
Argument and Computation
Vol. 3, No. 1, March 2012, 49–82

Processing natural language arguments with the <TextCoop> platform

Patrick Saint-Dizier*

IRIT-CNRS, 118 route de Narbonne 31062 Toulouse, France

(Received 15 June 2011; final version received 31 January 2012)

In this article, we first present the <TextCoop> platform and the Dislog language, designed
for discourse analysis with a logic and linguistic perspective. The platform has now reached a
certain level of maturity which allows the recognition of a large diversity of discourse structures
including general-purpose rhetorical structures as well as domain-specific discourse structures.
The Dislog language is based on linguistic considerations and includes knowledge access and
inference capabilities. Functionalities of the language are presented together with a method
for writing discourse analysis rules. Efficiency and portability of the system over domains and
languages are investigated to conclude this first part. In a second part, we analyse the different
types of arguments found in several document genres, most notably: procedures, didactic texts
and requirements. Arguments form a large class of discourse relations. A generic and frequently
encountered form emerges from our analysis: ‘reasons for conclusion’ which constitutes a
homogeneous family of arguments from a language, functional and conceptual point of view.
This family can be viewed as a kind of proto-argument. We then elaborate its linguistic structure
and show how it is implemented in <TextCoop>. We then investigate the cooperation between
explanation and arguments, in particular in didactic texts where they are particularly rich and
elaborated. This article ends with a prospective section that develops current and potential uses
of this work and how it can be extended to the recognition of other forms of arguments.

Keywords: natural language processing of arguments; discourse processing; logic
programming

1. Introduction

Automatically identifying arguments in texts and capturing their conceptual dimensions is an
extremely difficult challenge. There are multiple reasons for this, in particular the linguistic real-
isations of arguments are very diverse and very difficult to accurately characterise. Furthermore,
domain or personal knowledge is often needed to identify that a given text span has an argu-
mentative dimension. Linguistic marks may not be accurate and discriminatory enough to allow
the identification of arguments in any situation. Furthermore, expressions denoting propositional
attitudes or beliefs about certain facts may also confer the status of arguments to these facts which
would not otherwise have been considered as arguments.

The profusion of expressions and forms which can be interpreted at varying degrees as argu-
ments make it difficult to elaborate the kind of language representation formalism, knowledge
representation and associated processing strategies which are required to process these forms. In
an attempt to organise the different types of arguments, the logical roles and the communicative
goals, argument targets have been developed and certainly contribute to this long-term challenge,
e.g. Walton, Reed, and Macagno (2008), but robust language-processing formalisms integrating
knowledge and inferences still remain to be developed. This is the main contribution of this paper.

*Corresponding author. Email: stdizier@irit.fr

ISSN 1946-2166 print/ISSN 1946-2174 online
© 2012 Taylor & Francis
http://dx.doi.org/10.1080/19462166.2012.663539
http://www.tandfonline.com

50 P. Saint-Dizier

In this introductory section we first discuss our general aims in terms of argument analysis.
We then introduce the current challenges and results in discourse analysis since arguments form
a major class of discourse relations. Furthermore, arguments are often closely associated with
various types of discourse structures, in particular those related to explanation, which contribute
to their strength, communicative goals and persuasion effects (e.g. Reed and Long 1997; Masthoff,
Reed, and Grasso 2008). This view is central in the pragma-dialectical theory (van Eemeren and
Grootendorst 1984, 1992; van Eemeren 2002) which considers the entirety of argumentation as a
discourse activity.

1.1. Argument analysis: some methodological considerations

Given the difficulty in developing a general model for argument analysis and extraction, our
strategy is to focus on a relatively large and frequently encountered group of argument structures
that form a homogeneous family from a linguistic, functional and conceptual point of view. Besides
developing a precise linguistic analysis and a processing strategy for that group of structures, our
aim is also to provide elements of a methodology so that other families of arguments can be
investigated and developed following similar principles. In this paper, we focus on the generic
form:

Reasons supporting conclusion as in:

(1) I like this hotel because because it feels like home.
(2) Carefully plug-in the mother card vertically otherwise you risk damage to the connectors.

In these two examples, the causal proposition expresses the reasons of the main proposition,
called the conclusion. This type of construction is frequently encountered with a large diversity
of language realisations in several textual genres, while sharing several conceptual features. This
structure is found for example in opinion texts (expressing why consumers are happy or unhappy
with a certain product), or in instructional texts such as didactic texts, procedures or requirements.
In procedures, which basically have an injunctive style, reasons often have a form of advice or
warning; in requirements, which are basically prescriptive, they explain or justify the constraints
which are imposed:

(2a) The system must respond in less than 2 seconds, otherwise customers will not buy it.
Other classes of applications where arguments play a central role include question-answering

(e.g. answering why, questions, or getting hints on how to realise a task, Canitrot, Roger, and
Saint-Dizier 2011) and the planning aspect of natural language generation of texts (e.g. Rosner
and Stede 1992).

Considering the large diversity of linguistic realisations of this generic form, our strategy, to
guarantee a robust and stable linguistic analysis, was to focus on texts which contain proto-typical
uses, in terms of forms and contents. Texts produced by professional authors certainly form the
best sample for this study. We then investigated texts where style and language issues were less
central, such as large public texts found on the web. The idea is to have a linguistically adequate
formalism and a robust set of rules that accurately describe the structure of arguments found in
texts with proto-typical argument structures while developing devices in the processing strategy
that make rules somewhat flexible in order to be able to process more ‘dirty’ texts.

An important issue is the role played by various types of knowledge sources in the identification
of arguments. Our investigations aim at developing a cooperation between language, knowledge
and inference issues to get a system that can accommodate the different facets of argument analysis.
For that purpose, a framework such as logic programming that integrates a logic-based view of
language processing with inferential capabilities seems to be a good option.

Argument and Computation 51

1.2. Discourse analysis challenges

Discourse structure analysis is a very challenging task because of the large diversity of discourse
structures, the various forms they take in language and the impact of knowledge and pragmatics
in their identification (Longacre 1982; Keil and Wilson 2000). Recognising discourse structures
cannot in general only be based on purely lexical or morphosyntactic considerations: subtle kinds
of knowledge associated with reasoning schemas are often necessary. These latter capture the
various facets of the influence of pragmatic factors in our understanding of texts (Kintsch 1988;
Di Eugenio and Webber 1996). The importance of structural and pragmatic factors does depend
on the type of relation investigated, on the textual genre and on the author and targeted audience.
In our context, technical texts are obviously much easier to process than free-style texts.

Rhetorical structure theory (RST) (Mann and Thompson 1988, 1992) is a major attempt to
organise investigations in discourse analysis, with the definition of 22 basic structures. Since then,
almost 200 relations have been introduced which are more or less clearly defined. Background
information about RST, annotation tools and corpora are accessible at http://www.sfu.ca/rst/. A
recent overview is developed in Taboada and Mann (2006). Very briefly, RST poses that coherent
texts consist of minimal units, which are all linked with each other, recursively, through rhetorical
relations. No unit is left pending: all units are connected to others. Some text spans appear to be
more central to the text purpose, these are called nuclei (or kernels), whereas others are somewhat
more secondary, they are called satellites. Satellites must be associated with nuclei. Relations
between nuclei and satellites are one-to-one or one-to-many. For example, an argument conclusion
may have several supports, possibly with different orientations. Conversely, a given support can
be associated with several distinct conclusions.

For example, in the sentence: (4) To prepare such a tart, you need red fruits, for example
strawberries or raspberries,. . . the discourse relation ‘illustration’ is composed of a nucleus:

red fruits and a satellite, which is the list of such fruits: strawberries, raspberries.
Note that these two structures are not necessarily adjacent. Similarly, prepare a tart and red

fruits are in a ‘prerequisite’ relation, where the latter is the satellite, the nucleus being expressed
as a goal.

The literature on discourse analysis is particularly abundant from a linguistic point of view.
Several approaches, based on corpus analysis with a strong linguistic basis are of much interest
for our purpose. Relations are investigated together with their linguistic marks in works such as
Delin, Hartley, Paris, Scott, and Vander Linden (1994), Marcu (1997), Marcu (2002), Kosseim
and Lapalme (2000) with their usage in language generation in Rosner and Stede (1992), and
in Saito, Yamamoto, and Sekine (2006) with an extensive study on how marks can be quite
systematically acquired. A deeper approach is concerned with the cognitive meaning associated
with these relations, how they can be interpreted in discourse and how they can trigger inferential
patterns (von Wright (2004), Moeschler (2007) and Fiedler (2001) just to cite a few works).

Within computational linguistic circles, RST has been mainly developed in natural language
generation for content planning purposes, e.g. Kosseim and Lapalme (2000) and Reed and Long
(1998). Besides this area, Marcu (1997, 2000) developed a general framework and efficient strate-
gies to recognise a number of major rhetorical structures in various kinds of texts. The main
challenges are the recognition of textual units and the identification of relations that hold between
them. The rhetorical parsing algorithm he introduced relies on a first-order formalisation of valid
text structures which obey a number of structural assumptions. These, however, seem to be some-
what too restrictive w.r.t. our observations. In particular, our observations show that the following
assumptions are too restrictive: relations occur between non-overlapping text spans, relations
are either vertical or horizontal (they can involve non-parent nodes), text structure is a binary-
branching tree in most cases (we have many situations with more than two nodes). His work is
based on a number of psycholinguistic investigations (Grosz and Sidner 1986) which show that

http://www.sfu.ca/rst/

52 P. Saint-Dizier

discourse markers are used by human subjects both as cohesive links between adjacent clauses
and as connectors between larger textual units. An important result is that discourse markers are
used consistently with the semantics and pragmatics of the textual units; they connect and they
are relatively frequent and unambiguous.

1.3. Argumentation and discourse analysis

We consider that the various types of arguments form a family of rhetorical relations. In our case
study, a conclusion is a nucleus and a support is a satellite: this articulation is typical to discourse
relations. From a syntactic point of view, a support is a right or left adjunct to a conclusion,
which is its head. In other terms, a support must be connected to a conclusion to be syntactically
acceptable.

For example, in the discourse relation ‘argument’ as illustrated in example (1) above, I like this
hotel is the kernel of the relation, while because I feel like being home is the satellite. In general,
kernels have an autonomous meaning, while satellites get their full meaning in context from their
association with a kernel. This whole sentence can then be a kernel or a satellite for another
statement. The sentence’ (3a) John said ‘I like this hotel because it feels like home’however being
home is not a source of pleasure for me illustrates the ‘contrast’ relation which is composed of two
rather opposite views. The connector ‘however’ connects the kernel with its satellite. In turn, this
latter satellite could include the reasons of such an opposite view, e.g. because this means home
work, more noise and people around you, etc. and be the kernel of a causal relation embedded
into the contrast relation.

An argumentation framework is a complex graph structure which exhibits the various concep-
tual relations that hold between arguments (support and attack are the most well known, but there
are many others, e.g. of a rhetorical nature). We will not develop this aspect here since there is an
abundant, well-written literature on argument typology, argument schemes, etc. this is also beyond
the scope of this article. Walton et al. (2008), among others, is a good analysis of the functional
and logical aspects of argumentation. A synthesis of computational models for processing argu-
ments is reported in Reed and Grasso (2007). Logical aspects of argumentation are particularly
well developed in general, as in, e.g. Dung (1995), Dung, Kowalski, and Toni (2006), Amgoud,
Parsons, and Maudet (2001), Amgoud, Bonnefon, and Prade (2005) and Caminada and Amgoud
(2007).

The distinction between arguments and other discourse relations may not be straightforward.
First, the schema ‘reasons supporting conclusions’ could be globally analysed as the ‘evidence’
relation, this latter being defined by: an evidence relation is a logical relation in which a proposi-
tion(s) is intended to increase the addressee’s assurance of another proposition(s). The definition
of this relation is clearly very vague, as we understand it. We view it as a subtype of the elaboration
relation, which is in our view a kind of proto-relation. The evidence relation may share similar
language realisations with arguments in the surface, but its contents are substantially different, for
example, it does not include any notion of warning or advice, support or attack, or even of logical
consequence, which are at the heart of the family we are analysing.

Our goal is to define proto-typical language forms for a given set of arguments related to the
family: Reasons supporting conclusion. In this article, we first consider procedural
texts, which abound in warnings and advice, which are instances of that family. These occur
in isolation: they do not attack or support each other. We then consider a special subgenre of
procedures, didactic texts, which merges instructions with a large variety of arguments with various
forms of explanation (Bourse and Saint-Dizier 2011).

If we consider rhetorical relations from a language point of view over various types of texts,
we note that a number of these relations (e.g. illustration, reformulation, concession) have a

Argument and Computation 53

precise definition and scope and very recurrent language forms, with well-identified linguistic
marks, while others have definitions with a larger scope and linguistic forms with rather shallow
linguistic marks. This is the case in particular for the elaboration relation and for various types
of arguments. These latter relations have a much larger conceptual scope than, e.g. illustration
or reformulation, where their definition and realisations have several facets. Similar to Dowty
(1991) for thematic roles, we consider that these complex relations are proto-relations which need
to be defined according to their various facets via constitutive properties. Defining the facets of
proto-relations associated with argument types is ongoing; it is beyond the scope of this article.

1.4. Article organisation

This article is organised as follows:

• from investigations of the structure of arguments in corpora, and discourse structures more
generally, we first describe the features of the Dislog language and then the <TextCoop>

engine and its environment. The approach being based on generative syntax principles,
we introduce quite a powerful rule system, constrained by various types of restrictive
principles.

• we then develop the treatment of complex argument realisations as found in rather free-
style texts, and present principles on how to write rules, in order to enhance reusability
and extensions to other structures,

• to end this first section, preliminary considerations on the use of knowledge to identify
and interpret arguments and discourse relations in general are introduced. This is an open
and complex problem with few contributions so far.

• A second part is devoted to the analysis of advice and warnings in procedural texts where
large rule samples are given. The section ends by an accurate evaluation of the rule coverage
and accuracy and the system performances. This allows us to develop a robust set of rules
to process the family of arguments introduced above.

• In a third part we investigate the relations between arguments and various forms of dis-
course relations dedicated to explanation, and show how they interact. Developing an
explanation theory is, again, a very open problem.

• The last section is devoted to the perspectives and applications under development. In
particular, we show that the type of generic structure (proto-argument) we investigate in
this paper occurs very frequently in a large diversity of types of texts, making this relation
crucial for argument analysis and the development of argumentation networks.

2. The <TextCoop> platform and the Dislog language

Our investigations on the forms in language taken by arguments have motivated the definition of
the <TextCoop> platform and the Dislog language, which allows us to renew the Logic Grammar
tradition, applied to discourse. In this section, we first introduce the principles which are at the
basis of <TextCoop>, taking into account the specificities of discourse structures, in contrast with
sentence structures. We then introduce the Dislog language (Dislog stands for discourse in logic
or discontinuities in logic since discourse structure analysis is based on marks which often are in
long-distance dependency relations). The <TextCoop> platform is then presented, in particular
the <TextCoop> engine and the linguistic architecture of the system. Dislog is further motivated
and illustrated in the next sections devoted to argument analysis.

There are at the moment a few well-known and widely used language-processing environments.
They are essentially used for sentence processing, not for discourse analysis. The reasons are

54 P. Saint-Dizier

essentially that the sentence level and its substructures are the crucial level of analysis for a large
number of applications such as information extraction, opinion analysis based on noun modifiers
or machine translation. Discourse analysis turns out to be not so critical for these applications.
However, applications such as summarisation (Marcu 2000) or question-answering do require an
intensive discourse analysis level, as shown in Jin and Simmons (1987).

Dedicated to sentence processing, let us note the GATE platform (http://gate.ac.uk/) which
is widely used and the Linguastream (http://www.linguastream.org) system which is based on
a component architecture, making the system really flexible. Besides some specific features for
simple aspects of discourse processing, none of these platforms allow the specifications of rules
for an extensive discourse analysis nor the introduction of reasoning aspects, which is essential
to introduce pragmatic considerations into discourse processing. GATE is used, e.g. for semantic
annotation, corpus construction, knowledge acquisition and information extraction, summarisation
and investigations around the semantic web. It also includes research on audio visual and language
connections. Linguastream has components to mainly deal with part of speech and syntactic analy-
sis. It also handles several types of semantic data with a convenient modular approach. It is widely
used for corpus analysis. The GETARUNS system (http://project.cgm.unive.it/getaruns.html),
based on the LFG grammar approach, has some capabilities to process simple forms of discourse
structures and argumentation analysis. Finally, Marcu (2000) developed a discourse analyser for
the purpose of automatic summarisation. This system is based on the RST assumptions which are
not always met in texts, as developed in the section below.

On a very different perspective, and also inspired by sentence syntax, two approaches based on
Tree Adjoining Grammars (TAGs) (Gardent 1997; Webber 2004) extend the formalism of TAGs
to the processing of discourse structures via tree anchoring mechanisms. The approach remains
essentially lexically based and is aimed at connecting propositions related by various discourse
connectors or at relating text spans which are in a referential relation.

2.1. Some linguistic considerations

Most works dedicated to discourse analysis have to deal with the triad: discourse function identifi-
cation, delimitation of its textual structure (boundaries of the discourse unit) and structure binding.
By function, we mean a kernel or a satellite of a rhetorical relation, e.g. an illustration, an illus-
trated expression, an elaboration, or the elaborated expression, a conditional expression, a goal
expression, etc. Functions are realised by textual structures which need to be accurately delimited.
Functions are not stand alone: they must be bound based on the kernel–satellite or kernel–kernel
principle.

<TextCoop> and Dislog are based on the following considerations:

• structure identification: requires the specification of the lexical, syntactic, morphologi-
cal, punctuation and possibly typographic marks (Longacre 1982; Luc, Mojahid, Virbel,
Garcia-Debanc, and Pery-Woodley, 1999) that allow the identification of discourse func-
tions. In general, the recognition of satellite functions is easier than the recognition of
their corresponding kernel(s) because they are more strongly marked. For example, it is
quite straightforward to recognise an illustration (although we defined 20 generic rules
that describe this structure), but identifying the exact text span which is its kernel (i.e. what
is illustrated) is much more ambiguous. Similarly, the support of an argument is marked
much more explicitly than its conclusion.

• structure delimitation: most of the literature on discourse analysis dedicated to the delimi-
tation of discourse units refers either to elementary discourse units (EDUs) (Schauer 2006)
or to the vague notion of text span. When identifying discourse structures in texts, and

http://gate.ac.uk/
http://www.linguastream.org
http://project.cgm.unive.it/getaruns.html

Argument and Computation 55

in particular when attempting to identify arguments, finding their textual boundaries is
very challenging. In addition, contrary to the assumptions of RST (e.g. Grosz and Sidner
1986; Marcu 2000) partly overlapping textual units can be involved in different discourse
relations.

• binding discourse units: the last challenge is, given a set of discourse functions and their
corresponding discourse units in a text, to identify relations between them. For example,
argument conclusions and supports are not necessarily contiguous: discourse functions
may be inserted between them. We also observed a number of one-to-many relations,
besides the standard one-to-one relations: an argument conclusion may have several sup-
ports, possibly with different orientations. As a consequence, the principle of textual
contiguity cannot be applied systematically. For that purpose, we have developed a princi-
ple called selective binding, which is also found in formal syntax to deal with long-distance
dependencies or movement theory.

2.2. Some foundational principles of <TextCoop>

The previous subsection has outlined a number of challenging language-processing situations. The
necessity of a modular approach, where each aspect of discourse analysis is dealt with accurately in
a specific module, while keeping open all the possibilities of interaction (or concurrency) between
modules has led us to consider some simple elements of the model of generative syntax (a good
synthesis is given in Lasnik and Uriagereka 1988). As shall be discussed later, we introduce:

• productive principles, which have a high level of abstraction, which are linguistically
sound, but which may be too powerful,

• restrictive principles, which limit the power of the first in particular on the basis of well-
formed constraints.

Another foundational feature is an integrated view of marks used to identify discourse functions,
merging lexical objects with morphological functions, typography and punctuation, syntactic con-
structs, semantic features and inferential patterns that capture various forms of knowledge (domain,
lexical, textual). <TextCoop> is the first platform that offers this view within a logic-based
approach. If machine learning is a possible approach for sentence processing, where interesting
results have emerged, it seems not to be so successful for discourse analysis (e.g. Carlson, Marcu,
and Okurowski 2001). This is due to two main factors: (1) the difficulty in annotating discourse
functions in texts (Saaba and Sawamura 2008) and the high level of disagreement between anno-
tators and (2) the large non-determinism of discourse structure recognition where identification
marks are often immersed in long spans of text of no or little interest. For these reasons, we adopted
a rule-based approach. Rules are hand coded, based on corpus analysis using bootstrapping tools.

Dislog rules basically implement the productive principles. They are composed of three main
parts:

• a discourse function identification structure, which basically has the form of a rule or a
pattern,

• a set of calls to inferential forms using various types of knowledge, these forms are part of
the identification structure, they may contribute to solving ambiguities, they may also be
involved in the computation of the resulting representation or they may lead to restrictions.
This is developed in Section 2.5,

• a structure that represents the result of the analysis: it can be a simple XML structure, or
any other structure a priori such as an element of a graph or a dependency structure. More
complex representations, e.g. based on primitives, can be computed using a rich semantic

56 P. Saint-Dizier

lexicon. This is of much interest since our analysis is oriented towards a conceptual analysis
of discourse, and, in particular, semantic aspects of arguments.

Besides rules, Dislog allows the specification of a number of restrictive principles, e.g.
dominance, precedence, exclusion, etc.

2.3. The structure of Dislog rules

Let us now introduce in more depth the structure of Dislog rules. Dislog follows the principles
of logic-based grammars as implemented three decades ago in a series of formalisms, among
which, most notably: Metamorphosis Grammars (Colmerauer 1978), Definite Clause Grammars
(Pereira 1981) and Extraposition Grammars (Pereira 1981). These formalisms were all designed for
sentence parsing with an implementation in Prolog via a meta-interpreter or a direct translation
into Prolog (Saint-Dizier 1994). The last two formalisms include a simple device to deal with
long distance dependencies. Various processing strategies have been investigated in particular
bottom-up parsing, parallel parsing, constraint-based parsing and an implementation of the Earley
algorithm that merges bottom-up analysis with top-down predictions. These systems have been
used in applications, with reasonable efficiency and a real flexibility to updates, as, e.g. reported
in Gazdar and Mellish (1989).

Dislog adapts and extends these grammar formalisms to discourse processing, it also extends
the regular expression format which is often used as a basis in language-processing tools. The rule
system of Dislog is viewed as a set of productive principles.

A rule in Dislog has the following general form, which is globally quite close to Definite Clause
Grammars in its spirit:

L(Representation) → R, {P}. where:

• L is a non-terminal symbol.
• Representation is the representation resulting from the analysis, it is in general an XML

structure with attributes that annotates the original text. It can also be a partial dependency
structure or a more formal representation.

• R is a sequence of symbols as described below, and
• P is a set of predicates and functions implemented in Prolog that realise the various

computations and controls, and that allow the inclusion of inference and knowledge into
rules. These are included between curly brackets as in logic grammars to differentiate them
from grammar symbols.

R is a finite sequence of the following elements:

• terminal symbols that represent words, expressions, punctuations, various existing html
or XML tags. They are included between square brackets,

• preterminal symbols: are symbols that are derived directly into terminal elements. These
are used to capture various forms of generalisations, facilitating rule authoring and update.
Symbols can be associated with a type feature structure that encodes a variety of aspects
of those symbols, from morphology to semantics,

• non-terminal symbols, which can also be associated with type feature structures. These
symbols refer to ‘local grammars’, i.e. grammars that encode specific syntactic construc-
tions such as temporal expressions or domain-specific constructs. Non-terminal symbols
do not include discourse structure symbols: Dislog rules cannot call each other, this feature
is dealt with by the selective-binding principle, which includes additional controls. A rule
in Dislog thus basically encodes the recognition of a discourse function taken in isolation.

Argument and Computation 57

• optionality and iterativity marks over non-terminal and preterminal symbols, as in regular
expressions,

• gaps, which are symbols that stand for a finite sequence of words of no present interest for
the rule which must be skipped. A gap can appear only between terminal, preterminal or
non-terminal symbols. Dislog offers the possibility to specify in a gap a list of elements
which must not be skipped: when such an element is found before the termination of the
gap, then the gap fails. The length of the skipped string can also be controlled.

• a few meta-predicates to facilitate rule authoring.

Similar to DCGs and to Prolog clause systems, it is possible and often necessary to have several
rules to describe the different realisations of a given discourse function. These all have the same
identifier L, as it is the case, e.g. for NPs or PPs. A set of rules with the same identifier is called a
cluster of rules. Rule clusters are executed sequentially by the <TextCoop> engine following an
order given in a cascade.

2.4. Dislog advanced features

In this section, we describe the features offered by the Dislog language that complement the
grammar rule system. These mostly play the role of restrictive principles. At the moment we
have three sets of devices: selective-binding rules to link discourse units identified by the rule
system, correction rules to revise structures which may have, e.g. some erroneously placed tags,
and concurrency statements that allow a correct management of clusters of rules. Concurrency
statements are closely related to the cascade system. They are constrained by the notion of bounding
node, which delimits the text portion in which discourse units can be bound. Similarities with
sentence formal syntax are outlined when appropriate, however, phenomena are substantially
different.

2.4.1. Selective-binding rules

Selective-binding rules is the means offered by Dislog to construct hierarchical discourse structures
from the elementary ones identified by the rule system. Selective-binding rules allow to link two or
more already identified discourse functions. The objective is, e.g. to bind a kernel with a satellite
(e.g. an argument conclusion with its support) or with another kernel (e.g. concessive or parallel
relations). Related to this latter situation is the binding of two argument conclusions, which, e.g.
share a similar support, as in:

(5) Do not use butter to cook vegetables because it contains too much cholesterol, similarly
avoid palm oil.

The similarly linguistic mark binds to argument conclusions related to the same topic. Selective-
binding rules can be used for other purposes as well as implementing rhetorical relations.

From a syntactic point of view, selective-binding rules are expressed using the Dislog language
formalism. Different situations occur that make binding rules more complex than any system of
rules used for sentence processing, in particular:

• discourse structures may be embedded to a high degree, with partial overlaps,
• they may be chained (a satellite is a kernel for another relation), e.g. example (3),
• kernels and related satellites may be non-adjacent,
• kernels may be linked to several satellites of different types, e.g. example (6),
• some satellites may be embedded into their kernel.

58 P. Saint-Dizier

Selective-binding rules allow the binding of:

• two adjacent structures, in general a kernel and a satellite, or another kernel. A standard
case is an argument conclusion followed by its support.

• more than two adjacent structures, a kernel and several satellites. For example, it is quite
common to have an argument conclusion associated with several supports, possibly with
different orientations:
(6) The Maoists will win the elections because they have a large audience and because
they threat Terrai tribe leaders.

• two or more non-adjacent structures, which may be separated by various elements (e.g.
causes and consequences, conclusion and supports may be separated by various elements).
This is a frequent situation in standard language, where previous items are referred to via
pronominal references or via various kinds of marks (coming back to. . .):
(7) avoid seeding by high winds. Avoid also frost periods. Besides the fact that the wind
will disperse most of your seeds, your vegetables will not grow where you expect them to
be.
However, limits must be imposed on the ‘textual distance’ between units. In discourse,
such a constraint is not related to well-formed constraints as it is in sentence syntax, but it
captures the fact that units which are very distant (e.g. several paragraphs) are very difficult
to conceptually relate. One of the reasons is that focus or even topic shifts are frequent
over paragraphs or sections and memorising the topic chain is somewhat difficult.

In terms of representation, the two first cases can be dealt with using a standard XML notation
where the different structures are embedded into a parent XML structure that represents the whole
structure. This is realised via the use of logic variables in logic programming which offer a very
powerful declarative approach to structure building. The latter case requires a different kind of
representation technique. We adopt a notation similar to the neo-Davidsonian notation used for
events in sentence logical representations (Davidson 1963). An ID, which can be interpreted as a
discourse event, is associated with each tagged discourse function.

A selective-binding rule for two adjacent structures can then be stated as follows:

argument(R) -->
[<conclusion>], gap(G1), [</conclusion>],
connector(C,[type:cause]), [<support>], gap(G2), [</support>].

where the first gap covers the conclusion textual unit G1 and the second one covers the support
textual unit G2, the connector language realisation is defined by C, with the constraint that it is of
type cause.

To limit the textual distance between argument units, we introduce the notion of bounding
node, which is also a notion used in sentence formal syntax to restrict the way long-distance
dependencies can be established (Lasnik and Uriagereka 1988). Bounding nodes are also defined
in terms of barriers in generative syntax (Chomsky 1986). In our case, the constraint is that a gap
must not go over a bounding node. This allows to restrict the distance between the constituents
which are bound. For example, we consider that an argument conclusion and support must be both
in the same paragraph; therefore, the node ‘paragraph’ is a bounding node.

This declaration is taken into account by the <TextCoop> engine in a transparent way, and
interpreted as an active constraint which must be valid throughout the whole parsing process. The
situation is however more complex than in sentence syntax. Indeed, bounding nodes in discourse
depend on the structure being processed. For example, in the case of procedural discourse, a
warning can be bound in general to one or more instructions which are in the same subgoal

Argument and Computation 59

structure. Therefore, the bounding node will be the subgoal node, which may be much larger than
a paragraph. Bounding nodes are declared as follows in Dislog:

boundingNode(paragraph, argument).

2.4.2. Repair rules

Although relatively unusual, annotation errors may occur. This is, in particular, the case when
(1) a rule has a fuzzy or ambiguous ending condition w.r.t. the text being processed or (2) when
rules of different discourse functions overlap, leading to closing tags that may not be correctly
inserted. In argument recognition, we have indeed some forms of competition between a conclusion
and its support which share common linguistic marks. For example, when there are several causal
connectors in a sentence the beginning of a support is ambiguous since most supports are introduced
by a connector. In addition to using concurrent processing strategies, repair rules can resolve errors
efficiently, in the same spirit as those developed for TAGs in Lopez (1999).

Formally, the most frequent situation is the following:
<a>, . . . < /a>, . . . < /b>

which must be rewritten into:
<a>, . . . < /a>, . . . , . . . < /b> .
This is realised by the following rule:

correction([<A> G1 G2 G3]) -->
[<A>], gap(G1),[],gap(G2), [], gap(G3), [].

Our formalism in fact allows to specify any kind of correction rule. These rules have the same
format as those used to identify discourse functions. In our example, A and B stand for any tag,
possibly with attributes, not given here for the sake of readability.

2.4.3. Rule concurrency management

The current <TextCoop> engine is close to the Prolog execution schema. However, to properly
manage rule execution and also the properties of discourse structures and the way they are usu-
ally organised, we introduce additional constraints, which are, for the most part, borrowed from
sentence syntax.

Within a cluster of rules, the execution order is the rule reading order, from the first to the
last one. Then, elementary discourse functions are first identified and then bound to others to
form larger units, via selective-binding rules. Following the principle that a text unit has one and
only one discourse function (but may be bound to several other structures via several rhetorical
relations) and because rules can be ambiguous from one cluster to another, the order in which rule
clusters are executed is a very crucial parameter. To handle this problem, Dislog requires that rule
clusters are executed in a precise, predefined order, implemented in a cascade of clusters of rules.
This notion was introduced by Stabler (1992) with the notion of layers and folding–unfolding
mechanisms in an implementation of Generative Syntax theory in Logic programming.

For example, if, in a procedure, we want first titles, then prerequisites and then instructions to
be identified, the following constraint must be specified:

title < prerequisite < instruction.

Since titles have almost the same structure as instructions, but with additional features (bold
font, html-specific tags, etc.), this prevents titles from being erroneously identified as instructions.

60 P. Saint-Dizier

Similarly, it is much preferable to process argument supports, which are easier to identify, before
argument conclusions. Processing advice before warnings also limits risks of ambiguities:

advice-support < advice-conclusion < warning-support <
warning-conclusion.

In our engine, there is no backtracking between clusters. When there is no a priori complete order
between clusters, those not mentioned in the cascade are executed at the end of the process.

In relation with this notion of cascade, it is possible to declare ‘closed zones’, e.g.:

closed_zone([title]).

indicates that the textual span recognised as a title must not be considered again to recognise other
functions within or over it (via a gap).

2.4.4. Structural constraints

Let us now consider basic structural principles, which are very common in language syntax. This
allows us to contrast the notion of constituent with the notion of relation in discourse. Constituency
is basically a part-of relation applied to language structures (nouns are parts of NPs) while discourse
is basically relational. Let us introduce here dominance and precedence constraints. Discourse
abound in various types of constraints, which may be domain dependent (Barenfanger and Hilbert
2006). Dislog is open to the specification of a number of such structural constraints. For argument
recognition, these are not so important.

Dominance constraints can be stated as follows:

dom(instruction, condition).

This constraint states that a conditional expression is always dominated by an instruction. This
means that a condition must always be part of an instruction, not in a discourse relation with an
instruction. In that case, there is no discourse link between a condition and an instruction, the
implicit structure being constituent a condition is a constituent or, a part of, an instruction.

Similarly, non-dominance constraints can be stated to ensure that two discourse functions
appear in different branches of a discourse representation, e.g.:

not_dom(instruction, warning).

states that an instruction cannot dominate a warning. However, a warning may be associated with
an instruction via a rhetorical relation if its scope is that instruction. This is implemented by a
selective-binding rule.

Finally, precedence constraints may be introduced.We only consider here the case of immediate
linear precedence, for example:

prec(elaborated, elaboration).

indicates that an elaboration must follow what is elaborated. This is a useful constraint for the
cases where a nucleus must necessarily precede its satellite: it contributes to the efficiency of the
selective-binding mechanism and resolves some recognition ambiguities. Concerning arguments,
supports and conclusions may appear a priori in any order; however, if the support appears first,
then it is the focus of the arguments rather than the conclusion.

Argument and Computation 61

2.5. Introducing reasoning aspects into discourse analysis

Discourse relation identification often requires some forms of knowledge and reasoning. This is in
particular the case to resolve ambiguities in relation identification when there are several candidates
or to clearly identify the text span at stake. While some situations are extremely difficult to resolve,
others can be processed, e.g. via lexical inference or reasoning over ontological knowledge. Dislog
allows the introduction of reasoning, and the <TextCoop> platform allows the integration of
knowledge and functions to access it and reason about it.

This problem is very vast and largely open, with exploratory studies, e.g. reported
in Van Dijk (1980), Kintsch (1988), and more recently some debates reported in
http://www.discourses.org/UnpublishedArticles/SpecDis&Know.htm.

Within our perspective, let us give here a simple motivational example. The utterance (found
in our corpus):

(8) . . .red fruit tart (strawberries, raspberries) are made. . .
contains a structure: (strawberries, raspberries) which is ambiguous in terms of discourse func-
tions: it can be an elaboration or an illustration; furthermore, the identification of its kernel is
ambiguous: red fruit tart, red fruit?
A straightforward access to an ontology of fruits tells us that those berries are red fruits, therefore:

• the unit strawberries, raspberries is interpreted as an illustration, since no new information
is given (otherwise it would have been an elaboration)

• its kernel is the ‘red fruit’ unit only,
• and it should be noted that these two constituents, which must be bound, are not adjacent.

The relation between an argument conclusion and its support may not necessarily be
straightforward to identify and may involve various types of domain and common-sense
knowledge:
(9) do not park your car at night near this bar: it may cost you fortunes.

(10) Women’s living standards have progressed in Nepal: we now see long lines of young girls
early morning with their school bags. (Nepali Times).
In this latter example, school bag means going to school, then school means education, which in
turn means better living conditions.

2.6. Processing complex constructions: the case of dislocation

As in any language situation, there are complex situations where discourse segments that con-
tribute to form larger units, which are not clearly delimited, may overlap, be shared by several
discourse relations, etc. Similar to syntax, we identified in relatively ‘free-style’ texts (i.e. not
as controlled as technical procedures) phenomena similar to quasi-scrambling situations, free-
structure ordering or cleft constructions. This is in particular the case for arguments which are
semantically complex constructs, subject to syntactic variations due to pragmatic considerations
such as focus or foregrounding. These issues are ‘deep’syntactic discourse constructions that need
to be explained and modelled from a language point of view.

As an illustration, let us consider a relatively frequent situation that we call dislocation, which
is very close to cleft constructions in syntax (Lasnik and Uriagereka 1988), which occurs when in
a two segment construction, one segment is embedded into the other, as in: (8i) strawberries and
raspberries are red fruits, for example.
‘red fruits’ is the kernel of the relation, while the illustration is split into two parts: ‘strawberries
and raspberries’ and ‘for example’. Here, the kernel is included into the satellite.
In the following example:
(11) products X and Y, because of their toxicity, are not allowed in this building.

http://www.discourses.org/UnpublishedArticles/SpecDis&Know.htm

62 P. Saint-Dizier

the support of the argument is embedded into the conclusion, probably to add some stress on the
toxicity of the products.

To model this construction, as a first experimentation, in particular to evaluate over-recognition
problems and the non-determinism introduced in the parsing, constructions subject to dislocation
must be declared as follows:

dislocation(argument_conclusion, argument_support, argument).

where the first two arguments of this predicate are the two structures subject to dislocation, the
second being the embedded one, while the third argument refers to the discourse structure that
should bind these two structures. The constraints are the following:

• the embedded construction is not further dislocated, i.e. it is in a single text segment,
• the construction that embeds the other is required to be in only two parts, and each segment,

the right and the left one, can be recognised by at least one terminal or non-terminal symbol.
• gap symbols cannot range over the embedded structure: they must be fully processed on

one sub-segment only,
• the selective-binding operation is directly realised from these two segments: these are

bound to the type of the third argument of the dislocation predicate without any further
control.

From a processing point of view, the <TextCoop> engine attempts to recognise the embedded
structure first, then, if no unique text segment can be found for the embedding structure (standard
case), it non-deterministically decomposes the rules describing the embedding structure one after
the other, following the above constraints, and attempts to recognise it ‘around’ the embedded
one.

Finally, we observed in our corpora quasi-scrambling situations, a simple case being the illus-
tration relation. Consider again the example above, which can also be written as follows:
(8ii) strawberries are red fruits similarly to raspberries, for example.
where the enumeration itself is subject to dislocation.

2.7. The <TextCoop> engine

Let us now give some details about the way the <TextCoop> engine runs. The engine and its
environment are implemented in SWI Prolog, using the standard syntax without referring to any
libraries to guarantee readability, ease of update and portability. It is therefore a stand-alone appli-
cation. Since this is quite a complex implementation, we simply survey here the elements which
are crucial for our current purpose. The principle is that the declarative character of constraints and
structure processing and building are preserved in the system. The engine, implemented in Prolog,
interprets them at the appropriate control points. The <TextCoop> engine code will be shortly
available under GPL license together with a programming environment for rules and linguistic
resources (for French and English).

The engine first realises a part of speech tagging. This greatly improves efficiency by limiting
backtracking at the rule execution level. Then the engine follows the cascade specification for the
execution of rule clusters. Within each cluster, rules are activated in their reading order, one after
the other. Backtracking manages rule failures. If a rule in a rule cluster succeeds on a given text
span, then the other possibilities for that cluster are not considered (but rules of other clusters may
be considered in a later stage of the cascade).

A priori, the text is processed via a left to right strategy. However, <TextCoop> offers a right
to left strategy for rules where the most relevant marks are to the right of the rule, in order to limit

Argument and Computation 63

backtracking. For the two types of readings, the system is tuned to recognise the smallest text span
that satisfies the rule structure.

The engine can work on different textual units: sentences, paragraphs, sections, etc. depending
on the kind of structure or phenomenon to recognise (some have a very large scope such as the
‘frame’ relation that constrains a whole paragraph or even more, while others such as the goal
of an instruction or an illustration usually appear in a single sentence. ‘Title’ relations also range
over a large text fragment). These can be specified in the cascade for each cluster of rules. The
system is more efficient and generates less ambiguities with smaller units. It processes raw text,
html or XML texts. A priori, the initial XML structure of the processed document is preserved.

2.8. System performances and discussion

Let us now analyse the performances of <TextCoop> with respect to relevant linguistic
dimensions, and contrast these with performances of parsers dedicated to sentence processing.

2.8.1. General results

The <TextCoop> engine and related data are implemented in SWI Prolog which runs on a number
of environments (Windows, Linux, Apple). Our implementation can support a multi-threaded
approach, which has been tested with the <TextCoop> engine embedded into a Java environment
in collaboration with the Prometil company. This is useful for example for ‘parallel’ processing on
several machines or to distribute, e.g. lexical data, grammars and domain knowledge on various
machines for large scale or real-time applications.

The <TextCoop> engine has been relatively optimised and some recommendations for writing
rules have been produced (see Section 2.10) in order to allow for a reasonable efficiency. Our
basis is a test application with a lexicon of 1300 words and a set of 78 rules related to procedure
processing. The test system recognises eight different structures (or a subset of them): instructions,
warnings, advice, prerequisites, goals, conditions, illustrations and circumstances. In Section 4,
more relations are considered. This test application is purely linguistic, it does not use any external
source of knowledge to solve ambiguities. The system runs on a standard PC with Windows XP,
an average volume of 18 Megabytes (Mb) of text is processed per hour.

Results are discussed in more depth below: they give a better view on the current performances
of the system, using our test application. An important feature is the type of text which is pro-
cessed: indeed, professional texts, because of their very regular form, possibly following authoring
recommendations, produce much better results than dirty texts, such as those coming from the
web. However, we also observed large differences in quality and homogeneity in professional texts
which make evaluation results somewhat relative.

2.8.2. Lexical issues

An important feature of argument recognition is that the lexical resources which are needed are
generic, for most of them. This means that the system can be deployed almost on any application
domain without any major lexical changes. This result is not proper to argument analysis but to a
number of discourse relations whose recognition is based on a small set of predefined linguistic
marks and structures.

More precisely, in terms of lexical resources, the following main categories are used for argu-
ment recognition: (1) closed classes: discourse connectors, negation, pronouns, prepositions and
some basic icons and forms of punctuation and typography, (2) open classes: common commu-
nication and change of state verbs (about 600 verbs for French), and nouns, verbs and some
adjectives with a strong positive or negative polarity (currently 360 terms for French, slightly less

64 P. Saint-Dizier

for English). In our test application, instructions also require the recognition of action verbs, which
is quite large a set in general (about 10,000 verbs for French, more for English). To overcome
this difficulty, we specialise the action verb lexicon to a given application domain: this is the
main lexical tuning which is needed to deploy a system on a specific domain. It should be noted
that even for a small domain like cooking, the number of verbs is about 350. For gardening and
do-it-yourself, this number is about 700 verbs. In professional procedures, this number is much
lower, between 50 and 150 for a given activity. This is essentially due to the use of authoring
recommendations. The same remark holds for most types of open lexical resources.

In total, the average size of the required lexical resources (number of rules being fixed) for
discourse processing for an application such as procedural text parsing on a given domain is
around 900 words, which is very small compared to what is necessary to process the structure
of sentences for the same domain. Results below are given for French. Results for English are a
priori comparable.

The following figures give the system performances depending on the lexicon size. These sizes
correspond to real and comprehensive lexicons for a given domain (e.g. 400 corresponds to the
cooking domain, the case with 180 lexical entries is a toy system).

Lexicon size
(in no. of words) Mb of text/h

180 39
400 27
900 20

1400 18
2000 17

These results are somewhat difficult to precisely analyse, since they depend on the number
of words by syntactic category, the way they are coded and the order in which they are listed
in the lexicon (in relation with the Prolog strategy). In order to limit the complexity related to
morphological analysis, a crucial aspect for Romance languages, a preliminary tagging process
has been carried out to limit backtracking. The way lexical resources are used in rules is also a
parameter which is difficult to precisely analyse.

Globally, reducing the size of the lexicon to those elements which are really needed for the
application allows for a certain increase in the system performances. This is particularly true for
small size lexicons, which are those required for industrial applications. This means some lexical
tuning, but on a limited scale.

2.8.3. Issues related to the rule system size and complexity

Two parameters related to the rule system are investigated here: how much the number of rules
and the rule size impact the efficiency.

The results obtained concerning the number of rules are the following:

Number of rules Mb of text/h

20 29
40 23
70 19
90 18

Argument and Computation 65

As can be noted, increasing the number of rules has a moderate impact on performances, one of
the reasons is that the most proto-typical rules are in general executed first. Rules have here an
average complexity: four symbols and a gap in average, and an average of eight rules per cluster.
Lexical size here is fixed (500 entries). Twenty rules is a very small system, while 80–120 rules is
a standard size for an application. The results we obtain are difficult to accurately analyse: besides
rule ordering considerations, results depend on the distribution of rules per cluster and on the
form of the rules. For example, the presence of non-ambiguous linguistic marks at the beginning
of a rule enhances rule selection, and therefore improves efficiency. Constraints such as those
presented in 2.4.3 and 2.4.4 are also very costly since they are checked at each step of the parsing
process for the structures at stake. Selective-binding rules have little impact on efficiency: their
first symbol being an XML tag, backtracking occurs at an early stage of the rule inspection.

Let us now consider rule size, which is obviously an important feature. In particular the number
of gaps is crucial:

Rule complexity (symbols per rule) Mb of text/h

3 30
4 23
5 20
7 18

With the number of rules and the size of the lexicon being kept fixed, we note also that the rule
size has a moderate impact on performances, slightly higher than the number of rules. This may
be explained by the fact that the symbols starting the rules are in a number of cases sufficiently
well differentiated to provoke early backtracking if the rule is not the one that must be selected.
However, the number of lexical entries associated with these symbols may have an important
impact. If the symbol is a specific type of connector or, conversely, if it is a noun or a verb, this
may entail efficiency differences. This is difficult however to evaluate at this stage. Finally, note
that rules have in general between four and six symbols, including gaps.

2.8.4. A comparison with sentence processing

Globally, we can conclude that there is an impact on efficiency in what concerns the size of the
lexicon, the number of rules and their complexity. However, from a toy system to a real size
application the impact is about a factor of 5– 8, which is moderate. For the reasons advocated
above, the system is not very sensitive to the size of the rule system.

Although we do not have precise figures for comparable treatments, performances substantially
contrast with sentence parsers where complexity does increase very much with the number of
rules, and to a lesser extent with the size of the lexicon. This being said, there are major general
differences between sentence and discourse processing which justifies these differences:

• although this depends on the syntactic theory adopted, however, in general, sentence parsers
based on rules have a larger number of rules (a few hundred), and these rules are often
recursive,

• in contrast, discourse processing requires rules which are not recursive, structures being
constructed by selective-binding rules (about three rules per discourse structure), which
form an autonomous system,

• sentence processing requires in general much more lexical resources and an extensive
morphological analysis, which is more limited in the case of discourse,

66 P. Saint-Dizier

• sentences in real documents being complex, most parsers are shallow parsers, which can
process substructures which are either left as such or bound by means of various relations
including dependencies,

• discourse-processing rules are based on a few, recurrent, linguistic marks, what is in
between (gaps) is of little interest for discourse rules: this allows a comprehensive bottom-
up parsing where complete structures can be recognised.

2.9. The <TextCoop> environment

The <TextCoop> environment is in a very early stage of development: many more experiments
are needed before reaching a stable analysis of the needs. Accessing already defined and formatted
resources is of much interest for authors. We have already designed the following sets of resources,
for French and English

• lists of connectors, organised by general types: temporal, causal, concession, etc. Mil-
tasaki, Prasad, Joshi, and Webber (2004) developed an original learning method to classify
connectors and related marks,

• list of specific terms which can appear in a number of discourse functions, e.g.: terms
specific of illustration, summarisation, reformulation, etc.

• lists of verbs organised by semantic classes, close to those found in WordNet, that we have
adapted or refined for discourse analysis, with a focus, e.g. on propositional attitude verbs,
report verbs (Wierzbicka 1987), etc.

• list of terms with positive or negative polarity, essentially adjectives, but also some nouns
and verbs, this is useful in particular to evaluate the strength of arguments,

• local grammars for, e.g.: temporal expressions, expression of quantity, etc.
• some already defined modules of discourse function rules to recognise general-purpose

discourse functions such as illustration, definition, reformulation, goal and condition.
• some predefined functions and predicates to access knowledge and control features (e.g.

subsumption),
• morphosyntactic tagging functions,
• some basic utilities for integrating knowledge (e.g. ontologies) into the environment.

This environment is compatible with sentence parsers which can operate on the text independently
of the tags, or within tag fields.

2.10. The art of writing Dislog rules and constraints

The ease of writing rules and the ‘natural’ character of those rules with respect to language and
corpus observations are major properties that any rule system must offer. This, however, needs
experiments over a large number of domains and applications on the way to identify rules, gener-
alise them, reach a certain linguistic adequacy and predictability and elaborate a comprehensive set
of linguistic marks, etc. Authoring tools are also needed for various kinds of operations, including
checking duplicates and overlaps among large sets of rules. While some tools are available for sen-
tence processing (e.g. Sierra, Alarcon, Aguilar, and Bach 2008), there is no such tool customised
for discourse. We develop in this section some considerations about a methodology for writing
rules and what the services an authoring tool should offer.

Some investigations have been realised to identify linguistic marks on subsets of discourse
relations (Redeker 1990; Rosner and Stede 1992; Marcu 1997; Takechi, Tokunaga, Matsumoto,
and Tanaka 2003; Stede 2012). These mostly establish general principles and methods to extract
terms characterising these relations, rules are then also written by hand (i.e. rules do not result

Argument and Computation 67

from automatic learning procedures). The linguistic and pragmatic forms and principles that have
emerged seem to be compatible with our perspective. Some of our discourse patterns are due to
these previous works.

At the present stage, rules are basically written by hand. Although this is not the main trend
nowadays, we feel this is the most reliable approach given the complexity and variability of
discourse structures and the need to elaborate semantic representations. Let us briefly review here
how rules are produced.

The first step is, given a discourse function one wants to investigate, to produce a clear definition
of what it exactly represents and what is its scope, possibly in contrast with other functions. This
is realised via a first corpus construction where a number of realisations over several domains
are collected, analysed and sorted by decreasing proto-typicality order. This must be realised
preferably by a few people and in connection with the literature, in order to reach the best consensus.

Then a larger corpus must be elaborated possibly via bootstrapping tools. Morphosyntactic
tagging contributes to identifying regularities and frequencies.

From this corpus, a categorisation must be first elaborated of the different lexical resources
which are needed. Then rules can be written. Rules should be expressed at the right level of
abstraction to account for a certain level of predictability and linguistic adequacy. This means
avoiding low-level rules (one rule per exceptional case) or too high-level rules which would be
difficult to be constrained. Rules must be well delimited, starting and ending by non-terminal or
terminal symbols which are as specific as possible of the construct. Each rule should implement
a particular form of a discourse function. In general, the number of rules for a discourse function
(which form a cluster of rules) ranges from 5 to about 25 rules. About 10 are really generic, while
the others relate to much more restricted situations. This means that managing such a set of rules
and evaluating them for a given function on a test corpus is feasible. An example for warnings is
developed in Section 3.

The next step is to order rules in the cluster, starting by the most constrained ones considering
the processing strategy implemented in <TextCoop>. In general, the most constrained rules
correspond to less frequent constructions than generic ones, which could be viewed as the by-
default ones. In this case, this means going through a number of rules with little chances of
success, involving useless computations. As an alternative, it is possible to start by generic rules
if (1) they correspond to frequently encountered structures and (2) they start by specific symbols
not present in he beginning of other rules. In this case, backtracking would occur immediately.
This is a compromise that needs to be evaluated by the rule writer. An alternative would be to
transform these rules into a deterministic network, as proposed by Javacup tools. We experimented
this approach, but the cost of designing an artificial deterministic network was so high that we
never concluded this line of research.

Overlap with already existing rules must be investigated since this will generate ambi-
guities. This is essentially a syntactic task that requires rule contents inspection. This task
could certainly be automated in an authoring tool. Ambiguities may be resolved by using
knowledge. If it turns out that this is not possible, then preferences must be stated: a certain
function must be preferred over another one. Preferences can then be coded in the cascade,
starting with the preferred rule clusters, the recognition of the competing rules being then
excluded.

The last stage for rule writing is the development of selective-binding rules and possibly
correction rules for anomalous situations. Selective-binding rules are relatively easy to produce
since they are based on the binding of two already identified structures. Structure variability, long-
distance or dislocations are automatically managed by the <TextCoop> engine, in a transparent
way. Finally, the rule writer must add the cluster name at the right place in the cascade and possibly
state constraints as given in Section 2.4.4.

68 P. Saint-Dizier

Although there are important variations, the total investigations for encoding from scratch a
discourse function of a standard complexity, including corpus collection, readings and testing
should take a maximum of about one month full time. This is a very reasonable amount of time
considering, e.g. the workload devoted to corpus annotation in the case of a machine learning
approach.As a comparison, we estimate that annotating about 800 occurrences of a given discourse
relation and making the necessary controls take about 2– 5 weeks depending on how easy it is to
find an adequate diversity of occurrences for that relation. Then, when implemented, the relation
must be tested and evaluated on a test corpus, which takes one more week. Possibly, lexical
improvements and tunings need then to be carried out.

We feel the quality of manual encoding is also better, in particular rule authors are aware of
the potential weaknesses of their descriptions. If a rule or a small set of rules are already available
in an informal way, then encoding this small set in Dislog is much faster: checking for needed
lexical resources, writing the rules, checking overlaps and testing the system on a toy text should
not take more than a day or two for a somewhat trained person. Our current environment contains
about 280 rules describing 16 discourse structures associated with argumentation and explanation
(Bourse and Saint-Dizier in press). These rules are essentially the core rules for these 16 discourse
structures: it is clear that they can be used as a kernel for developing variants or more specific
rules for these structures or for structures that share some similarities in form. This should greatly
facilitate the development of new rules for trained authors as well as for new ones.

Coming back to an authoring tool, it is necessary at a certain stage to have a clear policy to
develop the lexical architecture associated with the rule system. Redundancies (e.g. developing
marks for each function even if functions share a lot of them) should be eliminated as much as
possible via a higher level of lexical description. This would also help update, reusability and
extensions.

3. Arguments in procedural texts

In the second part of this article, let us focus on the family of arguments Reasons for
conclusion as they are realised in procedural texts. These are in general realised as advice
or warnings. We show how they are expressed in Dislog and evaluate the performances of the sys-
tem in terms of accuracy and portability. Our strategy, to guarantee a robust and stable linguistic
analysis, is to focus on texts which contain proto-typical uses, in terms of form and contents, of
this form of argument. Procedures, in spite of their diversity, is probably the best type of text for
our analysis, in terms of regularity, quality and productivity. They guarantee the development of
rules with a large coverage.

Procedural texts have received some attention, in particular from a psycholinguistic and
ergonomics point of view, e.g. Bieger and Glock (1985), Lemarie, Lorch, Eyrolle, and Virbel
(2008), Aouladomar (2005), Adam (1987). Van der Linden (1993) and Webber and Di Eugenio
(1990) provide partial analyses of procedural texts, focussing on the instructional component.

Arguments in procedures are expressed in isolation, in conjunction with an instruction or a
group of instructions, they never attack or support each other. Their form is relatively standard, in
particular in professional texts where they often follow various authoring principles. Their role is
to help the user in the execution of the instructions by providing him advice (ways to improve the
task he is doing and the ensuing consequences according to several dimensions: comfort, security,
overall quality, cost, etc.) or by providing him warnings that indicate the potential risks if he does
not follow the instructions very strictly.

Procedural texts often exhibit a rational structure, the instructions, and an ‘irrational’ structure
which is mainly composed of advice, warnings, preferences, evaluations, user stimulations, etc.
(Reed 1998; Walton et al. 2008). The latter constitutes what we call the explanation structure,

Argument and Computation 69

which develops, motivates and justifies the goal-instructions structure, viewed as the backbone
of procedural texts (Bourse and Saint-Dizier 2011). A number of these elements are forms of
argumentation, they appear to be very useful, sometimes as important as instructions, since they
provide a strong and essential internal cohesion and coherence to procedural texts. Forms of
explanations besides arguments are developed in Section 4.

One of the main challenges of the argumentation community is to be able to automatically
construct graphs of arguments which are related by a number of relations, in particular attack
and support. The system presented here can identify text spans as arguments (conclusions and
supports). This is certainly the first step towards constructing such graphs. However, we feel
there is still a very long way before being able to automatically construct such graphs with an
acceptable accuracy. The first stage would be to provide an accurate semantic representation of
the contents of arguments taken in isolation (i.e. coming from various text portions), keeping in
mind that arguments may convey very subtle nuances in meaning. Then it is necessary to identify
how, or how much, they are related to each other (e.g. are they talking about the same thing?),
then their polarity and strength. Some examples in this paper show (e.g. (10)) that knowledge
and various forms of inferences are needed to realise such a task, besides accurate language
processing. Finally, arguments seldom come in isolation: they are associated with various forms
of explanation (illustrations, elaborations, comments, etc.) which must also be taken into account
since their meaning is not neutral to construct graphs of arguments.

3.1. A few methodological considerations

We have investigated the different forms advice and warnings may take and how they are realised in
French and in English from several corpora of procedural texts. We noted that, in a very large num-
ber of cases, these arguments can be identified by means of specific terms, without making complex
parses or inferences. For most of them, they are embedded into instructions or instructional com-
pounds (a group of related instructions realised in a single sentence, e.g. using coordination), it
is therefore quite easy to delimit them. Their scope is in general the compound. Finally, these
arguments turn out to have regular forms over several domains, making their corresponding rules
relatively portable modulo some lexical adaptations.

We have defined a set of rules that recognise warnings and advice conclusions and their
related supports. We defined those rules from a development corpus of about 1700 texts from
various domains (cooking, do it yourself, gardening, video games, maintenance, production, social
behavior recommendations, etc.). About a third of the corpus is related to professional activities.
The relevance of the domain and corpus is analysed in Delpech and Saint-Dizier (2008) and Fontan
and Saint-Dizier (2008).

3.2. Processing warnings

Procedures have essentially an injunctive character. Warnings are basically organised around a
unique structure composed of an ‘avoid or make sure to’ expression combined with a proposition
(Fontan et al. 1998). The strength of the terms used characterise the illocutionary force of the
argument, ordered here a priori by increasing force:

• ‘prevention verbs like avoid’ NP / to VP
(12) (avoid hot water)

• do not / never / . . . VP(infinitive) . . .

(13) (never put this cloth in the sun)
• it is essential, vital, . . . (to never) VP(infinitive).

(14) it is essential that you switch off electricity before starting any operation

70 P. Saint-Dizier

In the cases where the conclusion is relatively weak in terms of marks, then its recognition is based
on the observation that it is the instruction that immediately precedes an identified support.

In the third item above, never is preferably used with positively oriented formulations, e.g.:
(14a) it is essential to never leave the electricity on.

In addition, it may also reinforce the overall strength of the statement when combined with other
marks of the rule. Finally, as pointed out by a reviewer, the injunctive strength induced by forms
such as avoid, it is essential, never, etc. is subject to personal interpretation and may depend on
the text style. The strength of the argument is encoded in an attribute of the ‘warning’ tag and
is elaborated within the rules for warnings, possibly on the basis of lexical descriptions which
may also be specified at will. Therefore, it is possible to implement different views and levels of
granularity than the classification proposed above.

Finally, the notation ‘. . .’ stands for a gap. This gap must be sufficiently constrained so that
it does not skip any symbols, such as negation or, e.g. unless, apart from which would lead to
incorrect interpretations of the statement. This is part of the rule tuning process.

Supports for warnings are propositions identified from the following marks:

• connectors such as: otherwise, under the risk of, because , etc., in French: sinon, car, sous
peine de, au risque de or via verbs expressing consequence,
(15) otherwise it will shrink dramatically is a support for (12).

• negative expressions of the form: in order not to, in order to avoid, etc.
• specific verbs such as risk verbs introducing an event (you risk to break). In general, this

verb has a negative polarity.
• the presence of very negative terms, such as: nouns: death, disease, etc., adjectives, and

some verbs and adverbs.
(16) Electricity shocks are a major source of injuries and death is a support for (14).

We have a lexicon of about 300 negative terms elaborated from our corpora.

An important result is that the set of marks used is relatively limited, standard and almost
domain independent (some positive or negative terms may be specific to certain technical domains).
Examples are given in Section 3.4. The style is very direct (e.g. almost no metaphors to express
negative statements). One of the reasons is that authors want their warnings to be easy to understand,
without any ambiguities.

In the current implementation, we have:

• nine rules for warning supports and seven for conclusions,
• two repair rules,
• five selective-binding rules.

We carried out an indicative evaluation (e.g. to get improvement directions) on a corpus of 66
texts over various domains, containing 262 arguments. We get the following results for warnings:

Conclusion Support
recognition recognition (3) (4)

88% 91% 95% 95%

(3) conclusions well delimited (4) supports well delimited, with respect to warnings correctly
identified.

These results are really good, but it should be kept in mind that procedures are a specific textual
genre with strong stylistic constraints, in particular in professional documents. Rules are relatively

Argument and Computation 71

generic with a large coverage of the phenomenon, the structures they describe are found in most
types of texts we had investigated.

In other textual genres, warnings may have different linguistic forms. For example, in pre-
scriptive texts such as requirements, forms using modals such as must, or shall are frequent,
e.g.
(2a) the system must process the text in less than 2 seconds.
Supports keep the same linguistic structure. Requirement analysis is under investigation in our
LELIE project (Section 5.4). Requirements are very rich in arguments.

3.3. Processing advice

Conclusions of type advice essentially describe optional actions, whose aim is to improve the qual-
ity of the results or offer suggestions in ‘softer’ domains such as social behavior recommendations
or beauty. They are identified essentially by means of two types of structures:

• advice or preference expression followed by an instruction. The preference expression
may be a verb or a more complex expression: is advised to, prefer, it is better, preferable
to, etc.,
(17) prefer professional products

• expression of optionality or of preference followed by an instruction: our suggestions:. . .,
or expression of optionality within the instruction
(18) use preferably a sharp knife.

In addition, as for warnings, any instruction preceding a support of type advice can be inferred to
be a conclusion if it cannot be recognised by one of these criteria.

Then, supports of type advice are identified on the basis of three distinct types of structures:

• Goal exp + (adverb) + positively oriented term. Goal expressions are, e.g.: in order to, for
, whereas adverb includes: better, more (in French: mieux, plus, davantage), and positively
oriented term includes: nouns (savings, perfection, gain , etc.), adjectives (efficient, easy,
useful, etc.) or adverbs (well, simply, etc.). We constructed a lexicon that contains about
150 terms for this class of positively oriented terms.

• goal expression with a positive consequence verb (favor, encourage, save, etc.), or a
facilitation verb (improve, optimize, facilitate, embellish, help, contribute, etc.),
(17a) they will greatly improve the quality of your leathers and make minor repairs are
two supports for (17).

• the goal expression above can be replaced by the verb ‘to be’ in the future:
(18a) it will be easier to cut your pie into pieces is a support for (18).

In the current implementation, we have:

• eight rules for advice supports and six for their conclusions.
• two repair rules,
• five selective-binding rules.

In the cascade, warnings and advice are executed in a relatively early stage. Since rules exhibit
clear marks, with a reasonable level of lexical variation, efficiency is really high, compared, e.g.
to instruction recognition. Since supports have structures which are close to some types of goal
expressions, ambiguities may arise. It is necessary to recognise supports first provided then related
conclusions are found. The remaining structures are then identified as goals in a later stage of the
cascade.

72 P. Saint-Dizier

Figure 1. An extract of an annotated procedure.

Similar to as described above, we carried out an indicative evaluation on the same corpus with
68 texts containing 240 manually identified advice. We obtained the following results for advice:

Conclusion Support
recognition recognition (3) (4) (5)

79% 84% 92% 91% 91%

(3) conclusions well delimited, (4) supports well delimited, both with respect to advices
correctly identified and (5) support and conclusion correctly related.

A short example of an annotated text is given in Figure 1. For ease of reading, we use a
conventional bracketed notation instead of XML tags.

As the reader may note, results are less satisfactory for advice than for warnings. This is mainly
due to the fact that advice is expressed in a much ‘softer’ way than warnings, with less emphasis
and strength; therefore, terms typical of advice are not necessarily strongly marked. We feel that
it is difficult to go much beyond the current results with the approach adopted in Dislog. This is
due to the variability of advice constructions and the difficulty to accurately identify them without
a heavy use of domain knowledge. If we expand or make rules more flexible, we risk introducing
noise, lowering precision, which would not be a real overall gain. We doubt that learning methods
can provide better results for the same reasons, there are no results available.

3.4. A few illustrative rules

Let us now illustrate the above descriptions by means of a few proto-typical rules and examples for
warnings. We first give five rules for warning conclusions, among the most frequent ones. Their
order is not relevant. Illustrations are provided for the sake of readability. Then, we give four rules
for warning supports, for case (f) we show how this support can be related to the conclusions that
precede. We then give a simple example of a selective-binding rule designed to bind a conclusion
with a support that immediately follows it. Binding is realised on the basis of the tags which have
already been produced for conclusions and supports, respectively. A full example is then given
to summarise this section. Rules are given in an ‘external’ format since their implementation in
Dislog is slightly less readable.

WarningsConclusions →
(a) [it, is], {adverb(intensifier)}, imperativeMark, complementizer, gap, verb(action), gap,
endMark.
(20) (It is very important that you open the door carefully.)

Argument and Computation 73

complementizer : to, that, etc.
endMark: a dot, an html tag, a connector, etc.,
adverb(intensifier): very, really, also, etc.,
imperativeMark: essential, fundamental, required, vital, etc.
(b) exp(ensure), [to], negation, verb(action), gap, endMark.
(21) (Make sure to never touch this part of the cd.)
exp(ensure): ensure, make sure, be sure, etc.
(c) exp(ensure), negation, [to], verb(action), gap, endMark.
(22) (Be sure not to press the button before the procedure ends.).

(d) pronoun, modal(should), negation, gap, endMark.
(23) (You should not touch this part of the cd.)

(e) [always], verb(action), gap, endMark.
(24) (Always put on gloves before tackling any garden task.).

(24) is tagged as follows:
< warning_concl > Always put on gloves before starting any garden task < /warning_concl >

WarningsSupports →
(f) comp(avoid), verb(avoid), gap, endMark.
(25) (so as to avoid injuries.)
comp(avoid): to, in order to, this, this will, so that you, etc.
(26) (in order to avoid small injuries and insect bites.).
(25) and (26) are supports for (24).

(g) comp(avoid), exp(ensure), [to], negation, verb(action, infinitive), gap, endMark.
(27) (to ensure to never use it again.)

(h) connector(cause), gap, verb(negative consequence), gap, endmark.
(27b) (because otherwise the liquid may leak.)
connector: because, otherwise, because otherwise, etc.

(j) connector(cause), pronoun, gap, modal, gap, exp(negative), gap, endMark.
(28) (otherwise your dish would be ruined.).

(26) is tagged as follows:
< warning_supp > in order to avoid small injuries and insect bites < /warning_supp >

Selective-binding rules simply bind supports with conclusions:
SelectiveBinding(warnings) →
(k) [< warning_concl >], gap, [< /warning_concl >], [< warning_supp >], gap, [<
/warning_supp >].

An example fully tagged is then:
(29) < warning >< warning_concl > avoid using too much salt < /warning_concl > <

warning_supp > so as not to ruin your dish < /warning_supp >< /warning >.

3.5. Dealing with empty supports

Considering do-it-yourself and gardening texts, we noted that about two-thirds of the arguments
are not supported. This very large number of unsupported arguments can be explained by several

74 P. Saint-Dizier

factors: (1) procedural texts are more oriented towards action than control, (2) some supports could
in fact introduce useless doubts or confusions instead of being really useful, (3) some explanation
types (supports) may be too complex to be understood by a casual user and (4) supports are
sometimes sufficiently explicit in the conclusions:
(30) do not scatter seeds by high winds ! = they won’t go where you want them to go.
Reconstructing or inferring empty supports would be a very challenging task. However, in socially
oriented procedural texts supports are often much more explicit.

4. Arguments in Didactic texts

4.1. Global situation

Didactic texts can be viewed as a special kind of procedure, where the goal is to teach something
to an audience, often with recommendations. While the style remains basically instructional, the
language is much more elaborated. We observed a number of differences with procedural texts.
First, texts are relatively short, of a size comparable to large public procedures, i.e. less than a
page of text. Next, instructions are more difficult to clearly identify and, for each instruction, there
is a profusion of explanations of various kinds (reformulations, elaborations, illustrations, etc.) in
which arguments are immerged (von Wright 2004; Bourse and Saint-Dizier 2011). In this respect,
the pragma-dialectical theory (van Eemeren and Grootendorst 1984) analyses argumentation as a
speech act which has specific communicative goals.

Arguments are, in general, either warnings or advice with forms very close to those observed
in procedures; they often have the form of a principle to follow. We observed more advice than
warnings, this is not surprising since didactic texts are meant to help, not to prevent. Finally, the
speech act structure (Wierzbicka 1987) is often rich and elaborated, it allows, for example, to
make explicit various view points on a topic. The links between speech acts and argumentation is
a vast area of investigation which will not be investigated here, e.g. Reed and Long (1997), and
from a more pragmatic point of view (Pollock 1974; Moeschler 2002, 2007).

Here again, arguments appear mostly in isolation; conclusions are often associated with two
or more contrasting supports in order to discuss the facets of the idea being presented. Since it is
supposed to be an example to follow, the language in didactic texts is in general quite rich and
accurately follows grammatical rules. Another feature is that discourse marks, and in particular
connectors, are made as explicit as possible to make sure understanding is clear and unambiguous.
Didactic texts are therefore a very useful corpus for our investigations.

The following example illustrates some typical discourse structures and their interactions:
[procedure [purpose Writing a paper: [advice Read light sources, then thorough]]
[assumption/circumstance Assuming you’ve been given a topic,]
[circumstance When you conduct research], [[adviceconcl move from light to thorough resources

[advicesupport to make sure you’re moving in the right direction]].
Begin by doing searches on the Internet about your topic [purpose to familiarise yourself with

the basic issues;]
[temporal−sequence then] move to more thorough research on the Academic Databases;
[temporal−sequence finally], probe the depths of the issue by burying yourself in the library.
[warningconcl Make sure that despite beginning on the Internet, you don’t simply end there.
[warningsupport A research paper using only Internet sources is a weak paper, [consequence which

puts you at a disadvantage. . .]]]
While the internet should never be your only source of information, [contrast it would be ridicu-

lous not to utilize its vast sources of information. [adviceconcl You should use the internet to acquaint
yourself with the topic more before you dig into more academic texts.]]]

Argument and Computation 75

Rules for recognising arguments are relatively similar to those presented for procedures, a few
adaptations are needed for the lexical items used as marks, which are richer and less injunctive.
We noted in particular:

• richer and more elaborated injunctive marks, with politeness forms (ensure, please
consider, etc.),

• richer morphology: since the style is more personal, verbs often have a richer morphology:
subjunctive forms (especially in French and Spanish), forms using the second person plural
to make it more personal, etc. While this does not affect rules, it means a more important
access to lexical and morphological data,

• richer causal marks, with a few metaphorical formulations (Talmy 1993), as in the example
above,

• more subtle negative expressions (disadvantage, pressure, depressing, boring) which often
have a psycho-social dimension. An organised lexicon of these forms would be interesting
to construct with an analysis of the different categorisations which would need to be made
to make the rule system accurate and efficient,

• Manner adverbs are also used to qualify some statements, e.g. to soften them.
• Typographic marks tend to disappear, except for very low-level didactic texts.

These differences give an indication of the kind of lexical tuning which is needed when
considering a new textual genre for the same types of arguments.

4.2. A cooperation between explanation and argumentation

Explanation analysis remains a largely open research area. A number of analysis in pragmatics
have been carried out (Pollock 1974; Fiedler and Horacek 2001; von Wright 2004) and in cognitive
science, e.g. Schank (1986). This problem is still at the formulation and exploratory stage in more
formal and computational circles (Fiedler and Horacek 2001; Ashley, Desai, and Levine 2002),
with some considerations concerning language generation (Zukermann, McConachy, and Korb
2000).

The major interest in studying didactic texts w.r.t. procedures is that it makes it possible to
investigate the cooperation and the strong links that discourse relations dedicated to explana-
tion have with arguments. In fact, we consider arguments in this type of text as a very central
form of explanation to which are adjoined discourse structures such as illustration, concession or
reformulation. Besides arguments, elaboration is also a very central form.

As in a procedure, an explanation is also composed of a sequence of informational elements in
general structured with the intent of reaching a goal. This goal may be practical, more interpersonal
or epistemic (e.g. convince someone to do something in a certain way, negotiate with someone
while providing explanations about a certain point of view).

At the moment, in addition to arguments, the following sets of rules have been defined for
French and English (Bourse and Saint-Dizier 2011) and implemented in Dislog, these recognise
(the number of rules in each cluster is given between parenthesis): instructions (19), titles (14) and
subtitles, illustration (20), restatement (12), purpose (9), condition (13), circumstance (15), con-
cession (12), contrast (14), elaboration (19), frame (17), definition (9), goal (14), analogy (5) and
some forms of causes (11). More details can be found in Bourse and Saint-Dizier (in press). Similar
to arguments, the recognition of these structures is based on a limited number of linguistic marks.

From a test corpus (31,500 words) and for some of the above relations, we have the following
coverage and accuracy rates, expressed in terms of recall and precision. Our strategy was to favour
precision over recall since some discourse structures may be somewhat ambiguous or close to

76 P. Saint-Dizier

each other. The following figures are based on a comparison of the system performances w.r.t. a
manual annotation. A structure is correct if it is correctly identified and well delimited:

Structure Number manually annotated Precision (%) Recall (%)

Instruction 554 98 96
Illustration 38 92 87
Restatement 47 86 79
Purpose 101 89 86
Condition 168 93 82
Circumstance 121 95 92

It is quite challenging to identify the role played a priori by some of these forms of expla-
nations when combined with argument as a whole or combined more precisely with conclusions
or supports. Restricting our observations to didactic texts, we can formulate the following pre-
liminary conclusions, based on the uses of explanation by authors, and a global analysis of their
communicative intentions, while the contents of these structures is not considered:

• A reformulation is neutral w.r.t. an argument, it simply rephrases the argument in a different
way to make it as clear as possible:
Make sure to never touch this part of the cd, do not put your fingers on it.

• An illustration contributes to the understanding of an argument, but it may also add low-
level information to make the argument more convincing: it therefore can add a certain
strength to an argument that depends on the nature of the illustration:
(26i) in order to avoid small injuries and insect bites, such as mosquitoes or fleas.
The same remark can be made for the analogy relation, which is relatively frequent:
(32) carefully clean the mother card with a spray as you would for a jewel. . .

• A concession will most certainly weaken an argument:
(33) Make sure that despite beginning on the Internet, you don’t simply end there, however,
a number of students get good results by using only the web.
Similarly, a frame will limit the scope of an argument to a certain context.

• A circumstance or an assumption limits the scope of an argument, without affecting its
strength:
(21ii) When it is new, make sure to never touch this part of the cd.

1. An elaboration or a contrast will add strength to the argument: (33i) Make sure that despite
beginning on the Internet, you don’t simply end there, indeed, most web contents are obso-
lete, somewhat incorrect and superficial.
Most probably, general rules conveyed by elaborations have a stronger impact than
illustrations, but this is really dependent on the contents and on the audience.

At this stage, we can simply state general principles on how explanation has an impact on the
argument. It is however of much interest to see how explanation operates on arguments from
the above considerations. So far, we have made a clear-cut distinction between arguments and the
various forms of explanation. However, it may be possible to consider that the notions of argument
and explanation may overlap in a certain way and that a certain form of explanation, by virtue of
its use in a given utterance, also gets the status of an argument. A model for discourse function
merge or coercion could then be developed. In the same range of ideas, other features, in particular
speech acts and communication structures may induce that a fact becomes an argument.

Argument and Computation 77

5. Perspectives

5.1. Main results

In this article, we have first presented the <TextCoop> platform and the Dislog language, designed
for discourse analysis. <TextCoop> is based on a cooperation between grammar theory and
knowledge and reasoning, which allows the introduction of knowledge and pragmatic factors to
identify and properly bound discourse structures. From that point of view, this platform offers
several original features.

Our vision of the rule and constraints architecture borrows a few aspects from genera-
tive syntax: a productive system of rules, filtering constraints and parameters. Furthermore,
the grammatical level is based on a number of modules: a rule system, a lexical architecture,
synchronisation mechanisms and the expression of constraints (exclusion zones, precedence,
dominance, etc.). The <TextCoop> engine is tuned to process the different components of this
system.

Some elements of an environment for rule authoring and management have been designed.
A number of rules associated with the family of arguments Reasons supporting
Conclusion and dedicated to warning, advice and explanation structures are now available
for French and English with a method for developing other types of rules in a variety of languages.

From a software point of view, we plan to distribute the kernel of <TextCoop> as freeware
(GPL opensource) when sufficiently tested. Probably, and more conveniently, the system will also
be available as a web service with an adequate interface and input–output facilities, where users
can upload texts and see the tagged texts. Remote control, protected by a login, could be offered
so that users can update or add rules, which will then become available to the community (see
also Ferrari 1988). We also plan to make available a large corpus of arguments tagged by the
system.

From a more foundational point of view, this work raises several aspects of interest, in
particular:

• what are the required techniques and forms of linguistic analyses and knowledge that
allow an accurate extraction and interpretation of other forms of arguments, following the
principles and method initiated in this paper?

• How portable is our approach to other languages? While English and French seem to share
a lot of common properties, it is not fully clear how our formalism can be used and possibly
extended to other languages such as German or Spanish. For example, in Spanish, the style
is much more direct: inflected verb forms are often used instead of infinities. This may
seem a detail, but cultural differences would need to be also investigated, for example,
languages from Asia where honorifics certainly play a role in argumentation: a standard
argument formulation in French could possibly be viewed as a very rude formulation in
such a language.

• given the complexity of the task, and given the proximity of the different forms of arguments
in language, is it possible to organise arguments (and discourse relations more generally)
into classes, allowing for the definition of proto-arguments and proto-discourse relations?
These would be based on constitutive properties whose conceptual and functional status
is still to be determined. This would allow the development of a conceptual semantics of
arguments in a more principled and rational way.

• what are the interactions between arguments and explanation? What purpose do they serve?
We feel several types of functions (reinforce, weaken, develop, etc.) could be investigated
and integrated into an argumentation network.

78 P. Saint-Dizier

5.2. Towards argument conceptual representation

The above rules allow to identify and tag the different components of warnings and advice in
a number of documents, more generally, ‘Reasons supporting Conclusion’, with quite a large
diversity of linguistic realisations. It is then of much interest to consider the conceptual dimensions
of the argument, in particular its strength, its orientation and possibly the conceptual dimension(s) it
addresses. We have developed a relatively simple shallow parser that recognises the main elements
of the structure of an argument: the verb, the different proto-typical expressions as reported in the
rules above, the verb object and relevant nominal and adverbial modifiers.

Strength and orientation can then be determined on the basis of the verb global semantics and
the strength of the marks. Numerical values can a priori be associated with positive and negative
expressions, and then a metrics can be elaborated that combines the different values coming from
the various constituents of the argument. This is a very simple approach but which is somewhat
arbitrary and too global, since, e.g. the style and tone of the text are not taken into account. A
different approach consists in organising marks and relevant verbs along scales. These scales are
common in lexical semantics (Cruse 1986), they introduce partial orders. Then comparisons can
be made between arguments w.r.t. their strength, to develop, e.g. an argumentation graph.

It is also of much interest to identify the conceptual domain addressed by supports. We noted
that supports correspond to two main trends: (1) supports that address one or more general-purpose
aspects such as: efficiency of actions, safety and security, ease of execution, adequate execution,
speed, aesthetics, costs, space, quality, psychological status, etc., where subtypes can be defined,
and (2) supports that cover more precise, contingent domain dependent situations, e.g.:
(34) avoid pruning trees when temperature drops below zero.
This observation can help to categorise and organise arguments, showing their benefits, types
of risks, etc. For example, support (26) addresses safety, (30) and (31) adequate execution, (28)
psychological status and adequate execution and (19) ease of execution.

5.3. Extending the work: towards processing other kinds of arguments

The set of rules we have developed for processing arguments in procedures is obviously somewhat
limited considering the different forms arguments may take in language. We basically consider the
schema ‘Reasons supporting conclusion’, besides warnings and advice, rewards and threats can
be processed: they have about the same linguistic realisations with the exception that the source
of the arguments is included in the argument:
(35) Please pay your subscription within a week otherwise we will stop your internet connection.

Our feeling is that extracting arguments in natural language is an extremely difficult task in
general. Most probably, only those which have a clear linguistic realisation and requiring only
standard domain knowledge involved (e.g. via ontologies), can be relatively accurately recognised
and semantically characterised.

We conducted two small experiments to validate our working method and to explore the
possibilities offered by our rule system in other contexts where argumentation plays an important
role. Both experiments start from a controversial issue, the goal being then is to extract in texts
related arguments for or against that statement. The general form of these arguments is in general
the following:
paraphrase of the statement Connector(cause) support.
where the support is very close to the supports developed for procedures, respectively, introducing
a negative and a positive orientation. The first experiment we carried out is related to opinion
extraction. It is reported in Bal and Saint-Dizier (2010). The goal is to extract in news editorials
from Nepali journals facts or opinions under the form of arguments for or against a statement,
e.g. the Maoist will win the next elections; Women’s living standards in Nepal have improved.

Argument and Computation 79

The place of emotion in argumentation (Walton 1992) is obviously a central issue to be taken into
account.

The second experiment is related to getting pros and cons for a given attitude in health care.
For example, an open question a year ago was: should I get an injection against virus H1N1? For
example, we got statements such as:
(36) I will not get the injection because the adjuvant may be dangerous.,
(37) The injection is safe: millions of people have been treated without any side effect.
In these experiments, we simply extracted statements (facts or opinions), we did not construct
any argumentation structure, which is another kind of task. One of our difficulties was to identify
that the first part of a statement is indeed in relation with the controversial statement. For both
experiments, the extraction rate was quite good, with more than 60% of correct statements extracted
without changing any data in our rules.

5.4. Ongoing applications

At the moment, we developed two main application frameworks: (1) argument extraction in opinion
analysis and (2) risk analysis and prevention as these can be detected from procedures.

Argument extraction in opinion analysis, applied to customer opinions, aims at identifying the
reasons why customers are happy or unhappy with a certain product or brand. Arguments may be
explicit, introduced by a causal mark, or they may be incorporated into an evaluative expression
such as an adjective or an adverbial construct. This enlarges very much the argument extraction
perspective and language-processing technology.

We also initiated the LELIE project, aimed at analysing and preventing risks (e.g. health,
ecology) from procedure analysis, in production and maintenance situations. This project requires
an extensive discourse processing, in particular warnings and advice recognition. The goal is to
make sure that a set of procedures dedicated to a given task contain all the necessary safety advice
and warnings as stipulated by norms, regulations or business rules. Related to this project, we are
investigating from a language point of view a number of aspects of requirement technology. In
particular, we are investigating a model that pairs requirements with arguments so that the reasons
or the motivations for a requirement are made more explicit, in addition to the information which
may be inherited from the parent requirements. Besides safety prevention, the goal is to strongly
improve traceability, coherence analysis and requirement update techniques, which is a major
challenge at the moment.

Acknowledgements

This project is supported by the French ANR project LELIE and partly by an IFCPAR Indo-
French project. We are also very grateful to a number of colleagues for discussions about this
work, including Leila Amgoud, David Roussel, Lionel Fontan, Estelle Delpech and Sarah Bourse
and two anonymous reviewers.

References
Adam, J.M. (1987), Types de Sequences Textuelles Elementaires (Vol. 56), Pratiques, Metz, 1987.
Amgoud, L., Bonnefon, J.F., and Prade, H. (2005), ‘An Argumentation-Based Approach to Multiple Criteria

Decision’, in 8th European Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty, ECSQARU’2005, Barcelona.

Amgoud, L., Parsons, S., and Maudet, N. (2001), ‘Arguments, Dialogue, and Negotiation’, in 14th European
Conference on Artificial Intelligence, Berlin.

80 P. Saint-Dizier

Aouladomar, F. (2005), ‘Towards Answering Procedural Questions. Dans: KRAQ’05– IJCAI Workshop’,
eds. F. Benamara and P. Saint-Dizier, Edinburgh, Juillet, pp. 24–36.

Ashley, K.D., Desai, R., and Levine, J.M. (2002), ‘Teaching Case-Based Argumentation Concepts Using
Dialectic Arguments vs. Didactic Explanations’, in ITS 2002, Lecture Notes in Computer Science,
Springer Verlag, Heidelberg.

Bal, B.K., and Saint-Dizier, P. (2010), ‘Towards Building Annotated Resources for Analyzing Opinions and
Argumentation in News Editorial’, in LREC, Malta.

Barenfanger, M., and Hilbert, M. (2006), ‘Cues and constraints for the relational discourse analysis of complex
text types – the role of logical and generic document structure’, Journal of language technology and
computational linguistics, 23(2): 49–73.

Bieger, G.R., and Glock, M.D., (1984–85), ‘The Information Content of Picture-Text Instructions’, Journal
of Experimental Education, 53, 68–76.

Bourse, S., and Saint-Dizier, P. (2011), The Language of Explanation Dedicated to Technical Documents
(Vol. 27), Syntagma.

Bourse, S., and Saint-Dizier, P. (in press), The Structure of Explanation: the case of Didactic Texts, under
submission, LREC, May 2012, Istanbul, ed. ELRA Paris.

Caminada, M., and Amgoud, L. (2007), ‘On the Evaluation of Argumentation Formalisms’, Artificial
Intelligence Journal, V.171 (5–6), 286–310.

Canitrot, M., Roger, P.Y., and Saint-Dizier, P. (2011), ‘How-To Question-Answering: Hints Extraction’, in
LTC Conference, Poznan.

Carlson, L., Marcu, D., and Okurowski, M.E. (2001), ‘Building a Discourse-Tagged Corpus in the Framework
of Rhetorical Structure Theory’, in Proceedings of the 2nd SIGdial Workshop on Discourse and Dialog,
Aalborg.

Chomsky, N. (1986), ‘Barriers’, in Linguistic Inquiry Monograph (Vol. 13), Cambridge, MA: MIT Press.
Chomsky, N. (1990), ‘Some Concepts and Consequences of the Theory of Government and Binding’, in

Linguistic Inquiry Monograph (Vol. 6), Cambridge, MA: MIT Press.
Colmerauer, A. (1978), ‘Metamorphosis Grammars, in Natural Language Understanding by Computers’, ed.

L. Bolc, Lecture Notes in Computer Science (Vol. 63), Springer Verlag.
Cruse, A. (1986), Lexical Semantics, Cambridge: Cambridge University press.
Davidson, D. (1980), Essays on Actions and Events, Oxford: Oxford University Press.
Delin, J., Hartley, A., Paris, C., Scott, D., and Vander Linden, K. (1994), ‘Expressing Procedural Relation-

ships in Multilingual Instructions’, in Proceedings of the Seventh International Workshop on Natural
Language Generation, Maine, USA, pp. 61–70.

Delpech, E., and Saint-Dizier, P. (2008), ‘Investigating the Structure of Procedural Texts for Answering How-
To Questions’, in Language Resources and Evaluation Conference (LREC 2008), Marrakech: European
Language Resources Association (ELRA).

Di Eugenio, B. and Webber, B.L. (1996), ‘Pragmatic Overloading in Natural Language Instructions’,
International Journal of Expert Systems, 23, 58–87.

Dowty, D. (1991), ‘Thematic Proto-Roles and Argument Selection’, Language, 67-3.
Dung, P.M. (1995), ‘On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic

Reasoning, Logic Programming and n-Person Games’, Artificial Intelligence, 77, 321–357.
Dung, P.M., Kowalski, R., and Toni, F. (2006), ‘Dialectic Proof Procedures forAssumption-Based,Admissible

Argumentation’, Artificial Intelligence, 170(2), 114–159.
van Eemeren, F.H. (ed.) (2002), Advances in Pragma-Dialectics, Newport News: Vale Press.
van Eemeren, F.H. and Grootendorst, R. (1984), Speech Acts in Argumentative Discussions: A Theoret-

ical Model for the Analysis of Discussions Directed Towards Solving Conflicts of Opinion, Floris
Publications.

van Eemeren, F.H. and Grootendorst, R. (1992), Argumentation, Communication, and Fallacies: A Pragma-
Dialectical Perspective, Lawrence Erlbaum Associates.

Fontan, L., and Saint-Dizier, P. (2008), ‘Analyzing the Explanation Structure of Procedural Texts: Dealing
With Advices and Warnings’, International Symposium on Text Semantics (STEP 2008), ed. J. Bos,
Venice: Association for Computational Linguistics (ACL).

Argument and Computation 81

Ferrari, G. (1988), ‘Preliminary Steps Toward the Creation of a Discourse and Text Resource’, in Proceedings
of the First International Conference on Language Resources and Evaluation (LREC), Granada.

Fiedler, A., and Horacek, H. (2001), ‘Argumentation in Explanations to Logical Problems’, in Proceedings
of ICCS 2001, Springer Lecture Notes in Computer Science (Vol. 2073), Springer, pp. 969–978.

Gardent, C. (1997), ‘Discourse Tree Adjoining Grammars’, Report nb. 89, Univ. Saarlandes, Saarbrucken.
Gazdar, G., and Mellish, C. (1989), Natural Language Processing in Prolog: An Introduction to Computa-

tional Linguistics, Addison Wesley.
Grosz, B., and Sidner, C. (1986), ‘Attention, Intention and the Structure of Discourse’, Computational

Linguistics, 12(3).
Jin, W., and Simmons, R. (1987), ‘Question Answering with Rhetorical Relations’, in IEEE Conference on

AI.
Helbig., H. (2005), ‘Knowledge Representation and the Semantics of Natural Language’, in Cognitive

Technologies, Springer-Verlag.
Keil, F.C., and Wilson, R.A. (2000), Explanation and Cognition, Bradford Book.
Kintsch, W. (1988), ‘The Role of Knowledge in Discourse Comprehension: A Construction-Integration

Model’, Psychological Review, 95(2), 121–132.
Kosseim, L., and Lapalme, G. (2000), ‘Choosing Rhetorical Structures to Plan Instructional Texts’,

Computational Intelligence, Boston, MA: Blackwell.
Lasnik, H., and Uriagereka, J. (1988), A Course in GB Syntax, Cambridge, MA: MIT Press, 1988.
Lemarie, J., Lorch, R. F., Eyrolle, H., and Virbel, J. (2008), ‘SARA: A Text-Based and Reader-Based Theory

of Text Signaling’, Educational Psychologist, 43, 27.
Longacre, R. (1982), ‘Discourse Typology in Relation to Language Typology’, in Text Processing, Proceeding

of Nobel Symposium 51, ed. S. Allen, Stockholm: Almquist and Wiksell, pp. 457–486.
Lopez, P. (1999), Repair Strategies for Lexicalized Tree Grammars, EACL’99.
Luc, C., Mojahid, M., Virbel, J., Garcia-Debanc, C., and Pery-Woodley, M-P. (1999), ‘A Linguistic Approach

to Some Parameters of Layout: A Study of Enumerations’, in Using Layout for the Generation,
Understanding or Retrieval of Documents, AAAI 1999 Fall Symposium, eds. R. Power and D. Scott,
pp. 20–29.

Mann, W., and Thompson, S. (1988), ‘Rhetorical Structure Theory: Towards a Functional Theory of Text
Organisation’, TEXT, 8(3), 243–281.

Mann, W., and Thompson, S.A. (eds.) (1992), Discourse Description: Diverses Linguistic Analyses of a Fund
Raising Text, John Benjamins.

Marcu, D. (1997), The Rhetorical Parsing of Natural Language Texts, ACL.
Marcu, D. (2000), The Theory and Practice of Discourse Parsing and Summaruization, Cambridge, MA:

MIT Press.
Marcu, D. (2002), Au Unsupervised Approach to Recognizing Discourse Relations, ACL.
Masthoff, J., Reed, C., and Grasso, F. (eds.) (2008), ‘Symposium on Persuasive Technology’, in Conjunc-

tion with the AISB (UK) 2008 full proceedings: Convention Communication, Interaction and Social
Intelligence, Aberdeen.

Miltasaki, E., Prasad, R., Joshi, A., and Webber, B. (2004), Annotating Discourse Connectives and Their
Arguments, New Frontiers in NLP.

Moeschler, J. (2002), ‘Speech Act Theory and the Analysis of Conversation’, in Essays in Speech Act Theory
eds. Vandervecken, D. & Kubo, S., Amsterdam: John Benjamins.

Moeschler, J. (2007), ‘The Role of Explicature in Communication and in Intercultural Communication’, in
Exporations in Pragmatics, Linguistic, Cognitive and Intercultural Aspects, eds. I. Kecskes et al. Berlin:
Mouton de Gruyter.

Pereira, F. (1981), ‘Extraposition Grammars’, Computational Linguistics, 9-4, 7, 243–256.
Pereira, F., and Warren, D. (1980), ‘Definite Clause Grammars for LanguageAnalysis’, Artificial Intelligence,

13(3), 123–145.
Pollock, J.L. (1974), Knowledge and Justification, Princeton: Princeton University Press.
Redeker, G. (1990), ‘Ideational and Pragmatic Markers of Discourse Structure’, Journal of Pragmatics, 14,

56–77.

82 P. Saint-Dizier

Reed, C. (1998), ‘Generating Arguments in Natural Language’, Ph.D. dissertation, University College,
London.

Reed, C., and Grasso, F. (2007), ‘Recent Advances in Computational Models of Natural Argument’,
International Journal of Intelligent Systems, 22(1), 7–23.

Reed, C.A., and Long, D.P. (1997), ‘Content Ordering in the Generation of Persuasive Discourse’, in
Proceedings of 15th International Joint Conference on Artificial Intelligence, Nagoya, Japan.

Reed, C.A., and Long, D.P. (1998), ‘Generating the Structure of Argument’, in Proceedings of the 17th
International Conference on Computational Linguistics and 36th Annual Meeting of the Association
for Computational Linguistics (COLING-ACL98), ed. W. Hoeppner, Montreal, Canada.

Rosner, D., and Stede, M. (1992), ‘Customizing RST for the Automatic Production of Technical Manuals’,
in Aspects of Automated Natural Language Generation, eds. R. Dale, E. Hovy, D. Rosner, and O. Stock,
Lecture Notes in Artificial Intelligence, Springler-Verlag, pp. 199–214.

Saaba, A., and Sawamura, H. (2008), ‘Argument Mining Using Highly Structured Argument Repertoire’, in
Proceedings EDM08, Niigata.

Saito, M., Yamamoto, K., and Sekine, S. (2006), Using Phrasal Patterns to Identify Discourse Relations,
ACL.

Saint-Dizier, P. (1994), Advanced Logic Programming for Language Processing, Academic Press.
Schank, R. (1986), Explanation Patterns: Understanding Mechanically and Creatively, Laurence Erlbaum.
Schauer, H. (2006), From Elementary Discourse Units to Complex Ones, Sigdial Workshop, ACL.
Sierra, G., Alarcon, R., Aguilar, C., and Bach, C. (2008), Definitional Verbal Patterns for Semantic Relation

Extraction’, Journal of Terminology, 14-1, 22–39.
Stabler, E. (1992), The Logical Approach to Syntax, Cambridge, MA: MIT Press.
Stede, M. (2012), Discourse Processing, Morgan and Claypool Publishers, 2012.
Takechi, M., Tokunaga, T., Matsumoto, Y., and Tanaka, H. (2003), ‘Feature Selection in Categorizing Proce-

dural Expressions’, in The Sixth International Workshop on Information Retrieval with Asian Languages
(IRAL2003), pp. 49–56.

Talmy, L. (2001), Towards a Cognitive Semantics (Vols. 1 and 2), Cambridge, MA: MIT Press.
Taboada, M., and Mann, W.C. (2006), ‘Rhetorical Structure Theory: Looking Back and Moving Ahead’,

Discourse Studies, 8(3), 423–459.
Van der Linden, K. (1993), ‘Speaking of Actions Choosing Rhetorical Status and Grammatical Form in

Instructional Text Generation’, Thesis, University of Colorado.
Van Dijk, T.A. (1980), Macrostructures, Hillsdale, NJ: Lawrence Erlbaum Associates.
Walton, D. (1992), The Place of Emotion in Argument, Pennsylvania: Pennsylvania State University Press.
Walton, D., Reed, C., and Macagno, F. (2008), Argumentation Schemes, Cambridge: Cambridge University

Press.
Webber, B. (2004), ‘D-LTAG: Extending Lexicalized TAGs to Discourse’, in Cognitive Science (Vol. 28),

Amsterdam: Elsevier, pp. 751–779.
Webber, B.L. and Di Eugenio, B. (1990), ‘Free Adjuncts in Natural Language Instructions’, Proceedings

COLING-90, Helsinki, Finland.
Wierzbicka, A. (1987), English Speech Act Verbs, New York: Academic Press.
von Wright, G.H. (2004), Explanation and Understanding, Cornell, Ithaca: Cornell University Press.
Zuckerman, I., McConachy, R., and Korb, K. (2000), Using Argumentation Startegies in Automatic Argument

Generation, INLG.

