January 8, 2018

International Journal of Digital Earth output

To appear in International Journal of Digital Earth
Vol. 00, No. 00, Month 20XX, 1-29

Learning to Combine Multiple String Similarity Metrics for
Effective Toponym Matching

Rui Santos®* , Patricia Murrieta-Flores® and Bruno Martins®

@ Instituto Superior Técnico and INESC-ID, University of Lisbon, Lisbon, Portugal;
b Digital Humanities Research Center, University of Chester, Chester, United Kingdom

(Received 00 Month 20XX; accepted 00 Month 20XX)

Several tasks related to geographical information retrieval and to the geographical
information sciences involve toponym matching, i.e., the problem of matching place
names that share a common referent. In this article, we present the results of a wide-
ranging evaluation on the performance of different string similarity metrics over the
toponym matching task. We also report on experiments involving the usage of super-
vised machine learning for combining multiple similarity metrics, which has the natural
advantage of avoiding the manual tuning of similarity thresholds. Experiments with a
very large dataset show that the performance differences for the individual similar-
ity metrics are relatively small, and that carefully tuning the similarity threshold is
important for achieving good results. The methods based on supervised learning, par-
ticularly when considering ensembles of decision trees, can achieve good results on this
task, significantly outperforming the individual similarity metrics.

Keywords: toponym matching; supervised learning; string similarity metrics;
duplicate detection; ensemble learning; geographic information retrieval

1. Introduction

Several tasks related to geographical information retrieval and to the geographi-
cal information sciences in general involve toponym matching, i.e., the problem of
matching place names that share a common referent (e.g., the names Lisboa and
Olissipéna can both be used to refer to Lisbon, the capital city of Portugal). Exam-
ples include the conflation of digital gazetteers and point-of-interest datasets (Samal,
Seth, and Cueto 2004; Sehgal, Getoor, and Viechnicki 2006; Manguinhas, Martins,
and Borbinha 2008; Hastings 2008; Cheng et al. 2010; Smart, Jones, and Twaroch
2010; Zheng et al. 2010; Martins 2011; McKenzie, Janowicz, and Adams 2014; Dalvi
et al. 2014; Li et al. 2016; Berman, Mostern, and Southall 2016), where place names
and other descriptive meta-data attributes need to be compared in order to detect
potentially duplicate records, or address parsing in the context of geocoding and
map search services (Christen, Willmore, and Churches 2006; Sengar et al. 2007;
Joshi et al. 2008; Zhang et al. 2013; Berkhin et al. 2015), where names provided
by the users need to be matched against a reference database. Other interesting
examples include the disambiguation of place names referenced over textual con-

*Corresponding author. Email: ruipdsantos@tecnico.ulisboa.pt

January 8, 2018

International Journal of Digital Earth output

tents (Anastdcio, Martins, and Calado 2009; Grover et al. 2010; Rupp et al. 2013;
Gelernter and Zhang 2013; Santos, Anastdcio, and Martins 2015; Monteiro, Davis,
and Fonseca 2016; Ardanuy and Sporleder 2017), digitized maps (Weinman 2013;
Simon et al. 2014), or digital library resources (Smith and Crane 2001; Freire et al.
2011). In all the aforementioned tasks, toponym matching is used to address the
ambiguity problems related to the fact that alternative names can be used to refer
to the same place, although other techniques are often also explored in order to
deal with the fact that exactly the same names can also be used to refer to different
places. While toponym matching focuses on detecting alternative names that share
a common referent, additional (contextual) information is often also explored to
disambiguate different occurrences of the same place name.

A standard approach for toponym matching involves computing a similarity met-
ric between the names that are to be matched, e.g. an edit distance (Levenshtein
1966; Damerau 1964) or an heuristic such as the Jaro-Winkler metric (Winkler
1990), and then taking a decision with basis on a threshold over the similarity value.
While relatively effective, these methods require tuning the similarity threshold for
optimal performance. Previous research, either focusing on toponym matching (Rec-
chia and Louwerse 2013) or on the related problem of person name matching (Co-
hen, Ravikumar, and Fienberg 2003; Christen 2006; Moreau, Yvon, and Cappé 2008;
Varol and Bayrak 2012), suggests that the performance of different string similarity
algorithms is task-dependent, and that there is no single best technique.

In this article, we present the results of a wide-ranging evaluation on the perfor-
mance of different string similarity metrics over the toponym matching task. Notice
that we do not address the contextual disambiguation of toponym occurrences, in-
stead focusing on the detection of variant names that share a common referent.

Specifically, we compared thirteen different algorithms, based on character-level
analysis (e.g., the Jaro-Winkler metric (Jaro 1989; Winkler 1990)), vector-space
operations (i.e., cosine similarity between character n-grams), hybrid approaches
(e.g., the Monge-Elkan 2-level algorithm (Monge and Elkan 1996)), or even meth-
ods specifically proposed for toponym matching (e.g., the method from Davis and
De Salles (2007)). We used a very large dataset in the main experiments of our
comparative evaluation, consisting of millions of toponym pairs that were obtained
from lists of alternative place names associated to records in the GeoNames (2017)
gazetteer. The obtained results confirm that the differences in terms of performance
are relatively small between the different types of string similarity metrics, and that
carefully tuning the similarity threshold is important for achieving good results.
Moreover, given the easy access to a very large dataset, we also experimented with
the usage of supervised machine learning for combining multiple similarity metrics,
avoiding the manual tuning of the similarity threshold. Experiments with classi-
fiers for discriminating pairs of matching versus non-matching toponyms showed
that ensembles of decision trees can achieve good results on this task, significantly
outperforming individual similarity metrics. However, our analysis of the results
also revealed that all methods under study, including supervised models combining
multiple metrics, still have problems in handling cases that involve complex translit-
erations and highly dissimilar toponyms, motivating additional research in the area
(e.g., in methods capable of matching toponyms involving different alphabets).

The rest of this article is organized as follows: Section 2 presents fundamental
concepts and previous research in the area, starting with a presentation of the most
popular string similarity metrics, and then describing previous work that specifically
focused on the problem of toponym matching. Section 3 summarizes the individual

January 8, 2018 International Journal of Digital Earth output

similarity metrics that were considered in our study, and it also describes the super-
vised machine learning approach. Section 4 presents the experimental evaluation,
detailing the general protocol, dataset and evaluation metrics, and also presenting
and discussing the obtained results. Finally, Section 5 concludes the article with a
summary of the most interesting findings and with possible paths for future work.

2. Concepts and Related Work

This section starts by presenting a review on string similarity metrics, previously
proposed for name matching in general, afterwards discussing previous studies that
specifically focused on the problem of toponym matching.

2.1. Classic String Similarity Metrics

The literature on string comparison metrics is abundant — e.g., see Cohen, Raviku-
mar, and Fienberg (2003) for a comprehensive review. Traditional methods for
calculating string similarity can roughly be separated into three classes, namely
character-based, vector-space based, and hybrid approaches. Character-based meth-
ods rely on character edition operations, such as deletions, insertions, substitutions
and sub-sequence comparisons, while vector-space methods transform strings into
vector representations, over which similarity computations are then performed. Hy-
brid approaches combine both these ideas, in order to improve effectiveness when
matching names composed of multiple tokens.

For instance, the Levenshtein edit distance metric d,j is a character-based ap-
proach corresponding to the minimum number of insertions, deletions or substitu-
tions needed to transform a string a into another string b (e.g., the edit distance
between the toponyms Lisboa and Lisbonne is three, corresponding to two insertions
and one substitution, namely a — n, € — n and € — e). The distance metric d,
can be computed through a dynamic programming algorithm, and a cdorresponding

2.0 Many

max(|al,|b|)
variants and/or improvements have been proposed (Navarro 2001), i(Ill(‘:llulc)ling the
approach by Damerau (1964) in which one basic edit operation is added, namely
the transposition of two characters. The Damerau-Levenshtein metric is defined
through the following recursive function, where 1(4,4,) is the indicator function,
equal to zero when a; = b;, and equal to one otherwise.

normalized similarity measure s,; can be defined as s, = 1 —

(max(i, j) ifmin(i, 5) = 0,
dap(i—1,5) +1
dop(ij—1)+1 L
min ’b(z, J) + ifi,j >1and a; = b;—; and a;—1 = b;
donlis f) = dap(i— 1,5 = 1) + La,2p))
@,b1% dap(i—2,j—2)+1
dmb(i — 1,]') +1
min < dgp(i,j—1)+1 otherwise.
\ da,b(i - 17] -]‘) + 1(a175b3)

The recursive function d,;(i,j) represents a distance between an i-symbol prefix
(i.e., an initial sub-string) of string a and a j-symbol prefix of string b. The Dam-
erau-Levenshtein distance between two strings a and b is thus given by d, ;(|al, |b]),
where i = |a| denotes the length of string a and j = |b| is the length of b.

January 8, 2018

International Journal of Digital Earth output

More sophisticated extensions of the Levenshtein edit distance procedure have also
been previously proposed, including approaches that enhance the model to allow for
contiguous sequences of mismatched characters (i.e., affine gaps) in the alignment of
two strings (Needleman and Wunsch 1970), or even adaptable approaches that learn
appropriate weights for the different edit operations (Ristad and Yianilos 1998; Brill
and Moore 2000; Bilenko and Mooney 2003a).

The Jaro metric is instead an heuristic character-based approach based on the
number and on the order of common characters, specifically designed for matching
strings such as person names (Jaro 1989). The Jaro similarity metric s,; between
two strings a and b is defined as follows, where m is the number of matching char-
acters, and where ¢ is half the number of character transpositions in the strings.

0 ifm=20
S =
a,b % % <% + % + %4) otherwise.

Two characters from strings a and b are considered to match if they are equal

max(\2a|,\b\)J

and if they are not farther than { — 1 characters apart. The number of

matching characters that are in a different sequence order, divided by two, defines
the parameter ¢ that encodes character transpositions.

A refined version of the Jaro metric, latter proposed by Winkler (1990), uses a
prefix scale p which gives higher scores to strings that match from the beginning for
a preset prefix length ¢. Given two strings a and b, their Jaro-Winkler similarity is
defined as follows, where 5;,1; is the Jaro similarity between strings a and b, where ¢
is the length of common prefix at the start of the strings, up to a maximum of four
characters, and where p = 0.1 is a constant scaling factor, expressing how much the
score is adjusted upwards in the case of strings having a common prefix.

Sab = Sap+ (X px (1= 54,)).

Christen (2006) noted that the Jaro-Winkler approach can be problematic if the
strings to be matched contain multiple words that are differently ordered (e.g.,
in the case of the toponyms Madeira Island and Island of Madeira). To address
this issue, he introduced two variants named (i) sorted Winkler and (ii) permuted
Winkler. The former algorithm sorts the tokens that compose both strings before
calculating their Jaro-Winkler similarity, while the later calculates the similarity
over all possible token permutations and returns the maximum value.

In terms of vector-space approaches, the cosine similarity between representa-
tions based on character n-grams (i.e., based on sequences of n consecutive char-
acters, typically with n = 2 and/or with n = 3) is a common approach. Let
A =< ap,...,qyx > and B =< by,...,bxy > be vector representations for the
strings a and b, where each dimension (i.e., each a; or b;, with 1 <=1 <= |X|)
corresponds to one of the ¥ individual n-grams occurring in either string, with a
value of one if the n-gram occurs in the string and zero otherwise (i.e., a binary

January 8, 2018

International Journal of Digital Earth output

encoding for n-gram occurrence). The cosine similarity metric is defined as follows:

1=

ib;
 AB l;a
|All < [|B] Bl B
> ai x> b7
=1 =1

Different variants of the cosine metric have been used in practice (Cohen, Raviku-
mar, and Fienberg 2003; Moreau, Yvon, and Cappé 2008), for instance leveraging the
common information retrieval term weighting heuristic known as Term Frequency
times Inverse Document Frequency (TF-IDF), instead of binary representations.

The Jaccard (1912) similarity coefficient, computed between sets of character n-
grams, is also commonly employed. Let A = {a;}1<—jc—jq and B = {b;}1—jc—py
correspond to the sets of n-grams that compose strings a and b, with |a| and |b|
respectively corresponding to the number of n-grams in each string. The Jaccard
similarity coefficient can be defined as follows:

Sq,p = cos(f)

|A N B|
Sab = o0
“* = JAUB]

Simple variations of the aforementioned vector-based procedures have also been
used. For instance White! described in his blog a simple approach that rewards
common substrings and a common ordering of those sub-strings, based on comput-
ing how many adjacent character pairs (i.e., character bi-grams) are contained in
both strings. The author states that his metric has been successfully employed in
the retrieval of terms from a domain-specific electronic thesaurus, and also on the
retrieval of place names. Considering that A = {a;}1<—jc—jq and B = {b; }1c—jc—py
correspond to sets of adjacent letters taken from the strings a and b (i.e., the quan-
tities |a| and |b| respectively correspond to the number of bi-grams in each string),
the similarity metric is defined as shown in the next equation, which corresponds
to the Dice (1945) similarity coefficient between sets of bi-grams:

2 x |ANB|
Sab = T -
* 7 A+ (B

Besides regular n-grams, some previous studies have also suggested that skip-
grams (i.e., bi-grams of non-adjacent letters, considering gaps of zero, one,
or two characters) are an effective choice for representing the strings to be
matched (Keskustalo et al. 2003). Consider a set of integers I', each represent-
ing the number of skipped characters when forming bi-grams from a string (i.e., if
I' ={0,1}, a string cjcacscq would be represented as a set of skip-grams formed by
skipping both zero and one characters in the original string, thus resulting in the
set {c1eo, c1e3, Cacs, cacy, cgeq}). Different sets I' can be considered simultaneously,
e.g. by forming a set of skip-grams with gaps of length zero, and then a separate set
of skip-grams with gaps of length one and two. Finally, a similarity metric between

Ihttp://www.catalysoft.com/articles/strikeamatch.html

January 8, 2018

International Journal of Digital Earth output

two strings can be computed on the basis of these sets, by adapting the standard
Jaccard similarity coefficient:

B >_re{{o},1,2}} Iskipgramsp(a) N skipgramsy(b) |
Zre{{o},{l,z}} |skipgramsp(a) U skipgramsp(b)|

Sa,b

)

In the previous equation, the function skipgramsp(a) returns a set of skip-grams
from the input string a, considering gap lengths within the set I'.

Hybrid second-level measures combine the advantages of character-based and
vector-spaced approaches, being flexible about word order and position, while still
allowing for small differences between word tokens. These methods are based on
applying a sub-measure S;,b to all pairs of word tokens between the two strings, and
then computing a final similarity score s, ; based on these values. For instance the
scheme proposed by Monge and Elkan (1996) involves computing the average sim-
ilarity between the most similar pairs of word tokens, according to a sub-measure
such as the Jaro-Winkler similarity score:

In the previous equation, S:zi,bj represents the Jaro-Winkler similarity between a
token a; from string a, and a token b; from string b. The quantities |a| and |b]
represent the number of tokens in strings a and b, respectively.

Authors like Moreau, Yvon, and Cappé (2008) have argued that the Monge-Elkan
scheme does not perform well in practice, given that its very simple behavior favors
short strings, since averaging significantly penalizes every non-matching word. The
Monge-Elkan similarity s,; between two strings a and b is also not symmetric,
although this can be addressed by computing the average between s, ; and s ,.

Procedures such as the cosine similarity or the Jaccard coefficient can also be
used as hybrid approaches, considering sets of tokens instead of sets of n-grams,
and softening the metrics by allowing for small mismatches when aligning the to-
kens (Cohen, Ravikumar, and Fienberg 2003; Moreau, Yvon, and Cappé 2008). For
instance, by considering an inner similarity metric such as the Jaro-Winkler score,
a Soft-Jaccard metric between two strings a and b can be computed as follows:

Sab , with

B z
al+ bl -2

b b
_ leaz‘l maxlj'L1(3:z,i,bj) + ZLLl maxﬂl(sgi,bj)

2

Z

In the previous equation, similarly to the case of the Monge-Elkan metric, sﬁlhaj

represents an inner similarity between a token a; from string a and a token b; from
string b, while the quantities |a| and |b| represent the number of tokens in strings
a and b, respectively. The quantity Z captures the similarity between tokens from
string ¢ matching in string b, and from string b matching in string a. Notice that
if the inner similarity metric sj, , returns one when the tokens are equal and zero
otherwise, then the previous equation for s, is equivalent to the standard Jaccard

January 8, 2018

International Journal of Digital Earth output

similarity coefficient between sets of tokens. Using a similarity metric other than the
identity function (e.g., the Jaro-Winkler score) can soften the results of the Jaccard
coefficient, allowing for small mismatches in the tokens.

It is interesting to notice that besides the aforementioned metrics based on char-
acter operations, vector-space representations, or hybrids, some previous studies
have also proposed to leverage phonetic encoding techniques (Christen 2006; Varol
and Bayrak 2012), which attempt to convert a string into a code that captures the
way a name is pronounced. However, this conversion process is language-dependent,
and most of the designed techniques (e.g., classic approaches like Soundex or more
recent methods such as Double Metaphone (Philips 1990, 2000)) have been devel-
oped with basis on the Latin alphabet and the English phonetic structure. In our
work, given that we were interested in matching toponyms considering several dif-
ferent languages (e.g., matching toponym pairs corresponding to transliterations in
different languages), we have not explored the usage of phonetic methods.

2.2. Previous Work on Toponym Matching

Taking inspiration on the previous work by Christen (2006), Recchia and Louwerse
(2013) reported on an experimental comparison of different string similarity mea-
sures over a toponym matching task in which Romanized toponyms from different
countries, taken from the GEOnet Names Server, had to be matched against alter-
native names for the same places. The authors found that, in general, methods that
rely on the number of shared short sub-strings (i.e., bi-grams, tri-grams, and skip-
grams in particular) tend to perform well, although they also observed substantial
variation in the methods that worked best on the datasets from different countries.
For instance, the best-performing algorithms on toponyms from China and Japan
were Jaro variants, whereas edit distance performed best on data from Taiwan, and
n-gram based measures worked best on countries with toponyms in Romance and
Germanic languages. As a general recommendation, the authors suggest that prac-
titioners should test several algorithms on a country-specific or language-specific
dataset, and use the best-performing algorithm for future developments involving
that dataset. Similarly to Recchia and Louwerse (2013), the present study also aims
to provide a comprehensive comparison of different similarity metrics, although we
have used a much larger dataset, have followed a different experimental protocol
(e.g., the test pairs are not limited to toponyms from a same country nor do they
involve only Romanized versions of toponyms), and have also tested machine learn-
ing methods for combining different similarity metrics.

Hastings and Hill (2002) have noted that standard similarity metrics, such as the
ones described in the previous section and explored in the study by Recchia and
Louwerse (2013), are not particularly well suited to toponym matching because, in
everyday usage, the stylistic variability of place names is simply too great. Authors
like Davis and De Salles (2007), Hastings (2008), Cheng et al. (2011) or Kiling
(2016) have proposed algorithms specifically designed for matching toponyms, in
most cases corresponding to variations of the procedures introduced in the previous
section, and often leveraging some form of canonical representation for toponyms.

For instance Hastings (2008), taking inspiration on a previous proposal by Fu,
Jones, and Abdelmoty (2005), proposed an algorithm that relies on token match-
ing, using a language-dependent stemming procedure that attempts to reduce word
tokens to canonical base forms. This algorithm essentially matches the occurrence of
lower-cased tokens from one toponym, excluding place-type terms and common stop-

January 8, 2018

International Journal of Digital Earth output

words, against the lower-cased and possibly stemmed tokens of the other toponym,
and vice-versa. Common abbreviations are expanded, and common misspellings are
also corrected as part of stemming. For each token pairing between the two strings, a
match score of zero, one-quarter, one-half, or one is assigned, giving quarter-weight
to infix matches, half-weight to prefix/stemmed matches, and full-weight to exact
matches. The accumulated bi-directional score is normalized by the total number
of tokens in the two strings, to account for unmatched tokens.

The methods proposed by Davis and De Salles (2007) and by Kiling (2016) instead
correspond to hybrid approaches. For instance, in the method by Davis and De Salles
(2007), the first step involves dividing the toponyms into tokens, using blanks,
hyphens, and other similar symbols as delimiters. For matching individual tokens,
the authors proposed a variation of the Levenshtein edit distance that incorporates
a practical scheme for matching accented and special characters (i.e., characters are
organized into equivalence groups, so that characters belonging to the same group
are considered to match). Two tokens are considered to match if their similarity is
above a pre-defined threshold of & = 0.75. The complete matching strategy involves
four distinct phases, namely (1) replacing tokens that are known abbreviations
by their full spelling (e.g., avn. would be replaced by avenue), (2) capturing non-
standard abbreviations in one of the strings, namely single-character capitalized
tokens and tokens that end with a dot character, by checking them against tokens in
the other string that share a common prefix, (3) token alignment, using a procedure
similar to that of the Levenshtein edit distance in order to align the tokens from
one string against those from the other, and (4) computing a final similarity score
through a linear combination of three different metrics between sets of tokens, one
of which accounting for possible token inversions.

It is interesting to notice that the previously described methods for toponym
matching are specific to particular languages and/or alphabets, in the sense that
they require resources such as stemming algorithms and/or lists of stop-words and
abbreviations. From the descriptions that are provided in the corresponding pub-
lications, these methods are also particularly challenging to replicate, given the
language resources and the large sets of heuristics that are involved. In the present
study, we nonetheless report on experiments with a simpler variation of the method
described by Davis and De Salles (2007).

Several previous studies have also proposed heuristic combinations of different
similarity metrics, computed over attributes such as place names, place types,
and/or geospatial footprints, in order to match gazetteer records (Samal, Seth,
and Cueto 2004; Fu, Jones, and Abdelmoty 2005; Hastings 2008; Smart, Jones, and
Twaroch 2010; Cheng et al. 2010; Morana et al. 2014; Dalvi et al. 2014; Li et al. 2016;
Berman, Ahlfeldt, and Wick 2016). For instance Dalvi et al. (2014) presented a tech-
nique based on statistical language models that is used in production at Facebook
for de-duplicating the Places database, where records contain a name and a physical
location. The proposed technique combines string edit operations together with two
language models, namely a name model that discriminates between the core and
the background parts of a name (e.g., it identifies that in a name such as Fresca’s
Peruvian Restaurant, the token Fresca’s is the core part and Peruvian Restaurant
is a background description), together with a spatial context model that, given a
location, computes the distribution of contextual terms in that location. Through
experiments, Dalvi et al. showed that the name model alone outperforms baselines
based on edit distances and cosine similarities (i.e., the obtained results confirm the
importance of properly handling names when matching point-of-interest datasets),

January 8, 2018

International Journal of Digital Earth output

and the combination with the spatial context model further improves results.

Taking inspiration and advancing on some of these studies, other authors have
proposed to use supervised machine learning for gazetteer record conflation, using
classifiers as a principled approach to combine multiple similarity metrics, computed
over different types of attributes (Sehgal, Getoor, and Viechnicki 2006; Zheng et al.
2010; Martins 2011; McKenzie, Janowicz, and Adams 2014). It is interesting to
notice that previous studies leveraging supervised machine learning have reported
very good results on the task of conflating gazetteer records, often exceeding the
value of 90% in terms of precision and recall. Although these values are above the
ones reported on the present study — see Section 4 — we have that the experiments
reported on the aforementioned studies have relied on very small datasets, often
considering only place names in Romance and Germanic languages, or Romanized
toponyms. It should also be noted that although these previous studies have com-
bined similarity metrics computed over different types of attributes, the authors
have concluded that similarity scores between place names are among the most use-
ful features for gazetteer record conflation, together with geo-spatial distance and
overlap between geo-spatial footprints. For instance Martins (2011) found that string
similarity was the most informative type of information, and that n-gram overlap
metrics, Jaro-Winkler, and variations of edit distance were particularly useful. Se-
hgal, Getoor, and Viechnicki (2006) found that edit distance outperformed both a
Jaccard n-gram coeflicient and Jaro-Winkler, when mapping between two sets of Ro-
manized place names from Afghanistan. In a problem of matching points-of-interest
described in two different location-based social networks, McKenzie, Janowicz, and
Adams (2014) showed that the Levenshtein edit distance between names performed
the best of a set of independent methods, that also included geographic distance and
matches in categories and in long textual descriptions. Still, these previous studies
have not systematically compared the performance of different name similarity met-
rics, instead focusing on the combination of multiple attributes. The present study
indeed resembles recent publications addressing the problem of gazetteer conflation,
although we focus on systematically evaluating the matching of place names alone.
Since no other attributes besides place names are used, we do not address the prob-
lem of disambiguating equal toponyms that may refer to different places, instead
focusing on finding alternative place names matching a common referent. On what
regards advancements over the current state-of-the-art in toponym matching, we re-
port on a more extensive set of experiments (i) with a very large dataset covering the
entire world, (ii) with many different similarity metrics, representative of different
classes, and with (iii) machine learning methods from the current state-of-the-art
(e.g., ensembles of decision trees (Kotsiantis 2013; Banfield et al. 2007)).

3. Exploring Multiple Similarity Metrics for Toponym Matching

The present study has the objective of providing a comprehensive evaluation on
the performance of different string similarity metrics over the task of matching
toponyms. With basis on our review of previous related work, the similarity metrics
that were considered for our comparative study are as follows:

(1) Normalized similarity computed from the Damerau-Levenstein edit distance;
(2) Jaro similarity;
(3) Jaro-Winkler similarity, with a scaling factor of p = 0.1;

January 8, 2018

International Journal of Digital Earth output

(4) Jaro-Winkler similarity, computed from reversed versions of the original
strings. The idea of giving higher scores to strings that match in a prefix is
adequate in the case of comparing person names but, in the case of toponyms,
it is often the case that similar sub-strings occur in suffixes;

(5) Sorted Jaro-Winkler similarity;

(6) Permuted Jaro-Winkler similarity. Given the very high computational costs
associated to the computation of this metric, in the case of strings composed
of many different word tokens, our experiments used an adapted version where
the tokenization process generates a maximum of five different tokens for each
string being compared, prior to the computation of the token order permu-
tations (i.e., the last tokens from each string may actually be processed as a
single token, in the case of strings with more than five word tokens);

(7) Cosine similarity between character bi-grams and tri-grams;

(8) Jaccard similarity coefficient between character bi-grams and tri-grams;

(9) Dice similarity coefficient between character bi-grams;

10) Adapted Jaccard similarity between character skip-grams;

11) Monge-Elkan similarity, leveraging Jaro-Winkler as an internal measure;

12) Soft-Jaccard similarity, leveraging Jaro-Winkler as an internal measure;

13) Simplified version of the procedure from Davis and De Salles (2007).

All the similarity metrics from the previous enumeration, except the toponym-
specific metric from Item (13), were already formally described in Section 2.1. The
metric from Item (13) was also covered in the analysis of related work, but we
instead use a simpler variant that does not require language specific resources.

In our simplified version of the method from Davis and De Salles (2007) that
is used in Item (13), each string is first segmented into individual tokens, using
white-spaces and hyphens as delimiters. The comparison of individual tokens is
made through a normalized similarity computed from the Damerau-Levenstein edit
distance, after diacritics are removed from the original strings (i.e., removing the
diacritics is equivalent to creating character groups with basis on accented charac-
ters). We do not use a list of common abbreviations, although we do attempt to
match single-character capitalized tokens and tokens that end with a dot charac-
ter against other tokens with a common prefix (i.e., abbreviated tokens discovered
through this procedure are replaced by the corresponding complete spelling). The
final similarity score is computed from the transformed strings through an average
between the Soft-Jaccard coefficient, using the Damerau-Levenstein similarity as an
inner metric, and a Sorted Jaro-Winkler similarity.

The different similarity metrics from the previous enumeration produce real values
bounded in the interval between zero and one, with the value of one correspond-
ing to maximal similarity. When comparing the different approaches, the toponym
matching decisions were made with basis on a threshold value over the results of
each similarity metric (i.e., two toponyms, taken from a test set composed of multi-
ple pairs of toponyms, are said to match when their similarity is above a given fixed
threshold), and we experimented with different values for the similarity threshold,
in order to tune for performance — see the discussion in Section 4. More formally,
the problem of toponym matching can thus be stated as shown in Definition 1.

Definition 1. Let a and b be strings of characters, i.e. sequences of symbols from
a finite alphabet X, denoting two different place names. We say that a matches b
when sqp >= 0 , where sqp : * x ¥* — [0,1] quantifies the similarity between a
and b, and where o is a similarity threshold.

10

January 8, 2018

International Journal of Digital Earth output

Given that we only considered symmetric similarity measures, the fact that a
string a is considered to match a string b implies that b also matches a. Notice also
that no additional information besides the strings corresponding to the toponyms is
being used. Our work is therefore just addressing the discovery of alternative names
that share a common referent, and not the complete task of toponym disambiguation
(i.e., the disambiguation of equal toponyms that refer to different locations would
require additional sources of contextual information, so as to detect cases in which
the same name is being used to refer to different places (Santos, Anastacio, and
Martins 2015; Monteiro, Davis, and Fonseca 2016; Ardanuy and Sporleder 2017)).

Besides comparing individual similarity metrics, we also experimented with the
usage of supervised machine learning as a way of combining the multiple similarity
scores. In this approach, a classification model is first inferred with basis on a
training set of toponym pairs, for which we known the correct decision that should
be made regarding their matching. Each instance in the set of training pairs is
represented as a feature vector, in which each dimension corresponds to one of the
thirteen similarity metrics introduced in the previous enumeration. After training,
the induced model can be used to make a decision regarding the possible matching
of new toponym pairs, again represented as vectors of similarity scores. This general
procedure has the advantage of not requiring the manual tuning of the similarity
threshold associated to a matching decision. It also offers a principled approach
for combining the benefits of different types of similarity metrics. However, besides
requiring training data, this procedure is associated to a much higher computational
complexity, given that multiple similarity metrics need to be computed in order
to generate the feature-based representations. The actual process of inferring the
classification model is also computationally demanding but, since this can made only
once and in an offline stage, we argue that the most important cost is associated to
the computation of the similarity scores that constitute the representations. Past
studies have argued that some of the individual similarity metrics, that were listed
in the previous enumeration, are particularly expensive in terms of computational
requirements. Still, as further discussed in Section 4, we believe that with modern
hardware it is fairly easy to process very large datasets with these methods.

When leveraging supervised machine learning, the problem of toponym matching
can be formalized as shown in Definition 2.

Definition 2. Let a and b be strings of characters, i.e. sequences of symbols from a
finite alphabet X3, denoting two different place names. Let also fq correspond to a
feature extraction procedure, which takes as input a pair of strings a and b and com-
putes a vector fqp =< s}Lb, cee sib > of characteristics, where each of the k dimen-
stons s a stmilarity score computed between the strings a and b, such that each sz,b :
Y x ¥ = [0,1], with 1 <=1 <= k. We say that string a matches b when a clas-
sifier ¢y, , = TRUE. In the previous expression, cy,, : [0,1]* — {FALSE, TRUE}
1s a classifier, inferred through supervised machine learning from a set of training

instances {(fap,c) :a € ¥* Nbe ¥* A c € {FALSE, TRUE}}.

In our experiments, we compared the performance of different types of supervised
machine learning methods, relying on the implementations provided by the Scikit-
learn (2017) and XGBoost (2017) Python packages. In particular, we experimented
with models based on the formalism of linear support vector machines, or based on
different types of state-of-the-art approaches leveraging ensembles of decision trees
(i.e., random forests (Breiman 2001), extremely randomized trees (Geurts, Ernst,
and Wehenkel 2006), or gradient boosted decision trees (Friedman 2001; Chen and

11

January 8, 2018

International Journal of Digital Earth output

Guestrin 2016)).

In brief, we have that linear Support Vector Machines (SVMs) are discriminative
classifiers formally defined by a separating hyperplane between two classes. The
equation for the hyperplane corresponds to a linear combination of the features
that represent the instances to classify. Training an SVM model involves finding
the hyperplane that represents the largest separation, or margin, between the two
classes, since in general the larger the margin the lower the generalization error of
the classifier. Decision tree classifiers, on the other hand, are non-linear procedures
based on inferring a flow-chart-like structure, where each internal node denotes a
test on an attribute, each branch represents the outcome of a test, and each leaf node
holds a class label (Kotsiantis 2013). Decision trees can be learned by splitting the
source set of training instances into subsets, based on finding an attribute value test
that optimizes the homogeneity of the target variable within the resulting subsets
(e.g., by optimizing an information gain metric). This process is repeated on each
derived subset in a recursive manner. Recently, ensemble strategies for combining
multiple decision trees have become popular in machine learning and data mining
competitions, often achieving state-of-the-art results (Banfield et al. 2007).

Random forests operate by independently inferring a multitude of decision trees
at training time, afterwards outputting the class that is the mode of the classes re-
turned by the individual trees (Breiman 2001). Each tree in the ensemble is trained
over a random sample, taken with replacements, of instances from the training set.
The process of inferring the trees also adds variability to each tree in the ensemble
by selecting, at each candidate split in the learning process, a random subset of
the features. The procedure known as extremely randomized trees adds one further
step of randomization (Geurts, Ernst, and Wehenkel 2006). Instead of computing
the locally optimal splits with basis on criteria such as the information gain, at each
node of the tree and for each feature under consideration, this method instead se-
lects a random value for the split. Finally, the gradient boosting approach operates
in a stage-wise fashion, sequentially learning decision tree models that focus on cor-
recting the decisions of predecessor models. The prediction scores of each individual
tree are summed up to get the final score. Chen and Guestrin (2016) introduced a
scalable tree boosting library called XGBoost, which has been used widely by data
scientists to achieve state-of-the-art results on many machine learning challenges.

All the aforementioned methods are relatively standard in the machine learning
literature. More information about these procedures can be found on the documen-
tation for the scikit-learn package, or in popular machine learning textbooks (Bishop
2006; James, Witten, and Hastie 2014; Murphy 2013; Daumé 2015).

4. Experimental Evaluation

This section details the experimental methodology and the results that were ob-
tained. Section 4.1 starts by describing the main dataset used in our tests, present-
ing a statistical characterization. This section also describes the evaluation protocol
and the metrics that were considered for assessing result quality. Section 4.2 presents
and discusses the obtained results, also introducing several illustrative examples.

12

January 8, 2018

International Journal of Digital Earth output

Table 1. Statistical characterization of the main dataset used in our experiments.

Characteristic Value
Number of toponym pairs 5,000,000
Number of matching toponym pairs 2,500,000
Number of pairs with toponyms from the same country 4,999,260
Number of pairs with equal toponyms after lowercasing and removing diacritics 180,453
Number of pairs with matching equal toponyms after lowercasing and removing diacritics 167,933
Number of pairs with matching toponyms that are completely dissimilar 625,754
Number of pairs with non-matching toponyms that are completely dissimilar 993,409
Average difference in number of characters per toponym pair 3.74
Average number of characters per toponym 22.72
Average number of word tokens per toponym 3.59
Number of characters in largest toponym 188
Number of pairs with both toponyms involving only Latin characters 3,320,403
Number of pairs with at least one toponym involving CJK characters 625,007
Number of pairs with at least one toponym involving Cyrillic characters 400,860
Number of pairs with at least one toponym involving Arabic characters 390,145
Number of pairs with at least one toponym involving Thai characters 221,007
Number of pairs with at least one toponym involving Greek characters 25,941
Number of pairs with at least one toponym involving Armenian characters 16,361
Number of pairs with at least one toponym involving Hebrew characters 8,503
Number of pairs with at least one toponym involving Georgian characters 4,979
Number of pairs with at least one toponym involving Devanagari characters 2,087

4.1. Dataset and Experimental Methodology

Our experiments have mostly relied on a dataset of five million pairs of toponyms,
half of which corresponding to alternative names for a same place. The dataset was
generated from lists of alternative place names associated to records in the publicly
available GeoNames gazetteer (i.e., each place that is described in GeoNames can
be associated to multiple names, often corresponding to historical denominations or
to transliterations in multiple alphabets/languages, and thus we can leverage this
information to build a large dataset covering toponyms from all around the globe).
The matching pairs of toponyms in our dataset correspond to alternative names with
more that two characters that, after converting all characters into their lower-cased
equivalents, do not match in every character. The non-matching pairs of toponyms
correspond to names for different places, not necessarily within the same country,
that also have more than two characters. In order to build a dataset that is both
representative and challenging for automated classification, a significant portion of
the non-matching pairs of toponyms should not be completely dissimilar. According
to this intuition, we preferred toponym pairs having a Jaccard similarity above zero
(i.e., when building the dataset, if the similarity between a non-matching pair of
toponyms was equal to zero, we discarded the pair with a probability of 0.75).
Table 1 presents simple characterization statistics for the dataset used in our
experiments. In Figure 1 we present charts with the distribution for the length
(i.e., the number of characters or the number of word tokens) of the toponyms
present in the dataset, whereas in Figure 2 we present a chart with the distri-
bution for the difference in the number of characters per matching/non-matching
toponym pair, a quantity that is related to the difficulty in matching toponyms.
Notice that some of the toponyms collected from GeoNames do indeed correspond
to very large strings (e.g., the toponyms Cathedrale Sainte-Marie de Valence and
Iglesia Catedral-Basilica Metropolitana de la Asuncion de Nuestra Senora de Va-
lencia constitute one of the matching pairs in the dataset, which is misclassified
by the different methods under study) and the largest of these has a total of

13

January 8, 2018

International Journal of Digital Earth output

10000000

100000 A
1000004

1000 A
1000+

11 13 15 17 19 21 23 25 27 29 >30 13 >14
Number of Characters Number of Word Tokens

Number of Toponyms
s

Number of Toponyms

o

Figure 1. Distribution for the length of the toponyms present in the main dataset.

188 characters and 21 word tokens (i.e., the toponym Krung Thep Mahanakhon
Amon Rattanakosin Mahinthara Ayuthaya Mahadilok Phop Noppharat Ratchathani
Burirom Udomratchaniwet Mahasathan Amon Piman Awatan Sathit Sakkathattiya
Witsanukam Prasit, corresponding to a city in Thailand). Moreover, in Figure 3, we
present a chart with the distribution for the number of toponym pairs per country
(i.e., the number of pairs where both toponyms belong to the same country, either
referring to the same real-world place or not), focusing on the 10 countries with
the most toponym pairs in our dataset. Figure 3 also presents a chart with the dis-
tribution for the number of toponym pairs per alphabet (i.e., the number of pairs
where at least one of the toponyms only uses characters from a given alphabet, that
either refer to the same real-world place or not). Recall that Recchia and Louwerse
(2013) observed a substantial variation in the methods that worked best on the
datasets from different countries, suggesting that practitioners should test different
algorithms on their country-specific or language-specific data.

Also as part of our dataset characterization, we analyzed the distribution of the
number of toponym pairs according to the Damerau-Levenshtein similarity between
the strings, which again relates to the difficulty in performing automated classifi-
cation. Figure 4 presents these results, showing that, as expected, the number and
percentage of matching toponym pairs becomes higher as the similarity increases. It
should nonetheless also be noted that most toponym pairs have low values for the
Damerau-Levenshtein similarity, and a significant number of matching toponyms
do indeed belong in these lower similarity intervals.

A variety of experimental methodologies have been used to evaluate the accuracy

1000000

750000 1

500000 4 .Matching
DNon Matching
250000 1
o] e =
5 T 3 3 : : v v v v v v v v

14 15 16 17 18 >18

Number of Toponym Pairs

Difference in Toponym Length

Figure 2. Distribution for the difference in the number of characters per matching/non-matching pair.

14

January 8, 2018

International Journal of Digital Earth output

. Matching Toponyms D Non Matching Toponyms . Matching Toponyms D Non Matching Toponyms
= — e —
o ﬁ " _
e ﬁ s _
g z
g e ﬁ g _
< =1
=% Q
< e
3 T g :
o al Q Afghanistan
0 0
= ‘g
8 a
£ Greek - € Korea -
2 2
9
S 8
S o
° =
= Armenian - o Japan
S o
° —
s
8 £
s nee _ = e _
=
zZ =z
s = e _
praneem = e _
omerAipnabes = onerGoumtes? —

[
S)

1000 100000 1000 100000
Number of Toponym Pairs Number of Toponym Pairs

i
S)

Figure 3. Distribution, over alphabets or countries, for the number of matching/non-matching pairs.

of methods for matching potential duplicates. Authors like Bilenko and Mooney
(2003b) have advocated that standard information retrieval metrics such as precision
and recall provide an informative evaluation methodology, and thus we have also
used these metrics in the present study. Precision and recall are per-class metrics
that focus on different aspects of quality for a classification method. Precision is the
ratio formed by the number of items correctly assigned to a class divided by the total
number of items assigned to the class (e.g., in a toponym matching problem with two
possible classes, respectively match versus non-match decisions, and when focusing
on the class that corresponds to the matches, precision corresponds to the number of

. Matching D Non Matching . Matching D Non Matching

100+
1500000 [4}
» =

3 & -
o —
%5 1000000 g

— o 50+
[} It
g <

E 500000 g 254
- || R

o L o

[0.0,0.1 [0.2,0.3] [0.4,0.5] [0.6,0.7] 0.8.0.9] [0.00.1 [0.2,0.3[[0.4,0.5] [0.6,0.7] 0.8,0.9]
Similarity between the Toponyms Similarity between the Toponyms

Figure 4. Distribution for the number of pairs according to the Damerau-Levenshtein similarity between
the strings, both in absolute values and in terms of the percentage of toponym pairs.

15

January 8, 2018

International Journal of Digital Earth output

matching pairs that were correctly identified, over the number of matching pairs that
were produced by the classification method). Recall, on the other hand, is the ratio
between the number of items correctly assigned to a class (e.g., the correct matching
decisions), as compared with the total number of items in the class (i.e., the number
of correctly matching toponym pairs in the evaluation dataset). Since precision
can be increased at the expense of recall, we also computed the the Fl-measure,
which equally weights precision and recall through their harmonic mean. Finally,
we also measured the quality of the results through the accuracy metric, which
corresponds to the proportion of correct decisions (i.e., matches or non-matches)
that were returned by the method under evaluation.

In the experiments with the GeoNames dataset involving machine learning, we
relied on a two-fold cross-validation methodology, in which the available data was
first split into two distinct subsets. Classification models were trained and evaluated
twice over our main dataset, using one subset of the data for training and the
other for evaluation. For each of the aforementioned evaluation metrics, we report
averaged values over the two subsets of the data.

4.2. FExperimental Results

In a first set of experiments, we attempted to evaluate the performance of the indi-
vidual similarity metrics that were listed in Section 3, varying the similarity thresh-
old between zero and one, with a step size of 0.05. The charts in Figure 5 illustrate
the results obtained for the different similarity metrics, in terms of precision, re-
call, F1, and accuracy. Table 2 summarizes the results for each metric, considering
the threshold value that corresponded to the highest accuracy, and presenting also
the average processing time involved in computing each similarity metric for sets
of fifty thousand records. Although we have relied on Python implementations for
the different similarity metrics, which indeed could be further optimized, the values
that are reported already provide a good indication for the processing time that one
can expect with modern commodity hardware (i.e., in this case, a PC with an Intel
Core I7 6700 CPU running at 3.4 GHZ, and with 16GB DDR4 RAM).

The obtained results show that, when properly tuned, the different similarity
metrics achieve very similar results in terms of matching quality. Although there
are significant differences in terms of computational efficiency, it is fairly easy to
perform experiments with very large datasets, using any of the similarity metrics
that were considered in the present study. The best results in terms of accuracy, with
individual similarity metrics, were achieved with the Jaro-Winkler score computed
over reversed strings, closely followed by the Damerau-Levenshtein metric. Both
these approaches, as well as the other methods under study, also achieved very
high scores in terms of precision (e.g., the Damerau-Levenshtein method achieved
a precision of 78.65, which corresponds to the best precision value for all methods
that were considered in our study), although recall was relatively low.

Table 2 also presents results for the different approaches based on supervised
machine learning, leveraging two-fold cross-validation as stated on the previous
section. With this evaluation approach, the entire dataset is used in the computation
of the considered evaluation measures, and thus the obtained results are directly
comparable to those that were reported for the individual similarity metrics.

It is important to notice that the supervised learning algorithms that were used
in our experiments all involve hyper-parameters that can impact their performance.
In our tests, we fixed the values for these hyper-parameters (e.g., we often relied on

16

January 8, 2018

International Journal of Digital Earth output
Precision Recall F1 Accuracy
100 100 100 100
<
FEERG 75 75— 75
sz
2% 5 50-| s0- so — — T——
g
8 3 25 25+ 25- 25
3
o i i i [l i 04 i i i i i 0- i i i i i o i i [l i
000 025 _ 050 075 100 0.00 025 050 0.75 1.00 000 025 0.50 075 1.00 000 o 050 7 1.00
Threshold Threshold Threshold Threshold
Precision Recall F1 Accuracy
100 100 100- 100
754 751 75— 754
e - T
© 501 501 50— 50
8
25+ 259 25— 25+
0 T T T T T 0 T T T T T 0~ T T T T T 0 T T T T T
000 025 _ 050 075 100 000 025 050 0.75 1.00 000 025 050 075 1.00 000 0.2 050 075 1.00
Threshold Threshold Threshold Threshold
Precision Recall F1 Accuracy
. 100-] 100 100 100
5
Z 759 751 75- 75
2 50 504 50- sof
2 259 25+ 25- 25+
g
o i i i [l i 04 i i i i i 0- i i i i i o i i [l i
000 025 _ 050 075 100 0.00 025 050 0.75 1.00 000 025 0.50 075 1.00 000 o 050 7 1.00
Threshold Threshold Threshold Threshold
Precision Recall F1 Accuracy
. 100 100 100- 100
o}
X8 75 75+ 75~ 75
=) —/\
2 g 5o 504 50- 50-1
T
e & 259 254 25- 25-1
- 0 T T T T T 0 T T T T T 0~ T T T T T 0 T T T T
000 025 _ 050 075 100 0.00 025 050 0.75 1.00 000 025 050 075 1.00 000 050 1.00
Threshold Threshold Threshold Threshold
Precision Recall F1 Accuracy
. 100-] 100 100 100
5
o X 75 J 754 75- 75-1
SE
£ 50 504 50- sof
D9 254 25 25- 25
s
o4 i i L L i o i L L L i 0- i i L L Ji o4 i i L L i
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.2! 0.50 1.00
Threshold Threshold Threshold Threshold
Precision Recall F1 Accuracy
. 100 100 100~ 100
5
BE 5 J 754 75- 75-]
2 $_ 50 50-| 50~ s
& g 25+ 25+ 25- 25+
- 0 T T T T T 04 T T T T T 0~ T T T T T 0 T T T T
000 050 75 100 0.00 025 050 0.75 1.00 000 025 050 075 1.00 000 050 1.00
Threshold Threshold Threshold Threshold
Precision Recall F1 Accuracy
100 100 100 100
o £ 75 / 75 75- 75
£ .
8 5] 50 50 50— 50
O 2 254 254 25- 25-|
o4 i i L L i o i L L L i 0- i i L L Ji o4 i L L L i
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00 0.00 0.2! 0.50 1.00
Threshold Threshold Threshold Threshold
Precision Recall F1 Accuracy
100 100 100- 100
o & 75 75 75- 759
88 soq 504 50- s
g9
=z 254 25+ 25- 25
0 T T T T T 04 T T T T T 0~ T T T T T 0- T T T T
000 050 75 100 0.00 025 050 0.75 1.00 000 025 050 075 1.00 0.00 050 1.00
Threshold Threshold Threshold Threshold
Precision Recall F1 Accuracy
100 100 100 100
2 75| /\ 751 75~ 75
23 -
E (P 50 50 50~ 50
& 25 25+ 25- 25+
o4 i i L L i o 1 L L L i 0- i i L L Ji o4 i L L L i
0.00 025 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00 0.00 0.2! 0.50 1.00
Threshold Threshold Threshold Threshold
Precision Recall F1 Accuracy
100 100 100~ 100
o £ 75 / 751 7 *
g8 -
g o 504 50-| 50- 50
g
- B 25 254 25- 25+
0 T T T T T 0 T T T T T 0~ T T T T T 0 T T T T
000 050 75 100 000 025 050 0.75 1.00 000 025 050 075 1.00 0.00 050 1.00
Threshold Threshold Threshold Threshold
Precision Recall F1 Accuracy
< 100-] 100 100 100
8
X 754 J 75 75- 75
w
& 50 50 50- so4 . o
2
5 254 25+ 25- 254
= 0 i i L L i 0 i L L L i 0= i i L L Ji 0 i L L L i
0.00 025 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00 0.00 0.2! 0.50 1.00
Threshold Threshold Threshold Threshold
Precision Recall F1 Accuracy
o 1009 100 100~ 100
g 75 / 754 75- 75-|
?‘“ 50 50-| 50- so{ . —
é 25 25| 25- 25
0 T T T T T 04 T T T T T 0~ T T T T T 0- T T T T
000 0.2 050 075 100 0.00 025 050 0.75 1.00 000 025 050 075 1.00 0.00 050 7 1.00
Threshold Threshold Threshold Threshold
_ Precision Recall F1 Accuracy
1001 100 100 100
% & 75 / 754 75~ 75
2 8§ soq 50-| 50~ e
88 259 254 25- 25-1
@
a 0, ! i i ! o4, i i i | 0 ! i i 1 01, ! i L !
0.00 0.50 1.00 0.00 0.25 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00 0.00 0.25 0.50 1.00
Threshold Threshold Threshold Threshold
Figure 5. Experimental results obtained by the different similarity metrics.

17

January 8, 2018

International Journal of Digital Earth output

Table 2. Experimental results obtained with the different methods under consideration.

Method Accuracy Precision Recall F1-Score Time (50K Pairs)
Damerau-Levenstein (o = 0.55) 65.07 78.65 41.36 54.21 0.27 sec.
Jaro (o = 0.75) 63.78 76.95 39.34 52.06 0.25 sec.
Jaro-Winkler (a = 0.70) 63.59 71.74 44.84 55.19 0.25 sec.
Jaro-Winkler Reversed (a = 0.75) 65.17 78.00 42.26 54.82 0.27 sec.
Sorted Jaro-Winkler (o = 0.70) 61.89 71.44 39.62 50.97 0.34 sec.
Permuted Jaro-Winkler (o = 0.70) 63.42 68.90 48.91 57.21 87.18 sec.
Cosine N-Grams (a = 0.40) 61.50 70.37 39.75 50.80 3.03 sec.
Jaccard N-Grams (o = 0.25) 61.72 71.50 38.97 50.44 0.81 sec.
Dice Bi-Grams (a = 0.50) 62.18 75.36 36.19 48.90 0.61 sec.
Jaccard Skipgrams (o = 0.45) 62.69 73.44 39.76 51.59 2.02 sec.
Monge-Elkan (a = 0.70) 59.57 65.83 39.79 49.60 0.54 sec.
Soft-Jaccard (a = 0.60) 59.43 69.65 33.43 45.18 0.56 sec.
Davis and De Salles (2007) (o = 0.65) 62.10 71.03 40.86 51.88 1.27 sec.
Support Vector Machines 72.38 69.17 80.76 74.52 101.52 sec.
Random Forests 78.67 78.03 79.80 78.91 131.60 sec.
Extremely Randomized Trees 78.37 78.00 79.04 78.52 169.83 sec.
Gradient Boosted Trees 78.54 77.51 80.42 78.94 99.05 sec.

the default values considered in the implementations that were used) and did not
attempt to fine-tune the different models. For instance, the regularization constant
in the case of the linear SVM models was kept at the default value of one. Random
forests and ensembles of extremely randomized trees involved a total of 600 trees
in each model, while ensembles based on gradient boosting involved a total of 3000
trees. Usually, increasing the number of trees in these ensemble approaches results
in better estimates, at the expense of increased computational demands.

The results on Table 2 show that all the considered supervised learning algo-
rithms can significantly outperform the individual similarity metrics in terms of
matching quality. Only the Damerau-Levenstein method outperformed the learning
approaches in terms of precision, but with much lower values in terms of accuracy
(i.e., a difference of 13.6 points, in comparison with the best method), F1-score (i.e.,
a difference of 24.7 points towards the best method), and recall (i.e., almost half
the points from those of the best method). The methods based on ensembles of
decision trees were particularly effective, with very high values in terms of precision
and at the same time almost doubling the recall values obtained by the individual
similarity metrics. The best results, in terms of accuracy, were achieved with the
method based on random forests, corresponding to a precision of 78.03 and a re-
call of 79.80. The computation times that are reported on Table 2, for the case of
the methods based on supervised machine learning, includes the time involved in
computing the different similarity metrics that are used as features, plus the time
involved in applying the classification algorithm, ignoring the time spent on model
training (i.e., model training can be performed only once and in an offline stage, thus
not impacting the performance of these methods when matching previously unseen
toponyms). As expected, the methods based on supervised machine learning are
computationally more demanding, although with modern hardware it is still fairly
easy to process very large datasets. Notice nonetheless that a significant proportion
of the time involved in the application of these models relates to the computation
of the permuted Jaro-Winkler similarity metric, which is indeed quite demanding,
even if we limit the number of tokens to permute to five.

In order to assess the contribution of this last particular feature on the overall
quality of the results, we performed an additional set of experiments in which the
same supervised learning methods were used without the feature corresponding to
the permuted Jaro-Winkler similarity. Table 3 presents the obtained results, showing

18

January 8, 2018

International Journal of Digital Earth output

Table 3. Experimental results obtained with the different machine learning methods under consideration,
without using the permuted Jaro-Winkler similarity metric as a feature.

Method Accuracy Precision Recall F1-Score Time (50K Pairs)
Support Vector Machines 72.32 69.30 80.16 74.34 8.78 sec.
Random Forests 78.63 77.99 79.78 78.88 45.82 sec.
Extremely Randomized Trees 78.35 77.96 79.04 78.50 94.50 sec.
Gradient Boosted Trees 78.49 77.45 80.38 78.89 9.47 sec.

that the permuted Jaro-Winkler metric only introduces a marginal improvement,
at a high computational cost. In these tests, the model based on random forests
is still the most effective in terms of accuracy, performing almost as well as the
model that leverages all the features (i.e., 78.63 versus 78.67, in terms of accuracy),
and only requiring approximately one third of the time for processing 50K toponym
pairs. The computational effort involved in the usage of learned models is indeed
significant, when compared to some of the simpler string similarity metrics. However,
when attempting to match toponyms against entries in a worldwide gazetteer like
GeoNames, simple approaches based on a single similarity metric (e.g., the Jaccard
coefficient over m-grams, with a permissive threshold in order to get a high recall,
and noting that this method can easily be used for searching over millions of strings
through implementations based on an inverted index) can be used as filters, limiting
the number of pairs that are latter analyzed with machine learning methods.

In classification models based on decision trees, the relative rank (i.e., the depth)
of a feature used as a decision node in a tree can be used to assess the relative
importance of that feature with respect to the predictability of the output variable.
Features used at the top of the tree contribute to the final decision of a larger frac-
tion of the training instances. The expected fraction of the instances they contribute
to can thus be used as an estimate of the relative importance of the features. By
averaging those estimates, over several randomized trees, one can reduce the vari-
ance and effectively use the resulting values for evaluating the importance of the
different features. The charts in Figure 6 plot the relative feature importance, as
computed from the models based on random forests, extremely randomized trees,
and gradient boosting, when using all the features. The numbers in the Y axis cor-
responding to each feature (i.e., the values for the similarity metrics) follow the

Random Forests Extra Trees Gradient Boosting
11 11 13
131 131 101
‘] 10 0.10 .
Q 101 (2] 0.09] B 009
g 81 111 12
= 79 121 111
2 21 21 71
& 12 IER Gl 006 61
£ o HEEEE &) 0.06] Bl 0.06]
R 0.0 3y 0.06] Rl 0.06]
111 S 0.06] 2l 006}
91 91 91
2N 0.02 51 31
000 005 010 0.15 000 005 010 0.00 0.05 0.10
Importance

Figure 6. Importance estimates for the different similarity metrics.

—_
Nej

January 8, 2018

International Journal of Digital Earth

Random Forests

output

Extra Trees

Gradient Boosting

0.94 0.94

08101 et 08191 w0}
— 0.90 0.89 0.90
T [0.6,0.8[- 0.6,0.8[1 6.0.87
e o oo
jo)
i o7z I
2 [04.0.6[- 075 0.4,0.6[0.75 0.4,0.6[.75
5 ! - .
£ 0.46
o [0.2,0.4[0.84 [0.2,0.4[4 0.84 [0.2,0.4[4 . 0.84

[0.0,0.2] 07 [0.00.2[=7 [0.0,0.2[0.7

000 025 050 0.75 000 025 050 075 00 025 050 075
Score

. Accuracy I:‘ F1 . Accuracy I:‘ F1 . Accuracy I:‘ F1

Figure 7. Accuracy and the Fl-measure for different Damerau-Levenshtein similarity intervals.

order in the enumeration from Section 3, and also the order by which features are
presented in Table 2 and Figure 5. These plots suggest that all the considered fea-
tures are somewhat informative, with approaches such as the Damerau-Levenshtein
similarity (i.e., the top-performing method in terms of precision) appearing to con-
tribute significantly to the final results. It is interesting to notice that, in all three
types of models, the importance ranking that is attributed to the features remains
relatively consistent. The top-contributing features always included the Damerau-
Levenshtein metric and the metric from Davis and De Salles (2007), which itself
combines different types of heuristics. The permuted Jaro-Winkler similarity met-
ric, that is computationally the most expensive, always appears in the lower half of
the features, when sorting them according to the estimated importance.

In Figure 7, we plot the results obtained with different classification methods
based on ensembles of trees (i.e., the best performing methods in terms of accuracy,
and also the methods considered on Figure 6), in terms of their effectiveness as a
function of the Damerau-Levenshtein similarity between the toponyms. Better re-
sults are achieved in the case of highly similar toponym pairs, which should naturally
be expected given that the large majority of the pairs within those intervals indeed
correspond to matching toponyms — see the plots in Figure 4. Worse results in terms
of the Fl-measure are achieved for the interval [0.2,0.4[, although the accuracy in
this interval is quite high. The low score in terms of the Fl-measure relates to a
poor performance in terms of recall for the matching pairs, whereas the fact that
there are few matching pairs within this interval explains the high accuracy. These
results also point to the fact that the proposed techniques still have difficulties in
correctly matching toponym pairs that are highly dissimilar.

We also analyzed the results according to the alphabets and countries associated
to the toponyms. In the case of the alphabets, we report only on accuracy for
the random forest model, as computed over the subset of pairs where (i) at least
one of the toponyms uses characters from a given alphabet, or (ii) both toponyms
are consistent in their alphabet. In the case of countries, we report on accuracy
with the random forest model for pairs where both toponyms belong to the same
country. Figure 8 presents these results, and we can see that a worse accuracy is
achieved for the case of pairs where different alphabets are being used in each of

20

January 8, 2018 International Journal of Digital Earth output

. Single Toponym D Both Toponyms D Both Toponyms from the same Country

Latin BZEJJO China - | 82.36|
80.54 -
| "I -
80.71 Russia | 78.15]
Cyrillic
85.29 Thailand - | 77.10|
Arabic m—‘
Afghanistan - | 81.46 |
92.18
Thai
Korea - | 74.94|
77.60
Greek
Japan | 61.06'
77.47
Armenian
France - | 68.11|
87.43
Hebrew
Taiwan< | 77.70)
82.69
e ﬁ oy | e
78.18
s m_l onercomves | =

0 25 50 75 0 20 40 60 80
Accuracy Accuracy

Alphabet
Country

Figure 8. Accuracy results for toponym pairs from different alphabets or countries.

the involved toponyms. Matching strings across different alphabets is indeed an
important limitation in the methods studied in this article, given that they always
depend on being able to match characters. Figure 8 also shows that results can vary
significantly across countries. The highest accuracy was measured for Nepal (i.e.,
an accuracy of 88.00, for a total of 3492 toponym pairs), and the lowest for Vatican
City (i.e., an accuracy of 35.71, for a total of 14 toponym pairs). The top 3 countries
with more toponyms in the dataset all show accuracy values above 86.5.

In complement to the quantitative analysis of the results obtained over the GeoN-
ames dataset, we performed a more detailed error analysis in order to better un-
derstand the capabilities of the methods under study, e.g. manually inspecting the
obtained results, and checking if the proposed machine learning methods could also
generalize to datasets from domains other than GeoNames. For instance, we tried to
see if the considered methods were indeed effective at matching city names against
historical variants, or when matching exonyms (e.g., English names for German,
French, or Italian toponyms), using a smaller dataset with pairs collected from
Wikipedia pages containing toponym lists.

The smaller dataset involved a total of 3,000 pairs, half of which corresponding to
matching toponyms. The matching examples were collected directly from Wikipedia,
whereas the non-matching instances were obtained by taking one of the toponyms
from the matching pairs, searching for the five most similar toponyms associated
to different places in the data collected from Wikipedia, and randomly choosing
one of these most similar examples. The different methods from Table 2 were also
applied to the smaller dataset, using the pre-established thresholds for the similarity

21

January 8, 2018

International Journal of Digital Earth output

Table 4. Experimental results obtained with the smaller dataset collected from Wikipedia lists.

Method Accuracy Precision Recall F1-Score
Damerau-Levenstein (o = 0.55) 49.23 41.86 12.39 19.12
Jaro (a = 0.75) 49.00 41.15 12.32 18.96
Jaro-Winkler (v = 0.70) 41.70 32.63 19.13 24.12
Jaro-Winkler Reversed (o = 0.75) 43.00 28.62 11.84 16.75
Sorted Jaro-Winkler (o = 0.70) 42.03 32.81 18.79 23.89
Permuted Jaro-Winkler (o = 0.70) 41.67 32.87 19.61 24.57
Cosine N-Grams (a = 0.40) 49.60 40.26 8.40 13.90
Jaccard N-Grams (a = 0.25) 49.77 40.88 8.33 13.84
Dice Bi-Grams (a = 0.50) 51.17 47.58 8.12 13.87
Jaccard Skipgrams (o = 0.45) 51.07 47.08 8.33 14.15
Monge-Elkan (o = 0.70) 41.90 32.14 17.96 23.05
Soft-Jaccard (a = 0.60) 47.40 38.40 14.25 20.78
Davis and De Salles (2007) (a = 0.65) 45.63 37.10 17.62 23.89
Support Vector Machines 51.87 50.52 20.03 28.69
Random Forests 53.80 51.89 34.89 41.73
Extremely Randomized Trees 61.53 65.49 43.50 52.27
Gradient Boosted Trees 54.33 53.86 39.85 45.81

measures, and using the classification models trained with GeoNames data (i.e.,
we made our classification decisions with basis on the average of the confidence
scores produced by the two models that were trained from GeoNames data, for each
classification method in the cross-validation tests). Table 4 presents the obtained
results, showing significantly worse scores that those reported for the GeoNames
dataset. Using the same similarity thresholds was not particularly effective (i.e., we
measured an accuracy below 50% for most of the different string similarity metrics,
and recall values below 20% for the matching class), confirming the need for properly
tuning these values. The Dice similarity coefficient between bi-grams achieved the
best results in terms of accuracy for the individual metrics. The different machine
learning methods outperformed the individual similarity metrics, particularly in
terms of the recall metric, although the obtained results are inferior to those reported
for the GeoNames dataset. Several matching pairs of toponyms (e.g., Burdigala and
Bordeauz) with similarity values below the considered thresholds were correctly
classified by learned models, which at the same time also correctly handled highly
similar non-matching pairs (e.g., Berolinum and Verodunum).

Table 5 illustrates the results obtained from the experiments with the smaller
dataset, in the case of matching toponym pairs. First, we show results for the ten
largest cities in the United Kingdom, and then for ten other examples corresponding
to exonyms. These examples again show good results for models based on ensembles
of decision trees, particularly in the case of exonyms, and they confirm the difficulty
in manually setting an appropriate similarity threshold (i.e., some of the matching
pairs are indeed highly dissimilar, and we therefore have that considering a low
similarity threshold would likely lead to many false positives).

In Table 6, we further illustrate the results obtained with the method based on
random forests, showing examples of both matching and non-matching pairs of
toponyms from the GeoNames dataset, that were either correctly or incorrectly
classified. Our manual analysis of the results indicates that although the methods
based on supervised learning can already detect some of the difficult matching
cases (e.g., cases with strings that have a high Levenshtein distance between them),
problems remain in terms of detecting some of the more complex transliterations.

22

January 8, 2018

International Journal of Digital Earth output

Table 5. Illustrative examples for the results with the smaller dataset, when matching names for cities in
the United Kingdom against historical variants, and when matching exonyms collected from Wikipedia lists.

Damerau-Levenshtein Matching Decision

Modern Name Historical Name Similarity SVM RF ERT GBT
London Londinium 0.56 X v X X
Birmingham Bromwicham 0.50 X 4 X v
Leeds Ledes 0.80 v v v v
Glasgow Glas Cau 0.50 X X X X
Sheffield Shaffeld 0.78 v v v v
Bradford Bradeford 0.89 v v v v
Liverpool Lerpwl 0.56 X v X v
Edinburgh Edenesburg 0.60 v v v v
Manchester Mameceaster 0.64 v v v v
Bristol Bricstow 0.75 v v v v
Constance Konstanz 0.67 v v v v
Vienna Wien 0.50 X v v v
Swabia Schwaben 0.50 X v v X
Horsemarket Rossmarck 0.45 v v v v
Pruce Preuflen 0.57 X v X v
Cologne Ko6ln 0.29 X v v v
Wirtemberg Wiirttemberg 0.75 v v v v
Berne Bern 0.80 v v v v
Leghorn Livorno 0.50 X v v X
Frisia Friesland 0.56 X v v X

5. Conclusions and Future Work

This article presented the results of a wide-ranging evaluation on the performance
of thirteen different string similarity metrics, representative of different classes of
methods, over the task of matching toponyms. Using a very large dataset with
five million pairs of toponyms, collected from lists of alternative place names taken
from the GeoNames gazetteer, we showed that the differences in performance for
the considered similarity metrics are relatively small, although carefully tuning the
similarity threshold involved in matching decisions is important for achieving good
results. We then experimented with the usage of supervised machine learning for
combining multiple similarity metrics, which has the natural advantage of avoiding
the manual tuning of similarity thresholds. Our experiments show that the methods
based on supervised learning, particularly when considering ensembles of decision
trees, can achieve good results on the toponym matching task, significantly outper-
forming the individual similarity metrics. However, the obtained results also showed
problems in terms of handling matching toponyms that are highly dissimilar.
Despite the interesting results, there are indeed many open challenges for future
work in toponym matching. For instance, the machine learning algorithms that
were employed in the present study have hyper-parameters (e.g., the regularization

Table 6. Illustrative examples for the results obtained with the method based on random forests.

Correctly Classified

Incorrectly Classified

Matching

Ozernoje ; Ozernoye

Lingzhithang ; Lingzi Tang

Broadstairs ; Brodsters

Cawdor Castle ; Chateau de Cawdor

Orange County ; Comté d’Orange

W ; Nagamase

Saut Majams ; South Miama

Klegjmont ; Claymont

Corno Gries ; Grieshorn

St. Stmons ; Saint Stmons Island

Siedenbrinzow ; Zidenbrincov

Pontypool ; Pont-y-pwl

Sodelhas ; Soudeilles

Corsica settentrionale ; Alta Corcega

Non-Matching

Buenavista ; Buenache

ban pa kha ; Ban Pak Dong

Monterej ; Quan Montgomery

Observatorio Griffith ; Griffith Park

Hayy ad Duhayni ; Hayy ad Dihliz

Jaypasa ; Jaypara

Frankfort ; Frederick

Cavalier ; Okrug Kavalir

Cleveland ; Clermont

Ben Bhuidhe Mhor ; Beinn Bhuidhe

Génissieux ; Getssan

Bliskastel’ ; Bliesdorf

Lichtenstein ; Likhtenrade

San Joaninho ; Sao Joanico

23

January 8, 2018

International Journal of Digital Earth output

constant in the case of SVM models, or the maximum tree depth in the case of
gradient boosted ensembles of decision trees) that, when properly tuned, can lead
to slight improvements on the results. It should nonetheless be noted that, although
for future work we can consider additional experiments related to the tuning of
these parameters, the results that are reported here already confirm the advantages
of using supervised machine learning for combining multiple similarity metrics.

More interestingly, our currently ongoing experiments are focused on evaluat-
ing supervised learning approaches that, instead of using the values of similarity
metrics as features, attempt to leverage the input strings directly. A previous publi-
cation by Bilenko and Mooney (2003a) has already described an approach, based on
SVM models, which produces better similarity estimates than standard approaches
across a range of difficult examples. In their method, each string is first converted
to a vector-space representation. An instance vector is then created from the pair of
vector-space representations, each component of which corresponding to the product
of weights for the elements of each vector. The pair instance is finally classified by
an SVM model. Taking inspiration on more recent studies that addressed the natu-
ral language processing problem of detecting paraphrases (i.e., phrases that express
the same meaning using different words), we are currently experimenting with the
usage of deep learning methods based on recurrent and/or convolutional neural net-
works (Hu et al. 2014; Yin and Schiitze 2015; Bowman et al. 2015; Rocktéschel et al.
2016; Yin et al. 2016; Wan et al. 2016; Sun et al. 2017; Parikh et al. 2016). In general,
these methods are based on modeling a pair of phrases (i.e., two sequences of charac-
ters or sequences of tokens) through recurrent and/or convolutional neural network
nodes, afterwards producing a representation for the pair of strings under compari-
son by aggregating interactions between the outputs of the recurrent/convolutional
parts of the model. A matching score is finally produced through a transformation
of the nodes that model the interactions. As happens in the case of paraphrase
identification, these fully-differentiable deep neural models have the potential to
significantly outperform the feature-based supervised learning methods used in the
present study, by capturing both common and complex character transliterations
in the matching pairs of toponyms from the training data (i.e., matching Asian or
Arabic toponyms against their Western transliterations, which would be almost im-
possible for the similarity metrics considered in the present study), and in general
improving results in the case of highly dissimilar pairs.

Currently ongoing work is also addressing the application and extension of the
methods presented in this article to different problems within the broad field of
digital humanities, particularly problems that involve the analysis of toponyms in
context (e.g., disambiguating place name references in textual documents (Santos,
Anastécio, and Martins 2015; Wing 2016; Ardanuy and Sporleder 2017)). Recent
work within the geospatial humanities, particularly within the context of historical
geographic information systems, has highlighted the importance of automated meth-
ods for handling toponyms (Smith and Crane 2001; Grover et al. 2010; Rupp et al.
2013; Simon et al. 2014; Gregory et al. 2015; Murrieta-Flores et al. 2015; Blank and
Henrich 2016; Wing 2016; Murrieta-Flores, Donaldson, and Gregory 2017; Clifford
et al. 2016; Butler et al. 2017). Approaches looking to map and analyze the geogra-
phies mentioned in large collections of historical materials (e.g., historical newspa-
pers, letters, governmental reports, epistolaries, travel guides, tabular itineraries,
and many other types of records) are often confronted with the issue of correctly
matching alternative forms of place names (e.g., involving spelling variations, his-
torical changes, OCR errors, etc.) against gazetteer entries. The methods presented

24

January 8, 2018

International Journal of Digital Earth output

in this article, and the aforementioned extensions based on deep learning, are of
significant interest to these particular application domains. Currently ongoing ex-
periments are, for instance, addressing the usage of toponym matching through
supervised machine learning (i.e., the method based on random forests that was
evaluated in this article) within the context of automatically geocoding historical
itineraries, taking inspiration on the previous work by Blank and Henrich (2016).

Acknowledgements

We would particularly like to thank our colleagues Pavel Calado and Mario J. Silva,
for their comments on preliminary versions of this work.

Funding

This research was supported by the Trans-Atlantic Platform for the Social Sciences
and Humanities, through the Digging into Data project with reference HJ-253525,
and also through the Reassembling the Republic of Letters networking programme
(EU COST Action IS1310). The researchers from INESC-ID also had financial sup-
port from Fundagao para a Ciéncia e Tecnologia (FCT), through project grants with
references PTDC/EEI-SCR/1743/2014 (Saturn) and CMUPERI/TIC/0046/2014
(GoLocal), as well as through the INESC-ID multi-annual funding from the PID-
DAC programme (UID/CEC/50021/2013).

References

Anastécio, Ivo, Bruno Martins, and Pavel Calado. 2009. “Classifying documents accord-
ing to locational relevance.” In Proceedings of the Portuguese Conference on Artificial
Intelligence, Springer.

Ardanuy, Mariona Coll, and Caroline Sporleder. 2017. “Toponym Disambiguation in His-
torical Documents Using Semantic and Geographic Features.” In Proceedings of the In-
ternational Conference on Digital Access to Textual Cultural Heritage, ACM.

Banfield, Robert E., Lawrence O. Hall, Kevin W. Bowyer, and W. Philip Kegelmeyer. 2007.
“A comparison of decision tree ensemble creation techniques.” IEEE Transactions on
Pattern Analysis and Machine Intelligence 29 (1).

Berkhin, Pavel, Michael R. Evans, Florin Teodorescu, Wei Wu, and Dragomir Yankov. 2015.
“A New Approach to Geocoding: BingGC.” In Proceedings of the ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, ACM.

Berman, Merrick Lex, Johan Ahlfeldt, and Marc Wick. 2016. “Historical Gazetteer System
Integration: CHGIS, Regnum Francorum, and GeoNames.” In Placing Names : Enriching
and Integrating Gazetteers, edited by Merrick Lex Berman, Ruth Mostern, and Humphrey
Southall. Indiana University Press.

Berman, Merrick Lex, Ruth Mostern, and Humphrey Southall, eds . 2016. Placing Names
. Enriching and Integrating Gazetteers. Indiana University Press.

Bilenko, Mikhail, and Raymond J Mooney. 2003a. “Adaptive duplicate detection using
learnable string similarity measures.” In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM.

Bilenko, M., and R. J. Mooney. 2003b. “On Evaluation and Training-Set Construction for
Duplicate Detection.” In Proceedings of the KDD Workshop on Data Cleaning, Record
Linkage, and Object Consolidation, ACM.

Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. Springer.

25

January 8, 2018

International Journal of Digital Earth output

Blank, Daniel, and Andreas Henrich. 2016. “A depth-first branch-and-bound algorithm for
geocoding historic itinerary tables.” In Proceedings of the ACM Workshop on Geographic
Information Retrieval, ACM.

Bowman, Samuel R., Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015.
“A large annotated corpus for learning natural language inference.” In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, ACL.

Breiman, Leo. 2001. “Random forests.” Machine learning 45 (1).

Brill, Eric, and Robert C. Moore. 2000. “An Improved Error Model for Noisy Channel
Spelling Correction.” In Proceedings of the Annual Meeting on Association for Compu-
tational Linguistics, ACL.

Butler, James O., Christopher E. Donaldson, Joanna E. Taylor, and Ian N. Gregory. 2017.
“Alts, Abbreviations, and AKAs: historical onomastic variation and automated named
entity recognition.” Journal of Map & Geography Libraries 13 (1).

Chen, Tiangi, and Carlos Guestrin. 2016. “XGBoost: A Scalable Tree Boosting System.”
In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ACM.

Cheng, Gang, Xiaoping Lu, Xiaosan Ge, Haiyang Yu, Yupeng Wang, and Xiaotian Ge.
2010. “Data fusion method for digital gazetteer.” In Proceedings of the International
Conference on Geoinformatics, IEEE.

Cheng, Gang, Fei Wang, Haiyang Lv, and Yinling Zhang. 2011. “A new matching algorithm
for chinese place names.” In Proceedings of the International Conference on Geoinformat-
ics, IEEE.

Christen, Peter. 2006. “A Comparison of Personal Name Matching: Techniques and Practical
Issues.” In Proceedings of the Workshops at the IEEFE International Conference on Data
Mining, IEEE.

Christen, Peter, Alan Willmore, and Tim Churches. 2006. “A probabilistic geocoding system
utilising a parcel based address file.” In Data Mining : Theory, Methodology, Techniques,
and Applications, edited by Graham J. Williams and Simeon J. Simoff. Springer.

Clifford, Jim, Beatrice Alex, Colin M Coates, Ewan Klein, and Andrew Watson. 2016.
“Geoparsing history: Locating commodities in ten million pages of nineteenth-century
sources.” Historical Methods: A Journal of Quantitative and Interdisciplinary History 49
(3).

Cohen, William, Pradeep Ravikumar, and Stephen Fienberg. 2003. “A Comparison of String
Distance Metrics for Name-Matching Tasks.” In Proceedings of KDD Workshop on Data
Cleaning and Object Consolidation, AAAIL

Dalvi, Nilesh, Marian Olteanu, Manish Raghavan, and Philip Bohannon. 2014. “Deduplicat-
ing a Places Database.” In Proceedings of the International Conference on World Wide
Web, ACM.

Damerau, Fred J. 1964. “A technique for computer detection and correction of spelling
errors.” Communications of the ACM 7 (3).

Daumé, Hal. 2015. A Course in Machine Learning.

Davis, Clodoveu A, and Emerson De Salles. 2007. “Approximate String Matching for Ge-
ographic Names and Personal Names.” In Proceedings of the Brazilian Symposium on
Geolnformatics, Springer.

Dice, Lee R. 1945. “Measures of the amount of ecologic association between species.” Ecology
26 (3).

Freire, Nuno, José Borbinha, Pavel Calado, and Bruno Martins. 2011. “A metadata geopars-
ing system for place name recognition and resolution in metadata records.” In Proceedings
of the Annual International ACM/IEEE Joint Conference on Digital Libraries, ACM.

Friedman, Jerome H. 2001. “Greedy function approximation: a gradient boosting machine.”
Annals of Statistics 29 (5).

Fu, Gaihua, Christopher B. Jones, and Alia I. Abdelmoty. 2005. “Building a Geographical
Ontology for Intelligent Spatial Search on the Web.” In Proceedings of the IASTED
International Conference on Databases and Applications, Springer.

26

January 8, 2018

International Journal of Digital Earth output

Gelernter, Judith, and Wei Zhang. 2013. “Cross-lingual Geo-parsing for Non-structured
Data.” In Proceedings of the ACM Workshop on Geographic Information Retrieval, ACM.

GeoNames. 2017. http://www.geonames.org/.

Geurts, Pierre, Damien Ernst, and Louis Wehenkel. 2006. “Extremely randomized trees.”
Machine learning 63 (1).

Gregory, Ian, Christopher Donaldson, Patricia Murrieta-Flores, and Paul Rayson. 2015.
“Geoparsing, GIS, and textual analysis: current developments in spatial humanities re-
search.” International Journal of Humanities and Arts Computing 9 (1).

Grover, Claire, Richard Tobin, Kate Byrne, Matthew Woollard, James Reid, Stuart Dunn,
and Julian Ball. 2010. “Use of the Edinburgh geoparser for georeferencing digitized his-
torical collections.” Philosophical Transactions of the Royal Society of London A: Math-
ematical, Physical and Engineering Sciences 368 (1925).

Hastings, Jordan. 2008. “Automated conflation of digital gazetteer data.” International
Journal of Geographical Information Science 22 (10).

Hastings, Jordan, and Linda Hill. 2002. “Treatment of duplicates in the alexandria digital
library gazetteer.” In Proceedings of the International Conference on Geographic Infor-
mation Science, Springer.

Hu, Baotian, Zhengdong Lu, Hang Li, and Qingcai Chen. 2014. “Convolutional neural
network architectures for matching natural language sentences.” In Proceedings of the
International Conference on Neural Information Processing Systems, MIT Press.

Jaccard, Paul. 1912. “The distribution of the flora in the alpine zone..” New phytologist 11
(2).

James, Gareth, Daniela Witten, and Trevor Hastie. 2014. An Introduction to Statistical
Learning: With Applications in R. Springer.

Jaro, Matthew A. 1989. “Advances in record-linkage methodology as applied to matching
the 1985 census of Tampa, Florida.” Journal of the American Statistical Association 84
(406).

Joshi, Tanuja, Joseph Joy, Tobias Kellner, Udayan Khurana, A Kumaran, and Vibhuti
Sengar. 2008. “Crosslingual Location Search.” In Proceedings of the International ACM
SIGIR Conference on Research and Development in Information Retrieval, ACM.

Keskustalo, Heikki, Ari Pirkola, Kari Visala, Erkka Leppénen, and Kalervo Jarvelin. 2003.
“Non-adjacent digrams improve matching of cross-lingual spelling variants.” In Proceed-
ings of the International Symposium on String Processing and Information Retrieval,
Springer.

Kiling, Deniz. 2016. “An accurate toponym-matching measure based on approximate string
matching.” Journal of Information Science 42 (2).

Kotsiantis, Sotiris B. 2013. “Decision trees: a recent overview.” Artificial Intelligence Review
39 (4).

Levenshtein, Vladimir I. 1966. “Binary codes capable of correcting deletions, insertions and
reversals.” Soviet Physics Doklady 10 (1).

Li, Lin, Xiaoyu Xing, Hui Xia, and Xiaoying Huang. 2016. “Entropy-Weighted Instance
Matching Between Different Sourcing Points of Interest.” Entropy 18 (2): 45.

Manguinhas, Hugo, Bruno Martins, and José Borbinha. 2008. “A geo-temporal web
gazetteer integrating data from multiple sources.” In Proceedings of the International
Conference on Digital Information Management, IEEE.

Martins, Bruno. 2011. “A supervised machine learning approach for duplicate detection
over gazetteer records.” In Proceedings of the International Conference on GeoSpatial
Sematics, Springer.

McKenzie, Grant, Krzysztof Janowicz, and Benjamin Adams. 2014. “A weighted multi-
attribute method for matching user-generated points of interest.” Cartography and Geo-
graphic Information Science 41 (2).

Monge, Alvaro E., and Charles P. Elkan. 1996. “The Field Matching Problem: Algorithms
and Applications.” In Proceedings of the International Conference on Knowledge Discov-

ery and Data Mining, AAAIL

27

January 8, 2018

International Journal of Digital Earth output

Monteiro, Bruno R., Clodoveu A. Davis, and Fred Fonseca. 2016. “A survey on the geo-
graphic scope of textual documents.” Computers € Geosciences 96 (C).

Morana, Anthony, Thomas Morel, Bilal Berjawi, and Fabien Duchateau. 2014. “GeoBench:
A Geospatial Integration Tool for Building a Spatial Entity Matching Benchmark.” In
Proceedings of the ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems, ACM.

Moreau, Erwan, Francois Yvon, and Olivier Cappé. 2008. “Robust similarity measures for
named entities matching.” In Proceedings of the International Conference on Computa-
tional Linguistics, ACL.

Murphy, Kevin Patrick. 2013. Machine Learning: a Probabilistic Perspective. MIT Press.

Murrieta-Flores, Patricia, Alistair Baron, Ian Gregory, Andrew Hardie, and Paul Rayson.
2015. “Automatically analyzing large texts in a GIS environment: The Registrar General’s
reports and cholera in the 19th Century.” Transactions in GIS 19 (2).

Murrieta-Flores, Patricia, Christopher Elliott Donaldson, and Ian Norman Gregory. 2017.
“GIS and literary history: advancing digital humanities research through the spatial anal-
ysis of historical travel writing and topographical literature.” Digital Humanities Quar-
terly 11 (1).

Navarro, Gonzalo. 2001. “A Guided Tour to Approximate String Matching.” ACM Com-
puting Surveys 33 (1).

Needleman, Saul B, and Christian D Wunsch. 1970. “A general method applicable to the
search for similarities in the amino acid sequence of two proteins.” Journal of molecular
biology 48 (3).

Parikh, Ankur P, Oscar Téackstrém, Dipanjan Das, and Jakob Uszkoreit. 2016. “A Decom-
posable Attention Model for Natural Language Inference.” In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing, ACL.

Philips, Lawrence. 1990. “Hanging on the metaphone.” Computer Language 7 (12).

Philips, Lawrence. 2000. “The double metaphone search algorithm.” C/C++ Users Journal
18 (6).

Recchia, Gabriel, and Max Louwerse. 2013. “A Comparison of String Similarity Measures for
Toponym Matching.” In Proceedings of The ACM SIGSPATIAL International Workshop
on Computational Models of Place, ACM.

Ristad, Eric Sven, and Peter N. Yianilos. 1998. “Learning string-edit distance.” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 20 (5).

Rocktéschel, Tim, Edward Grefenstette, Karl Moritz Hermann, Tomas Ko¢isky, and Phil
Blunsom. 2016. “Reasoning about entailment with neural attention.” In Proceedings of the
International Conference on Learning Representations, (also published as arXiv preprint
arXiv:1509.06664).

Rupp, C. J., Paul Rayson, Alistair Baron, Christopher Donaldson, Ian Gregory, Andrew
Hardie, and Patricia Murrieta-Flores. 2013. “Customising geoparsing and georeferencing
for historical texts.” In Proceedings of the IEEE International Conference on Big Data,
IEEE.

Samal, Ashok, Sharad Seth, and Kevin Cueto. 2004. “A feature-based approach to conflation
of geospatial sources.” International Journal of Geographical Information Science 18 (5).

Santos, Joao, Ivo Anastacio, and Bruno Martins. 2015. “Using machine learning methods
for disambiguating place references in textual documents.” GeoJournal 80 (3).

Scikit-learn. 2017. http://scikit-learn.org/.

Sehgal, Vivek, Lise Getoor, and Peter D Viechnicki. 2006. “Entity resolution in geospa-
tial data integration.” In Proceedings of the Annual ACM International Symposium on
Advances in Geographic Information Systems, ACM.

Sengar, Vibhuti, Tanuja Joshi, Joseph Joy, Samarth Prakash, and Kentaro Toyama. 2007.
“Robust Location Search from Text Queries.” In Proceedings of the ACM International
Symposium on Advances in Geographic Information Systems, ACM.

Simon, Rainer, Peter Pilgerstorfer, Leif Isaksen, and Elton Barker. 2014. “Towards semi-
automatic annotation of toponyms on old maps.” e-Perimetron 9 (3).

28

January 8, 2018

International Journal of Digital Earth output

Smart, Philip D., Christopher B. Jones, and Florian A. Twaroch. 2010. “Multi-source to-
ponym data integration and mediation for a meta-gazetteer service.” In Proceedings of
the International Conference on Geographic Information Science, Springer.

Smith, David A., and Gregory Crane. 2001. “Disambiguating Geographic Names in a His-
torical Digital Library.” In Proceedings of the European Conference on Research and
Advanced Technology for Digital Libraries, Springer.

Sun, Chengjie, Yang Liu, Chang’e Jia, Bingquan Liu, and Lei Lin. 2017. “Recognizing Text
Entailment via Bidirectional LSTM Model with Inner-Attention.” In Proceedings of the
International Conference on Intelligent Computing, Springer.

Varol, Cihan, and Coskun Bayrak. 2012. “Hybrid Matching Algorithm for Personal Names.”
Journal of Data and Information Quality 3 (4).

Wan, Shengxian, Yanyan Lan, Jiafeng Guo, Jun Xu, Liang Pang, and Xueqi Cheng. 2016.
“A Deep Architecture for Semantic Matching with Multiple Positional Sentence Repre-
sentations.” In Proceedings of the AAAI Conference on Artificial Intelligence, AAAL

Weinman, Jerod. 2013. “Toponym Recognition in Historical Maps by Gazetteer Alignment.”
In Proceedings of the International Conference on Document Analysis and Recognition,
IEEE.

Wing, Benjamin Patai. 2016. “Text-based document geolocation and its application to the
digital humanities.” Ph.D. thesis. University of Texas.

Winkler, William E. 1990. “String Comparator Metrics and Enhanced Decision Rules in
the Fellegi-Sunter Model of Record Linkage.” In Proceedings of the Annual Meeting of
the American Statistical Association - Section on Survey Research Methods, AMS.

XGBoost. 2017. http://xgboost.readthedocs.io/.

Yin, Wenpeng, and Hinrich Schiitze. 2015. “Convolutional neural network for paraphrase
identification.” In Proceedings of the Conference of the North American Chapter of the
Association for Computational Linguistics, ACL.

Yin, Wenpeng, Hinrich Schiitze, Bing Xiang, and Bowen Zhou. 2016. “ABCNN: Attention-
based convolutional neural network for modeling sentence pairs.” Transactions of the
Association for Computational Linguistics 4 (1).

Zhang, Qi, Jihua Kang, Yeyun Gong, Huan Chen, Yaqgian Zhou, and Xuanjing Huang.
2013. “Map Search via a Factor Graph Model.” In Proceedings of the ACM International
Conference on Information & Knowledge Management, ACM.

Zheng, Yu, Xixuan Fen, Xing Xie, Shuang Peng, and James Fu. 2010. “Detecting nearly
duplicated records in location datasets.” In Proceedings of the ACM SIGSPATIAL In-
ternational Conference on Advances in Geographic Information Systems, ACM.

29

