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A Method of Demand-driven and Data-centric Web Service Configuration 

for Flexible Business Process Implementation 

Facing the rapidly changing business environments, implementation of flexible busi-

ness process is crucial, but difficult especially in data intensive application areas. 

This study aims to provide scalable and easily accessible information resources to 

leverage business process management. In this paper, with resource-

oriented approach, enterprise data resources are represented as data-centric Web ser-

vices, grouped on-demand of business requirement, and configured dynamically to 

adapt to changing business processes. Firstly, a configurable architecture CIRPA in-

volving information resource pool is proposed to act as a scalable and dynamic plat-

form to virtualize enterprise information resources as data-centric Web services. By 

exposing data-centric resources as REST services in larger granularities, tenant-

isolated information resources could be accessed in business process execution. Sec-

ondly, dynamic information resource pool is designed to fulfil configurable and on-

demand data accessing in business process execution. CIRPA also isolates transac-

tion data from business process while supporting diverse business processes compo-

sition. Finally, a case study of using our method in logistics application shows that 

CIRPA provides an enhanced performance both in static service encapsulation and 

dynamic service execution in cloud computing environment. 

Keywords: Enterprise data management, Business process execution, Cloud comput-

ing, Data-centric Web service, Information resource pool; RESTful service 

1. Introduction 

With the rapid development of information technology and the wide use of enterprise in-

formation systems, architectures of enterprise information systems have the trend of trans-

forming from traditional on-premise computing platform into cloud computing environ-

ments. The cloud computing facilitates enterprise IT infrastructure in a more flexible and 

adaptive pattern to improve the availability and affordability of on-demand enterprise re-

sources[29]. Especially, as one of the three typical cloud computing models, Software-as-a-

service (SaaS) defines business processes as Web services and addresses the inter-

organizational business process interoperability through Web services composition. SaaS is 

expected to be adopted by most small and medium enterprises (SEMs). Gartner [27] pre-

dicts that the public cloud services in the mature APAC region will reach no less than $7.4 

billion in 2015, and by 2018, the total cloud services spending in Asia Pacific and Japan 

will hit $11.5 billion. However, coupled with the improvements in the flexibility of de-

mand-driven business processes management in cloud computing, the complexity of infor-



mation resource accessing during business process execution also increases, especially for 

data-centric application systems. For example, during the project of the logistic cloud com-

puting platform for Fujian province in China, over 80% logistic companies in Fujian are 

supposed to deploy their business processes and transaction data through Internet by 

2018[28].  In addition to the security issues of the transaction data for each company, it is 

also challenging for the developers to set up on-demand data access services for these dif-

ferent companies to achieve inter-company co-operations in the supply chain through the 

platform. 

In this paper, we take the business process of handling customer orders in a manu-

facture industry as an example to explain the challenge we faced in the data-centric Web 

application development on a cloud computing platform. In manufacturing industries, cus-

tomer orders have some common activities, such as receiving customer orders, checking 

product inventory and arranging product manufacture. So these common activities could be 

carried out by Web services with similar functions. However, for different companies, 

business processes and transaction data may be slightly different. This leads to the require-

ment of dynamic configurations and customization of data centric services develop-

ments[30].  

In summary, in traditional data-centric systems such as ERP systems, data re-

sources, which are stored in relational databases or in formatted documents, are not only 

used for storing and displaying, but also used for data analysis and data mining for business 

purposes. In cloud environment, it is more challenging to provide a scalable and flexible 

transaction data display or data analysis. This is because how to construct data-centric ser-

vices for related information resources across different tenants so as to maximize resource 

utilization and minimize development cost, while keeping multi-tenant resources isolation 

for the purpose data privacy is not an easy task [1,2].  

Therefore, we propose a Configurable Information Resource Pool Architecture 

(CIRPA) so as to realize an effective business process execution for multi-tenants in cloud 

environment. CIRPA focuses on the representation and management of data resources in a 

configurable and scalable way of data-centric Web service development.  

The remainder of this paper is organized as follows. Related works is overviewed in 

section2. In section 3, the overall framework is introduced. In section 4, detailed design and 

implementations of CIRPA are shown. Then we present a case study in section 5. Section 6 

concludes this paper. 

2.  Related works 

In order to implement on-demand data services through cloud computing, more researches 

on SOA-based BPM systems have shifted their focuses from seeking the accuracy and QoS 

criteria of service composition to fulfilling the flexibility and configurability of the business 

process execution, especially in data-centric environment [3] [4]. 

In cloud-based applications, transaction data isolation among different unites and 

organizations has been recognized as the first of all problems that need to be solved by de-

velopers. Researchers in [5] review the challenges in collaborative business process man-

agement to support information flowing among organizations seamlessly, which include 

business process modeling, privacy and confidentiality, and process evolvement manage-

ment. Service-oriented architecture and pervasive computing are summarized as two most 

typical technologies to enhance the ability of IT systems’ collaborative business process 

management where trust and security issues are critical. The paper [6] proposes a system 



architecture for telecommunication corporations to integrate heterogeneous platforms and 

provide diverse available e-services based on SOA to customers. Several layers are divided 

as the presentation layer, the interaction layer, the exchange layer, the processing layer and 

the data layer. Multi-tier models could facilitate the transmission of customer information 

among different business processes. However the authors think that the agility and integra-

tion in operation system level still need to be improved to support the e-services integration 

in communication industry. 

In data-centric applications, the problem of flexible data integration become more 

challenging with the wide use of cloud computing. REST(Representation State Transfer) 

architectural style proposed by Roy Fielding [25] is widely used to construct data centric 

Web services, focusing on the standard data operations like GET, PUT, POST and DELET 

through the Internet. RESTful-based approaches blossom in cloud information analysis es-

pecially for IOT (Internet of Things) applications[26]. Because data-centric Web services 

usually have similar operations on data or information resources, automatic generation of 

web services is considered to be more efficient than writing code manually. Based on this 

idea, an open resource-based integrated platform system [7] is proposed based on ROA 

(Resource-Oriented Architecture). It uses ontology to organize and manage enterprise in-

formation resources. Furthermore, on the basis of the Resource Linking Language [8], a 

meta-model is provided for descriptions of RESTful services so as to carry out service doc-

umentation and composition. Accountable State Transfer (AST) architecture [9] is proposed 

to bridge the accountability gap in REST, which provides accountability capabilities for the 

service execution.  

In addition to the methods of automatic generation of RESTful services, automatic 

service composition methods are also considered to be effective to improve the ability of 

data manipulation in cloud computing [10][11]. Therefore, service agents are explored and 

used in [11] to improve the scalability of service composition in a distributed approach. In 

[10], an architecture combining static service composition and dynamic service composi-

tion which includes stages of workflow planning, services discovering, services selecting, 

and services executing, is proposed to realize seamless workflow orchestration and scalable 

functional integration. Although automatic service composition is too complex to imple-

ment fully, semantic technology, such as ontology which is illustrated in this research, 

shows promising view of developing more flexible architecture for dynamic business pro-

cess management, given that the Web services could be encapsulated and notated in proper 

ways which could be recognized and allocated on premise during service composition. 

Together with the research of service composition methods in cloud computing, 

amounts of cloud-computing-based BPM systems are put forward to enhance the scalability 

and configurability of business process management with cloud computing [12] [13] [14]. 

Research in [1] introduces the developments and challenges in workflow management in 

cloud computing infrastructures, and put forth a solution based on the BeesyCluster mid-

dleware for distributed management of services with static and dynamic rescheduling with-

in a market of services. Paper [15] presents a multi-tenant workflow engine that enables 

different tenants to run their workflows securely within the same workflow engine instance. 

Moreover, in the paper [16], a cloud-based model driven development and execution envi-

ronment provides a shared business process modeling workspace and a business process 

execution environment. However, in research [16], resources allocation method is not in-

volved in both the period of business process modeling and the service execution.  

Although one of the significant ideas in cloud computing is that functions of the in-

formation systems could be simply plugged and then played bringing high scalability and 



flexibility in business process interoperations, performances need to be traded off against 

challenges in data security and interoperability when enterprises decide to adopt cloud 

computing platform to organize their business processes [17]. Thus, on the one hand, agent-

based method is explored to facilitate service discovering and service negotiation in cloud 

commerce searching engine for Web service composition [20]. On the other hand, plat-

forms integrating applications deployed in public clouds with intra information systems to 

improve business process performances are also researched to protect enterprise data secu-

rity under cloud computing environment [19].  

For cloud service composition, evolutionary algorithms, fuzzy logic and ontology-

based approach are used to analyze the compatibility of services provided in clouds, and to 

optimize the services composition. Scalability, fault tolerance, heterogeneity and large scale 

data management are considered as challenging problems in data-intensive cloud compu-

ting applications [21]. Actually, even in process-driven and service-oriented architectures, 

with the increasing of processes accumulation in cloud platforms, data accessing becomes 

more complicated than the traditional enterprise information systems. In order to effectively 

support data accessing in business processes, [22] proposes a View-based Data Modeling 

Framework to trace data accessing activities in business processes by data access activities 

specification, integration, and extraction. Paper [23] discusses the issue of service specifica-

tion using models which capture the scope, capability and state of a service. The models 

make integration of services more certain and allow previously incompatible services to be 

combined easily. The authors prototyped Web2Exchange, a platform for modeling, trans-

forming and integrating services. Hibernate and EJB plus Spring are popular approaches 

used in practice for representing and accessing persistence objects such as entity bean [24], 

but are relatively weak in performance of information resource scalability and lifecycle 

control. We will compare Web2Exchange and the method of Spring plus Hibernate with 

our CIRSP in section 5.2.  

All of the above-mentioned works demonstrate that enterprise system’s migration 

towards the cloud is attracting both researchers and practitioners. The characteristics of-

fered by the state-of-the-art cloud computing technology, including flexibility, on-demand, 

accessibility, are studied and utilized intensively. On the other hand, the mentioned works 

also show that enterprise system’s migration towards the cloud is still in its infancy, espe-

cially from the viewpoint of business demand instead of technology push. In addition, the 

multi-tenant service isolation lacks business consideration. Thus these methods will be low 

efficient to fulfill different types of applications especially data-centric systems. It is a 

promising way to execute enterprise applications by means of allocating or encapsulating 

data resources according to business features so as to build “inherent tenant-isolated” ser-

vices in cloud environment where service encapsulations need to be tackled. 

Next section presents the design of CIRPA framework, from which we tried to 

demonstrate how to realize scalability and flexibility for data-centric services in business 

level. We hope to shed new light on the design of basic building blocks for cloud-based 

business processes execution 

3. Architecture of configurable information resource pool  

The main goal of the design of the Configurable Information Resource Pool Architecture 

(CIRPA) is to realize data encapsulation and management in business process level for flex-

ible business processes execution. Fig.1 shows the framework of CIRPA considering scala-

ble and dynamic information resources aggregation in business process level. In CIRPA, 



Information Resource Pool is a container of data-centric services. These data-centric ser-

vices feature bigger granularity and are automatically generated to manipulate information 

resources while a business process is executed. When business process instances are exe-

cuted, information resource pools are constructed dynamically; and the information re-

sources are added into the pools by data-centric SOA services according to the definitions 

in Reference Resource models. A Reference Resource model is a conceptual level descrip-

tion of data stored in either relational databases or unstructured files in cloud environment. 

Each Reference Resource model functions not only as a bridge between physical data enti-

ties in data sources and virtual information resources, but also as the start points to generate 

RESTful services which manipulate the information resources during business processes 

execution. 

 

Fig. 1. CIRPA architecture for dynamic service generation and execution in cloud environment 

CIRPA essentially consists of two parts, static module and dynamic module. Static 

modules mainly support model mapping in design stage, while dynamic modules achieve 

on demand bindings in runtime stage.   

Static modules concentrate on the static aspects, for instance, description and repre-

sentation of resources and relations between them, and expose resources as RESTful ser-

vices. With static modules, CIRPA provides configurability and integrality in service de-

sign stages.  

The dynamic modules are in charge of the lifecycle of resources, offering safety 

control and performance optimization in service execution stages. Dynamic management of 

information resource pool involves the state-space construction based on the resource list of 

a certain business process (for details on the state-space construction, please refer to Sec-

tion 4.4). The lifecycle of information resource pool is synchronous to the business process 

execution so as to realize scalable and dynamic data configuration in cloud environment. 

CIRPA static modules are defined by meta-models. Meta-models determine both 

the definition of business processes and the extraction of reference resources so as to enable 

the configuration of distributed data sources. 

    



4. Detailed design of configurable information resource pool 

In this section, detailed design of CIRPA is presented that fulfils configurable and on-

demand data accessing for dynamically composed business process execution in cloud 

computing. Further, the main steps that facilitate the application of the information resource 

pool are also provided.  

4.1 Information metemodel definition 

Prior to service construction, it is essential to define a unified architecture for information 

modeling. Based on multi-view business modeling, a meta-model for business process 

execution is shown in Fig.2. Three types of models are defined, including process model, 

resource model and organization model. 
 

 

Fig. 2. Metamodel for business process execution 

Definition 1: Metamodel of Business Process (MBP) 

<MBP > = {Tenant, Tasks, Events, Connectors, Arc } (1) 

In (1), Tenant represents related organization unit; 

Tasks are the descriptions of services and data entities;  

Connectors={AND,XOR}+;  

Arc ={Connector→(Event,Task),(Event,Task)→Connector};  

MBPs are not only the descriptions of the control-flows of business processes, but 

also the descriptions of the relationships between resource entities and services for further 

disposing. 

Definition 2: Tenant Model 

The Tenant Model is an organizational unit, which is defined as a set of Positions, 

Roles, and Relationships between positions and roles.  

Tenant = <Positions, Roles, Relationship> (2) 

Definition3: ResourceEntity Model 

ResourceEntity Model is the abstraction of business data. To enable configurable 

and on-demand data accessing, tables in databases can be divided into smaller resources, 

and further, various resources can be aggregated to bigger resources to achieve dynamic 

business process execution.  

Resource = (URI, RPS, ROS, RRelation, RState) (3) 



Each Resource has a unique URI to identify itself.  

RPS is the set of resource properties.  

ROS defines RESTful Get/Put/Post/Delete operations invoked via http requests.  

RRelation represents resources relations between two resource entities.  

RStates describes the states of a resource during execution.   

4.2 Mapping mechanism from process model to resource model 

In order to provide persistent and consistent data accessing during a business process 

execution, for a given business process, resources extraction is carried out to gain a list of 

related information resources, denoted as ResourceList. The algorithm for finding the list of 

related information resources is described in a pseudo code segment as shown in fig. 3. 

 

Fig. 3. Algorithm for finding related information resources 

In Fig.3, variables of each task in the business process are searched in the resources 

references. If a resource and a variable share the same/similar attributes or the same states, 

the resource will be added in the resource list. After all mapped resources are added in the 

resource list, MergeSameRsource{RosourceList} is then executed to find and merge 

synonym resources according to the semantic notation of resources. 

PermissionCheck{ResourceList} checks the permission for each resource so that only 

permitted resources could be included in the resource list for further accessing by the 

business processes. 

Table 1 illustrates the mapping from business processes to information resources.    

Table 1. Mapping from business processes to information resources  

Source 

Model 

Target 

Model 

Reference Argument Relationship 

Type 

Process Model Function 

Model 

Act FM
+
 One-to-One 

Process Model Tenant Model Tenant Model RoleSet One-to-One 

Function 

Model 

Information 

Resource 

ParaType IR
*
 One-to-One 

Tenant Model Information 

Resource 

1.{Tenant1.getRoleList()}
 

 Role 

2{role1.getPermissionList()}  Permission 

One-to-Many 

One-to-Many 












3.{permission1. getResourceList()} Resource One-to-Many 

Information 

Resource 

ResourceList 1. attribute1, attribute2∈ResAttr 

Res(attribute1)=Res(attribute2)∈ResID 

2. state 1, state2∈ResState 

Res(state 1)=Res(state 2)∈ResID 

3. attribute∈ResAttr 

ResAttrType(attribute) ∈{SimpleType}∪{ResID} 

One-to-Many 

 

One-to-Many 

 

One-to-one 

 

The detailed mapping mechanisms from business processes to information resources 

are described as follows:  

 

 FM
+
 represents the transitive closure of the tasks in a function model. Act is a 

subset of FM
+
 and denotes the activities derived and directly mapped from a 

business process. 

 RoleSet represents the whole set of roles in an organization model. TenantModel 

is a subset of RoleSet and denotes roles involved in a business process. During 

the period of business process design, roles will be mapped into a tenant model. 

In a tenant model, one tenant could be assigned with multiple roles by 

{Tenant1.getRoleList()}, and likewise one role could be assigned with multiple 

manipulation permissions for multiple resources by {role1.getPermissionList()} 

and {permission1. getResourceList()} respectively.  

 IR
*
 represents the group of units of information resources in information 

resource models. The information resource model is created by corresponding 

process model when a business process is designed, accessed by the business 

process in runtime, and deleted after the business process has been executed.  

 ParaType is a subset of IR
*
 and denotes the definition of a set of resources for a 

function model. During the mapping process from Information Resource to 

resource list, a resource will be added in the resource list if either of the 

following conditions is satisfied. 

1. Res(attribute1)=Res(attribute2)∈ResID 

2. Res(state1)=Res(state2)∈ResID 

3. ResAttrType(attribute) ∈{SimpleType}∪{ResID} 

 

4.3 Mapping mechanism from resource lists to RESTful services 

After related ResourceList of a certain process is constructed, we configure a composed 

resource to bind to the data sources and also we generate RESTful services for applications.  

In order to facilitate the configuration of the information resources, we use an 

extendable, unified and easily understandable way to represent the resources and their 

relations via XML format. Fig.4 gives an XML file example of a composed resource. 





 

Fig. 4. An XML example of composed resource 

In order to precisely abstract and represent the relations among the resources in the 
real world, we define the types of resource relations following the ontology model. There are 
four basic types of relations in ontology: “part of” represents relation between the part and 
the whole, “kind of” is an inheritance relation, “instance of” represents the relation between 
instances and classes, “attribute of” is an aggregation relation. We implement these four 
relation types in CIRPA. Thus, each resource refers to either one table or recursively other 
resources. For instance, the resource “schoolWithRelations” refers to the table “school”. If 
the property “isCompound” of the resource “schoolWithRelations” is true, it means that the 
resource “schoolWithRelations” is a composed resource and has relations with other 
resources. The properties are the core part of resource, each of which represents either a 
table column or a resource property. The property “relations” of “schoolWithRelations” is 
none-empty if it has a relation with other resources such as “studentWithRelations”. The 
relation type “attribute of” means that “schoolWithRelations” aggregates one or many 
“studentWithRelation” instances.  

After composed resources are constructed, RESTful service could be generated to 

encapsulate and expose the related information resources to Web applications 

Ref [7] gives a detailed description of how RESTful services are generated. Given 

the RESTful services, CIRPA creates different WADL files to provide accessing and 

operating interfaces of various granularities. 

4.4 Lifecycle management of information resource pool 

Lifecycle management of information resource pool is constructed to fulfill on-demand ser-

vice execution. Based on the states of the resources in the ResourceList and the state transi-

tion diagram, CIRPA dynamically manage resources according to the resource states. We 

define six states in CIRPA which are created, runnable, waited, deleted, aggregated, and 

separated. The created, runnable, waited and deleted states are basic states which represent 

the lifecycle of resources. Aggregated state and separated state are two special states which 

manifest relations between multiple resources. 

Created state: When a resource is initialized and defined, it will be in the created 

state, and CIRPA will record the created time in the log module. A created resource still 

cannot be accessed via http request. It needs to wait for the notification for further 

processing. 



Runnable state: A runnable resource means one or many requests are accessing 

this resource. Runnable resource collaborates closely with the Access Queue and Database 

Security Control Module. If a resource is accessed frequently, CIRPA will put it into cache 

for better performance such as lower I/O operation time. 

Waited state: A created resource or a runnable resource can be transited into a 

waited resource which cannot be requested for further operations.  For example, if the 

service granularity for a runnable resource is too large to satisfy the functional 

requirements, the resource state will be set to waited. After additional resource relations are 

added, it will be reset to runnable. 

Deleted state: If a resource is not needed any more or if it has technical failure, it 

will be set to deleted state. For instance, CIRPA checks the last operation time of resources 

at pre-set interval. If the time between the last operation time and current time exceeds the 

pre-set value, this resource will be deleted and its state will be set to deleted. 

Aggregated state and separated state: If a resource is in aggregated state or 

separated state, its corresponding relations with other resources could be built by CIRPA. 

Aggregated resource means that this resource is a property of another resource. Separated 

resource means that this resource can be divided into multiple resources of smaller 

granularity. The algorithms of resource aggregation and separation are shown in Fig.5. 

With functions of resource aggregation and resource separation, CIRPA can provide 

scalable resources configuration to meet the demands on data resources of various 

granularities. 
 

 
Fig. 5. Algorithm of aggregating and separating resource 

In algorithm AggregateResouce, if a resource Res is determined to have relation 

with another resource in the ResourceList by function of hasRelation(), these two resources 

are then aggregated by adding “attribute of” relation between them, to form a new larger 

resource. 

On the other hand, in algorithm SeparateResource, a resource could be divided 

according to its properties. Each property could then generate a new smaller resource. 



Using algorithms of AggregateResouce and SeparateResource, CIRPA changes the 

information resource to either larger or smaller size to support the business process 

composition or decomposition. 

Together with resource operating algorithms and different resource states mentioned 

above, CIRPA implements dynamic resource lifecycle management to provide configurable 

data accessing in business process execution. 

5. Case study and discussion 

A case study of logistics process is provided for verification, and related discussion is also 

given. 

5.1 Case study 

In this section, we take a production logistics process as an example and use CIRPA plat-

form to provide flexible information resource accessing for dynamic business processes 

composition. 

The basic requirements of the firm in this case study are as follows:  

 The firm intends to build a data centric backend system for lower layer data 

management and upper layer data applications.  

 The firm has heterogeneous data resources: some from ORACLE databases, and   

others from MYSQL databases.  

 Due to the access control, same data resources may be displayed in different 

views to people of various authorities.  

 The firm needs to configure resources dynamically through dividing or aggre-

gating resources based on certain business requirements.  

 Production logistics services need to be provided with various granularities in 

high concurrency environment. 

The whole process of using CIRPA to dynamically configure information resources 

according to the business processes is introduced by steps as follows. 

Step1：Process Modeling  

The process begins when an order is received, and then the sales departments check 

the product inventory. If the product inventory is not enough for the order, a production 

plan is created and sent to a production department. The production department checks the 

material inventory. If the material inventory is not enough for the plan, a purchase order is 

created and sent to a purchasing department. The purchasing department will search suppli-

er for materials. The process waits for the purchase to be finished. After obtaining the mate-

rials, the production departments manufacture the products, package them and send them to 

product inventory.  Then the sales departments will send the order to a dispatching depart-

ment, which will deliver the cargo to the customer. After the customer confirms receipt, the 

whole process is finished. The BPMN (Business Process Modeling Notation) diagram is 

given, as Fig.6 shows. 



 

Fig. 6. A business process of logistics application 

Fig.6 consists of two parts. The left half illustrates the business process design. De-

sign engineers can make use of the tools in the tool bar to construct personalized processes 

for specific tenants. The right part lists the corresponding resources and their possible oper-

ations for each activity in the process. The novelty of this paper is that CIRPA enables flex-

ible business process implementation by providing a platform so that designers can choose 

the resources and their operations conveniently; and further, RESTful operations can be 

generated on-demand based on pre-built templates.   
  

Step 2: Resources Mapping 

After process modeling, we analyze the resources involved in the process and map 

them to activities. Resource and activity relations are given in Table 2. 

Table 2. Activity/Resource Mapping 

Activity {Related Resource/Operations} 

Receive order {Customer order/POST} 

Check product inventory {Customer order/GET,PUT},{Product inventory/GET} 

Make production plan {Production plan/POST} 

Check material inventory {Production plan/GET,PUT},{Material inventory/GET,PUT} 

purchase {Purchase order/POST,PUT},{Supplier/GET} 

Material warehouse {Purchase order/DELETE}{Material/POST}, {Material inventory/PUT} 

Material shipment {Material/PUT},{Material inventory/PUT},{Production plan/PUT } 

Manufacture product {Material/DELETE},{Product/POST},{Manufacturing 
equipment/GET,PUT},{Production plan/PUT,DELETE} 

Product package & 
warehouse 

{Product/PUT},{Product inventory/PUT},{Customer order/PUT} 

Product shipment {Product/PUT},{Product inventory/PUT} 

Delivery cargo {Product inventory/PUT},{Carrier vehicle/GET,PUT} 

Confirm receipt {Customer order/GET,PUT},{Product/PUT} 

 

Step3：Resource Configuration 

Resource relations can be added through a configurable way to provide compound 
resources of different granularities. For example, “Purchase order” has aggregation 
relations with “Supplier” and “Material”. 

When assigning relations to resources, CIRPA will change the database table 
structures dynamically such as adding foreign keys to columns and creating intermediate 
tables for many-to-many relations. 

If special relations such as “association” are created, CIRPA will add certain relation 
description information to the Resource Relations Library. For example, Carrier vehicle has 
association relations with Product.  



All of the resources are contained in the resource pool. Fig.7 shows the details of 
relations for resource configuration. 

 

Fig. 7. Relation diagram for resource configuration 

Step4: Service Encapsulation 
In order to create and model resources, users should bind data to resources via a web 

user interface provided by CIRPA. The configuration of resource-data mapping includes 
connecting to database and mapping from tables or their attributes to resources.  

After accomplishing the above steps, CIRPA turns into run-time mode. It offers 

RESTful interfaces to upper layer application systems. For instance, users can send HTTP 

requests to find resources. Table 3 shows the request format and response content. 

Table 3. HTTP Request and Response 

Request: 
Get: http://localhost/ResourcePool/Product/price/low=500&high=1000 
Response: 
[{"id":"130",”price”:600,”name”:”computer”,”weight”:”5”},{"id":"146",”price”:800,”name”:”mp3”,”weight”:”1”},{"id

":"189",”price”:950,”name”:”phone”,”weight”:”1”}] 
 

This response returns the products whose prices are between 500 and 1000. We use 
JSON (JavaScript Object Notation) format to carry out data transmission between web 
frontends. The CIRPA also supports XML format.  

CIRPA adds conditions to RESTful operations, such as “low=500&high=1000” in 
“Get: http://localhost/ResourcePool/Product/price/low=500&high=1000” to enhance the 
capability of URL (Uniform Resource Locator) querying. 

If users need a compound resource, they can send a request as shown in Table 4. 

Table 4. Compound Resource Request through RESTful Operation  

Post: 
http://localhost/ResourcePool/Customer order 
Post Content: 
{“id”:”122”,”totalprice”:”1700”,”date”:”20131208”,”customer”:{“id”:”11”,”name”:”andy”,”address”:”SJTU”,”phone”:”

16818181688”},”product”:[{"id":"130",”price”:”600”,”name”:”computer”,”weight”:”5”},{"id":"146",”price”:”800”,”name”:”m
p3”,”weight”:”1”},{"id":"112",”price”:”300”,”name”:”nokia phone”,”weight”:”2”}]} 

 
 
This request generates a resource in bigger granularity named “Customer order” 

which consists of two sub resources named “customer” and “product” respectively.  
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inventory

Material
Product
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Manufacturing 
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vehicle

Production plan

0..* 1

1

1..*

1

1..*

11..*

1

0..*

1
1..*

1

1..*

1 1..*

1

1..*

1..*

1

http://localhost/ResourcePool/Product/price/low=500&high=1000
http://localhost/ResourcePool/Customer


In CIRPA, the generated RESTful services are represented in WADL format, as 

shown in Fig.8. 

 

Fig. 8. A generated WADL file of RESTful service 

Step5: Resource Pool Management 

When business processes are executed, users can monitor the resources states in real 

time through CIRPA. They can also manage resources without suspending the services. 

Users can change the granularities of the resources, add resource relations and change 

resource states. For instance, if a resource is on heavy demand, users can set the state of this 

resource as waited to release the load of servers as shown in Fig.9.  

In this case study, when the logistics process starts, the resources are configured 

based on the business process model. First, activity of “Receiving order” creates a 

“Customer order” resource. Then inventory of corresponding product is checked. If the 

inventory is enough to fulfil the order, “Customer order” turns into runnable state. The 

selected products will delete aggregation relations with “Product inventory” and setup 

aggregation relations with the “Customer order” being executed. If the inventory of the 

product is not sufficient to fulfil the customer order, “Customer order” and “Product 

inventory” will turn into waited state, and wait until enough products are produced by the 

production departments. The waited state of the “Customer order” is one of the 

preconditions of the activity of “Make production plan”. 



 

Fig. 9. Resource Pool Management  

Table 5 shows a fragment of the resource state transition matrix. In Table 5, c, r, w, 

a , s and d represent the resource states of created, runnable, waited, aggregated, separated 

and deleted respectively. A4, A5, A6, A7 and A8 represent the business activities of Check 

material inventory, Purchase, Material warehousing, Material shipment and Manufacture 

product respectively. 

Table 5. Part of state transition matrix 

 A4 A5 A6 A7 A8 

Material inventory (r,w)  (w,r)   

Material   (c,r,a,s) (a,s,a) (a,d) 

Manufacturing equipment     (r,a,r) 

product     (c) 

Production plan (r,w)   (w,r) (r,d) 

Purchase order  (c,r,w) (w,r,d)   

5.2 Discussion 

There are other approaches to implement data-centric systems. Spring plus Hibernate is a 

popular solution among them. Based on Hibernate ORM (Hibernate Object-Relation 

Mapping), encapsulation of JDBC and the Inversion of Control (IOC) container of Spring, 

enterprise can easily build up data backend system without many difficulties. Recently, new 

version of Spring also supports RESTful service as some other approaches do. However, 

the solution has some disadvantages. Firstly, it doesn’t fully support multiple databases 

connections so that complex data configuration is unavoidable. Secondly, this solution only 

focuses on the representation of resources; it doesn’t provide the monitoring and 

management of resources which are essential in resource-oriented architectures. Thirdly, in 

response to the scalability of applications, hand-coding or manual operations are needed 

which increase the cost of the development.  



In general, Spring plus Hibernate is a good solution for common data-centric 
backend system, but is not a good choice in developing data-centric application in the Cloud 
environment. Web2Exchange is mainly a model-based service transformation and 
integration environment [23]. Table 6 presents a comparison of CIRPA with these two 
approaches. 

Compared with other approaches, due to the introduction of meta-model, CIRPA 
supports larger granularity RESTful service both in static information encapsulation and 
dynamic Web service management in the cloud environment. 

CIRPA provides a scalable and dynamic architecture based on service and data 
aggregation. By offering RESTful services generated from business processes, information 
resources will be rapidly integrated, manipulated and exposed for data-centric applications. 
Information resources are assigned with well-structured URIs so that they can be better 
managed, with full support of advanced data access control, resource management and 
resource life cycle control.  

CIRPA not only supports a modeling method for data configuration or aggregation in 
design period, but also provides a control mechanism in service execution period. Based on 
the state transition matrix defined with the ResourceList extracted from a certain business 
process, the business goal and constraint could be used to control the whole execution no 
matter whether the granularity of services is large or small. 

One problem of the platform is that CIRPA may produce large number of services 
when data is aggregated from different model views. Thus ontology is needed to build 
semantic relationships between resources so as to organize and manage these resources in 
semantic level. 

Table 6. Comparison of CIRPA with other approaches 

Features 
Solutions 

CIRPA 
Spring + 

Hibernate 
Web2Exchange 

Model Element Data-centric 

Resources 
Persisting Objects  

Model-based 

services 

Multiple Database Connections Fully Support Manual Support 

Relational Data Mapping Fully Support Fully Support Manual 

Data Aggregation and Separation 
Fully Support Manual Not Support 

Data Monitoring Fully Support Not Support Support 

Data Lock and Data Cache Fully Support Manual Not Support 

Data Transaction Manual Manual Manual 

Service Configuration Automatically Not Support Manual Mashup 

RESTful Data Accessing 
Fully Support Support Fully Support 

Multi-tenants isolation Support Manual Not Support 

Dynamic Runtime Management Fully Support Not Support Manual 

Semantics disposing Support Not Support Not Support 

6. Conclusion 

The paper investigated the current developments in business process management, focusing 

on challenges that appear especially in data-centric information systems when business 

processes are composited and executed dynamically across business partners.   

 The following challenges in the construction of cloud based BPM system were 

explored, including (1) how to design a scalable information system architecture to leverage 



flexible business process management, (2) how to deal with the complexity of cloud-

enabled on-demand transaction data accessing for dynamic business process execution, and 

(3) how to isolate and effectively manage transaction data from business process to support 

diverse business process composition.  

An architecture for data-centric service generation and execution is put forward to 

support business process interoperation to enhance the flexibility of business processes 

management in cloud computing. Based on the architecture, a platform is developed to 

facilitate the process design, resource configuration and Web services generation. The 

contribution of the paper is that we propose a method and also implement a platform that 

enables to encapsulate and expose information resources as web services automatically in 

business level. A case study in manufacturing industry is also provided to demonstrate and 

verify the effectiveness and usefulness of CIRPA. 

Further research work will be carried out based on ontology construction and 

evolution to adapt to large-scale data management and intelligent application 

implementation. 
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