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This article presents an architecture for natural language generation of biomedical argumenta-
tion. The goal is to reconstruct the normative arguments that a domain expert would provide, in
a manner that is transparent to a lay audience. Transparency means that an argument’s structure
and functional components are accessible to its audience. Transparency is necessary before an
audience can fully comprehend, evaluate or challenge an argument, or re-evaluate it in light
of new findings about the case or changes in scientific knowledge. The architecture has been
implemented and evaluated in the Genetics Information Expression Assistant, a prototype sys-
tem for drafting genetic counselling patient letters. Argument generation makes use of abstract
argumentation schemes. Derived from the analysis of arguments used in genetic counselling,
these mainly causal argument patterns refer to abstract properties of qualitative causal domain
models.
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1. Introduction

Healthcare consumers face increasing responsibility for assimilating the information given to them
by healthcare providers (Nielsen-Bohlman, Panzer, Hamlin, and Kindig 2004). There are many
reasons why understanding this information can be challenging. Perhaps the most obvious is that
the information may contain specialised biomedical terminology or presuppose certain background
knowledge. A related problem is the public’s low level of numeracy (Ancker and Kaufman 2007).
Beyond having biomedical knowledge and numeracy skills, the audience must be able to fully
comprehend the arguments for the diagnosis and other tentative conclusions of the healthcare
provider. That requires, for example, the ability to identify an argument’s premises, which may
be explicit or implicit in a text. An argument is transparent when its structure and functional
components are accessible to its audience. Transparency is necessary before an audience can fully
comprehend, evaluate or challenge an argument, or re-evaluate it in light of new findings about the
patient or changes in scientific knowledge. Because of the importance of argument comprehension
for healthcare consumers, our research is on the natural language generation (NLG) of transparent
biomedical argumentation.

As a testbed for the research, we developed the GenIE (Genetics Information Expression)
Assistant, a prototype system that generates the first draft of a genetic counselling patient letter.
This letter is a standard document written by a genetic counsellor to her client summarising
information and services provided to a patient (Baker, Eash, Schuette, and Uhlmann 2002). It is
written after the counsellor meets with a client and is not intended to serve as the principal means
of communication with the client. A preliminary analysis of a corpus of patient letters showed that
they contain a variety of argument patterns1 (Green 2007). Thus, this genre can provide insight
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Figure 1. Architecture of GenIE Assistant.

into biomedical argumentation designed by domain communication experts for a lay audience. A
practical use of a system such as the GenIE Assistant would be as an authoring tool for genetic
counsellors.2

The components of the GenIE Assistant are shown in Figure 1. A conceptual model of clinical
genetics and information on a specific patient are represented in a knowledge base (KB). The gen-
eration process begins using the discourse grammar to construct a partial discourse plan (DPlan).
Discourse grammar rules encode genre-specific knowledge of the standard topical organisation
of patient letters and extract basic information about a patient’s case from the KB. As in many
other NLG systems, a DPlan represents the structure and content of the text to be generated in
non-linguistic form (Reiter and Dale 2000). In the GenIE Assistant, the structure is described in
terms of the rhetorical structure theory (RST) relations (Mann and Thompson 1988). However, the
discourse grammar is not used to generate arguments, which are produced by GenIE’s argument
generator.

As a DPlan is constructed by the discourse grammar, claims requiring support are sent by
the discourse grammar to the argument generator. The argument generator produces arguments
for a given claim by instantiating argumentation schemes, abstractions of normative3 arguments
found in the corpus, with information from the KB. For the sake of generality, the argumentation
schemes refer to abstract properties of a KB rather than to genetics. Complex arguments containing
subarguments may be constructed by composing instantiated argumentation schemes. The result-
ing argument structures are translated by the argument generator into equivalent RST structures,
which are inserted into the DPlan. The responsibility of the argument presenter is to make changes
in the DPlan for the sake of coherence and transparency of arguments in the generated text. In
the final phase of processing, linguistic realisation, NLG microplanning, and surface realisation
tasks (Reiter and Dale 2000) are done to render the DPlan as English text.

One of the main contributions of this article is the above software architecture, the design of
which was informed by a corpus study of how domain communication experts present biomedical
arguments in writing to a lay audience. The architecture has been implemented in a prototype
system – the GenIE Assistant, and the KBs and argument generator have been reused in another
prototype system – Interactive GenIE. Due to the separation of domain content from argumentation
concerns, the design should be portable to other domains and applications.

The other main contribution of this work is the definition of causal argumentation schemes and
their critical questions in terms of abstract properties of qualitative probabilistic/causal domain
models. A critical question is a question associated with an argumentation scheme such that its
answer may defeat the defeasible claim of an argument constructed from the scheme (Walton,
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1. This letter will summarize the testing performed on blood obtained from [P] to determine the 
cause of [P’s] hearing loss. 

2. We met with [CLIENT] to discuss these results in [CLINIC] on [DATE]. 
3. [P's] blood was obtained to determine if [P’s] hearing loss was due to a change in a gene called 

GJB2 (for gap junction protein beta 2) that is associated with childhood hearing loss. 
…
8. The most common change in this gene causing deafness is called 35delG and involves the loss 

(deletion) of a small piece of genetic material within the gene. 
9. The change found in [P's]  GJB2 gene was a rarer change and is called [MUTATION]. 
10. This change is known to result in a shortened or truncated protein. 
11. The protein, called Connexin 26, is important in maintaining the chemical equilibrium of the inner 

ear.

Figure 2. Excerpt from patient letter in corpus.

Reed, and Macagno 2008). Computational use of argumentation schemes and critical questions
is an active research area, e.g. in artificial intelligence and law (Gordon, Prakken, and Walton
2007), artificial intelligence and medicine (Lindgren and Eklund 2005; Fox et al. 2007; Rahati
and Kabanza 2009), and bioinformatics (McLeod and Burger 2008). However, that work has
not addressed the argumentation based upon domain knowledge represented in causal models.
Furthermore, this article helps in bridging the gap between research on computational use of
argumentation schemes and research on NLG.

2. Corpus analysis

This section motivates the GenIE Assistant’s design by giving an overview of how it has been
informed by qualitative analysis of different aspects of a corpus of 21 patient letters written
by genetic counsellors. Consistent with professional guidelines (Baker et al. 2002), the letters
typically include a patient’s history (including symptoms, a preliminary diagnosis, and any testing
to confirm the preliminary diagnosis and the results of testing), a final diagnosis, the probable
source of inheritance of the genetic condition, and the patient’s family members’ inheritance
risks. The model presented in this paper is based mainly on nine letters in the corpus that cover
nine different patients and seven different single-gene autosomal genetic disorders,4 and come
from four different authors (each at a different institution). The letters range in length from 24
sentences (446 words) to 76 sentences (1537 words). For illustration, see an excerpt from one letter
in Figure 2. In the figure, we have numbered the sentences for ease of reference, and to maintain
client privacy, some words have been replaced by placeholders enclosed in square brackets; e.g.
(P ) refers to the patient.

2.1. Analysis of conceptual model of domain

On initial review of the corpus, it was apparent that certain recurrent general concepts are used to
convey a simple, mainly causal model of genetic inheritance and disease to its lay audience. For
example, the text of Figure 2 can be analysed as referring to the following concepts (italicised):
test (‘testing’), symptom (‘hearing loss’), test result (‘these results’), genotype (‘GJB2’), and
biochemistry (‘Connexin 26’). A formal evaluation, reported in (Green 2005a), was performed to
validate the inter-coder reliability of a set of eight concepts (listed in Table 1) for letters on single-
factor autosomal genetic conditions. Using instances of these concepts, it is possible to manually
reconstruct qualitative causal/probabilistic network graphs representing the domain content of
a letter.5 The nodes of the graph represent the instances of concepts referred to in a letter (e.g.
the patient’s GJB2 genotype), while node types (e.g. genotype) correspond to the more abstract
concepts shown in Table 1.
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Table 1. Concepts in genetic counselling corpus.

Concept Description Example

History Demographic or other risk factor Ethnicity
Genotype Number (0, 1, 2) of mutated alleles of a gene Two mutated alleles of GJB2
Event External or mutagenic event Presence of bacteria
Biochemistry Manifestation of genotype at biochemical level Abnormal Connexin 26 protein
Physiology Manifestation of genotype at physiological level Malabsorption
Symptom Observable symptom Hearing loss
Test Decision to perform a test Sweat test performed
Test result Result of test Abnormal NaCl level

2.2. Analysis of argumentation

In addition to analysing the conceptual domain model underlying the letters, we analysed the
argumentation schemes used in the letters. It is important to note that a challenge to identification
of the argumentation schemes was that the arguments often require fine-grained discourse inter-
pretation, including reconstruction of implicit premises and/or conclusions (Green 2010). For
generality, the argumentation schemes were defined in terms of abstract properties of the concep-
tual domain models rather than domain-specific concepts. To support transparency, the premises
of an argument were identified by function as data or warrant (Toulmin 1998), where the warrant
is typically a defeasible generalisation linking data to claim.

For illustration, consider the argument partly expressed in sentences 10 and 11 of Figure 2. The
implicit claim of this argument is that, in each of P ’s cells, both copies (alleles) of the GJB2 gene
have the mutation referred to as (MUTATION). The implicit data are that the patient has hearing
loss. Note that the data were not provided explicitly since, not only would it be shared knowledge
of the genetic counsellor and her client, but it is mentioned in the preceding text. The warrant is
the causal path from the GJB2 genotype to hearing loss represented in the conceptual model of
the domain. Sentences 10 and 11 describe the causal chain up to chemical equilibrium of the inner
ear, but the path from that to hearing loss is only implicated. As this example illustrates, a writer
may rely on a reader’s ability to reconstruct implicit components of an argument. For someone
who is not a domain expert, or skilled in processing argumentation, reconstruction of arguments
could be a difficult task.

2.3. Analysis of discourse

Several aspects of discourse in the corpus were analysed. First, an RST analysis of several letters
was performed. Along with published guidelines for writers of patient letters (Baker et al. 2002),
the RST analysis informed the specification of the discourse grammar.6 Second, an analysis of
three dimensions of arguments in four letters was done to inform argument presentation and
linguistic realisation: order of components (claim, data, warrant), implicit components, and use
of discourse cues associated with argument components. The results of that study are summarised
in Section 5.1. The next three sections present the major components of the GenIE architecture.

3. Knowledge base

3.1. Conceptual domain model

The KB represents the counsellor’s beliefs about the domain and, before a letter is generated on a
particular patient’s case, must be updated with his beliefs about the case (findings, diagnosis, etc.).
As described in Section 2.1, a corpus study was carried out to identify the set of eight recurrent
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general concepts in this genre (Table 1). The domain content of letters to be generated can be
represented as network graphs whose nodes are instances of these eight general concepts. Arcs in
the graph represent qualitative causal/probabilistic relations determined by the types of the nodes
connected by the arcs. The design of domain models for GenIE is restricted to this set of node
types and relations.

Restricting the models in this way has several benefits. First, it simplifies the computational
process of selecting the content for arguments, since the generator does not have to filter out
biomedical information that is not normally used in communication with a lay audience. Second,
it guides domain knowledge acquisition since it is constrained by the set of available concepts and
relations. Using this set of node types and relations, prototype KBs for a number of representative
genetic conditions7 were manually implemented,8 each in little time. Third, this approach enables
argumentation schemes derived from the analysis of the corpus to be specified in terms of abstract
properties of a domain model, as will be shown in Section 4.

3.2. Computational representation

A KB is modelled computationally as a qualitative probabilistic network (QPN) (Wellman 1990;
Druzdzel and Henrion 1993). Like a Bayesian network (Korb and Nicholson 2004), a QPN is a
directed acyclic graph whose nodes represent random variables. However, in a QPN, qualitative
constraints take the place of conditional probability tables. The qualitative constraints are defined
in terms of the relations of qualitative influence S, additive synergy Y , and product synergy X.9

A variable A is said to have a positive qualitative influence on a variable B, written S+(A, B), if
a higher value of A makes a higher value of B more likely. An analogous definition is given for
negative influence, i.e. S−(A, B), if a higher value of A makes a lower value of B more likely. Each
arc in a KB is described by a positive or negative influence relation. Since not all the variables are
Boolean, our notation encodes threshold values of the domains explicitly. For example, positive
influence is encoded as S+(<A, a>, <B, b>), i.e. when A reaches a (or higher), it is more likely
that B will reach b (or higher).

Synergy relations X and Y are used to express a relationship between a set of variables and
another variable. Negative product synergy, X−({A, B}, <C, c>), is used to model the relation
between a mutually exclusive set {A, B} of potential causes of an event <C, c> and the event,
e.g. between a set of candidate diagnoses and presence of a certain symptom. Another example
of its use in this domain is to model autosomal dominant inheritance; having one mutated allele
of a gene fitting this inheritance pattern normally is sufficient to cause a health problem. Thus,
if a child has an autosomal dominantly inherited disorder, then (since we inherit one copy of
each pair of genes from each parent) the child must have inherited the mutation from one or the
other of his parents. Zero product synergy, X0({A, B}, <C, c>), is used to model the relation
between a set of events {A, B} which are jointly necessary to cause the event <C, c>; e.g. in
autosomal recessive inheritance of a disorder, the child must have inherited one copy of the
mutation from each parent. Positive additive synergy, Y+({A, B}, <C, c>), is used to model a
situation where A enables B to result in C. Negative additive synergy, Y−({A, B}, ¬<C, c>},
where the notation ¬<C, c> denotes C < c, is used to model a situation in which A inhibits B

from resulting in C.
Figure 3 shows part of a KB describing a patient believed to have cystic fibrosis (CF) based

on his symptoms – growth failure and respiratory infections – as well as the test result showing
an abnormal level of NaCl. All arcs in the figure are represented in the KB as positive influ-
ence relations (S+). In addition, the graph contains converging arcs, annotated Y+, which are
represented as two additive synergy relations in the KB: Y+({TSP, BP2}, <TRP, abnormal>)
and Y+({EP, PP2}, <SP, true>). The first one can be glossed as: performing the test (TSP)
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Additional information about variables in above graph (all variables refer to Patient):

Variable  Concept Type  Value
GP   Genotype    2 (mutated alleles) 
BP   Biochemistry   Abnormal 
BP2  Biochemistry   Abnormal
PP   Physiology   True
SP2  Symptom    True
PP2   Physiology   True
EP   Event    True
SP   Symptom    True
TSP  Test (decision)   Done
TRP   Result    Abnormal

Y+Y+

CFTR genotype 
(GP)

CFTR protein
(BP)

Viscous lung 
secretion (PP2)

Bacteria in lung 
secretion (EP)

Frequent
respiratory
infections

(SP)

Pancreas
enzyme level

(BP2)

“Sweat Test”
(TSP)

“Sweat Test”
Result (TRP) 

Malabsorption
(PP)

Growth failure
(SP2)

Figure 3. Part of KB for CF case. Concept types are from the generic model of genetic disease and inher-
itance. Variables describe (part of) the model of CF. States of the variables describe (part of) a particular
patient’s case.

enables the pancreas enzyme level (BP2) to be detected in the test result (TRP). The second
one can be glossed as: the presence of bacteria (EP) enables the viscous lung secretions (PP2)
to lead to frequent respiratory infections (SP). Note that the node types and possible relations
among nodes are determined by the general conceptual model of genetic disease; the graph
instantiates this model for CF; and the values of the variables, given below the graph, describe
some of the expert’s beliefs about a particular patient’s case after the patient’s test result is
known.

Figure 4 shows another part of the same KB, focusing on the conceptual model of the probable
source of the patient’s inherited genetic disease. This part describes the expert’s beliefs that the
patient inherited two mutated alleles of the CFTR genotype, one from each parent, but that each
parent carries only one copy of the mutation since neither shows symptoms of CF. Note that, for
each parent, a history variable representing North European ancestry is used for representing an
individual’s higher risk of carrying one mutated CFTR allele in that population compared with
other groups.



Argument and Computation 29

Additional information about variables in above graph: 

Variable (refers to)  Concept Type Value
GP (patient) Genotype 2 (mutated alleles) 
GM (mother) Genotype 1 (mutated allele)  
SM (mother) Symptom False 
HM (mother) History True 
GF (father) Genotype 1 (mutated allele)  
SF (father) Symptom False 
HF (father) History True 

N. European 
ancestry (HM) 

CFTR genotype
(GP)

CFTR genotype 
of mother (GM) 

CFTR genotype
of father (GF)

N. European 
ancestry (HF) 

Frequent
respiratory
infections

(SM)

Frequent
respiratory
infections

(SF)

X0

Figure 4. Another part of KB for CF case. This part shows information relevant to claims about the patient’s
parents’ CFTR genotype.

4. Argument generation

In the GenIE Assistant, argumentation for a given claim is reconstructed by instantiating argumen-
tation schemes with information from the KB. The argumentation schemes currently implemented
in the GenIE Assistant are defined in Section 4.1. An example of an argument composed from
several of the argumentation schemes is given in Section 4.2, followed by a description of the
generation process in Section 4.3. In Section 4.4, a model of interactive argument generation is
presented.

4.1. Argumentation schemes

As a prerequisite to identification of argumentation schemes, we interpreted the conceptual model
conveyed in a letter as it would be represented in a KB (as described in Section 3). Next, we
analysed arguments in the letter in terms of their claim, data, and warrant.10 In some cases, it
was necessary to interpret the writer’s intended message, constrained by the conceptual model of
the domain, the discourse context, and knowledge presumed to be shared by writer and audience
to reconstruct implicit components of an argument (Green 2010). The final step in deriving an
argumentation scheme was to abstract from the terms of a specific conceptual model and represent
the claim, data, and warrant in terms of variables and abstract properties (i.e. influence and synergy
relations) of a KB.

To illustrate, an argumentation scheme describing the argument analysed in Section 2 is shown
at the top of Table 2. The warrant of the argument is that there is a positive influence relation,
or a chain of such influences, from A to B. (To simplify the presentation, a chain is denoted
as S∗(<A, a>, <B, b>), i.e. S∗ is used to denote positive influence along a path of length one
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Table 2. Effect to cause argumentation schemes.

Components of scheme Example

Simpler case
Claim: A ≥ a P has two mutated GJB2 alleles
Data: B ≥ b P has hearing loss
Warrant: S∗(<A, a>, <B, b>) Having a GJB2 genotype with two mutated copies can

result in . . . which can result in hearing loss
Applicability constraint: ¬∃CX−({C, A}, <B, b>) :

C ≥ c

Unless something else is thought to be the cause of the
hearing loss

Variant
Claim: A ≥ a P has two mutated CFTR alleles
Data: B ≥ b & D ≥ d P has frequent respiratory infections and bacteria in

lung secretions
Warrant:

S∗(<A, a>, <B, b>) & Y+({D, A′}, <B, b>),
where A′ is on path from A to B

Having a CFTR genotype with two mutated copies can
result in . . . viscous lung secretions which, enabled
by the presence of bacteria, can result in respiratory
infections

Applicability constraint: ¬∃CX−({C, A}, <B, b>) :
C ≥ c

Unless something else is thought to be the cause of the
respiratory infections

or more.) The data are that B has reached b. The claim (conclusion) is that Ahas reached a.11

Of course, this is not a deductively valid conclusion. For instance, there could be an alternative
explanation for B reaching b, if there were another variable Csuch that Creaching the value c

would increase the probability that B reaches the value b.
Since, ideally, a writer would not use an argumentation scheme that he did not believe to

be applicable, and to prevent the GenIE Assistant from constructing arguments that would not be
constructed by the writer, an applicability constraint may be included in an argumentation scheme.
For an argumentation scheme to be applicable, its applicability constraint must hold. To gloss the
applicability constraint of the scheme described above, it says that there is no variable C in a
negative product synergy relation X−({C, A}, <B, b>) such that C has reached c. A violation of
this applicability constraint is depicted in Figure 5(a). Note that the description of the applicability

A: yes? 
C: yes 

B: yes 

X–

A: no? 
C: no 

B: no 

Y+

A: no? 
C: no 

B: no 

X0 Y–

A: no? 
C: yes 

B: no 

(a) (b)

(c) (d)

Figure 5. (a) C could be the explanation for B. (b) C could have failed to enable A to influence B. (c) C could
have failed to jointly contribute to B. (d) C could have prevented B.
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constraint actually implemented for warrants with a path length greater than one is not shown; it
is more complicated, since one must consider alternative explanations for intermediate steps in
the path from A to B.

In general, the applicability constraint of an argumentation scheme was derived by consider-
ation of qualitative constraints that could be used to encode a KB (as described in Section 3) and
that represented potential exceptions to the applicability of the argumentation scheme. As will
be discussed in Section 4.4, each condition of the applicability constraint can be thought of as a
critical question that can be used to challenge the conclusion.12

We now discuss the remaining argumentation schemes implemented in this version of the
GenIE Assistant, followed by an example of how a typical argument can be composed from
instances of several of the schemes.

A variant of the argumentation scheme described above is shown at the bottom of Table 2. For
example, the following argument can be constructed from it: given the beliefs (as shown in Figure 3)
that (data) the patient has had frequent respiratory infections and bacteria in his lung secretions,
and that (warrant) having two mutated alleles of CFTR leads to viscous lung secretions and the
presence of bacteria enables viscous lung secretions to lead to frequent respiratory infections, then
(conclusion) the patient has two mutated alleles of CFTR.

Another argumentation scheme is shown in Table 3. For example, as warranted by an autosomal
recessive inheritance pattern, the data that a child has two mutated alleles of a gene support the
claim that each parent has at least one mutated allele of that gene.

In contrast to the above argumentation schemes, consider the argumentation scheme shown in
Table 4. The warrant of the argument is identical to that given in Table 2. However, the data are
that B has not reached b, and the claim (conclusion) is that A has not reached a. For example,
lack of symptoms is evidence for the claim that an individual does not have the genetic condition
associated with those symptoms. The applicability constraint of this scheme has three conditions,
all of which must hold.

The first condition states that there is no variable C and positive additive synergy relation,
Y+({C, A}, <B, b>), such that C did not reach the value c; i.e. the explanation for B not reaching
b could be that by not reaching c, C failed to enable A to influence B to reach b (Figure 5(b)). For
example, if exposure to bacteria (C) is required to enable thickened mucous in the lungs (A) to

Table 3. Effect to joint cause argumentation scheme.

Components of scheme Example

Claim: (A ≥ a) and (C ≥ c) P ’s mother and father each have at least one mutated allele of GJB2
Data: B ≥ b P has two mutated alleles of GJB2
Warrant: X0({A, C}, <B, b>) A child inherits one allele of GJB2 from each parent

Table 4. No effect to no cause argumentation scheme.

Components of scheme Example

Claim: A < a P does not have CF
Data: B < b P does not have symptoms of CF
Warrant: S∗(<A, a>, <B, b>) Someone with CF exhibits symptoms of CF

Applicability constraint:
[¬∃C : Y+({C, A}, <B, b>) : C < c]
and [¬∃C : X0({C, A}, <B, b>) : C < c]
and [¬∃C : Y−({C, A}, ¬<B, b>) : C ≥
c]
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lead to respiratory infections (B), then an argument for the absence of thickened mucous in the
lungs based on the absence of respiratory infections is not applicable unless it is plausible that
there was exposure to bacteria.

The second condition states that there is no variable C and zero product synergy relation,
X0({C, A}, <B, b>), such that C did not reach c; i.e. the explanation could be that A and C are
jointly required and the reason B failed to reach b was that C did not reach c (Figure 5(c)). For
example, in an autosomal recessive inheritance pattern, a child with two inherited mutations of a
gene received one mutated allele from each parent; thus, if the child does not have two inherited
mutated alleles of a gene and one parent is believed to lack the mutation, then an argument for the
absence of the mutation in the other parent based on the child’s not having two inherited mutations
is not applicable.

The third condition states that there is no variable C and negative additive synergy relation,
Y−({C, A}, ¬<B, b>), such that C did reach c; i.e. the explanation could be that by reaching c,
C prevented A from influencing B to reach b (Figure 5(d)). For example, if a patient is taking
medication to treat a possible genetic condition, then failure to manifest the condition’s symptoms
does not support the claim that the patient does not have the condition.

The argumentation schemes shown in Tables 5 and 6 do not have warrants from the domain
model as they represent commonsense reasoning patterns.

Another argumentation scheme identified in the corpus is shown in Table 7. For example, an
autosomal dominant inheritance pattern fits the warrant of this scheme. Thus, the data that the
child has exactly one mutated allele of a gene support the claim that either the mother or father
(but not both) has at least one mutated allele of that gene. In a variant of this scheme (not shown
in Table 7) found in the corpus and implemented in the GenIE Assistant, the warrant describes
three mutually exclusive events.

While most of the argumentation schemes discussed so far describe arguments from effects
(or lack thereof) to potential causes, the next argumentation scheme, shown in Table 8, uses as

Table 5. Conjunction simplification argumentation scheme.

Components of scheme Example

Claim: P The mother has one or two mutated alleles of GJB2
Data: P and Q The mother has one or two mutated alleles of GJB2, and so does the father

Table 6. Elimination argumentation scheme.

Components of scheme Example

Claim: P = p1 The mother has exactly one mutated allele of GJB2
Data: [(P = p1) or (P = p2)]

and (P �= p2)

The mother has one or two mutated alleles of GJB2, and she does not
have two of them

Table 7. Effect to Alternative Causes argumentation scheme.

Components of scheme Example

Claim: (A = a) or (C = c) Either P ’s mother or P ’s father has exactly one mutated allele of
FGFR3

Data: B = b P has one mutated allele of FGFR3
Warrant: X−({A, C}, <B, b>) A child inherits one mutated allele of FGFR3 from one or the other of

his parents
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Table 8. Increased risk argumentation scheme.

Components of scheme Example

Claim: B ≥ b P will have heart disease
Data: A ≥ a P has FH
Warrant: S∗(<A, a>, <B, b>) Having FH increases the risk of heart disease
Applicability constraint: Unless:

[¬∃C : Y−({C, A}, ¬<B, b>) :
C ≥ c] and [¬∃C :
Y+({C, A}, <B, b>) : C < c]

(1) one is taking preventive medication, and
(2) one has no other risk factors (e.g. obesity)

data an event that may either play a causal role in or signal risk of another event. For example,
obesity is a risk factor for heart disease.

The first condition of the applicability constraint of the scheme in Table 8 is that there is no
variable C and negative additive synergy relation, Y−({C, A}, ¬<B, b>), such that C did reach c;
i.e. C may prevent A from influencing Bto reach b. For example, medication may lower a risk factor
for heart disease. The second condition is that there is no variable C and positive additive synergy
relation, Y+({C, A}, <B, b>), such that C did not reach c; i.e. C may fail to enable A to influence
B to reach the value b. For example, the risk of heart disease caused by an inherited condition,
familial hypercholesterolemia (FH), can be mitigated by reducing risk factors such as obesity.
A related argumentation scheme (not shown) can be used to argue against the claim that B has
reached (or will reach) b, given the same warrant as in Table 8, and the data that A has not reached a.

In summary, the argumentation schemes implemented in this version of the GenIE Assistant
are those shown in Tables 2–8 and their variants discussed above. The schemes fall into three
categories: an argument for/against a putative cause based upon the observation (or inference)
of the presence/absence of its typical effect (Tables 2–4 and 7), an argument for/against the
occurrence of a typical effect based upon observation (or inference) of the presence/absence of a
causal or risk factor (Table 8), and common sense arguments (Tables 5 and 6).

4.2. Example of composition of argumentation schemes

Using the argumentation schemes shown in Tables 2–6, it is possible for the GenIE Assistant to
compose a type of argument that is common in genetic counselling, namely, that both biological
parents of a child who has an autosomal recessive disorder such as CF are carriers of the mutation
responsible for the disorder. (The term carrier describes an individual with one normal and one
mutated allele of a gene.) A KB representing this situation is shown in Figure 4. The argument
for each parent is similar. The argument about the mother of a child with CF is diagrammed in
Figure 6 in a notation that highlights the argument’s structure and which argumentation schemes
were used. For clarity, only data and claims are shown in the diagram; i.e. warrants are not shown.

The main claim that the mother is a carrier (has one mutated CFTR allele) is shown at the top
of the diagram. The argument for that claim uses the Elimination argumentation scheme (Table 6).
The argument has two premises: (1) that the mother does not have two mutated CFTR alleles and
(2) that the mother has at least one mutated CFTR allele. The subargument for premise (1) uses
the no effect to no cause scheme (Table 4), and is based on the evidence that the mother does
not have symptoms of CF. The subargument for premise (2) uses the conjunction simplification
scheme (Table 5), and is based on the claim that the both the mother and the father have at least
one mutated CFTR allele. The subargument for that claim uses the effect to joint cause scheme
(Table 3), and is based on the belief that the child has CF, i.e. two mutated CFTR alleles. Although
not shown in the figure, arguments for the claim that the child has CF can be generated as well.
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Effect to Joint Cause 

Mother has one mutated CFTR allele

Mother does not have
two mutated CFTR alleles 

Mother has one or two mutated CFTR alleles

Mother does not 
have CF symptoms 

Mother has one or two mutated CFTR alleles 
&

Father has one or two mutated CFTR alleles 

Child has two mutated 
CFTR alleles 

Elimination

No Effect to No
Cause

Conjunction Simplification

Figure 6. Composition of arguments.

4.3. Argument generation

Given a request for all arguments for a given claim, the argument generator processes the request
in two phases. The first phase, described in Figure 7, reconstructs all possible arguments for the
claim. For example, given the goal to find an argument for the claim that the patient has CF (two
mutated copies of the CFTR genotype), the argument generator would find that the claim of the
effect to cause argumentation scheme (top of Table 2) can be unified with this goal; next that
the warrant of the scheme can be unified with a chain of causal influences in the KB from this
genotype to growth failure; next that the data of the scheme can be unified with the assertion in the
KB that the patient has growth failure; and lastly that the applicability condition of this scheme
holds, i.e. that there is no other condition believed to be applicable in this case. Next, another
argument using the variant of the effect to cause scheme (bottom of Table 2) would be found.

In the second phase, the arguments created in the first phase are translated into equivalent RST
structures, which are inserted into the discourse structure for the whole document, as follows. The
data and claim of an argument are transformed into the satellite and nucleus, respectively, of an
evidence relation. The warrant of an argument is transformed into the satellite of a background
relation whose nucleus is an evidence relation representing the data and claim of the argument.
The RST structure for two arguments for the claim that the patient has CF is shown in Figure 8.

4.4. Interactive argumentation

Interactive GenIE (Green 2008), a prototype interactive argument generation system, was imple-
mented to enable a user to take the initiative in exploration of the space of arguments and
counterarguments for a given claim. Interactive GenIE consists of a query-driven user interface,
the same type of KB used by the GenIE Assistant, and an argument generator. Note that requests
for arguments for a claim come from the user interface rather than from the discourse grammar as
in the GenIE Assistant. As it was beyond the scope of this project to develop a natural language
dialogue interface, communication between user and system is via an artificial language.
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Input: claim C 
Output: set S of all arguments for C 

if S exists (i.e. all arguments for C have already been found) return S 
if arguments for C have not yet been requested 
{

for each argumentation scheme Argi with components: claim Ci, warrant Wi,
applicability constraint Api, and data Di
{

try unifying Ci  with C, resulting in Ci′
      if successful  
      { 
          try instantiating Wi consistent with Ci′ and  KB, resulting in  Wi′

if successful 
{

try instantiating Diconsistent with Wi′, resulting in Di′
if successful and if Di′ holds in KB 
{

try instantiating Apiconsistent with Wi′, Di′
and Ci′, resulting in Api′
if successful
{

check if Api′ holds in KB
if successful 
{

if status of  Di′ is 
‘observation’ or ‘assumed’ 
{

add current instantiation of 
Argito S

}
else
{

recursively get set S′ of all
arguments for  Di′

   if S′ is not empty 
    attach S′ to Di′

and add current
instantiation of
Argito S

  }}}}}}}} 

Figure 7. Pseudocode describing the first phase of argument generation.

Argument generation by interactive GenIE differs from that by the GenIE Assistant in two
respects. First, interactive GenIE does not search for any arguments in support of the data of
an argument until so requested by the user. Second, in interactive GenIE, an argument need not
satisfy the applicability constraint of the argumentation scheme from which the argument was
constructed. Instead, each condition of the applicability constraint is treated as a critical question
that the user may ask to challenge the acceptability of the argument.

The user may request pro or con arguments, i.e. arguments respectively for or against a claim
C. In response, the system returns the arguments including data D, warrant W, and set S of critical
questions.13 The user may then request pro or con arguments for any of these components,14 and
so on. Figure 9 shows a dialogue with Interactive GenIE (glossed in natural language for purposes
of illustration) on a case of osteogenesis imperfecta (OI) that is believed by the healthcare provider
to be more likely due to a new mutation (mosaicism) than to be an autosomal dominant inherited
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List

BackgroundBackground

Evidence
Evidence

2 mutated CFTR 
alleles  abnormal 
protein  viscous lung 
secretion.
Viscous lung secretion 
& exposure to bacteria 

 respiratory 
infection Patient had 

exposure to 
bacteria & 
respiratory
infections

Patient has 
cystic fibrosis 

Patient has 
cystic fibrosis 

2 mutated CFTR 
alleles  abnormal 
protein  abnormal 
pancreas enzyme 
malabsoption
growth failure 

Patient had 
growth
failiure

Figure 8. RST structure of arguments that the patient has CF. Left and right branches of background and
evidence are satellite and nucleus, respectively.

1. User:  Argument for OI mosaicism? 
2. GenIE:   Claim: OI mosaicism 
3. Data: Patient has flexible joints  
4. Warrant: Mutation associated with OI mosaicism causes the collagen

                protein produced by the affected cells to have an abnormal form 
   leading to flexible joints  

5. Critical question: Could autosomal dominant OI be the cause of the 
  flexible joints? 

6. User: Argument for autosomal dominant OI? 
7. GenIE:   Claim: Not autosomal dominant OI 
8. Data: Test result for autosomal dominant OI was negative (normal amount 

           of collagen protein) 
9. Warrant: Testing can show whether amount of collagen protein is

                   low, and mutation associated with autosomal dominant OI
                   causes a reduced amount of collagen protein to be produced    

Figure 9. Example of dialogue with Interactive GenIE (glossed).

mutation.15 Transparency of arguments is increased in Interactive GenIE compared with the GenIE
Assistant by enabling the user to request arguments that may not be presented in a patient letter,
and by making applicability constraints visible as critical questions that the user may pose.16

5. Discourse grammar, argument presenter and linguistic realisation

This section covers the remaining components of the GenIE Assistant. Developing an application
for a specific client was beyond the scope of the present work. These components were imple-
mented to enable an evaluation of the generated arguments to be performed and to gain insight
into challenges in presentation and realisation of transparent argumentation.

5.1. Pragmatic features of argument presentation

First, we summarise the results of a study of pragmatic features of argument presentation in the
corpus whose purpose was to inform the design of these components. Four letters in the corpus were
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analysed with respect to three dimensions relevant to argument transparency: order of argument
components, enthymemes17 (arguments with implicit components), and discourse cues marking
argument components. One striking observation is the prevalence of enthymemes in the letters,
reducing the number of full arguments that could be studied.

In arguments containing both explicit data and claim, the data are always given before the
claim, and if present the warrant is never given between the data and claim.18 Warrants appear
both before and after the data and/or claim. Subarguments (for the data) are given before the claim
of the main argument.

As for when components are omitted, the data of an argument is not given explicitly when
(1) it is given in a previous section of the letter, (2) it is in the common ground,19 or (3) it is
supported by (i.e. is the claim of) a subargument. Contrary to the view that warrants are often
implicit, warrants are often explicit in these letters. Furthermore, the claim is often omitted. It is
given explicitly when (1) it is a weaker claim (e.g. the preliminary diagnosis), or (2) when it is
not likely to be negatively valued by the audience (e.g. the claim that neither parent is likely to
carry the mutation responsible for their child’s condition). Conveying negatively valued claims
implicitly is consistent with the guideline in this genre to use indirection to mitigate the emotional
impact of negatively valued information on the client (Baker et al. 2002), which we shall refer to
later as the stylistic goal of conveying empathy.

Finally, there were few discourse cues marking data, claim, or warrant. In the four letters
studied, there were two uses of cues (‘therefore’, ‘then’) preceding a claim, and one use of a cue
(‘since’) preceding the data of an argument.

5.2. Discourse grammar

A discourse grammar was implemented based upon an RST analysis of several letters in the
corpus and professional guidelines for writing patient letters (Baker et al. 2002). Since the goal of
implementing the GenIE Assistant was to investigate argument generation, the discourse grammar
was implemented to cover the topic sections in this genre that make the most extensive use of
argumentation. The discourse grammar is a set of rules20 (implemented in Prolog) that construct
a partial DPlan representing the RST structure and content of a document, not including the
arguments. Rules of the grammar generate trees of RST relations. Leaves of a tree consist of
content, in non-linguistic form, extracted by discourse grammar rules from the KB. For example,
Figure 10 shows the structure generated by the grammar for the first section of a patient letter. In
the figure, event propositions are glossed in italics.

Several discourse grammar rules are shown in simplified form in Figure 11. Rule 1 describes
the four main sections of a letter. Rule 2 describes the four subsections of the first section, and the
structuring of these four subsections as elements of an RST Narration relation. Rule 3 describes
the extraction of the patient’s symptoms from the KB to create the left-most subtree in Figure 10,
describing the reason for the patient’s referral to the clinic.

For each leaf in the DPlan that would be the claim of an argument, the argument genera-
tor is invoked (by a function call from the right-hand side of a grammar rule). The resulting
RST structure, a list of all arguments for that claim, is inserted into the RST structure of the
document instead of just the claim. For instance in Figure 10, the shaded leaf shows where
the argument for that claim, shown in Figure 8, would be added to the DPlan. In this way,
genre-specific discourse planning, implemented by the discourse grammar, is distinguished
from argument generation. However, the content surrounding the arguments as well as the
arguments are represented uniformly in RST to facilitate argument presentation and linguistic
realisation.
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Patient’s
test result 
was
abnormal

Purpose

To find 
cause of 
patient’s
respiratory
infections
and growth 
failure

Patient was 
referred to 
clinic

Purpose

Patient was 
given sweat 
test

To find 
cause of 
patient’s
respiratory
infections
and growth 
failure

Attribution

Clinic
suspected

Patient has 
cystic
fibrosis

Evidence

Patient’s
symptoms
are due to 
cystic
fibrosis

Narration

Figure 10. RST structure of first section of letter on patient who has CF. Left and right branches are satellite
and nucleus respectively. Argument in Figure 8 replaces shaded node.

(1)  letter(P,D,S,R)  pretest(P), diagnosis(D), source(S), risk(R). 

(2) pretest(narration( T1, T2, T3, T4))  referral(T1), pretest_diagnosis_act(T2),
       testing(T3), test_result(T4). 

(3) referral(purpose(nuc(e1), sat(e2))) get_symptoms(patient, Sym), 
% e1: patient was referred to clinic 
make_event(e1, …),  
% e2: to diagnose cause of Sym 
make_event(e2, …, Sym). 

Figure 11. Some discourse grammar rules (simplified).

5.3. Argument presenter

In the GenIE Assistant’s architecture, the argument generator’s responsibility for generating an
argument is distinguished from the argument presenter’s responsibility for making decisions about
how an argument is to be presented. More specifically, its responsibility is to aggregate or delete
components of arguments in the DPlan for the sake of discourse coherence and argument trans-
parency in the generated text.21 Unfortunately, coherence and transparency goals may conflict.
To maximise transparency, each argument’s data, warrant, and claim would be given explicitly.
However, a commonly used NLG strategy for improving coherence of generated text is to make
it more concise through aggregation and deletion (Reiter and Dale 2000).

The purpose of the study described in Section 5.1 was to use the corpus to gain insight into
presentation strategies including when to omit information. However, it was found that many of the
arguments avoid making explicit claims of negatively valued information. That is, in the corpus,
in addition to coherence goals, empathy may take precedence over transparency. Since empathy
is not a stylistic goal for the GenIE Assistant, it is not clear when the corpus should be used to
inform the decision to delete components of arguments from the DPlan. Therefore, the argument
presenter was implemented using hand-crafted heuristic rules that were refined by trial and error.
The remainder of this section describes the six main heuristics implemented in this version of the
system. As will be seen in Section 6, however, additional heuristics are needed.



Argument and Computation 39

One heuristic aggregates two conjoined propositions in the claim of an argument when they
share the same logical predicate-argument structure. For example, the claim glossed as: the mother
has one mutated copy of CFTR and the father has one mutated copy of CFTR will be aggregated
into a structure glossed as: the mother and the father each has one mutated copy of CFTR.

Another heuristic removes a claim P derived by the conjunction simplification argumentation
scheme (Table 5) if it would immediately follow the data (P and Q) of that scheme. For example,
if the data of an argument is the proposition glossed as the mother has at least one mutated allele
of CFTR and the father has at least one mutated allele of CFTR, the claim glossed as the mother
has at least one mutated allele of CFTR would be pruned since it repeats part of the data of the
argument.

In one of the test cases generated by the GenIE Assistant, a letter on FH, three consecutive
arguments for the claim Cthat the patient could have FH are given. The data given in the first,
second, and third argument are, respectively, D0 and D1 (The patient had a myocardial infarction
and is a smoker), D0 and D2 (The patient had a myocardial infarction and is obese), and D0 and
D3 (The patient had a myocardial infarction and has a low level of physical activity). In other
words, some of the data, D0, were repeated in each argument. Thus, a pruning heuristic is used to
avoid repeating D0in the second and third consecutive arguments for C. In addition, the warrants
of the three arguments have some overlapping content, which is handled by the following heuristic.

This heuristic is used to avoid repeating part of the same warrant in two or more consecutive
arguments for the same claim C. Suppose that the warrant of the first argument for C is that G can
cause P and P can cause S1 (e.g. CF can cause abnormal CFTR protein. Abnormal CFTR protein
can cause a viscous lung secretion.), and the warrant of the second argument for C is that G can
cause P and P can cause S2 (e.g. CF can cause abnormal CFTR protein. Abnormal CFTR protein
can cause an abnormal pancreas enzyme level.). In the consecutive arguments for C following the
first argument, the duplicated first part of the warrant, G can cause P , is pruned and marked for
realisation using an adverbial such as also. The beginning of the warrant of the second argument
in the preceding example would then be realised as Also, abnormal CFTR protein can cause an
abnormal pancreas enzyme level (e.g. see paragraph one in Figure 12).

A different heuristic is used to avoid repeating the same warrant in two consecutive, similar
arguments referring to different individuals. Suppose that the warrant of each of the two arguments
is that G can cause S (e.g. One changed copy of FGFR3 can cause Achondroplasia symptoms).
Now suppose that the data and claim of the first argument are, respectively, D1 (e.g. The patient’s
mother does not have any symptoms) and C1 (e.g. The patient’s mother is not a carrier) referring
to individual I1. Suppose that the data and claim of the second argument are, respectively, D2

(e.g. The patient’s father does not have any symptoms) and C2 (e.g. The patient’s father is not a
carrier), where D2 and C2 are identical to D1 and C1, respectively, except that D2 and C2 refer
to individual I2. In the second argument, the warrant is pruned from the DPlan, and marked for
realisation using an adverbial such as ‘similarly’. In this example, the second argument would
then be realised as Similarly, the patient’s father does not have any symptoms. Thus he is not a
carrier (e.g. see paragraph three in Figure 13).

While the above heuristic recognises two consecutive, analogous atomic arguments about two
different individuals, in some cases, the DPlan contains two consecutive, analogous complex
argument structures about two different individuals. A variation of the above heuristic is used in
such cases to reduce the second argument structure to the ‘similarly’ adverbial, the data of the
second argument, and the claim of the second argument (e.g. see paragraph three in Figure 12).

In summary, the above heuristics act upon elements of individual arguments or sets of argu-
ments. In contrast, previous NLG research has focused on identifying semantic and/or syntactic
structures that license aggregation (Shaw 1998; Dalianis 1999; Hielkema 2005; Harbusch and
Kempen 2009).
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The patient was referred to the clinic in order to diagnose the cause of his respiratory 
infections and growth failure. The clinic thought that respiratory infections and growth 
failure could be due to cystic fibrosis. Cystic fibrosis can cause abnormal CFTR protein. 
Abnormal CFTR protein can cause a viscous lung secretion. Exposure to bacteria and a 
viscous lung secretion can lead to respiratory infections. He had respiratory infections.
He had exposure to bacteria. Thus he could have cystic fibrosis. Also abnormal CFTR 
protein can cause an abnormal pancreas enzyme level. An abnormal pancreas enzyme
level can cause malabsorption. Malabsorption can cause growth failure. He had growth 
failure. Thus he could have cystic fibrosis. Therefore respiratory infections and growth 
failure could be due to cystic fibrosis. The clinic performed a sweat test in order to
determine if he could have cystic fibrosis. The sweat test showed an abnormal NaCl level.

Cystic fibrosis is a disease caused by having two changed copies of a gene called CFTR. 
Two changed copies of the CFTR gene can cause abnormal CFTR protein. Abnormal
CFTR protein can lead to an abnormal NaCl level and a sweat test can detect an abnormal 
NaCl level. The patient has an abnormal NaCl level. Thus he has cystic fibrosis. Therefore 
his respiratory infections and growth failure are due to his two changed copies of the
CFTR gene.

North European ancestry increases the risk of having at least one changed copy of the
CFTR gene. The patient's mother has north European ancestry. Thus she could have one 
changed copy of the CFTR gene. A child with two changed copies of a gene inherited
one changed copy from the mother and one changed copy from the father. The patient
has cystic fibrosis. Thus the patient's mother and the patient's father each have at least
one changed copy of the CFTR gene. Two changed copies of the CFTR gene can cause 
cystic fibrosis symptoms. The patient's mother does not have cystic fibrosis symptoms.
Thus she does not have two changed copies of the CFTR gene. Therefore she could have
one changed copy of the CFTR gene. Similarly the patient's father has north European 
ancestry. He does not have cystic fibrosis symptoms. Thus he could have one changed
copy of the CFTR gene.

Suppose the patient's mother has one changed copy of the CFTR gene and the patient's
father has one changed copy of the CFTR gene. A twenty-five percent chance exists
that future siblings will inherit two changed copies of the CFTR gene and they will
have cystic fibrosis symptoms. Alternatively a seventy-five percent chance exists that
they will not inherit two changed copies of the CFTR gene and they will not have cystic
fibrosis symptoms. 

Figure 12. Letter on CF case generated by GenIE Assistant.

5.4. Linguistic realisation

The linguistic realisation component transforms the DPlan, a forest of trees of RST relations and
event propositions, into English text. An event proposition is described in terms of its modality
and semantics, which is described by an action predicate and semantic case roles such as agent
and beneficiary. The first phase of linguistic realisation maps the DPlan to a list of protosentences.
A protosentence specifies one or more event propositions to be expressed in the same sentence
in the final output. A protosentence that includes more than one event proposition specifies the
rhetorical relation(s), e.g. Purpose, relating the events. The second phase of linguistic realisation
maps each protosentence to a sentence specification. In this phase, the main NLG tasks performed
are lexical choice and referring expression generation. The third phase of realisation maps the
sentence specification to the input specification for SimpleNLG, an off-the-shelf surface realisa-
tion component (Gatt and Reiter 2009). Finally, SimpleNLG is used for morphological-syntactic
processing.

In the rest of this section, only the aspects of linguistic realisation specific to argumentation will
be described. During the first phase, clausal order of components of an argument is determined.
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The patient was referred to the clinic in order to diagnose the cause of his disproportionately 
short arms and legs. The clinic thought that these symptoms could be due to achondroplasia. 
Achondroplasia can cause abnormal FGFR3 protein. Abnormal FGFR3 protein can cause 
abnormal bone development. Abnormal bone development can cause disproportionately 
short arms and legs. He had these symptoms. Thus he could have achondroplasia. The clinic 
performed a DNA test in order to determine if he could have achondroplasia. The DNA test 
showed a G1138A mutation.

Achondroplasia is a condition caused by having one changed copy of a gene called FGFR3. 
One changed copy of the FGFR3 gene can take the form of a G1138A mutation and a DNA 
test can detect a G1138A mutation. The patient has a G1138A mutation. Thus he has 
achondroplasia. Therefore his disproportionately short arms and legs are due to his one 
changed copy of the FGFR3 gene.

Being over 35 years old increases the risk of having a new change in a reproductive cell 
called a germline mutation. The patient's father is 45 years old. Thus he could have a 
germline mutation. A child with one changed copy of a gene inherited it from his mother or 
from his father. The mother or father may have inherited the change and have it in every 
cell, or the parent may have a germline mutation. The patient has achondroplasia. Thus, 
either the patient's mother or the patient's father has one changed copy of the FGFR3
gene in every cell or the patient's father could have a germline mutation. One changed copy 
of the FGFR3 gene can cause achondroplasia symptoms. The patient's mother does not have 
achondroplasia symptoms. Thus she does not have one changed copy of the FGFR3 gene in 
every cell. Similarly the patient's father does not have achondroplasia symptoms. Thus he 
does not have one changed copy of the FGFR3 gene in every cell. Therefore he could have a 
germline mutation.

Figure 13. Letter on achondroplasia case generated by GenIE Assistant.

Following the ordering observed in the corpus (as noted in Section 5.1), data (including subargu-
ments) precede the claim. Although no pattern was observed in favour of providing the warrant
before or after data and claim, it was decided to provide the warrant before data and claim since,
as represented by its role of satellite in a Background relation, it provides background on the
connection between data and claim.

In addition to determining clausal order, the first phase of realisation may add features to a
protosentence for lexicalisation of discourse cues in the second phase of realisation. Informed
by the use of such cues in the corpus, the only argument-specific information added is a fea-
ture subsequently realised as a sentence premodifier marking the claim of an argument. (As
described in Section 5.3, features marking pruned components of arguments that are subse-
quently realised with adverbials ‘also’ and ‘similarly’ are determined by the argument presenter.)
The feature is lexicalised as ‘thus’ for the claim of a subargument, and ‘therefore’ for a top-
level argument. An example can be seen in the third paragraph of the generated letter shown in
Figure 12. This paragraph contains three subarguments, each of whose claims is prefixed with
‘thus’, followed by the main claim, Therefore she could have one changed copy of the CFTR
gene.

6. Evaluation of the GenIE Assistant

6.1. Goals and design of evaluation

A small controlled study of letters generated by the GenIE Assistant compared with letters written
by a genetic counsellor on each of two medical cases was performed to determine if the system was
generating argumentation ‘about as good’ as that written by the counsellor, and if not, to suggest
areas for improvement in the Assistant. As a simple way of indirectly assessing argumentation, the
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study determined the number of edits made by domain experts to letters produced by the GenIE
Assistant compared with letters written by a genetic counsellor. The participants performing the
editing task were university graduate students, at least 18 years old, majoring in biology-related
fields, who had taken college-level genetics courses,22 and who were screened for English writing
fluency. Participants were compensated for their time.

The evaluation was performed using letters on two fictitious patients with substantially different
conditions – CF and achondroplasia, which together cover all three mechanisms of inheritance of
single-gene autosomal genetic disorders. Information for the cases was obtained from a genetics
reference book (Nussbaum, McInnes, and Willard 2001). Seventeen participants were randomly
assigned to one of four conditions representing the four combinations of authorship (genetic
counsellor or GenIE Assistant) and genetic condition (CF or achondroplasia).23

It was decided to evaluate GenIE’s argumentation with an editing task for a number of
reasons. First, if we had not presented participants with the output of end-to-end generation,
but instead had rendered the generated letters (or just the arguments) into English text our-
selves, we might have inadvertently affected the judgment of the participants. Second, the
editing task did not require the participants to have had training in argumentation. Third, the
editing task has some ecological validity since, if the GenIE Assistant were deployed, it is
expected that its output would be edited by a genetic counsellor to ensure accuracy as well
as readability. Editing was used by Sripada, Reiter, and Hawizy (2005) to evaluate an oper-
ational NLG system that produces draft weather reports which are edited by human weather
forecasters before being released to readers.24 Finally, the results of the editing task could pro-
vide insight into areas of needed improvement, e.g. in argument presentation and linguistic
realisation.

6.2. Materials and procedure

To generate a text for evaluation purposes, first, it is necessary to implement a KB25 represent-
ing the relevant genetic conditions26 and update it with the experts’ presumed beliefs about the
patient’s case. No changes in the argument generator are required to handle different genetic con-
ditions or patient cases.27 The argument presenter’s heuristics should be applicable to other genetic
conditions. The linguistic realisation component was implemented to enable the formal evaluation
to be performed; therefore parts of it, such as lexicalisation rules, have only been implemented to
cover test cases.

Each of the two human-authored letters used in the study was created by asking a pro-
fessional genetics counsellor to write a patient letter given the same findings, diagnosis, etc.
given to the GenIE Assistant for each letter. To control for length, subtopics in the human-
authored letters not covered in the three sections of GenIE’s discourse grammar were removed
by the experimenter. The two letters that were generated by GenIE28 and used in the study
are shown in Figures 12 and 13. The letter generated on CF contains all of the same types of
arguments, except one,29 as a letter in the corpus on an analogous case of a patient with an
autosomal recessive disorder (hearing loss due to GJB2 mutation) inherited from parents who
were carriers. The letter generated on achondroplasia contains exactly the same types of argu-
ments with the same argument content as a letter on a similar case of achondroplasia in the
corpus.

Each participant was given a copy of a letter, printed double-spaced on paper, and was asked to
read it and manually edit the paper copy to make the information more understandable to people
without a background in medicine or genetics. Participants were not informed that the letter may
have been generated by computer.
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Table 9. Mean number of edits.

CF Reorder Agg/disagg Add Delete Reword Total edits (SD)

GenIE 3.8 5 0.8 8.2 11.8 29.6 (9.39)
Human 1 2 2.75 0 9.75 15.5 (4.04)

Achondroplasia
GenIE 4.25 4.25 1 3 8.25 20.75 (2.06)
Human 2.25 0.5 2 0 8.25 13 (4.08)

6.3. Results and discussion

To score the editing task, each participant’s edits were classified and counted by the first author
of this paper as follows:

• Deletion of a clause counts as one deletion (Delete).
• Addition of a clause counts as one addition (Add).
• Two clauses combined into one, e.g. through deletion and rewording, or one clause

transformed into two clauses counts as one aggregation or disaggregation, respectively
(Agg/Disagg).

• Rewording (change, addition, or deletion) of one or more contiguous words in a clause
counts as one rewording (Reword).

• Moving one or more contiguous words in a clause counts as one reordering (Reorder).

All categories except reordering are mutually exclusive; e.g. a string of text can be counted as
both rewording and reordering, but not as both rewording and aggregation. The experimenter’s
judgment as to the participant’s intention was used to decide in cases where more than one
classification might apply by the above criteria. Note that it would be quite challenging to assess
argument content, presentation and realisation independently of each other and independently of
the rest of the letter. The above scoring method conflates these factors. For example, the counted
edits may include edits to text in the letter that is not part of any argument. Argument content and
presentation is conflated since no distinction is made, e.g. between deletion of duplicate argument
content and deletion of non-duplicate argument content. However, given the formative goals of
the evaluation, it was decided to adopt a simple approach to scoring.

The ‘bottom-line’ results of the evaluation are not surprising, as shown in Table 9. For each
letter, the mean total number of edits was higher for the GenIE-produced letter than its human-
authored counterpart.30 This is not surprising since the experiment compared the output of a human
writer with the output of a proof-of-concept NLG system. However, it is important to look at the
means for each category of edits to see what the experiment suggests about argument content as
well as what areas of improvement might have the greatest impact on the results.

The categories that are most relevant to assessing GenIE’s argument content are adds and
deletes. In terms of adds, subjects actually made fewer additions to GenIE-produced letters than
to human-authored letters. On review of the delete edits made to the GenIE-generated letters, it
was observed that the majority were clauses that repeated data or claims given elsewhere in the
letter. (No delete edits were made to the human-authored letters.) It would be straightforward to
implement additional argument presenter heuristics to prune such clauses.

On review of the agg/disagg edits, it was observed that almost half involved combining two
clauses by making one a relative clause of the other and that most did not involve argumentation.
Those that did involve argumentation concerned combining arguments about the patient’s mother
and father, i.e. instead of discussing each of the parents individually. Finally, analysis of rewording
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edits suggests that overall text quality could be substantially improved by modifications to the
linguistic realisation of referring expressions.

The results suggest that, although improvement is needed to eliminate redundancy and polish
the expression in natural language, the argument content produced by the Assistant is comparable
to that produced by the genetic counsellor.

7. Related work

Although domain knowledge is represented in the GenIEAssistant with QPNs, the goal of our work
differs from the research on explanation of reasoning in probabilistic expert systems, e.g. (Druzdzel
1996). The goal of that field is to make an expert system’s reasoning plausible to human experts
by describing the structure of its network and explaining its probability calculations (Lacave and
Díez 2002). In contrast, the goal of our work is to generate arguments that are transparent to a lay
audience. Thus, our computational model has been informed by analysis of a corpus of arguments
written for a lay audience. Although the analysis revealed a causal conceptual model of the domain
underlying expert–client communication, the arguments that were found are not concerned with
explaining probability calculations. Instead, they are composed from presumptive argumentation
schemes used in everyday communication as well as science and law (Walton et al. 2008).

Research on argumentation for genomic medicine applications includes risk assessment in
genetics (Coulson, Glasspool, Fox, and Emery 2000), a rule-based decision-support tool to assist
doctors in assessing the qualitative risk that a patient has a particular mutation, given data about the
patient’s family tree. The system’s conclusion as to the patient’s level of risk is explained to a doctor
by listing evidence for and against the assessment. While risk assessment is outside of the scope
of our research, the arguments that can be given by the GenIE Assistant are more varied and more
complex. The REACT system (Glasspool, Fox, Oettinger, and Smith-Spark 2006) is a decision-
support system for planning the medical care of women diagnosed as at risk of developing cancer
due to genetic factors. REACT presents arguments for and against treatment options. However,
the arguments are not generated ‘on the fly’ but are human-authored.

Although our work has been informed by other NLG research on argument generation, pre-
vious research has focused on the goal of persuasion or evaluation. Early work on persuasion
addressed linguistic realisation (Elhadad 1992). Some NLG research has employed probabilistic
network formalisms to compute persuasiveness (Zukerman, McConachy, and Korb 1998, 2000;
Zukerman, McConachy, Korb, and Pickett 1999; Carofiglio and de Rosis 2003; Mazzotta and
de Rosis 2006). In work on generating evaluative arguments, Carenini and Moore (2006) use an
approach based upon the decision theory to select evidence. While the GenIE Assistant has a
qualitative probabilistic domain model, it is not used to compute persuasiveness or utility.

Other NLG research on generation of persuasive arguments has used non-probabilistic
approaches. Reiter, Robertson, and Osman (2003) used genre-specific discourse strategies. Grasso,
Cawsey, and Jones (2002) dialogue system plans arguments using strategies from the New Rhetoric
(Perelman and Olbrechts-Tyteca, 1969). Reed and Long’s (1997, 1998) system operationalised
standard deductive argument patterns as plan operators. Branting, Callaway, Mott, and Lester’s
(1999) model for drafting legal arguments used legal reasoning and genre-specific rhetorical
strategies. Unlike these approaches, the approach presented in this paper uses non-genre-specific,
non-domain-specific, mainly causal, normative argumentation schemes.

Some NLG research has addressed argument presentation issues. In Reed and Long’s (1997)
approach, ordering of argument components is determined both by planning goals and by heuristics
derived from corpora and a survey of the literature on persuasion. Carenini and Moore (2006)
empirically studied the optimal amount of evidence and its optimal ordering in designing evaluative
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argument strategies. The approach to presentation described in this paper differs from these since
the goal is not persuasion or evaluation but transparency. Since transparency may be adversely
affected by verbosity, GenIE Assistant’s pruning heuristics are motivated by the same goals as
Fiedler and Horacek’s (2001) model, which uses summarisation and omission of inferable details
to make the presentation of machine-generated mathematical proofs more comprehensible.

8. Limitations and future work

The goal of our research was to investigate a computational model of transparent expert-to-lay
argumentation rather than to develop a system meeting the requirements of a specific healthcare
provider. To apply the model to build real-world systems, software engineering work remains
including additional requirements elicitation (e.g. study of a corpus of the client organisation’s
patient letters), constructing KBs for the genetic disorders of interest, modifying the discourse
grammar to handle all possible letter variants and stylistic preferences of the client organisation,
and building more robust argument presentation and linguistic realisation components. Advances
in NLG technology such as in aggregation and referring expression generation can be lever-
aged to improve expression of the letters. Furthermore, it may be advisable to incorporate NLG
techniques developed for low-literacy audiences (Williams and Reiter 1998) into this type of
application.

In terms of theoretical limitations, the current argument generator does not address the gener-
ation of information added to a patient letter to address possible misconceptions of a lay audience.
For example, in one letter in the corpus, the writer points out that the patient’s negative test result
does not rule out the possibility that the patient’s medical problems are due to some other genetic
condition. A user model representing typical lay misconceptions about the domain is a prerequi-
site for handling this type of argument (Green 2005b). In addition, affective user modelling is a
prerequisite for use of presentation strategies designed to mitigate the impact of negatively valued
information (Green 2005b, 2005c). Work is in progress to add user modelling to the architecture.
In addition, work is in progress to improve argumentation presentation (aggregation and pruning),
to add argumentation schemes that provide backing for warrants, and to add graphics to the textual
presentation of risk information as illustrated in Green, Britt, Jirak, Waizenegger, and Xin (2005).

Beyond genetic counselling, the approach presented in this article to argument generation (in
print or in an interactive system) may be applicable to lay communication in other biomedical
or scientific fields whose content can be represented in a qualitative causal KB. Furthermore, as
automatic methods are developed for transforming Bayesian networks into QPNs (Druzdzel and
Henrion 1993), it may be possible to adapt pre-existing Bayesian KBs for this purpose. Another
possible new direction is to apply the argumentation schemes developed for the current project to
the interpretation of causal argumentation in text.

9. Summary

This article describes a software architecture for NLG of biomedical argumentation for a lay
audience. The architecture has been implemented and evaluated in the GenIEAssistant, a prototype
system for drafting genetic counselling patient letters. A significant challenge in this genre is the
range of domain knowledge, i.e. there are over 4500 single-gene autosomal genetic disorders.
This challenge has been met by identifying an abstract causal domain model used in the field for
communication with a lay audience. Use of the abstract model constrains design of KBs, simplifies
content selection in argument generation, and enables analysis of argumentation in the corpus to
abstract away from details of particular genetic conditions.
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Another challenge is that although the conclusion of a normative argument may be defeasible,
it must be supported by data and, in most cases, be warranted by scientific principles. In addition, a
normative argument must meet other criteria that can be formulated as applicability constraints (i.e.
critical questions). To support normative argument generation, abstract argumentation schemes
were defined. They refine the causal argumentation schemes described by argumentation theorists
(Walton et al. 2008) in terms of abstract properties of a causal KB and can be reused for argument
generation in other causal domains.

Another challenge is the goal of transparency. Transparency is necessary before an audience
can fully comprehend, evaluate, or challenge an argument, or re-evaluate it in light of new find-
ings or changes in scientific knowledge. Transparency is supported by reconstructing the full
argument for a claim using argumentation schemes that differentiate the roles of data, warrant,
and critical questions of an argument. The implementation of the Interactive GenIE prototype
labels the functional roles of the parts of an argument and enables the user to request pro and con
arguments for its components. Generation of transparent arguments in a non-interactive medium
is challenging since transparency may conflict with other NLG goals. As a first step, the GenIE
Assistant’s argument presenter makes use of its knowledge of argument structure in applying dis-
course aggregation and pruning heuristics. In addition, knowledge of argument structure was used
in its linguistic realisation component to order the clauses in an argument and to mark the claims
of arguments with discourse cue words.
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Notes
1. We consider these patterns to represent argumentation in the sense that they are used to support a

position that might be challenged by the audience at some time. The term ‘audience’ includes the
primary audience, the client(s) to whom the letter is addressed, as well as persons reviewing the let-
ter in case of questions as to the quality of service provided to the patient (Baker et al. 2002). For
example, without transparent biomedical argumentation, parents of a child might be reluctant to accept
the clinic’s conclusion that their child’s medical condition is due to a mutation that he inherited from
them. For another example, a client may question an expert’s conclusion at some future time when
the biomedical principle that had been used to justify the conclusion has been rejected by new sci-
entific studies. For a final example, argumentation for the preliminary diagnosis could be used later
to justify what tests were performed in case the clinic is accused of providing inadequate care to the
patient.

2. The GenIE Assistant is not being developed for deployment by a specific organisation. The goal of
implementing the Assistant is to ground the research in a potential, significant, complex real-world
application. It is assumed that if the GenIE Assistant were deployed, a healthcare provider could provide
patient-specific evidence (symptoms, test results, etc.) and conclusions (e.g. the diagnosis) through
menus and checklists in a graphical user interface such as the prototype shown in Green et al. (2005).
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The GenIE Assistant would then use that information and general information from its KBs on different
genetic disorders to draft the patient letter, including arguments for the given conclusions. It is assumed
that the provider would review and (if necessary) edit the draft. However, the GenIE Assistant is not
designed to automate medical reasoning tasks such as diagnosis, nor is it intended to replace the client’s
face-to-face meeting with a genetic counsellor.

3. The arguments are normative in the sense that, although they may have defeasible conclusions, they meet
professional standards in the field of clinical genetics. In other words, they represent the arguments that a
domain expert should provide to a lay person. This article does not address generation of non-normative
arguments found in the corpus, whose purpose is to mitigate the emotional impact of negatively valued
information on the audience (Green 2005b).

4. There are more than 4500 single-gene autosomal disorders, affecting about 1% of the population (Wilson
2000).Although the corpus informing this work may be small compared with corpora needed for machine
learning, it was sufficient for our goals due to constraints of the genre and domain. The nine texts
are representative of the genre as described in Baker et al. (2002) and contain a variety of argument
patterns and complex compositions of argument patterns. As for the domain, the nine letters cover the
three main mechanisms of inheritance of single-gene autosomal genetic disorders: autosomal recessive
inheritance, autosomal dominant inheritance, and new mutations. (The rest of the corpus includes letters
on chromosomal and multifactorial genetic disorders.)

5. See Green (2005a) for suggestions on how the process might be automated. However, there was no need
to automate it for the objectives of this project. The purpose of modelling the content of letters, at first,
was to study its role in argumentation schemes. Later, as described in Section 3, the set of eight concepts
and their inter-relations were used to constrain design of KBs used in the GenIE Assistant.

6. It is not claimed that the grammar is sufficient to generate all possible genetic counselling patient letters.
The purpose of implementing the grammar was to enable the implementation of the prototype system
and the evaluation of generated arguments.

7. Including hearing loss due to GJB2 mutation, velocardiofacial syndrome, neurofibromatosis, osteogene-
sis imperfecta, phenylketonuria, familial hypercholesterolemia, achondroplasia, and cystic fibrosis (CF).
Information on CF, a condition not covered in the corpus, was obtained from textbooks (Nussbaum et
al. 2001). In addition, the textbooks were consulted to help interpret letters in the corpus.

8. Since it was beyond the scope of this project to deploy the GenIE Assistant, we did not develop tools
for automated KB creation.

9. These relations are defined formally in Wellman (1990) and Druzdzel and Henrion (1993).
10. The distinction in GenIE between data and warrant corresponds, respectively, to the distinction between

knowledge about a particular patient’s case and the general biomedical knowledge linking the data to
a claim. Although this distinction may not matter for some purposes, it is important at least from a
software engineering perspective. From that perspective, the knowledge used for warrants is obtained by
knowledge engineers, reusable, and to be revised by experts in response to changing beliefs in the field
of biomedicine. In contrast, the knowledge used for data is patient-case-specific and subject to privacy
restrictions, much more volatile, and provided by clinical staff.

11. To clarify how the example shown with this scheme, P has 2 mutated GJB2 alleles, instantiates the
pattern of its claim, A ≥ a, note that the pattern describes a pattern in the KB, not a textual pattern in the
corpus. The pattern is that a KB variable has reached its threshold value. (The notation would be simpler
if the domains of all variables were Boolean; however, in this field of knowledge, it is necessary to allow
for other variable types.) In the example, the variable represents the number of mutated alleles in the
patient’s GJB2 genotype, where the threshold value is 2 (since it takes two mutated alleles to result in
hearing loss).

12. The term ‘applicability constraint’was chosen for consistency with standard usage in the natural language
planning/generation literature since argumentation schemes are used in the GenIEAssistant for argument
generation.

13. The moves are similar to those of the Toulmin Dialog Game (DG) (Bench-Capon, Geldard, and Leng
2000). However, unlike TDG, Interactive GenIE also allows the user to pose critical questions. Another
difference is that Interactive GenIE is not designed to model the effect of a dialogue on the participants’
commitments.
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14. Since D or W may be a conjunction of premises and S is a set of critical questions, it is more accurate
to say that the user may request a pro or con argument for any atomic element of these components.

15. Based upon a case in the corpus.
16. Interactive GenIE was originally implemented to perform component testing of the GenIE Assistant’s

argument generator and KBs. However, its virtues in terms of transparency and user control became
apparent, and we now envision its use in interactive patient education systems or intelligent environments
for learning about scientific argumentation.

17. The term ‘enthymeme’ has a long history in the logic and argumentation theory (Walton et al. 2008).
18. The fact that the warrant never comes between data and claim is consistent with the representation of

the warrant as the satellite of a background relation whose nucleus is an Evidence relation describing
data and claim, and the principle that branches of an RST analysis should not cross.

19. The term ‘common ground’comes from the field of discourse studies and refers to information shared by
the so-called speaker and hearer (i.e. the participants in a dialogue, or a writer and intended audience).
For example, based upon one of the letters in the corpus, it is plausible to assume that it was in the
common ground of the parents who brought their deaf child to the genetics clinic for diagnosis and the
clinical staff who examined him that the patient is a child with hearing loss.

20. There are 48 Prolog rules in the current implementation, covering four sections of a letter. Section 1
describes the reason for referral, the preliminary diagnosis, what tests were performed, and the test
results. Section 2 describes the final diagnosis. Section 3 describes the probable source of the patient’s
genetic condition, e.g. from whom it was inherited. Section 4 describes inheritance risks for other family
members. The rules are essentially NLG schemas (Reiter and Dale 2000).

21. In this implementation of the GenIE Assistant, other presentation decisions (ordering of argument
components and addition of some discourse cues) are made in the linguistic realisation module.

22. The graduate coursework in genetics should have provided sufficient background for the editing task.
23. Five participants received the GenIE-authored letter on CF; the other three groups had four participants

each.
24. Sripada et al. (2005) note that, while providing metrics for quantifying the practical usefulness of a

system, the number of edits does not always indicate problems in the generated text. For example, some
edits may be the result of an individual forecaster’s preferences, or may be required because of edits
made to the preceding text. Our impression is that similar factors may have affected the data collected
in our evaluation.

25. The KB used for the CF case, for example, had 26 nodes.
26. A KB could be reused for different patients of course.
27. Argument generation has been tested informally on several other genetic conditions.
28. The total time to generate the two letters (on a standard personal computer), a total of 780 words, is

about 22 s.
29. A type of argument found in the corpus but not implemented in the version of GenIE described in this

paper provides a probability statement (e.g. ‘about 50% of children with severe to profound recessively
inherited non-syndromic genetic hearing loss have a change in . . . GJB2’) as backing (Toulmin 1998)
for an implicit warrant, instead of the warrant (e.g. having two mutated GJB2 alleles can lead to hearing
loss); this type of argument has been implemented in a subsequent version of the system.

30. The data was analysed with SPSS using a two-sided t-test with a 95% confidence interval for the null
hypothesis that the mean number of edits would be the same for the GenIE-produced and the human-
authored version of each letter. The difference in means was found to be statistically significant, with
P -values of 0.028 (CF letter) and 0.015 (achondroplasia letter).
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