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Abstract: Assessing building performance related to energy consumption in post-design-occupancy 

stage requires knowledge of building occupancy pattern. This occupancy data can potentially be 

collected from trials and used to improve the prediction capability of building performance models. Due 

to the limitations of passive sensors in detecting an individual's occupancy throughout the building, 

indoor positioning can provide a viable alternative. Previous work on using indoor positioning 

techniques for detecting building occupancy mainly focused on passive monitoring through Wi-Fi or 

BLE proximity sensing by estimating the number of occupants at any given time. This paper extends 

our previous research and demonstrates the merit of occupancy monitoring through active tracking at 

an individual level using a smartphone-based multi-floor indoor positioning system. The paper 

discusses the design of a novel occupancy detection trial setup, mimicking real-world office occupancy 

and discusses the outcome of the ecologically valid trials using the developed positioning system. In 

total 50 occupancy trials were carried out by around 22 participants comprising of a variety of routes 

within the building. The trial results are presented to demonstrate the level of accuracy achievable 

against a specific set of the performance metric necessary for building occupancy detection and 

modelling.  
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1. Introduction 

The urbanisation of the world is occurring at an unprecedented scale and is being affected by various 

local and global factors. Quality of life, environment, and policy related to the regulation of energy 

supply will be severely affected if sustainable urban growth is not ensured. Building energy models 

(BEM) has historically been the mode of understanding and analysis of energy performances of 

municipalities and neighbourhoods for building designers and energy policymakers [1]. This increasing 

demand for more energy-efficient buildings has created a challenge for the construction industry to 
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ensure the building energy performance predicted during the design stage sustains once the building is 

in use. Unfortunately, current statistics provide evidence to suggest that buildings are not performing 

as well as expected [2] and that the predicted performance of a building at the design stage is often not 

matched when the building is in use which is known as the “performance gap”. The reason for this 

performance gap is due to various discrepancies related to design and model assumptions, management 

of power sources, occupancy behaviour and quality of building materials. Initiatives such as Post 

Occupancy Evaluation (POE) and Post-occupancy Review of Buildings and their Engineering 

(PROBE) aims to illustrate the extent of this so-called “performance gap” [3]. Typically POE takes 

place after twelve months of building occupancy, and in all the cases prediction tends to be 

unrealistically low while actual energy performance is usually unnecessarily high. Many of the causal 

factors for relate to the use of unrealistic input parameters in the model regarding occupancy behaviour, 

energy facilities management and usage patterns and further associated with the lack of feedback to 

designers once a building has been constructed and occupied. Results from a case study using the 

PROBE suggested the measured electricity demands are approximately 60–70% higher than predicted 

in schools and offices, and over 85% higher than predicted in university campuses [2]. As discussed in 

[4], [5] the energy-use behaviour in commercial buildings depends on a lot of factors such as occupancy 

pattern, occupant actions and interactions with building infrastructures and appliances. Through 

occupancy monitoring, we can identify occupancy numbers and patterns which acts as a key input for 

building simulation tools such as Energy Plus, ESPR, DeST and TRNSYS, producing energy 

consumption forecast of heating, cooling and lighting. The forecasting accuracy depends on the 

accuracy of occupancy dynamics recorded from monitoring. It also acts as input to model complex 

stochastic behaviours such as light switching, window opening and device usage, producing 

probabilities of performing an action within the building simulation environment. Occupancy patterns 

also varies because of office demographics and occupant entry and exit time, short and long breaks and 

out of hour stay contributing significantly to variation of energy-use behaviour. Thus it is important to 

associate occupancy with energy usage both at an aggregate and individual level. Existing literature 

shows occupancy monitoring encompasses a wide range of detection technologies such as camera, CO2 

sensors, humidity sensors, infrared (IR) sensors, light sensors, motion sensors, radio frequency 

identification (RFID), sound sensors, temperature sensors and Wi-Fi infrastructures [4]. Although 

aggregate occupancy can be easily determined using the above technologies, it is quite complicated to 

detect occupancy at an individual level which is necessary to identify variation from a demographics 

perspective as well as provide occupancy information at a greater detail providing both zone level and 

room level accuracy including transitions between rooms, corridors and stairs. As such the research 

goal is to analyse the performance and understand the limitations of the proposed IP system for 

occupancy monitoring at an individual level when carried out in a real-world setting.  

The paper demonstrates a novel application of indoor positioning (IP) solution capable of detecting 

building occupancy at an individual level continuously with sufficient accuracy and detail (room level 
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and zone level) over a long period. Thus providing post-processed location-based services using the 

collected data related to building performance modelling and simulation. It is important to note that this 

paper is an extension of our previous study [6] where a multi-floor IP system was implemented and 

validated hence we will not repeat the technicalities of the positioning system design any further.  

We propose a novel occupancy trial design and use the developed IP system from our previous research 

[6] to carry out “extensive” multi-user occupancy trial to understand its performance in an unbiased and 

objective manner in a real-world setting to ensure ecological validity. The occupancy trial takes the 

form of a spatially distributed Lego model-building game to imitate real-world occupancy in office 

buildings instead of providing the participants with a list of places to visit. This helps to create the 

environment for the ecological validity of the trials by ensuring participants are more focused on the 

Lego game and resource collection while moving freely and naturally and not being too aware of the 

positioning task and data collection process through the smartphone. The insights gained from the trials 

is a major contribution of this paper. The accuracy of the detected occupancy from the trials is discussed 

and compared with existing occupancy detection technologies. The next two sections will discuss 

related work and methodology adopted. We then provide a thorough analysis of the ecologically valid 

trial results and performance followed by a discussion and conclusion. 

2. Related Work 

There has been a lot of work on building occupancy detection and modelling; adopting different 

methodology such as probabilistic modelling approaches [7]–[9], use of environmental sensors [10], 

[11], localisation sensors [12], [13] and agent-based modelling approach [14]. Development of 

sophisticated occupancy and occupant model requires collection and analysis of accurate occupancy 

data that helps to identify occupancy patterns in detail. An early example of occupancy detection using 

passive infrared (PIR) sensors can be seen in [15], [16] where the authors carried out occupancy 

detection experiments in singly occupied office rooms and used the data to develop occupant presence 

model. Ambient sensors, as well as CO2 and related sensors, can also be used to capture the occupancy 

status of buildings. Environmental signatures such as light, humidity, CO2 and temperature are 

important indicators of occupancy in buildings [4], [10], [11], [17]. Statistical modelling and machine 

learning algorithms such as decision tree, artificial neural network (ANN), support vector machine 

(SVM), and random forest can be used to predict occupancy level, learn patterns of occupancy and 

develop occupancy models [10], [11], [18]. Combination of environmental sensors and camera 

technology is also quite popular for detecting building occupancy [19]. Use of localisation sensors and 

wireless communication technology can be seen to explore the area of occupancy detection. Wi-Fi 

technology, widely available at home and in offices seems to be a feasible choice to determine 

occupancy. Using statistical modelling and data mining techniques we can estimate the number of 

occupants based on the location of the detected AP’s and connected devices of individuals as seen in 

[12], [13]. Bluetooth Low Energy (BLE) with its customizable range and low cost can be a very 
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effective solution for occupancy detection. Individuals with smartphones can be detected in each room 

and using the configured range the location of the individual can be identified providing detailed 

occupancy information as seen in [20]. Although the authors did not carry out any extensive occupancy 

trials and were limited to testing on a small scale within a single room only. Probabilistic approaches in 

developing occupancy models such as graphical models and Hidden Markov models (HMM) are 

discussed in [9], [21], [22]. Use of tactile sensors in chairs such as commercially available embedded 

low-cost microswitches can be found in [23]. A detailed review paper of occupant detection systems, 

modelling approaches and their performance evaluation can also be found in [24] where the advantages 

and limitations of these modelling methods are also compared and analyzed, as well as appropriate 

recommendations are made for future studies. One of the important aspects of classifying existing 

occupancy monitoring technologies is the spatial and temporal resolution of detection. As seen in [4], 

[17] the authors highlighted the need to identify the state of occupants, count, activity and tracking and 

also whether the temporal resolution is in seconds, minutes, hours or days and if the detection is limited 

to rooms, floors or the entire building. In both the papers the authors provide a detailed review of 

existing occupancy modelling techniques such as analytical approach using algorithms such as steady-

state algorithm (ST-ST) or dynamic algorithm (dC) in combination with CO2 sensor data, knowledge-

based approach represented by specialist rules based on the sensor data collected as well as data driven 

approach using a wide range of machine learning and probabilistic algorithms making use of data 

collected from Wi-Fi, BLE, PIR and CO2 sensors, smart meters etc. They also discuss simulation of 

occupant energy consumption behavior using the occupancy monitoring data as input in agent based 

model (ABM) or multi agents systems (MAS) and other methods combining machine learning and 

probabilistic techniques coupled together.      

Some of the shortcomings of the occupancy detection methods mentioned above are that the trials can 

only detect the general occupancy of rooms and corridors. It becomes very difficult to quantify the 

actual number of occupants directly from the sensor data although model predictions recreating patterns 

of occupancy distributions vary between 60 – 90 % as seen in [17]. The PIR sensor’s detection is limited 

to individual office rooms only thus it will not be possible to know the whereabouts of the individual 

once they exit their respective office room and collecting data sets to train probabilistic and machine 

learning models are time-consuming and can be computationally expensive. Deployment cost, time and 

maintenance of the system is a major factor when carrying out trials and data collection covering entire 

buildings over long periods with a sizable population similar to any commercial office environment. 

Also, occupant demographic information and detailed transition during occupancy are difficult and to 

some extent impossible to monitor and unlikely to be cost-effective using PIR, RFID and environmental 

sensors. Thus we are missing the varying patterns of occupancy exhibited by different individuals not 

only in their respective offices but also during the transition from one room to another through stairs 

and corridors. The modelling also suffers from challenges due to oversimplification of the input 

parameters and may require significant calibration. As a result, they cannot be generalised for other 
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building types and context thus missing out the ecological validity necessary to generalize the outcome 

for other similar buildings.  

To develop more realistic and accurate occupant models for building performance simulation (BPS), IP 

technology can play a very constructive role in monitoring occupancy in large commercial buildings 

with greater detail and develop movement profiles at an individual as well as aggregate level with 

sufficient accuracy. Wi-Fi and BLE have large overlapping area coverage, widely available and cost-

effective compared to other technologies and likely to provide transition information within zone level 

accuracy if the range is carefully configured and deployed. As such, good for proximity-based 

monitoring but adding pedestrian dead reckoning (PDR) capability will allow continuous active 

tracking of occupants recording detail information of transitions between each room and corridors 

throughout the entire building. Thus creating movement profiles at an individual level and also identify 

varying patterns of occupant behaviour based on occupant demographics. These movement profiles of 

individuals can be used to improve the BPS model by adding more detail to the simulation of energy 

usage prediction and also act as input for other behavioural models such as appliance usage, window 

opening, light switching, and shading device usage [25]–[28]. Thus we must try to evaluate the 

feasibility of carrying out occupancy monitoring through active tracking using the IP system with PDR 

capability in a real-world environment. 

In the next section we discuss in detail the methodology of the occupancy trial setup in the form of a 

Lego building task; spatially distributed and designed to mimic real-world occupancy scenario in an 

office building involving non-expert participants.  

3. Methodology 

3.1. Occupancy Trial Test Bed Setup  

Building occupancy implies being physically present inside the building and performing day to day 

activities and tasks with movement between rooms and corridors from time to time. To carry out the 

occupancy monitoring trials we make use of the IP system developed in our earlier research in [6] with 

the deployed BLE beacons and Wi-Fi AP’s covering Floor A and Floor B of the Nottingham Geospatial 

Building (NGB) as seen in Figure 1 and 2. The trials aim to detect the sequence of the participant’s 

movement and transition through rooms and corridors during the task and were carried out covering 

both the floors. The general flow of the trial can be understood from Figure 3 starting from intialisation 

to occupancy computation. Data collection during the trial was done through a data logger using android 

LG Nexus 5 smartphone by all the participants. The data logger continuously captures Wi-Fi, BLE, 

accelerometer and gyro data as defined in our previous work [6] and post-processed in the IP Location 

Engine as seen in Figure 4 to compute the sequence of occupancy. 

Each of the participants was asked to complete a list of spatially distributed task without any guidance 

from the researcher. They had access to all the rooms, corridors and stairways of the two floors when 

completing the task and they could move freely. One of the major constraints was participants were 
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asked not to run or jog as the motion detection algorithm implemented could only detect walk-like 

motion; slow, medium and fast-paced in this research. Also since the orientation of the phone 

continuously changes during walking, we would need to recalibrate the heading continuously by 

detecting the tilt which is a challenge. We have decided to fix the phone orientation in the pocket as a 

limitation in this research and just computed heading change rather than absolute heading. The general 

idea was to ensure real-life building occupancy as much as possible without distracting the participants 

during the trial and evaluate the accuracy of occupancy detection within room level and zone level 

accuracy.  

  

Figure 1. Floor A showing the BLE beacons in 

green and Wi-Fi AP’s in red 

Figure 2. Floor B showing the BLE beacons 

in green and Wi-Fi AP’s in red 

 

 

Figure 3. Block diagram of the occupancy trial flow 
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Figure 4. Block diagram of the Positioning System Location Engine 

3.1.1. Trial Objectives 

Determining an IP solution is complicated because of varying context of their application and user-

dependent performance requirement. Different technology, including hybrid systems, may combine 

multiple sensors with an appropriate measurement principle and algorithms for determining the 

positioning solution [29], [30]. IP application areas also have a lot of overlap when it comes to coverage 

and accuracy and may come with inherent constraints related to technological capability, deployment 

issues and options for modifications such as added functionality. Also, some of the most critical 

performance-defining parameters that are generally looked for in an IP solution is not limited to 

accuracy, area coverage, latency, availability, robustness, data accessibility and security but most 

importantly cost. All these parameters need to be addressed when choosing a positioning technology 

and matched with the user requirements. To make things more complicated, these parameters are not 

readily determinable beforehand since they are in turn dependent on environmental factors, assumptions 

and the application domain. Thus it is challenging to determine the best possible solution objectively 

and generally requires an iterative trial and error process for any real-world application as seen in [29], 

[31], [32]. Likewise setting up the trial environment correctly to test the IP solution is also a challenge 

since it dictates the efficacy of the trial outcome. In typical IP trials, experiments are carried out in a 

controlled environment, unlike real-world settings but to understand the quality of building occupancy 

trial performances this may not be relevant. So far there has been no previous work on occupancy 
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monitoring through continuous active tracking over a long period. As such Ecological validity is the 

best way to ensure test performance predicts behaviours in a real-world setting. Ecological validity 

implies the observation seen in experimental or laboratory setup can be generalised in other similar 

natural settings [33], [34], in our case the performance observed from the trials in our test building site 

should be what we can expect in any other building with any other participants in a similar setup. Thus 

to ensure ecological validity we have to make sure the environmental setup and context of the trial is 

similar or as much closer as possible to real-world occupancy. Also, the nature of the task, behaviour 

and response of the participants should be unbiased and similar to an office environment [35]. Since 

active tracking will take place over a longer period it is important to ensure the positioning system is 

robust and precise when computing occupancy of participants from the recorded positioning data. It 

also needs to take into account participants behaviour, movement and that response will likely be natural 

and not be influenced by the researcher during the trail. Thus to understand the performance of the 

positioning system a novel real-world occupancy trial is designed in the form of a Lego brick model 

building task to ensure they are ecologically valid and imitates real world occupancy scenario in office 

spaces. Lego resources and model pictures were spatially distributed across the NGB floors in different 

rooms and corridors and non-expert participants with no previous idea of using the positioning system 

were recruited with their consent. The main objective of the Lego trial was to observe the robustness 

and accuracy of the positioning system within the metrics of accurate identification of occupancy of 

rooms and corridors during the transition from one zone to another. There were in total 22 participants 

from the NGB agreeing to participate in a total of 50 trials covering floor A and floor B.   

3.1.2 Task Description 

Lego building is used to simulate daily activity during occupancy and participants were asked to move 

between rooms and corridors within the NGB to collect materials and resources for the toy brick (Lego) 

building task. Each of the participants was provided with a smartphone with the data logger installed 

and running, copies of floor maps and instruction sheet. They had to complete as many Lego models as 

they can within 20 minutes from an existing list of 8 Lego model with the phone in their pocket. During 

the trial the researcher shadowed them while manually recording their time and location as well, 

creating a journey log in the process for validation. The recorded data from the smartphone is post-

processed to compute the participant's position showing their movement trajectory and the journey log 

is used to compare and validate their occupancy. 

The participants had complete control over route choices to reach their destination and were not advised 

or distracted by the researcher during the task. The instruction was changed for different participants 

by changing the location of the resources to be collected and their starting point so that we can observe 

occupancy across a variety of locations and routes within the building. A sample instruction list is 

provided below. 
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Sample instructions for Lego building game 

 You will start from a desk in room B05, floor-B (to be shown by the researcher). Keep 

the phone in your trouser pocket and wait for approximately 20 seconds for 

initialisation after the data logger is started by the researcher.  

 Go to Corridor 4 and Corridor 2 (marked on the floor map) and find the Lego model 

pictures on the floor. There will be a total of eight pictures. 

 Keep the Lego pictures with you as well as all other sheets. 

 Take the Lego pictures in the room A20 floor- A. The Lego bricks are also kept in room 

A20, marked in the map.  You can check the Lego pictures decide which model you 

want to build and gather the Lego bag. You can then go and build Lego models in room 

A19, Floor A. You can only take one Lego picture for building at a time. If you finish 

or decide to change your mind and build another one, you can check the remaining 

Lego model pictures in room A20 and collect appropriate Lego structures as many 

times as you want, but you can build the models only in room A19. 

 You will have to complete as many models as you can within 20 minutes.  

 When finished, the researcher would ask you to stop, and he will stop the data logger 

app for you. 

4. Results 

The trial data are post-processed and few segments of occupancy with a lot of movements are illustrated 

to show the time series of computed occupancy against actual occupancy, recorded by the researcher 

when shadowing the participants. The plots in Figure 5 below helps to observe the accuracy of the 

monitored occupancy and shows the time lag present between the processed and the recorded 

occupancy. It can be seen that there are instances of misidentification of room occupancy during the 

trial as well as some time lag. To further investigate the time lag we observe few individual transitions 

from different trial segments and compare against the computed and recorded time. The time difference 

between the computed and recorded transitions can be observed in Figure 6 below. The maximum mean 

time difference is 3.55 second and a minimum of 1.142 seconds while the median shows a maximum 

of 3 seconds. The time lag between the computed occupancy and recorded occupancy show the latency 

the particle filter engine suffers when computing the position estimation. Many factors may come into 

effect when trying to identify the underlying cause such as missing step detection, step length 

overestimation and the quality of Wi-Fi and BLE radio signals and any delay in their reception and 

recording by the data logger due to hardware issue. We can see from the plots that the order of time lag 

is in seconds and not significantly higher. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5. Time series of computed occupancy against recorded occupancy from selected segments of trials.  

 

(a) Difference Mean: 2.44 sec, Median: 3 sec 

 

(b) Difference Mean: 1.14 sec, Median: 3 sec 
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(c) Difference Mean: 1.42 sec, Median: 2 sec 

 

(d) Difference Mean: 3.55 sec, Median: 2 sec 

Figure 6. Transition time difference when moving between rooms and corridors during occupancy trials.  

From a navigation and positioning systems point of view, this is a drawback which may impact other 

external functionalities synchronised for the real-time update. Notably, application areas requiring 

precise time-specific occupancy information such as in smart buildings to identify occupied and 

unoccupied periods of rooms, corridors and stairways to adjust HVAC systems of the building for 

optimal energy usage and improved building energy efficiency. In such applications, the occupancy 

information will be ideally used to develop stochastic time series models using algorithms such as 

HMM in [8], [36]–[38] which should be able to tolerate up to a certain degree of time lag as long as it 

does not differ in the order of minutes and hours. The time lag can thus be adjusted and smooth out with 

some confidence level during the data pre-processing stage and create a probability distribution of the 

likelihood of building occupancy throughout the day of individuals and also develop aggregate 

observation for similar groups of occupants. As such we find the level of time lag in this positioning 

system acceptable for some selected applications of smart buildings related to occupancy detection and 

suitable for occupancy model development using the computed occupancy data.     

5. Discussion 

5.1. Performance Analysis 

To evaluate the performance of the positioning system when it comes to detecting occupancy, it is 

crucial to identify some key performance indicator which can be used as a criterion to determine the 

performance metric. This criterion may include but not limited to the correct identification of rooms, 

corridors, and stairs the participant occupies in the course of their occupancy in the building. In some 

cases, the accuracy level can be compromised for zones comprising of multiple adjacent rooms and 

corridors when modelling building occupancy. Room level detection accuracy will help to identify the 

exact number of occupants similar to [22]–[24] if correctly identified. One of the most extensive 

validations of occupancy detection model is seen in the work of Page et al. in [16] with single-occupant 

office rooms and in [8], [39] with multiple occupants and multiple zones. In both the latter cases, the 
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researchers were developing occupancy models with zone level accuracy for state transition. As such 

we can set two levels of performance necessary for developing any BOM; room level detection accuracy 

and zone level detection accuracy 

From our positioning solution, the continuous trajectory of occupancy has the potential to provide an 

apparent picture of an individual’s occupancy and can also be fused with the standalone Wi-Fi/BLE 

observation to understand zone level occupancy like Figure 7. This is particularly true in situations of 

incorrect or partially correct occupancy sequence where we may not get a complete picture of the 

journey within room level accuracy but still manage to extract enough information to infer the overall 

occupancy pattern of the individual. These data can then be used to develop the occupancy model both 

at an aggregate and individual level, which is nearly impossible with the existing methodologies of 

occupancy detection techniques discussed earlier. Based on these understanding we can list a few 

selected performance indicator for room level accuracy used to measure the quality of the trials below.  

 Occurrences of completely incorrect occupancy sequence - caused when all or a significant portion 

of the route is computed incorrectly and not suitable for room level accuracy.  

 Partially incorrect occupancy sequence - shows a wrong occupancy route computed for a part of 

the task, but the particle filter output may realign with the correct route afterwards.  

 Failure at initialization - implies a failure to collect data from one or more sensors due to a 

hardware issue in the smartphone.  

 Correct occupancy sequence - implies position computed to reflect actual occupancy from the task 

and providing correct identification of rooms and corridors during the transition.  

 

  

Floor A Floor B 

Figure 7. The floor plan of NGB and its partition into zones and rooms to understand occupancy.  

These indicators are used to determine the outcome of the trials and evaluate the robustness of this 

positioning system when tested by non-expert users with different physical characteristics and motion 

traits; such as walking speed, height, body postures, and route choice. Even with failures to detect 

occupancy trajectory accurately all the time, zone level detection accuracy was appreciable which is 

what most of the other occupancy detection methods, discussed above tries to achieve. The occupancy 

trajectory even if partially incorrect can be combined with zone level occupancy trajectory and used to 
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interpret the most likely sequence of transitions through rooms and corridors applying appropriate 

machine learning algorithms and data analysis techniques. Thus demonstrating the overall potential to 

produce occupancy information at a greater detail compared to any existing occupancy monitoring 

technologies and techniques discussed earlier. The overall trial performance can be seen in Table 1 

below for room level accuracy and Table 2 for zone level accuracy. Out of 50 trials, there were 5 

completely failed trials due to a crashed data logger at initialisation, wrong heading estimate at 

initialisation due to mishandling of the phone in the pocket and a missed stairwell detection causing 

subsequent misidentification of floor map as seen in Table 1 below. In total, we found 25 trials with a 

correct estimation of every occupancy transition. If we consider combining partially incorrect 

occupancy estimations with zone level identifications to identify likely transitions, the total number of 

trials with correct occupancy estimation rises to 34 out of 45 successful trials. The room level detection 

including every transition through stairways and corridors shows an overall accuracy of 82.5% with a 

precision of 90% and a recall of 90%. The zone level detection shows an accuracy of 97.5 % with a 

precision of 94.9 % and a recall of 95.2%. The designation of the zones in this research was simply 

based on the major coverage areas of the occupancy trial and ease of demonstration purpose and can be 

changed as required.     

Table 1. Lego trial room level accuracy chart 

Performance Indicator Number of Trials 

Correct estimation of occupancy 25 

Failure at initialization /data logger crashed 1 

Incorrect occupancy estimation 9 

Partially incorrect occupancy estimation 9 

Missing stairway detection 1 

Failure due to wrong heading estimate 3 

Missing Wi-Fi/BLE signal  1 

Particle filter restart 1 

Total 50 

 

Table 2. Lego trial zone level detection chart corresponding to Figure 7 

Trial 

Number 
Zone Detection 

Trial 

Number 
Zone Detection 

Trial 1 (Z3) Floor B, St3, (Z4, Z3, Z1*) Floor A Trial 24 (Z3,Z2^)Floor B,St3,(Z4,Z3,Z1,Z3,Z1,Z3,Z1)Floor A 

Trial 2 (Z1, Z2, Z3) Floor B, St3, (Z4, Z3, Z1*) Floor A Trial 25 (Z3) Floor B, St3, (Z4, Z3, Z1, Z3, Z1) Floor A 

Trial 3 (Z2) Floor B, St1, (Z1, Z2, Z1*) Floor A Trial 26 (Z3) Floor B, St3, (Z4, Z3,Z1,Z3,Z1,Z3*^)Floor A 

Trial 4 (Z1, Z2, Z3) Floor B, St3, (Z4, Z3, Z1*) Floor A Trial 27 (Z2, Z3) Floor B, St3, (Z4, Z3, Z1, Z3, Z1) Floor A 

Trial 5 (Z3) Floor B, St3, (Z4, Z2, Z1*) Floor A Trial 28 (Z2^) Floor B, St2, (Z1, Z3, Z1, Z3, Z1) Floor A 

Trial6 (Z1, Z2) Floor B, (Z1, Z4, Z3, Z1*) Floor A Trial 29 (Z1, Z2) Floor B, St1, (Z1, Z3, Z1, Z3, Z1) Floor A 

Trial 7 (Z1) Floor A, St2, Z1* Trial 30 (Z2, Z3) Floor B, St3, (Z4, Z3, Z1, Z3, Z1) Floor A 

Trial 8 (Z2, Z1) Floor B, St2, (Z1*) Floor A Trial 31 (Z2) Floor B, St1, (Z1, Z3, Z1, Z3, Z1) Floor A 

Trial 9 (Z2, Z1) Floor B, St2, (Z1*) Floor A Trial 32 (Z2) Floor B, St1, (Z1, Z3, Z1, Z3, Z1) Floor A 

Trial 10 (Z3, Z2) Floor B, St1, (Z1*) Floor A Trial 33 (Z1, Z3^) Floor B, St1, (Z1, Z3, Z1, Z3, Z1) Floor A 

Trial 11 (Z3) Floor B, St1, (Z1*) Floor A Trial 34 (Z2, Z1^) Floor B, St1, (Z1, Z3, Z1, Z3 Z1) Floor A 

Trial 12 (Z1) Floor B, St2, (Z1*) Floor A Trial 35 (Z3, Z2) Floor B, St1, (Z1, Z3, Z1*) Floor A 

Trial 13 (Z3) Floor B, St3, (Z4, Z3, Z1*) Floor A Trial 36 (Z3, Z2) Floor B, St1, (Z1, Z3, Z1, Z3, Z1) Floor A 

Trial 14 (Z1, Z2) Floor A, St2, (Z1, Z3, Z1*) Floor A Trial 37 (Z3, Z2) Floor B, St1, (Z1, Z3, Z1, Z1*^) Floor A 

Trial 15 (Z1) Floor B, St2, (Z1, Z3, Z4, Z2, Z1*) Floor A Trial 38 (Z2) Floor B, St1, (Z1,Z3,Z1,Z3,Z1,Z2,Z1) Floor A 

Trial 16 (Z3) Floor B, St3, (Z4, Z3, Z4, Z2, Z1*) Floor A Trial 39 (Z2, Z1^) Floor B, St1, (Z1,Z3,Z1,Z3,Z1) Floor A 
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Trial 17 (Z1) Floor B, St2, (Z1, Z3, Z4, Z2, Z1*) Floor A Trial 40 (Z1, Z2, Z4, Z3, Z1, Z2, Z1, Z2, Z1) Floor B 

Trial 18 (Z2, Z3) Floor B, St3, (Z4, Z3, Z1*) Floor A Trial 41 (Z1, Z2, Z1, Z3, Z3^, Z4^, Z2^, Z1, Z2, Z1) Floor B 

Trial 19 (Z2) Floor B, St1, (Z4, Z3, Z1*) Floor A Trial 42 (Z1, Z2, Z1, Z3, Z1, Z2, Z1) Floor B 

Trial 20 (Z3) Floor B, St3, (Z4, Z3, Z1*) Floor A Trial 43 (Z1, Z2, Z1, Z3, Z1, Z2, Z1) Floor B 

Trial 21 (Z2) Floor B, St3, (Z4, Z3, Z1*) Floor A Trial 44 (Z1, Z2, Z1, Z3, Z1, Z2, Z1) Floor B 

Trial 22 (Z3) Floor B, St3, (Z4, Z3,Z1*) Floor A Trial 45 (Z1, Z2, Z1, Z3, Z1, Z2, Z1) Floor B 

Trial 23 (Z3)Floor B, St3, (Z4, Z3, Z1*) Floor A   

Z = zone, St = stairway, * = movement within the same zone between multiple rooms, ^ = wrongly detected or missed zone 

The chart in Table 3 below provides a comparison of our proposed IP solution, marked with an asterisk 

against a few widely used existing occupancy monitoring technologies, their advantages and limitations. 

We can see that the PIR sensor, environmental sensor and smart meter all fail to provide continuous 

tracking with various additional constraints such as cannot detect stationary state, time lag, dependence 

on environmental conditions and detection based on appliance usage only. The use of camera 

technology provides continuous tracking and ticks all the occupancy resolution features but is expensive 

to install and deploy and dependent on good illumination condition as well as high computational 

complexity of image processing and analysis. Thus we are left with Wi-Fi and BLE based solution 

providing zone level occupancy detection with proximity sensing but falling short of continuous 

tracking. We have extended it in our IP solution and incorporated PDR capability using smartphone 

inertial sensors to enable continuous active tracking of individuals. Thus providing identification of 

every possible sequence of occupancy transition throughout the building. Another important advantage 

of our system is since it can detect at an individual level we can generate personal movement profiles 

to understand occupancy patterns across office demographics as well. Although there are limitations 

related to radio map setup and possible latency in data transmission and reception from smartphone 

sensors. 

Table 3. Occupancy detection technology comparison chart, updated from source [17].  

Sensor Occupancy information resolution Cost Privacy 

Issue  

Advantage Limitations 

State Quantity Activity Identity Track 

PIR Yes Yes No No No Low No Low 

computation

al cost 

Cannot 

detect static 

state 

Environmental 

(CO2, 

Temperature) 

Yes Yes Yes  No No  Medium No Widely 

available 

and non- 

intrusive 

Time lag and 

sensitive to 

environment 

Smart meter Yes No Yes No No  No Partial Existing 

infrastructur

e 

Miss 

occupants 

not using 

appliance 

Wi-Fi/BLE Yes Yes No No Partial Medium Partial Widely 

available 

Dependent 

on the 



 15 of 22 

 

(Proximity 

only) 

(Zone 

level) 

smartphone 

being turned 

on 

Wi-Fi/BLE* 

(Fingerprinting 

& multi-sensor 

integrated PDR 

solution ) 

Yes 

(Room 

level 

and 

zone 

level) 

Yes No No Continuous Medium Partial Widely 

available. 

Detailed 

occupancy 

eg: 

transition 

between 

rooms and 

corridors 

Radio map 

setup.  

Latency 

logging data 

from 

multiple 

sensors.  

Missing data 

due to sensor 

blackout. 

 

Camera Yes Yes Yes Yes Yes High Yes High 

Accuracy 

High 

computation

al 

complexity 

and 

illumination 

conditions 

* = proposed IP solution in this paper 

5.2. Limitations 

The “extensive” multi-user trial showed promising results with the developed IP system based on their 

performance analysis. The positioning system proved capable of detecting occupancy of individuals 

both at room level and at zone level accuracy. Thus providing detailed transition information and route 

choices. The trials if extended over the entire day can provide daily occupancy patterns of the building. 

The errors in the positioning data for partially correct occupancy sequences can also be corrected to 

some extent by doing a post-process data analysis or improving the map matching technique. Map 

matching is an environmental feature matching technique widely used in positioning algorithms to aid 

the movement of objects or particles [40] to get a well-controlled projection of movements within the 

area at each epoch. The technique is already used in the implementation of the positioning system by 

incorporating floor plans; walls and doors as seen in Figure 1 and 2 and could be improved further by 

incorporating carefully selected landmarks to remove outliers and realign any unusual route with the 

more likely one. Machine learning algorithms such as Random Forests, Naïve Bayes and Neural 

Network can also be trained to develop models that can help predict more likely routes based on already 

detected transitions as input. It can help to identify and realign incorrectly detected or missing 

occupancy transitions. Although this would require the collection of additional data for training, testing 

and validation of the models. When it comes to the smartphone as a technology capable of providing 
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positioning solution, the sensors are generally of inferior quality. Latest smartphones are likely to have 

sensors with better sensitivity and possibly improve the overall performance as such would be another 

area to explore further in the future and compare the accuracy between different models of smartphones. 

The sensors suffer from hardware latency, which may result in complete loss of data. Time 

synchronisation of all the sensor data is a big problem in the Android platform. Each sensor API has its 

time parameter when receiving and logging data. Another concern is the battery life of the android data 

logger. This kind of multisensory app running continuously throughout the day will be extremely 

power-hungry and will likely cause the battery to run out of charge within 8 to 10 hours. It would be 

ideal to develop a bespoke device with all the required sensors packed together like Intel Edison or 

Raspberry Pi but with a customisable scan rate of Wi-Fi, BLE, accelerometer, and gyroscope. There 

were some problems detecting floor transition with a few cases of missing stair detection. These lead 

to misidentification of floor map fingerprint database or significant gap in Wi-Fi or BLE data reception 

causing issues with data processing and in the process ending up with erroneous occupancy sequence 

or system crash. The overall accuracy could be further improved by increasing the number of BLE 

beacons and placing them carefully with the range modified to reduce overlapping areas of similar 

signal strength. The radio map needs to be updated from time to time to ensure any environmental 

changes such as changes in floor plan layout and furniture placement are taken into account. As such 

SLAM based radio mapping or crowdsourced update with the help of voluntary participants can be 

considered. The behaviour of participants also plays a significant role which can be unpredictable and 

challenging to model such as step detection, body posture, speed and angle of a turn at corridors. In 

short, the trials tried to ensure participants are at their most natural state when completing the task. Thus 

we can understand the array of navigation and positioning issues and related environmental factors that 

affect the accuracy of our positioning system. It will also help to identify what may be done in the future 

to mitigate or improve its accuracy. 

5.3 Potential Applications 

Typically we could get a detailed and accurate picture of the occupants and how they make use of the 

building from the occupancy data generated by the IP system. The data collected throughout the day 

could be analysed to understand not just occupancy patterns room-by-room or routes choices but also 

provide insight into the demographics of behavioural patterns of occupants at different times of the day 

and month specific to the type of building. These understanding can be applied for predictions in other 

similar buildings. It could also be used in the development of an improved occupancy or presence model 

such as the one stated in [16]. The model should have the potential to incorporate multiple states of 

occupancy as well as route choices and also include behavioural traits from different clusters of 

occupants when it comes to understanding building occupancy. Other applications could be in smart 

heating systems [41] that relies on the accurate prediction of building occupancy or as input to other 

behavioural and automation models [42]–[44] such a light switching, appliance usage, window opening 
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and blinds to name a few. Also, the potential to effectively manage energy consumption in buildings is 

very high by identifying the right policies and measures based on the occupancy data.  

6. Conclusions 

Research in the field of IP has made tremendous progress over the last decade and continuously being 

updated with innovations and improvements. This research looked to tap into that progress and 

demonstrated a novel contribution of IP and highlighted the limitations of some of the technology and 

techniques when used in this kind of real-world application. Unlike typical positioning trials in a 

controlled experimental setup, we have tried to recreate a real-world experience of building occupancy 

through our novel Lego-based task design and observe ecologically valid occupancy trial outcomes. 

The trials demonstrated the feasibility of carrying our occupancy monitoring through active tracking 

using our PDR based IP system. We found the level of accuracy appreciable and quite good when 

compared to existing occupancy detection systems with a lot of possibility for further improvements in 

future work. Compared to other methods for detecting building occupancy, IP provides information 

related to the sequence of occupancy at an individual level, which is unique and essential for developing 

multi-state presence model. It only needs to be set up once in any building during the PROBE stage and 

collect occupancy data from time to time to understand patterns of occupancy and demographics from 

willing participants. The Built Environment and Energy Efficient Buildings and Building Management 

community will benefit from the knowledge of another potentially effective method for detecting 

building occupancy. They will gain insight into how the positioning data has been used in this research 

and what other ways the data can be used in research areas related to understanding building 

performance. The data could help to develop more detailed occupancy models at an individual and 

aggregate level. The models can then be incorporated into building performance simulation to improve 

the prediction capability related to energy consumption and applied in smart home automation.  

In general, from the research, we can conclude that a smartphone with its array of built-in sensors is a 

viable tool for the application of IP technology in our daily life. Wi-Fi and BLE are easy to deploy and 

cheap but may require additional aid when it comes to detecting unconstrained human movement in a 

natural environment. The inherent constraints embedded in a real-world scenario such as building 

occupancy is important to understand for any future improvement of the system related to the use of 

other IP technology and techniques. Nevertheless, it can be safely claimed that IP holds a lot of potential 

for the improvement of building occupant modelling. Future work suggestions would be to look into 

improvement of the particle filter algorithm or implementing a Kalman filter running in parallel to aid 

the positioning estimation. Identify the feasibility of using Wi-Fi in combination with BLE and or using 

more carefully placed BLE beacons alone. The motion detection algorithm could be made more 

responsive to non-walk like movement detection. A more stable step-length calculation technique could 

also be adopted. The accuracy of the positioning system could also be compared and evaluated against 
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a few latest smartphone models. All these could help to design a more robust and cost-effective 

positioning system capable of commercial deployment for detecting accurate building occupancy.  
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