.56s response
time

used 1 AP and 1
modified WNIC

LoS: a 7×4m2 empty living
room with 38 training RPs and 12

testing RPs; NLoS: a 9×6m2

cluttered computer lab with 50
training RPs and 30 testing RPs; RP
spacing in both testbeds is 0.5m

[107],
[108]
2015

CSI-phase fingerprint-
ing using a single AP

DBN + prob-
abilistic refin-
ing

positioning errors of 1.08m and
2.01m for LoS and NLoS envi-
ronments, respectively

CDF is provided; positioning errors
of ≤ 1.4m and 2.8m 80% of
the time for LoS and NLoS environ-
ments, respectively; σ of 0.40m
and 1.01m for LoS and NLoS en-
vironments, respectively

requires a measurement win-
dow of 1s before computing
an output + 0.37s response
time

used 1 AP and 1
modified WNIC

LoS: a 7×4m2 empty living
room with 38 training RPs and 12

testing RPs; NLoS: a 9×6m2

cluttered computer lab with 50
training RPs and 30 testing RPs; RP
spacing in both testbeds is 0.5m

[109]
2017

CSI-amplitude and
AoA fingerprinting in
the 5GHz band

DBN + prob-
abilistic refin-
ing

positioning errors of 2.15m and
1.57m for LoS and NLoS envi-
ronments, respectively

CDF is provided; positioning errors
of ≤ 2.8m and 2.4m 80% of
the time for LoS and NLoS environ-
ments, respectively; σ of 1.54m
and 0.83m for LoS and NLoS en-
vironments, respectively

requires a measurement win-
dow of 0.25s before com-
puting an output + 0.6s re-
sponse time

used 2 modified
WNICs (one acting as
the AP and the other
as the mobile node)

LoS: a 2.4×24m2 corridor with
10 training RPs and 10 testing
RPs; NLoS: a 9×6m2 cluttered
computer lab with 15 training RPs
and 15 testing RPs; RP spacing in
both testbeds is 1.8m

[104],
[105]
2017

AoA fingerprinting in
the 5GHz band

CNN +
weighted
averaging

positioning errors of 2.38m and
1.78m for LoS and NLoS envi-
ronments, respectively

CDF is provided; positioning errors
of ≤ 3.4m and 2.4m 80% of
the time for LoS and NLoS environ-
ments, respectively; σ of 1.45m
and 1.24m for LoS and NLoS en-
vironments, respectively

requires a measurement win-
dow of 1s before computing
an output + 0.59s response
time

used 2 modified
WNICs (one acting as
the AP and the other
as the mobile node)

LoS: a 2.4×24m2 corridor with
10 training RPs and 10 testing
RPs; NLoS: a 9×6m2 cluttered
computer lab with 15 training RPs
and 15 testing RPs; RP spacing in
both testbeds is 1.8m; RP spacing
in both testbeds is 1.8m

[101]
2016

indoor/outdoor RSS
fingerprinting

SDAE +
HMM

RMSE of 0.39m and 0.36m
for indoor and outdoor testbeds, re-
spectively

- 0.25s response time for
SDAE

used 163 and 359
already deployed APs
for the indoor and out-
door testbeds, respec-
tively

indoor testbed: a building’s floor
with 91 RPs of 1.8m spacing;
outdoor testbed: a campus lawn with
105 RPs of 1.8m spacing

[98]
2017

multi-building
and multi-floor
classification

SAE + FC;
Keras for
TensorFlow

92% classification accuracy - - - multi-building and multi-floor (UJI-
IndoorLoc dataset)

[99],
[100]
2017

scalable fingerprinting
for large-scale envi-
ronments

SAE + FC
+ weighted
centroid;
Keras for
TensorFlow

99.82% building hit rate,
91.27% floor hit rate, and
9.29m positioning error

- - -
multi-building, multi-floor, and
multi-location (UJIIndoorLoc
dataset)

[103]
2017

fingerprinting using
CSI images and a
single AP

CNN +
weighted
centroid;
Caffe

1.36m positioning error
CDF is provided; positioning errors of
≤ 2.5m 80% of the time; σ of
0.90m

- used 1 AP and 1
modified WNIC

a 16.3×17.3m2 office space
with 5 rooms

[112]
2019

alleviating location
ambiguity by using
consecutive RSS
fingerprints

LSTM +
sliding
window
averaging

positioning errors of 0.75m and
4.2m using the authors’ and the
UJIIndoorLoc datasets, respectively

CDF is provided; positioning errors of
≤ 1.25m and 7m 80% of the
time using the authors’ and the UJIIn-
doorLoc datasets, respectively; σ of
0.64m and 3.2m using the au-
thors’ and the UJIIndoorLoc datasets,
respectively

-

used the existing in-
frastructure of 6 APs;
used a wheeled robot
equipped with LiDAR
for data collection and
ground truth measure-
ments

a 16×21m2 university floor +
2 buildings of the UJIIndoorLoc
dataset

[110],
[111]
2019

reducing the cost of
site surveying by ex-
panding the training
set with artificial CSI-
amplitude fingerprints

GAN (both
generator and
discriminator
are CNNs)
+ SVM;
TensorFlow

improved positioning accuracy by
11.94%, i.e., from a positioning
error of 1.34m (using real finger-
prints only), to a positioning error
of 1.18m (using real and artificial
fingerprints)

CDF is provided; improved precision,
i.e., from min./max. positioning er-
rors of 0.12m/2.68m (using real
fingerprints only), to min./max. posi-
tioning errors of 0.04m/2.23m
(using real and artificial fingerprints)

- used 1 AP and 1
modified WNIC

a classroom with 7×7 training RPs
of 1m spacing and 25 randomly
placed testing RPs

[102]
2019

improving 2D
coordinate regression
when the time interval
between collecting
training and testing
datasets is long

SDAE + FC;
Keras

positioning errors of 5.64m,
3.05m, and 4.24m on the
UJIIndoorLoc dataset, the authors’
dataset (0-day time interval), and
the authors’ dataset (52-day time
interval), respectively

CDFs are provided; positioning errors
of ≤ 8.0m and 6.0m 80% of
the time on the UJIIndoorLoc dataset
and the authors’ dataset (52-day time
interval), respectively, and≤ 5.2m
90% of the time on the authors’
dataset (0-day time interval)

20.84s training time on
a Central Processing Unit
(CPU) and 181ms re-
sponse time

-

UJIIndoorLoc dataset, a
40×30m2 office space with
20 RPs of ≥ 5m spacing, and a
40×60m2 office space with 57
RPs of ≥ 5m spacing

BLE Fingerprinting Solutions

[113]
2017

3D BLE fingerprint-
ing

DAE and
kNN

horizontal/vertical mean error of
1.089m/0.341m

horizontal/vertical CDFs are
provided; horizontal/vertical errors
of ≤ 2.0m/0.6m 92.0% of
the time; horizontal/vertical σ of
0.621m/0.202m

requires a measurement win-
dow of 1s before comput-
ing an output + 0.84ms
response time

deployed 10 BLE
beacons

17.5m by 9.6m conference
room with 192 3D RPs at heights
of 0.8m, 1.6m, and 2.4m

[114]
2017

improving the local-
ization accuracy by in-
corporating unlabeled
BLE measurements

VAE and
DRL;
Keras for
TensorFlow

4.3m mean error - - deployed 13 BLE
beacons

60.96m by 54.86m library
floor

[115]
2018

tracking patients and
clinical staff using a
WSN and BLE tags

CNN and
FC; Keras for
TensorFlow

99.9% classification accuracy;
F1-score of 0.999

precision of 0.999and recall of
0.999

30min training time on a
CPU

deployed 21 Rasp-
berry Pi nodes and
used 10 BLE wear-
able tags

clinical environment composed of
16 rooms and 5 hallways

Cellular Fingerprinting Solutions

[117]
2019

cellular RSS
fingerprinting using
data augmentation
(continuous)

FC median positioning error of
0.78m

positioning error of≤ 3m 90% of
the time ; CDF is provided - - 11m by 12m office space with

51 RPs

[118]
2018

massive MIMO
3D fingerprinting
based on channel
coefficients (simulated
and real data)

FC;
TensorFlow

depending on several scenarios, var-
ious sub-meter positioning errors
were reported

-
2, 136, 067 parameters;
12h training time on a
GPU

deployed a linear ar-
ray of 16 antennas
and used a special de-
vice to collect data

20m by 7m testbed

[116]
2017

massive MIMO
fingerprinting based
on channel structure
(simulated data)

CNN NRMSE of 0.6λ (λ ≈ 1m) - computational complexity is
analytically derived - 25λ by 25λ testbed

Magnetic Field and IMU Fingerprinting Solutions

[119]
2017

a magnetic field land-
mark classifier CNN 80.8% classification accuracy - 15min training time on a

GPU
2h for site surveying
using a wheeled robot

15m by 22m testbed with 35
magnetic landmarks
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TABLE VI (CONTINUED)
A SUMMARY AND COMPARISON OF THE REVIEWED FINGERPRINTING SOLUTIONS

Work
and
year

Purpose Model and
framework Accuracy Precision Complexity Cost Scalability

Magnetic Field and IMU Fingerprinting Solutions (continued)

[120]
2018

fingerprinting using
single magnetic field
fingerprints

CNN;
TensorFlow

97.77% RP classification accu-
racy with 13.6cm mean error

ECDF is provided; min./max. errors
of 0.0m/40.76m; σ of 1.7m

263, 369 parameters;
2.4ms response time on
a CPU

-
185m2 testbed (3 rooms and 3
corridors) with 317 uniformly dis-
tributed and regularly spaced RPs

[121]
2018

a binary classifier for
indoor corners CNN and RNN F1-score of 0.855 precision of 0.805and recall of

0.911

requires a measurement
window of 2s before
computing an output

- collected data from two different
smartphones

[122]
2017

fingerprinting using
consecutive magnetic
field fingerprints

RNN;
TensorFlow 1.062m mean error

distribution of error is
provided; min./max. errors of
0.44m/3.87m

- - 21.47m by 10.17m testbed
with 629 RPs

[123]
2019

a magnetic field land-
mark classifier

LSTM; Tensor-
Flow

classification accuracies of
91.1% and 97.2%, and
F1-scores of 0.90 and 0.97 for
the corridor and lab, respectively

precisions of 0.906and 0.97 ,
and recalls of 0.911and
0.971for the corridor and lab,
respectively

- -

two testbeds: a 100×2.5m2 cor-
ridor with 25 uniformly distributed
landmarks in 1D and a 7×7m2 lab
with 17 uniformly distributed land-
marks in 2D

Image Fingerprinting Solutions

[64]
2015

camera pose estima-
tion from a single
query image

CNN (based on
GoogLeNet);
Caffe

0.5m median positioning error
and 5° median orientation error

CDF of positioning and orientation
error is provided for two of the seven
scenes

1h training time and 5ms
response time on a GPU; it
takes 50 MB to store the
parameters

-

a multi-room testbed (7-Scenes
dataset); scales to different cameras
with unknown intrinsics; provides
outdoor positioning but with lower
accuracy

[78]
2017

enhanced camera pose
estimation from a sin-
gle query image

CNN (based
on PoseNet)
+ LSTM;
TensorFlow

0.31m median positioning er-
ror and 9.85° median orienta-
tion error on the 7-Scenes dataset;
1.31m median positioning error
and 2.79° median orientation er-
ror on the authors’ dataset

- -

used a laser rang-
ing system to pro-
vide ground truth in-
formation

a multi-room testbed (7-Scenes
dataset); a university floor of
5, 575 m2 ; provides outdoor
positioning but with lower accuracy

[124]
2016

image-based symbolic
positioning

CNN (based
on AlexNet) +
Naı̈ve Bayes ;
Caffe

95% room classification accuracy - 1.14s training time on a
CPU (for Naı̈ve Bayes only) - a testbed with 16 rooms

[125]
2018

reduce site surveying
efforts and provide in-
door positioning using
BIM images

CNN (based on
VGG) + cosine
similarity

91.61% image retrieval accu-
racy -

it takes 1.14ms to per-
form cosine similarity be-
tween two feature vectors

- a corridor with 14 arbitrarily placed
RPs

[126]
2019

reduce site surveying
efforts and provide
camera pose
estimation using
BIM images

CNN (based on
PoseNet); Caffe

1.88m median positioning error
and 7.73° median orientation er-
ror

-

it takes ≈ 1h for fine-
tuning on a GPU; re-
sponse times of 5ms and
0.625s on a GPU and
CPU, respectively

- a 30m long corridor

Hybrid Fingerprinting Solutions

[128]
2017

fusion of magnetic
filed and image
fingerprints
for improved
infrastructure-free
positioning

CNN (Places-
CNN) + FC +
particle filtering

-

CDF is provided; positioning error of
≤ 1m 87%, 78%, 88%, and
89% of the time, for lab, garage,
canteen, and office, respectively

time complexity of O(n)
for the online phase, where
n is the number of particles
(n was set to 2000)

-

four indoor environments: a lab, a
garage, a canteen, and an office
with areas of 4, 094m2 , 732m2 ,
1, 148m2 , and 2, 193m2 , and
regularly-spaced test RPs of 540,
121, 197, and 215, respectively;
user heterogeneity

[129]
2018

improving camera
pose regression by
incorporating BLE
fingerprints

dual-steam
CNN;
TensorFlow

0.60m mean positioning error
and 4.8° mean orientation error

CDF is provided; position/orientation
error of < 1.1m/7.1° 90% of
the time; position/orientation σ of
0.6m/7.8°

7ms response time on a
GPU

deployed 479 BLE
beacons; used a
LiDAR system to
provide ground truth
pose information

six indoor environments with areas
of 2, 646m2 , 1, 280m2 ,
3, 480m2 , 812m2 ,
1, 353m2 , and 2, 000m2

[127]
2018

classification of loco-
motion activity for in-
door positioning

SDAE mean F1-score of 0.940
F1-score can vary depending on a
user’s movement characteristics and
the activity itself

requires a measurement
window of 2s before
computing an output

- briefly investigated user heterogeneity

[131]
2018

positioning using
magnetic filed
and visible light
fingerprints for WiFi-
deprived areas

LSTM; Tensor-
Flow -

CDF is provided; positioning error of
≤ 2m 85% and 75% of the time
for the lab and corridor, respectively;
max. error of 3.7m and 6.5m for
the lab and corridor, respectively

- -
two testbeds: a 6×12m2 lab with
12 RPs in 2D and a 2.4×20m2

corridor with 10 RPs in 1D

[130]
2018

alleviating local and
global ambiguity by
exploiting WiFi and
magnetic field finger-
prints

CNN; MatCon-
vNet which is
an implementa-
tion of CNNs for
MATLAB [136]

-

CDF is provided; positioning error
decreases with increased cell diame-
ter, e.g, positioning error of ≤ 2m
65% and 100% of the time for
diameters of 1.3m and 26m, re-
spectively

2∼3s to complete WiFi
scans + 2ms response
time on a cloud computing
platform

used the pre-existing
infrastructure of
151 APs

a 60×40m2 office space; compa-
rable positioning error with respect to
4 users of different heights

[83]
2019

combining Xbee,
BLE, WiFi,
and heading
measurements for
indoor tracking

FC mean positioning error of 0.45m - - deployed 5 Rasp-
berry Pi nodes

a 31×21m2 testbed (4 rooms and
2 corridors) with 70 RPs as rectan-
gular cells of various sizes

Miscellaneous Fingerprinting Solutions

[132]
2016

UWB fingerprinting
using CIR parameters DBN - positioning error of< 1.5m 90%

of the time; CDF is provided -
simulated deploying
3 UWB receivers
and an UWB emitter

simulated a 12.5m by 22.4m
office environment

[133]
2019

visible light finger-
printing using RSS FC

positioning errors of 3.40cm,
4.35cm, and 4.58cm for the
diagonal, arbitrary, and even sets,
respectively

-

computational complexity
is analytically derived;
11.25ms training time
and 8.66ms response
time using Intel XEON

deployed 4 LEDs,
a modulator, and a
photodiode

a 1.8×1.8m2 testbed with 100
uniformly distributed and equally
spaced RPs, 20 of which were se-
lected for training while all RPs were
used for testing

[135]
2018

acoustic fingerprinting
using spectrogram

CNN;
TensorFlow

sector classification accuracy of
98%

- 2.1h training time and
9.3s response time

simulated deploying
4 microphones

simulated a 10.2×10.2m2

testbed of 9 equal sectors

[134]
2019

passive positioning us-
ing RFID readers and
tags

DBN RMSE of ≈ 1m
positioning error of< 2m 90% of
the time; CDF is provided

simulated deploying
6 RFID readers and
43 tags

simulated a 12×12m2 LoS
testbed with 619 training RPs and
20 testing RPs

row pixels represent the information extracted from 30 con-
secutive packets. To reduce the cost of site surveying, data
augmentation was performed on the training set, increasing the
positing accuracy by 2.5%. In the online phase, the positioning

output is taken as a weighted centroid of the three highest-
ranking RPs, as given by the softmax layer. The evaluation was
performed in a 16.3×17.3m2 office space with five rooms,
where a single AP was stationed in one of the rooms. 64 RPs,
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with spacing between 1.5m and 2m, and 32 randomly placed
RPs were chosen for training and testing, respectively. A
positioning error of 1.36m was reported, a 9.2% improvement
over DeepFi, when evaluated in the same environment.

The authors of DeepFi, PhaseFi, and BiLoc also developed
CiFi [104], [105]. Unlike these implementations, CiFi uses
a single CNN for positioning. The network was trained on
location-labeled AoA measurements that were transformed
into images for CNN processing. A single image represents
60 measurements extracted from 60 packets (i.e., 60×60
pixels). During the online phase, positioning is calculated as
a weighted average of all RPs, using an input of 16 images.
The evaluation settings are like that used for BiLoc. Compared
to BiLoc, the positioning accuracy of CiFi is 12% lower,
which is explained by the fact that CiFi utilizes only AoA
measurements. The prediction latency of CiFi is comparable
to BiLoc; however, its memory requirement is significantly
lower.

AE-based Solutions:

Nowicki and Wietrzykowski [98] used a Stacked AE (SAE),
followed by an FC network, for multi-building and multi-floor
classification. They indicated that previous approaches based
on hierarchical processing [138] have high complexity, requir-
ing careful feature selection and a separate algorithm for each
level of granularity (i.e., building then floor identification). The
purpose of the SAE is to perform dimensionality reduction.
This is important because a WiFi fingerprint has entries for all
APs detected in an entire environment, but only a subset of
these APs is observed for different locations. This is especially
true for large-scale environments. The FC network maps the
compact representation into its corresponding class, where a
class represents a flattened label of a building-floor combina-
tion (e.g. “Building3-Floor5”). The authors reported a
92% classification accuracy on the UJIIndoorLoc dataset.

Kim et al. [99], [100] took it a step further by provid-
ing multi-building, multi-floor, and multi-location positioning.
They argued that approaching this problem from a multi-
class classification perspective, in which a separate class is
created for every distinct location, is not scalable. Instead,
they exploited the hierarchical nature of the problem by
casting it as a multi-label classification problem. Inspired by
[98], they used an SAE for dimensionality reduction followed
by an FC network for multi-label classification. A weighted
loss function was used for the FC network, which penalized
building misclassification more than floor misclassification and
floor misclassification more than location misclassification.
The building, floor, and location were predicted in parallel,
entailing post-processing to remove invalid class combina-
tions. The final location estimate was taken as a weighted
centroid of valid combinations. Results were reported on the
UJIIndoorLoc dataset. The dataset has 933 distinct locations,
requiring 933 output nodes for multi-class classification. How-
ever, through their approach, the authors reduced this number
to 118. The reported results were 99.82% building hit rate,
91.27% floor hit rate, and 9.29m positioning error, results
that did not prevail over state-of-the-art implementations [138]

(i.e., 100% building hit rate, 93.74% floor hit rate, and 6.20m
positioning error).

To mitigate the effects of fluctuating RSS fingerprints,
Zhang et al. [101] proposed using a Stacked Denoising AE
(SDAE). Their approach involved a two-step training strategy
(i.e., unsupervised training followed by supervised training).
The SDAE was first pre-trained on corrupted fingerprints
(to emulate random noise) and then fine-tuned on labeled
fingerprints. In the online phase, the output of the SDAE, given
by the softmax layer, was fed to an HMM. The HMM enforced
temporal coherence by considering the SDAE’s previous esti-
mates. Indoor and outdoor testbeds were used for evaluation.
The indoor testbed represents a building’s floor that has 91 RPs
with 1.8m spacing, whereas the outdoor testbed represents a
campus’s lawn that has 105 RPs with 2m spacing. The number
of detected APs for the indoor and outdoor testbeds were 163
and 359, respectively. It was expected that a better positioning
accuracy would be obtained for the outdoor testbed, given the
increased number of APs, however, comparable positioning
errors were achieved in both testbeds (i.e., RMSE of ≈
0.37m). This was ascribed to the increased distance between
the smartphone and the APs since the outdoor testbed did not
contain APs but rather relayed on the signals coming from
nearby buildings. The authors demonstrated the superiority of
their implementation over kNN and Support Vector Machine
(SVM) and illustrated how the positioning accuracy of these
classifiers tended to decrease as the training set increased.
However, the authors didn’t discuss the implication of using
HMM on positioning latency. Instead, they stated that the
SDAE takes 0.25 s to produce a location estimate.

Unlike the previously discussed AE-based positioning so-
lutions, Wang et al. [102] treated indoor positioning as a
regression problem. The authors used an SDAE to extract time-
independent features which were then fed to an FC network
for 2D coordinate regression. The most notable characteristic
of their model is its ability to produce accurate positioning
estimates even when there is a large time interval between
the collection of training and testing datasets. Evaluation was
performed using three datasets of varying time intervals that
ranged from 0 to 52 days. Experimental results demonstrated
that the authors’ model achieves comparable performance with
a tree-fusion-based regression model when the time interval
is short. However, in long time intervals, the authors’ model
reduced the positioning error by up to 14.7%. Positioning
errors of 5.64m, 3.05m, and 4.24m were reported on the
UJIIndoorLoc dataset, the authors’ dataset with a 0-day time
interval, and the authors’ dataset with a 52-day time interval,
respectively.

RNN-based Solutions:

Hoang et al. [112] exploited consecutive RSS fingerprints
to alleviate the problem of location ambiguity often associated
with one-shot positioning. They experimented with different
RNN configurations and found that a feedback configuration,
in which the location prediction of the previous time step is
used as an input for the current time step, yields the best
results. However, this configuration requires that the initial
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ground truth location of the user be provided at the beginning
of a trajectory. The authors also tried different RNN types
(i.e., Long Short-Term Memory (LSTM), Gated Recurrent
Unit (GRU), Bidirectional, and vanilla RNN). Although all
types produced comparable results, the best was obtained by
LSTM, followed by GRU, Bidirectional, and vanilla RNN, re-
spectively. Training is performed using trajectories (sequences)
of 10 (RP,RSS) tuples. 20, 000 random training trajectories
were generated on a 16×21m2 university floor with four cor-
ridors. A wheeled robot, carrying a smartphone and equipped
with LiDAR, was used for data collection and ground truth
measurements. The robot sampled from 365 RPs for training
and 175 RPs for testing. Pre-processing using the iterative-
recursive-weighted-average filter [139] was performed. This
increased the accuracy over using raw RSS measurements
slightly. For online positioning, sliding window averaging was
applied over the outputs at previous time steps. Positioning
errors of 0.75m and 4.2m were reported on the authors’ and
the UJIIndoorLoc datasets, respectively. On average, this is a
50% reduction in positioning error over one-shot positioning
that uses an FC network.

GAN-based Solutions:

Li et al. [110], [111] proposed the use of GANs to re-
duce the cost of site surveying. The idea was to collect a
small number of fingerprints and use GANs to generate more
fingerprints. At each training RP, 500 CSI-amplitude packets
were collected, 100 of which were randomly selected 1000
times to create amplitude/subcarrier plots. The amplitudes of
30 subcarriers from three antennas were used for this purpose.
These plots were fed to a GAN to generate an additional 1000
plots. Both the generator and discriminator were CNNs. This
process was repeated until all training RPs had been covered
(i.e., 7×7RPs with 1m spacing inside a classroom). Twenty
testing RPs were randomly placed to evaluate the influence
expanding the training set had on positioning accuracy. Em-
ploying an SVM classifier, the results revealed an 11.94%
improvement over the initial training set that consisted of only
real fingerprints. One drawback is that a separate GAN must
be trained for every RP. One suggestion is to use a Conditional
GAN (CGAN) [140]. This could reduce complexity because
only a single CGAN is trained for all RPs and fingerprints are
generated by conditioning on a specified RP.

2) BLE Fingerprints

AE-based Solutions:

To deal with fluctuating BLE measurements, Xiao et al.
[113] utilized Denoising AEs (DAEs). They deployed ten
BLE beacons along the walls of a 17.5m × 9.6m room
and collected BLE fingerprints in a 3D grid layout. A total
of 192 3D training RPs (8×8×3) were used. Starting at a
height of 0.8m, each RP was separated by 0.8m from adjacent
horizontal/vertical RPs. During the offline phase, a DAE for
each RP was trained on corrupted BLE fingerprints. The dis-
tance between the measured fingerprint and the reconstructed
fingerprint for all DAEs was then used during the online

phase by a Weighted kNN (WkNN) algorithm to estimate
the user’s location. The downside of this approach is its high
memory requirement since the parameters of each trained
DAE must be stored separately. The authors demonstrated the
effectiveness of DAEs over AEs for BLE fingerprinting which
they attributed to the superior ability of DAEs in capturing
the statistical dependencies among noisy BLE measurements.
They reported horizontal and vertical mean errors of 1.089m
and 0.341m, respectively, on 128 3D testing RPs (8×8×3)
located at heights of 1.2m and 1.9m.

Providing large amounts of location-annotated samples for
training is not always attainable. To address this issue, Moham-
madi et al. [114] proposed a general framework for enhanc-
ing the accuracy of fingerprinting systems by incorporating
unlabeled samples. The framework adopts semi-supervised
learning into deep reinforcement learning (DRL). The semi-
supervised part of the framework consists of a Variational AE
(VAE) that carries out the task of annotating the unlabeled
samples. These samples, along with the originally labeled
ones, are then used to optimize the parameters of a DRL model
that performs a series of moves to reach a target location.
To validate the framework, the authors used a small set of
labeled data and a much larger set of unlabeled data. The data
represents raw and pre-processed measurements from 13 BLE
beacons deployed in a 3, 344 m2 area. The authors reported an
improvement of 23% on the localization accuracy compared
to a supervised DRL model that only used the set of labeled
data.

CNN-based Solutions:

Iqbal et al. [115] investigated the feasibility of using a
Wireless Sensor Network (WSN) to track patients and clin-
ical staff inside a clinical environment. They deployed 21
Raspberry Pi nodes inside 21 zones where each zone was a
specific room or hallway. These nodes captured the signals
emanating from wearable BLE tags broadcasting at a rate of
10Hz. The received signals were annotated with their zones
and transformed into grayscale images where each image
represented 1 s of RSS measurements corresponding to a given
tag. The images were used to train a CNN to perform zone
classification. The authors reported a classification accuracy
of 93.7%. By using a sliding window of 30 consecutive
predictions (i.e., considering temporal information) to train a
separate FC network, the accuracy rose to 99.9%.

3) Cellular Fingerprints

FC-based Solutions:

Rizk et al. [117] proposed CellinDeep, a system that uses an
FC network to perform cellular RSS fingerprinting. To improve
position estimation, an additional averaging step is performed,
taking into consideration the position estimates of five succes-
sive samples. Moreover, data augmentation techniques were
used, increasing the training set by 8-fold, resulting in a 70%
reduction in positioning error. They achieved a positioning
error of less than 3m 90% of the time which, according to
the authors, is a significant improvement over stare-of-the-
art cellular RSS fingerprinting systems employing the kNN
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and SVM algorithms. They reported that cellular modems
consume around 90% less power than WiFi modules when
used for positioning. The positioning accuracy obtained by
using different cellular providers with different BS densities
was investigated. They found that the accuracy is proportional
to the BS density, the higher the density, the higher the
accuracy. The impact of device heterogeneity on accuracy was
also investigated. For example, using the samples collected
from six different smartphones reduced the positioning error
by 60% as opposed to using the samples collected from a
single smartphone.

Massive Multiple-Input Multiple-Output (MIMO) is an en-
abling technology for 5G cellular networks. The idea is to
use large antenna arrays (typically 8×8 antennas) at BSs to
deliver unprecedented communication benefits [141]. Arnold
et al. [118] used a linear array of 16 antennas installed in
a 20m by 7m area for indoor positioning. They used an FC
network to correlate the antennas’ channel coefficients to a 3D
position relative to the array’s location. To avoid the burden
of collecting a large dataset for training, a two-step training
procedure was followed. First, the network was pre-trained
on simulated LoS channel coefficients; then, it was fine-tuned
with a small number of real LoS and NLoS measurements
collected using a special probe. Various sub-meter accura-
cies were reported based on the environment setting (LoS
vs. NLoS), the number of samples for fine-tuning, and the
samples’ spatial locations. Recently, the authors proposed a
novel channel sounder architecture that they used to generate
position-tagged massive MIMO measurements [142].

CNN-based Solutions:

Vieira et al. [116] used a CNN to learn the structure of
massive MIMO channels for indoor positioning. A cellular
channel model (the COST 2100 [143]) was used to generate
unique channel fingerprints for each training/testing position.
These fingerprints represent clusters of multipath components
obtained from a BS equipped with a linear array of anten-
nas. The fingerprints were transformed into an angular-delay
domain to resemble sparse 2D images that were then used
in training a CNN to regress the receiver’s 2D coordinates.
The authors reported distance in terms of wavelength (λ).
The RMSE, normalized by λ, was used as an accuracy metric
where the achieved RMSE was 0.6λ inside a 25λ×25λ con-
fined area. Since all measurements were based on simulated
data, real-world measuring impairments such as noise, channel
fading, and mislabeling were not considered. The authors
demonstrated that their implementation outperformed a non-
parametric approach based on a grid search in both compu-
tational complexity and positioning accuracy. However, when
the spacing between training samples is less than 0.5λ, the
non-parametric approach yields better positioning accuracy.

B. Magnetic Field and IMU Fingerprints

CNN-based Solutions:

Lee and Han [119] tried to improve on the work of [52]
by extending the concept of magnetic landmarks to 2D spaces

instead of only corridors. Unlike [52], the locations of the
environment’s steel structures did not need to be known; alter-
natively, a location was considered to be a magnetic landmark
if the magnetic field intensity of that location was either lower
or higher than predefined thresholds. For each landmark, a
sequence of magnetic field measurements was transformed
into a recurrence plot suitable for CNN processing. The
sequence’s length (in meters) and its trend (e.g., monotonic
increase or decrease) were taken as auxiliary features to aid in
the landmark classification process. Their approach was based
on inferring the user’s location if a landmark was classified
correctly. However, how close or far the user was from the
landmark was not specified; instead, a landmark classification
accuracy of 80.8% was reported.

Alhomayani and Mahoor [120] used a publicly available
dataset [82] to build a fingerprinting system for smartwatches.
They treated the indoor localization problem as a multi-class
classification problem. The system took a single, raw magnetic
field and orientation measurement as input and produced
a specific location as an output (i.e., one-shot positioning).
While the use of magnetic distortions as fingerprints was
already established, the use of orientation information was
not. The authors applied the Maximal Information Coefficient
to establish that a relationship exists between raw orientation
measurements and certain indoor locations. This was explained
by observing human traffic patterns inside corridors and how
they tend to follow a counterclockwise motion. The authors
performed model selection and concluded that the best per-
forming model consists of two convolutional layers, two FC
layers, and a softmax layer. A location classification accuracy
of 97.77% with a mean error of 13.6 cm was reported.
However, one-shot positioning has the downside of increasing
the maximum positioning error produced by the system. The
authors reported a maximum error of 40.76m.

Fingerprint crowdsourcing has recently been adopted to
relieve the burden of site surveying by delegating this process
to common users traversing the area [144]. This, however, has
created a new set of challenges; among them is annotating the
casually collected fingerprints with their true locations. One
approach to addressing this issue is identifying corners which
will serve as landmarks to facilitate fingerprint annotation. To
this end, Wang [121] proposed CRNet, a deep learning network
that identifies corners from pedestrian trajectories. The idea
was based on recognizing the changes that magnetometer and
IMU signals undergo when turning a corner. The network
consisted of a CNN followed by an RNN. The network was
fed a two-second window of raw magnetometer and IMU mea-
surements at 50Hz and it had to decide whether the window
corresponds to a corner or not (i.e., binary classification). The
author reported an F1-score of 0.855 on a trajectory dataset
containing fake corners (i.e., turnarounds and turns that do not
correspond to physical corners).

RNN-based Solutions:

Jang et al. [122] proposed using continuous magnetic field
measurements to reduce the positioning ambiguity associated
with one-shot positioning. The authors chose RNNs because
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of their ability to capture the spatial/temporal dependency of
magnetic field measurements in a given sequence. They first
built a magnetic map of the 218m2 testbed with 629 RPs, then
used it to generate 50, 000 routes using the random waypoint
model. Each route was composed of 20-step movements where
the coordinates of each step were associated with the observed
magnetic field. 95% of the routes were used to train while
the remaining 5% were used for evaluation. The reported
localization error ranged from 0.44 to 3.87m with an average
error of 1.06m. This is a 66.18% improvement over a BLE
fingerprinting system deployed in the same area. However, the
drawback, when compared to one-shot positioning, is that a
user must initially walk 20 steps before his/her position can
be estimated.

Bhattarai et al. [123] used LSTMs as magnetic landmark
classifiers. At each landmark, a continuous sample of magnetic
field measurements was recorded in all directions and then
segmented into subsequences of equal length for training and
testing. The output of each time step was combined and passed
to a softmax layer that output the landmarks’ probabilities.
Two testbeds were used for evaluation, a 100×2.5m2 corridor
with a 1D layout of 25 uniformly distributed landmarks and
a 7×7m2 lab with a 2D layout of 17 landmarks. The authors
found that a vanilla LSTM yielded the best result for the 1D
setting (91.1% accuracy with a sequence of 16 measurements)
while a bidirectional LSTM yielded the best result for the
2D setting (97.2% accuracy with a sequence of four mea-
surements). The better result obtained in the latter testbed
was attributed to the many electronic devices contained in it,
which further distorted the magnetic field. The effectiveness
of the implementation was demonstrated over kNN, SVM,
and Decision Tree classifiers. Nonetheless, what constitutes
a magnetic landmark in the authors’ view was not clear, since
landmarks appeared to be uniformly distributed RPs.

C. Image Fingerprints

CNN-based Solutions:

In 2015, Kendall et al. [64] proposed PoseNet, the first
implementation to consider deep learning for real-time camera
pose regression. PoseNet is based on GoogLeNet [145], a
CNN that has achieved great success in image classification
tasks. The authors modified GoogLeNet to output position
and orientation information relative to an arbitrary global
reference frame. Transfer learning was leveraged by pre-
training GoogLeNet on the Places dataset [146], a large scene-
recognition dataset. Pre-training enabled PoseNet to preserve
pose information in the intermediate representations, resulting
in faster convergence and lower error than when training from
scratch. For fine-tuning, the authors utilized Structure-from-
Motion (SfM) to label images with camera pose. Compared
to localizing with SIFT, PoseNet occupied far less memory
and provided significantly faster estimates. Positioning and
orientation errors of 0.5m and 5° were reported on the 7-
Scenes dataset, respectively.

Walch et al. [78] modified PoseNet to include LSTM units
right before outputs were produced. These units performed
structured dimensionality reduction, leading to improvements

in pose estimation. Fine-tuning was performed using a spe-
cially created dataset of wide-angle images taken ≈ 1m
apart inside a 5, 575 m2 university floor. These images were
annotated with ground truth pose information using a laser
ranging system. The authors used their dataset, in addition
to the 7-Scenes dataset, to compare the performance of their
implementation to PoseNet and a state-of-the-art SIFT-based
method [147]. The SIFT-based method outperformed both
CNN-based methods on the latter dataset but failed on the
former. This is because SIFT-based methods require accurate
3D models to produce pose estimates, something the authors
were not able to render due to the textureless surfaces and
repetitive structures of the indoor environment. Overall, the
positioning error was reduced by ≈ 30%, on both datasets,
compared to PoseNet.

Symbolic positioning has also been investigated using fea-
ture point detectors [59], [60]. Werner et al. [124] utilized the
CNN-based AlexNet [148] as a generic feature extractor to
classify a query image to one of sixteen rooms. They called
their system Deep Mobile Visual Indoor Positioning System
(DeepMoVIPS). No fine-tuning was performed on the pre-
trained network; instead, the authors directly fed the features
extracted by the first FC layer to a Naı̈ve Bayes classifier.
These features helped their model generalize local to global
views (i.e., from small views in training to large views in
testing) well. However, this didn’t hold for the opposite case
due to the spatial invariance of features introduced by the
CNN. A room classification accuracy of 95% was reported
using global views for both training and testing.

Ha et al. [125] proposed using Building Information Model-
ing (BIM) (i.e., digital representations of a building’s physical
and functional characteristics), to reduce the effort of site
surveying. The idea was to use synthetic images rendered
from a 3D BIM model without having to physically survey
the area. However, cross-domain image retrieval was needed
since positioning was performed using real images. Since
SIFT-based matching failed, the authors utilized a pre-trained
VGG network [149] for feature extraction. Features extracted
by the fourth pooling layer were matched to those of pre-
stored BIM images through cosine similarity. The BIM image
with features closest to the features of the query image was
retrieved and, hence, the user’s position was determined. An
image retrieval accuracy of 91.61% was reported inside a
corridor with 14 RPs. While this approach does not require
training, the retrieval technique followed makes the response
time proportional to the BIM dataset size.

Similarly, Acharya et al. [126] proposed BIM-PoseNet, a
PoseNet fine-tuned with BIM rendered images. A virtual cam-
era, with the same intrinsic parameters as the real camera used
for testing, was utilized to tag these images with pose infor-
mation. Cross-domain positioning was realized by performing
gradient edge-detection on both synthetic and real images
before feeding them to the network. A median positioning
and orientation error of 1.88m and 7.73°, respectively, was
reported inside a 30m long corridor. Pose errors were mainly
caused by indoor objects that appeared in the real images (e.g.,
furniture, decorations, etc.) but were not included in the BIM
model.



JOURNAL OF LOCATION BASED SERVICES 20

D. Hybrid Fingerprints

CNN-based Solutions:

Liu et al. [128] proposed VMag, a fingerprinting system
that fuses magnetic field fingerprints with image fingerprints.
The authors offered two reasons for choosing these fingerprint
types. First, both types do not depend on infrastructure for
operation. Second, each type complements the other since
magnetic field fingerprints are more prone to global ambiguity
while image fingerprints are more prone to local ambiguity.
In their implementation, deep learning was only leveraged
for feature extraction. Image features were extracted using
a pre-trained Places-CNN [146] and fed to a separate FC
network that had the task of fusing them with magnetic field
features. The fused features, along with the user’s step length
and heading information (inferred from IMU measurements),
were passed to a particle filter that output the user’s location.
Experiment results based on four different indoor environ-
ments with a combined area of 8, 167 m2 and 1, 073 test RPs,
showed a positioning error of ≤ 1.0m 78.0% to 89.0% of
the time, depending on the environment. Nevertheless, the use
of particle filtering adversely affected positioning latency since
convergence to a reasonable positioning accuracy took as long
as 20 s.

Ishihara et al. [129] improved the accuracy of camera pose
regression by incorporating BLE RSS readings. They proposed
a dual-stream CNN where one network regresses poses from
images while the other simultaneously regresses poses from
BLE measurements. The estimations of both networks were
fused using a single output layer. The weights of the former
network were initialized using the Places dataset while the
weights of the latter network were randomly initialized. A
smartphone was used to collect the training data which consists
of (image,BLE) tuples labeled with ground truth pose informa-
tion using a LiDAR system. An evaluation was conducted in
six different indoor locations, with a total of 479 BLE beacons.
Compared to PoseNet, which only uses images for pose
estimation, positioning accuracy was improved by 40% but
orientation accuracy deteriorated by 30%. The authors didn’t
offer any explanation as to why the orientation estimation
degraded.

Shao et al. [130] exploited the fact that WiFi fingerprints
are generally immune to global ambiguity but prone to lo-
cal ambiguity, while the contrary is true for magnetic field
fingerprints. They proposed an architecture that harnesses the
advantages of both fingerprint types through a two-branch,
two-step training strategy. The output of two different CNNs,
one for each fingerprint type, was fed to a subsequent CNN
that output the final position estimation. Compared to using a
single network, where the fingerprint types are concatenated
and fed as a single input, this strategy yielded better results
at the expense of a prolonged training process. RPs were
represented as circular cells where the fingerprints gathered
inside a cell were labeled with the coordinates of the cell’s
center. Investigating the impact of cell size on positioning error
revealed that a considerable gain over (WiFi alone, magnetic
field alone) positioning was more noticeable for larger cells
(i.e., with diameters of 10m and up). This suggests that this

approach is more advantageous for large-scale environments.
The authors briefly investigated user heterogeneity by ex-
perimenting with four participants of different heights and
concluded that the difference in positioning error between
participants was insignificant. A positioning error of ≤ 2m
95% of the time was reported inside a 2, 400 m2 area for a
cell diameter of 10m.

RNN-based Solutions:

Wang et al. [131] proposed DeepML, a system that blends
magnetic field fingerprints and visible light fingerprints to
provide indoor positioning for places that have little or no
WiFi coverage, such as underground parking lots. Visible light
fingerprints were chosen because they share two important
characteristics with magnetic field fingerprints (i.e., omnipres-
ence and stability). For example, underground parking lots
maintain a lighting infrastructure in which the generated light
intensity does not change over time. DeepML uses a sliding
window of magnetic field and light intensity measurements
for input and maps it to the most likely location via an
LSTM network. An additional step was introduced for online
positioning, calculating a location as a weighted average of
all locations in the environment and the system’s previous
estimations for each location. While such an approach could
result in robust estimations, the authors did not discuss its
implications on positioning latency. Also, the impact of noise
on light intensity measurements caused by transient light
sources, such as car headlights, was not investigated. The
authors reported a positioning error of ≤ 0.5m 60% of the
time for two testbeds; one with a 1D layout of 10 RPs and the
other with a 2D layout of 12 RPs, where RPs in both testbeds
were separated by 1.6m.

AE-based Solutions:

Gu et. al. [127] approached indoor positioning from the per-
spective of locomotion activity recognition (LAR). This stems
from the idea that a user’s symbolic location can be inferred by
simply determining his/her activity. For example, if a user’s
activity is recognized as “using the elevator,” then the user
must be in an elevator. Correctly identifying such activities
can aid positioning systems in filtering out unlikely estimates.
To this end, the authors utilized an SDAE that took a two-
second window of accelerometer, gyroscope, magnetometer,
and barometer measurements, at 32Hz, and mapped it to 1
of 8 activities using a softmax layer. These activities included
elevator up/down, stairs up/down, walking/stationary, running,
and false motion (the user remains stationary while using the
phone for texting, gaming, etc.). The authors demonstrated
that some activities are more distinguishable than others.
For example, stairs up/down was sometimes misclassified as
walking and vice versa. The authors also demonstrated that
the combination of four sensors yielded higher accuracy than
combinations of two/three sensors or individual sensors. An
overall F1-score of 0.94 was reported; however, the authors
showed that the accuracy can vary between users depending on
their movement characteristics. While such an approach may
not qualify as a stand-alone positioning technique, it could be
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used by crowdsourcing methods in identifying landmarks for
fingerprint annotation.

FC-based Solutions:

Belmonte-Hernández et al. [83] proposed SWiBluX, an in-
door tracking system that employs three wireless technologies:
WiFi, BLE, and Xbee. The system uses special anchor nodes
to collect the signal emitting from a custom-built wearable
device. To account for measurement variability due to sig-
nal absorption by a user’s body, a user’s heading angle is
attached to each measurement. This resulted in better position
estimations compared to only using signal fingerprints. An FC
network, which the authors showed to outperform kNN, SVM,
and other shallow learning algorithms, was chosen as a loca-
tion classifier. To filter out spurious predictions, the network’s
output was further refined using Gaussian outlier detection fol-
lowed by particle filtering. While these post-processing phases
improved the network’s estimates by 25%, the corresponding
computational overhead in the offline phase was inadmissible.
Moreover, commodity smartphones currently do not provide
support for Xbee. Experiments conducted inside a 651m2

testbed, in which RPs were represented as rectangular cells
of various sizes, demonstrated a mean positioning accuracy of
0.45m.

E. Miscellaneous Fingerprints

1) UWB Fingerprints

DBN-based Solutions:

Luo and Gao [132] used a DBN to track UWB emitters
indoors. They exploited the fact that the channel impulse
response (CIR) of UWB signals vary based on the geometry of
the indoor environment and the distance between the emitter
and receiver. They used some parameters of the CIR, such as
the number of multipath components and the power of each
path, as location fingerprints. Since their system was tacking-
based, these parameters were extracted from several UWB
receivers deployed in the environment. The DBN correlated
the extracted parameters to the position of the UWB emitter.
During training, the network was pre-tuned on unlabeled
parameters then fine-tuned on location-labeled parameters. The
authors reported a positioning error of < 1.5m 90% of the
time using only three UWB receivers in a 280m2 area. This
result is better than the error achieved by an FC network
of the same architecture. The authors attributed this to the
extra pre-training step. However, it should be noted that all
the experiments and data in their work are simulation-based.

2) Visible Light Fingerprints

FC-based Solutions:

Zhang et al. [133] used an FC network to regress the 2D
coordinates of a photodetector. Four LEDs served as signal
sources; each with a unique modulation frequency (different
from the background light frequency) to prevent interference
between them. The RSS of each LED was extracted by Fourier
transformation and input into the FC network. The evaluation

was performed in a small 1.8×1.8m2 area in which the
LEDs were mounted at a height of 2.1m. Out of the 100
uniformly distributed and equally spaced RPs, 20 were chosen
for training while all 100 RPs were used for testing. The
authors investigated the impact of training RP placement on
positioning accuracy. Three settings were used: 1) arbitrary
set: RPs were randomly placed in the area; 2) even set: RPs
were uniformly distributed and equally spaced; 3) diagonal
set: RPs were placed along two diagonals. The best result
was attained by the diagonal set (3.40 cm), followed by the
arbitrary set (4.35 cm), and the even set (4.58 cm). Compared
to a lateration-based algorithm implemented in the same area,
the positioning error achieved by the diagonal set is 91%
lower.

3) RFID Fingerprints

DBN-based Solutions:

Jiang et. al. [134] utilized RFID readers and reference tags
for passive positioning. In such an implementation, the users,
carrying the tags, have no means of triggering positioning
requests. Instead, the system tracks users’ positions through
the readers. DBNs were employed for this purpose and training
was performed as described by Wang et al. in [106]. However,
simulated RSS measurements generated by a logarithmic path
loss model were used. The authors demonstrated that DBNs
not only outperformed kNNs and WkNNs but are also more
resistant to RSS noise, which they attributed to the robust
feature learning ability of DBNs. The testbed consisted of a
simulated 12×12m2 room with six readers deployed along
two sides of the room (i.e., three readers on each side). A
positioning accuracy < 2m 90% of the time was achieved
using 619 uniformly distributed training RPs and 20 randomly
placed testing RPs.

4) Acoustic Fingerprints

CNN-based Solutions:

Zhang et al. [135] used a CNN to perform sound source
localization. They simulated a 10.2×10.2m2 area with four
microphones placed at the corners. The idea was to convert
the sound waveform captured by the microphones into spec-
trograms and then combine them into a single spectrogram
(a 2D image) that highlighted the amplitude and time-delay
differences between the microphones for a given location.
The area was divided into nine sectors where 1, 100 images
were generated per sector. The model generating the images
took the reverberation effect and white noise into account.
A sector classification accuracy of 98% was reported. The
authors demonstrated the supremacy of their implementation,
in terms of accuracy and prediction latency, over kNN and
SVM. However, the network was designed for a single sound
source, a specific smartphone ringtone. It would be interesting
to see whether the network would generalize to other ringtones
or even a human voice.
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Discussion

This subsection summarizes the main characteristics of the
different deep learning models employed by the surveyed
solutions and discusses which model works best for which
contexts.

AEs are a family of hourglass-shaped neural networks [150].
Thus, they have the same number of neurons in the input layer
as the output layer. A typical AE is trained to reconstruct
an input using an encoder-decoder approach that forces the
network to encode (compress) the input into a latent code
from which the input can be decoded (reconstructed). The
latent code given by the bottleneck layer can be used for
dimensionality reduction. Thus, many of the surveyed works
have exploited this feature to address sparsity in WiFi and BLE
fingerprints. Additionally, successful applications in mitigating
the effects of fluctuating and noisy signal measurements were
attained using SDAEs (common variants of AEs that are
trained to reconstruct an input from a corrupted version of
it [151]).

CNNs were first designed to combat the problem of shift,
scale, and distortion variance when classifying high dimen-
sional patterns [152]. Thus, they are powerful tools for extract-
ing generic features form images. This is reflected by the fact
most of the surveyed work on image-based indoor positioning
employed CNNs as opposed to other deep learning models.
Additionally, CNNs have proven successful in positioning
applications where the input data are not necessarily images
but rather transformed to resemble images.

DBNs are neural networks that use unsupervised learn-
ing to facilitate supervised learning [23]. This is achieved
through a two-step training process, i.e., unsupervised pre-
training using unlabeled data followed by supervised fine-
tuning using labeled data. Since location-annotated samples
are more expensive to obtain than unannotated ones, DBNs
are most suitable for positioning applications where only a
small amount of annotated data exist.

GANs are emerging deep learning architectures that were
first introduced in 2014 [153]. They are used to generate high-
quality synthetic data from existing authentic data. Thus, they
were exploited in several of the surveyed works to reduce
the cost of site surveying by expanding the training set with
artificial fingerprints.

RNNs are popular deep learning models for dealing with
sequential and time-series data [154]. The output of the
network is a function of the current input at time t in addition
to the previous inputs at time t̃ < t. Thus, they are most
suitable for positioning applications where the position history
of a user is incorporated to refine positioning estimates.

VII. PITFALLS AND CHALLENGES

Pitfalls:

Having reviewed the different solutions presented in the
literature, this section details the common pitfalls that should
be avoided when designing deep learning-based indoor finger-
printing systems.
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Fig. 10. The positioning error histograms of three different fingerprinting
systems, calculated as Euclidean distance, and the corresponding MAE,
MSE, and Median error. Each histogram was obtained using 1, 850 testing
fingerprints. All systems produce a min. error of 0m and a max. error of
3m.

Ill-defined materials and methods: Full disclosure of an
experiment is vital for the explanation, comparison, and repro-
ducibility of indoor positioning research [155]. This includes
providing a detailed description of the data collection process
and the testbed, the specifications of the proposed model,
and the evaluation metrics used. Unfortunately, many of the
reviewed solutions lack enough detail. For example, some
works only use a single quantity to describe the performance
of the system (i.e., positioning accuracy). Some go as far as to
not specify how this quantity was calculated. Fig. 10 displays
the positioning error histograms of three different systems.
It seems that employing MSE to report accuracy was more
tempting for the first system. Similarly, MAE and median
error yielded the lowest error for the second and third systems,
respectively. Therefore, without reporting the accuracy metric
and the error distribution, it is difficult to fully characterize
the performance of a given system. Moreover, other statistics
such as minimum and maximum errors, when provided with a
description of the testbed (e.g., size and location of RPs), could
reveal a system’s robustness to local/global ambiguity. Another
pitfall is selective reporting. For instance, when reporting a
system’s response time, some works exclude the time it takes
to sample the fingerprint, or the time needed for pre/post-
processing and only report the prediction latency of the deep
learning model.

Collecting training and testing fingerprints from the
same RPs: The problem with having RPs serve a dual purpose
is that testing may easily degenerate to benchmarking the sys-
tem against its training samples [91]. This is a common pitfall
that could produce misleading results since over-fitting is much
harder to detect in such cases. To avoid this problem and,
hence, reflect the true generalizability of an implementation,
the locations of testing RPs should be different from those of
training RPs. For example, testing RPs could lay in between,
but not on, the training RPs.

Post-processing that increases response time: It is ob-
served that whenever post-processing is involved, the real-
time inference advantage offered by deep learning is often
spoiled. It could be argued that the generally minor positioning
accuracy gained by post-processing is not worth sacrificing
positioning latency for. Therefore, one possible solution is to
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invest more effort into designing and fine-tuning the deep
learning model instead of relying on quick, off-the-shelf
models and let post-processing do the heavy lifting. This
suggestion is backed by the fact that a lot of the reviewed
solutions have achieved remarkable accuracies utilizing archi-
tecture design and hyperparameter tuning without resorting to
post-processing.

Evaluation under lab conditions: Designing and evaluat-
ing a system under constrained/controlled settings (e.g., with-
out the presence of moving people or constraining movements
to predefined orientations/heights) limits its applicability. Also,
such restrictions rarely apply in real-world use cases. There-
fore, it is likely that the system’s performance will deteriorate
when tested under non-lab conditions since the fingerprints
will be influenced by artifacts that were never part of the
training data.

Data leakage and sampling bias: It has been noticed
that some of the reviewed implementations unintentionally
perform data leakage and sampling bias. The problem with
these pitfalls is that they can result in practically incompetent
and overly optimistic models. A common form of data leakage
is normalizing a dataset before splitting it into training and
testing sets while a common form of sampling bias is using an
imbalanced dataset without employing the right performance
metrics. Some useful resources on how to detect and avoid
these subtle traps can be found in [156]–[158].

Not considering user/device heterogeneity: Different
smartphones have different software/hardware components and
different users have different carrying preferences, walking
patterns, etc. Such variations cause measurements to be in-
consistent, even when collected at the same RPs, leading to
large positioning errors. While a few of the reviewed works
hinted at this issue, no practical solution was offered to
combat it. Resolving this issue is crucial because an ideal
system would exhibit the same performance regardless of
heterogeneity. Though it remains an active area of research,
current proposals to address heterogeneity can be found in
[68], [159]. It is worth mentioning that some of these solutions
are based on classical machine learning algorithms such as
linear regression and expectation maximization; thus, it would
be worthwhile to investigate applying deep learning to the
heterogeneity problem.

Challenges:

This section identifies the main challenges facing deep
learning-based indoor fingerprinting systems. Solving these
challenges is essential so that deep learning-based indoor
fingerprinting can realize its full potential.

Need for large datasets: Since deep learning involves
tuning a considerable number of parameters, the need for large
datasets is inevitable. Many of the reviewed systems demon-
strated how predictive performance increases with increased
training data. However, site surveying is notoriously laborious
and costly. A recent strategy created to tackle this problem is
crowdsourcing. Through crowdsourcing, the burden of finger-
print collection can be shared with users willing to participate
either actively or passively [144]. However, crowdsourcing is

not fully developed and much research is needed to address
questions such as 1) What measures are needed to ensure the
integrity of crowdsourced fingerprints? 2) What incentives are
offered to users to engage and motivate them to participate
in data collection? 3) How should inconsistent measurements
caused by user/device heterogeneity be dealt with? and 4)
How should fingerprints collected through passive crowdsourc-
ing be annotated? Nevertheless, advances in crowdsourcing
techniques will greatly facilitate the collection of data that is
desperately needed to train deep learning models.

Vulnerability to adversarial attacks: Many studies have
demonstrated how deep learning models are vulnerable to
adversarial attacks. Adversarial attacks refer to input samples
designed by an attacker to force a trained model into producing
incorrect predictions. Note that minute perturbations to the
input features are enough to divert the network from func-
tioning properly. This makes it harder to distinguish genuine
inputs from adversarial ones. While the consequences of
adversarial attacks are less severe in indoor positioning than in
safety-critical applications (e.g., self-driving cars), neglecting
this issue will have negative consequences. For example, an
indoor positioning system that navigates a user to the wrong
destination will likely lose the user’s trust. Recent attempts to
tackle this problem include the work of Pei et al. [160] who
developed a framework called DeepXplore to systematically
generate adversarial inputs that can be used in retraining the
model to fix its erroneous behaviors. Another example is the
work of Yuan et al. [161] who identified 15 methods to
generate adversarial inputs and described seven methods to
countermeasure them.

On-device deep learning: Most of the reviewed work used
a smartphone for data collection; however, the smartphone was
never used for data processing (i.e., calculation of the user’s
position is not carried out on the smartphone itself but rather
offloaded externally). This is because deep learning models
require sophisticated resources to run efficiently and research
for devising ways to enable deep learning on smartphones
is still ongoing. Recent developments in this area focus on
designing Artificial Intelligence (AI) chips for smartphones.
Examples of such chips include Apple’s Bionic Chip, Qual-
comm’s Snapdragon 855, Huawei’s Kirin 980, and Samsung’s
Exynos 9820. In terms of software research, active areas
include model compression [162], which aims at reducing
complexity while preserving accuracy, as well as designing
mobile-friendly deep learning architectures, such as MobileNet
[163], ShuffleNet [164], and MnasNet [165]. From an indoor
positioning perspective, enabling a user to use their own device
to compute his/her position is desirable for four reasons. First,
it increases the user’s privacy/security since no information
must leave the user’s device. Second, it reduces latency since
no communication is required with the server-side. Third, it
increases availability since computation is performed in a de-
centralized fashion. Fourth, it reduces cost since a localization
server is no longer needed. However, the impact that this
approach has on a device’s energy consumption needs to be
investigated.

Interpretability and prediction uncertainty: A common
challenge is the interpretability of deep learning models.
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Deep learning models are often treated as black-box function
approximators, mapping one vector space into another. Thus,
they do not provide any domain-specific insight or knowl-
edge. This led practitioners in risk-averse domains to favor
interpretable statistical models over accurate deep learning
models. Deep learning also lags behind Bayesian modeling
in terms of quantifying prediction uncertainty. In other words,
deep learning models are incapable of obtaining principled
uncertainty estimates. The root cause behind these issues is the
lack of a coherent theoretical foundation mainly because re-
search in deep learning has always revolved around improving
state-of-the-art accuracy. In indoor positioning, interpretability
and uncertainty quantification will ultimately be key factors
in encouraging the adoption of deep learning in commercial
settings. Luckily, researchers see a growing need to address
these limitations and work in this area is continuing. Re-
cent methods on improving interpretability and quantifying
uncertainty are described in [166], [167] and [168], [169],
respectively. The practical value of incorporating such methods
into future deep learning-based fingerprinting systems has yet
to be appreciated.

Privacy and security: Given the limited processing power
of smart devices, the position estimation of deep learning-
based fingerprinting systems is often performed on the server
side. As a result, systems are capable of tracking users’
movements and gathering their personal location informa-
tion. Misuse of such information compromises users’ privacy.
Therefore, a system must clearly indicate what information
is gathered from users and how this information will be
used. Also, a system must indicate how users’ information
is protected against unauthorized access. Unfortunately, it was
observed that privacy and security are not prioritized in the
description of solutions and are generally overlooked. None
of the reviewed solutions laid out how the users’ location
information is handled and protected. Privacy has become
particularly concerning with the emergence of trajectory data
mining [170], which makes exploiting users’ location informa-
tion for advertising and other purposes inevitable. Positioning
under the IoT brings another dimension to this problem since
a user’s location can be correlated with the location of IoT
devices in the environment. This can also be exploited to
reveal further information about the user’s health, mood, and
the activities he/she performs [28]. Moreover, deep learning
models themselves pose a threat to users’ information because
trained models can be attacked to identify the data records
used in training [171]. Unfortunately, there has been little
research done on privacy issues in indoor localization. A
recent proposal is the P3-LOC framework [172], a privacy-
preserving, paradigm-driven framework for indoor localiza-
tion. Other remedies include training deep learning models
under differential privacy [173] and reporting statistics from
end-user client software, anonymously, with strong privacy
guarantees [174]. Nevertheless, with the ever-growing cyber
security threats, privacy is becoming a major challenge that
researchers should invest more effort in addressing.

VIII. CONCLUSION AND FUTURE PERSPECTIVES

The topic of indoor positioning has gained significant
research interest in recent years due to the wide range of
potential applications that it enables. Hence, it can easily
be envisioned that indoor positioning will become a critical
infrastructure in the foreseeable future. Amongst the different
approaches to indoor positioning, the fingerprinting approach
is the most investigated due to its simplicity, low cost, and
high accuracy. Recent fingerprinting solutions leverage deep
learning because it is a more powerful tool than traditional
shallow learning. The objective of this paper was to provide a
detailed review of these solutions. To this end, the reviewed so-
lutions were classified based on the fingerprint type and further
sub classified based on the deep learning model. All solutions
belonging to a certain fingerprint type were compared using
a well-defined performance evaluation framework. A detailed
review of publicly available fingerprinting datasets suitable for
training deep learning models was also included. Finally, the
main pitfalls and challenges surrounding deep learning-based
fingerprinting were discussed.

Until the rise of a universally acknowledged solution for
indoor positioning, the strive for better performance will
continue to be a driving force behind the proposal of new
solutions. The progress that has been made and is continuing
to be made in sensing technologies, computing capabilities
and deep learning will facilitate the development of these
solutions. Also, since deep learning is being driven by not
only academia but also industry, the development of new
solutions will be further facilitated. For instance, a community
of leading companies has recently introduced the Open Neural
Network Exchange (ONNX) format [175], an ecosystem that
interchangeably represents deep learning models. In other
words, ONNX enables models to be trained in one framework
and transferred to another for inference.

Future Perspectives:

This section suggests future research directions for deep
learning-based fingerprinting.

• It is easily deduced that publicly available datasets are
major enablers of indoor positioning research. While
very useful, current datasets have several limitations.
First, they are limited to certain types of buildings (e.g.,
universities or research facilities). Few datasets directed
at large-scale indoor structures such as airports, shopping
malls, and convention centers, where indoor positioning
is expected to be more profitable, exist [176], [177].
Second, they do not account for different transit modes
(e.g., stairs, escalators, or elevators) or carrying modes
(e.g., in-pocket, texting, or making a call). Third, they
do not consider device heterogeneity because most of
them utilized Android-based devices for data collection.
It should be noted that Apple’s iOS accounted for 48.3%
of the smartphone market share in the U.S. (as of August
2019) [178]. Therefore, the proposal of datasets that can
address these limitations will always be of great interest.

• Several emerging IoT wireless technologies will attract
growing interest as localization enablers over the coming
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years. These include Sigfox, LoRA, NB-IoT, and Wi-Fi
HaLow. Understanding their potentials and limitations
for indoor localization will open new opportunities; yet,
exploiting their characteristics for indoor localization
largely remains unexplored. Currently, very few pub-
lications regarding these technologies and indoor fin-
gerprinting [179] can be found, whereas some initial
studies are available for outdoor fingerprinting [180],
[181]. Note that these works utilize classical machine
learning algorithms; thus, it would be interesting to see
how deep learning can push performance boundaries.

• While deep learning has recently seen implementations
with indoor localization techniques such as pedestrian
dead rocking [182], angulation [183], lateration [184],
and device-free localization [185], its application to prox-
imity detection and cooperative localization has yet to
come.

• Most of the image-based localization reviewed work used
the same loss function originally proposed in PoseNet
[64]. Therefore, one possible research direction is to
modify, or even propose, new loss functions for localiza-
tion that can result in improved accuracy and/or lowered
training time [186].

• Fingerprinting based on DRL is another area that has
not received much attention. In fact, out of the reviewed
work, only one solution utilized DRL. This is probably
because DRL is a relatively new learning approach.
However, DRL is gaining tremendous momentum and
its application in a variety of fields, including communi-
cations and networking [187], is promising. In terms of
deep learning architectures, some of the unexplored archi-
tectures for indoor positioning include, Residual Neural
Networks [188], Convolutional Autoencoders [189], and
Conditional Generative Adversarial Networks [140].

• The upcoming commercial deployment of 5G promises
ultra-reliable and low-latency communications (URLLC)
[46]. Furthermore, the reviewed solutions based on
massive MIMO transmission demonstrated the poten-
tial for delivering centimeter-level positioning accuracy.
However, massive MIMO-based solutions are proof-of-
concept because they are based on simulations or hard-
ware prototypes. It is expected that fingerprinting based
on 5G networks is going to be a new frontier that encom-
passes its own set of challenges and opportunities. Thus,
one research direction is to investigate the feasibility of
using real massive MIMO data emitting from real 5G
cellular networks for indoor positioning.

We hope that the information provided in this review
assists investigators in better understanding deep learning-
based fingerprinting systems, encourages new research efforts
into this promising field, and paves the way for the practical
deployment of systems as commercial products.
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