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Abstract dialectical frameworks (ADFs) constitute a recent and powerful generalisation of
Dung’s argumentation frameworks (AFs), where the relationship between the arguments can
be specified via Boolean formulas. Recent results have shown that this enhancement comes
with the price of higher complexity compared to AFs. In fact, acceptance problems in the
world of ADFs can be hard even for the third level of the polynomial hierarchy. In order to
implement reasoning problems on ADFs, systems for quantified Boolean formulas (QBFs) thus
are suitable engines to be employed. In this paper we give complexity sensitive QBF encodings
of ADF problems generalising recent work on QBFs for AF labellings. Our encodings provide
a uniform and modular way of translating reasoning in ADFs to QBFs, that can be used as the
basis for novel systems for ADF reasoning.
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1. Introduction

Since its invention by Dung (1995), abstract argumentation constitutes one of the main research
branches for computational models of argument. Hereby, the conflict resolution between argu-
ments is done by abstracting away from the arguments’ contents, yielding a simple yet powerful
framework for reasoning used as a core model in many argumentation tasks and applica-
tions. Although very general, Dung’s argumentation frameworks (AFs) do not directly support
modelling more complex interactions between arguments. For this and similar issues, several
extensions of AFs have been proposed to date (e.g. those presented by Baroni, Cerutti, Giacomin,
& Guida, 2011; Bench-Capon, 2003; Cayrol & Lagasquie-Schiex, 2005; Brewka, Polberg, &
Woltran, 2014 provide a survey of this line of research), one of the most general being that of
abstract dialectical frameworks (ADFs) by Brewka and Woltran (2010). In this last framework,
acceptance conditions in the form of arbitrary Boolean formulas are associated to every argu-
ment. Proper generalisations of Dung’s semantics have been given by Brewka, Ellmauthaler,
Strass, Wallner, and Woltran (2013).

Various reasoning tasks can be defined on abstract argumentation frameworks, some of the
central ones being those that evaluate the ‘acceptability’ of an argument with respect to a given
framework and semantics. Already for AFs, most of the reasoning tasks have been shown to suf-
fer from high computational complexity (see e.g. the work by Dunne & Bench-Capon, 2002).
For ADFs, the complexity of many of the main reasoning tasks with respect to the generalised
semantics jump up one level of the polynomial hierarchy (as has been shown by Strass & Wall-
ner, 2014; Wallner, 2014), resulting in some of the reasoning tasks even being on the third level
of the polynomial hierarchy.
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One successful approach for implementing problems of high computational complexity is to
employ a so-called reduction approach (Charwat, Dvořák, Gaggl, Wallner, & Woltran, 2015).
Hereby the underlying idea is to exploit existing efficient software which has originally been
developed for other purposes. To this end, one has to formalise the reasoning problems within
other formalisms like, for instance, propositional logic, thus directly benefiting from the high
level of sophistication today’s systems for SAT (satisfiability in propositional logic) have reached
(Franco & Martin, 2009).

In this work we follow this idea and present translations of the main reasoning tasks defined
for ADFs into the satisfiability problem of quantified Boolean formulas (QBFs). QBFs are an
extension of propositional logic, allowing for quantification over propositional atoms (Büning &
Bubeck, 2009). Its associated satisfiability problem (QSAT) is complete for PSPACE while types
of QBFs classified according to the structure of quantification provide us with complete problems
for each level of the polynomial hierarchy. These results indicate that reasoning problems for
ADFs can be efficiently transformed into QSAT problems with a certain quantifier structure.
Employing the framework of QBFs thus allows for

• a uniform translation of ADF reasoning tasks into one widely studied formal language;
• complexity sensitive encodings, that is, encodings to a subclass of QBFs whose complexity

matches the complexity of the encoded reasoning task; and
• utilisation of ever more efficient solvers for QSAT (see, e.g. the results presented by

Lonsing & Seidl, 2013).

Providing reductions to QSAT is increasingly seen as a promising approach to tackle
computational problems in the polynomial hierarchy. Planning (see the work by Ferraris &
Giunchiglia, 2000; Rintanen, 1999) and formal methods for determining correctness of soft-
ware systems (as shown by Benedetti & Mangassarian, 2008; Bryant, Lahiri, & Seshia, 2003;
Giunchiglia, Narizzano, & Tacchella, 2007; Ling, Singh, & Brown, 2005; Mneimneh &
Sakallah, 2003) are notable examples of areas where QSAT solvers have found their way into
practice. Moreover, reductions of many reasoning problems in different areas including knowl-
edge representation and reasoning (reductions of autoepistemic, default logic, disjunctive logic
programming, and circumscription problems into QSAT are given by Egly, Eiter, Tompits, &
Woltran, 2000 for example) into QSAT have also been proposed in the literature. Giunchiglia,
Marin, and Narizzano (2009) list several more examples of reductions of computational problems
to QSAT.

Our work specifically continues the line of of study that has been initiated for Dung style AFs
by Egly and Woltran (2006) and Arieli and Caminada (2013). In both of these works, reductions
of the problems of evaluating Dung style AFs into the setting of quantified Boolean logic are
given. The more recent work by Arieli and Caminada in particular, which is based on a so called
‘labelling approach’ (Caminada & Gabbay, 2009) to defining the semantics of AFs presents some
parallels with the approach followed by Brewka et al. (2013) and Strass (2013), respectively, to
define the semantics for ADFs. Thus this work has been particularly influential for the approach
we follow to give encodings for the reasoning problems defined for ADFs.

Summarising, in this article we provide complexity sensitive encodings of all the main rea-
soning problems defined for ADFs (evaluation, credulous acceptance, skeptical acceptance and
verification) with respect to the most prominent semantics (two valued models, admissible, com-
plete, preferred, grounded and stable) in the context of QBFs. Further, we present the formal
framework required to prove that our encodings are correct as well as detailed proofs. This article
extends the work of Diller, Wallner, and Woltran (2014) and Diller (2014) by three novel contri-
butions: (1) we additionally consider the reasoning task of verifying a given candidate solution,
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(2) we expanded all proofs, and (3) we present here complexity sensitive encodings also for the
grounded and stable semantics.

2. Background

2.1. Quantified Boolean formulas

We recall the necessary background of Boolean logic and QBFs: for further details see also the
survey of the theory of QBFs by Büning & Bubeck (2009).

Quantified Boolean logic is an extension to propositional logic. The basis of propositional
logic is a set of propositional variables P , to which we also refer to as atoms. Propositional
formulas are built as usual from the connectives ∧, ∨, and ¬, denoting the logical conjunction,
disjunction and negation, respectively. As for truth constants, we use � for the value true and
⊥ := ¬� for false. QBFs additionally use the universal quantifier ∀ and the existential quanti-
fier ∃. If ϕ is a (quantified) Boolean formula, then Qpϕ is a QBF with Q ∈ {∀, ∃} and p ∈ P .
QBFs may be nested using the logical connectives. Further Qp1, p2, . . . , pnϕ or also QPϕ with
P = {p1, p2, . . . , pn} is a shorthand for Qp1Qp2, . . . , Qpnϕ . The order of variables in consecutive
quantifiers of the same type does not matter. We define shorthands for (material) implication and
equivalence: ϕ → ϕ′ := ¬ϕ ∨ ϕ′ and ϕ ↔ ϕ′ := (ϕ → ϕ′) ∧ (ϕ′ → ϕ).

A propositional variable p in a QBF ϕ is free if it does not occur within the scope of a quan-
tifier; otherwise it is bound. If ϕ contains no free variable, then ϕ is said to be closed; otherwise
it is open. Further we will write ϕ[p/ψ] to denote the result of uniformly substituting each free
occurrence of p with ψ in the formula ϕ.

An interpretation v̂ : P → {t, f} defines for each propositional variable a truth assignment.
We sometimes explicitly highlight that a v̂ is defined on a set P ⊆ P . The evaluation on atoms
generalises as usual to arbitrary formulas: given a formula ϕ and an interpretation v̂, then ϕ
evaluates to true under v̂ (v̂ satisfies ϕ or v̂ is a model of ϕ, denoted by v̂ |= ϕ) if one of the
following holds, with p ∈ P and QBFs ψ , ψ1 and ψ2.

• ϕ = p and v̂(p) = t;
• ϕ = �;
• ϕ = ¬ψ and ψ does not evaluate to true under v̂;
• ϕ = ψ1 ∧ ψ2 and both ψ1 and ψ2 evaluate to true under v̂;
• ϕ = ψ1 ∨ ψ2 and one of ψ1 and ψ2 evaluates to true under v̂;
• ϕ = ∃pψ and one of ψ[p/�] and ψ[p/⊥] evaluates to true under v̂;
• ϕ = ∀pψ and both ψ[p/�] and ψ[p/⊥] evaluate to true under v̂.

We extend the evaluation function v̂ to formulas, that is, v̂(ϕ) is the evaluation of ϕ under
v̂. Note that the concepts of satisfiability and validity which can be extended in a direct manner
from propositional logic to QBFs are equivalent for closed formulas; hence, closed QBFs that are
satisfiable are often called ‘true’ while those which are unsatisfiable are called ‘false’.

Given two interpretations v̂ and ŵ as well as a set of propositional variables P, v̂[P/ŵ(P)]
denotes the interpretation v̂′ defined as:

• v̂′(p) := ŵ(p) for p ∈ P.
• v̂′(q) := v̂(q) if q ∈ P and q �∈ P.

We will often use the simplified notation v̂[p/x] with x ∈ {t, f} in the case that P = {p} and ŵ(p) =
x in the definition above. (Observe that we use brackets both to denote ‘substitution’ in the context
of formulas and interpretations.)
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The following lemma and corollary are straightforward consequences of the semantics of
QBFs that we make often use of for proving the correctness of the encodings we present in this
work.

Lemma 2.1: Let ψ be a QBF, and P a set of propositional variables. If ϕ = ∃Pψ (ϕ = ∀Pψ),
then v̂ |= ϕ if and only if v̂[P/ŵ(P)] |= ψ for some (all) interpretation(s) ŵ.

Corollary 2.2: Let ψ be a closed QBF, and P a set of propositional variables. If ϕ = ∃Pψ (ϕ =
∀Pψ), then ϕ is true if and only if for some (all) interpretation(s) v̂, v̂ |= ψ .

One final use of brackets as notational device we introduce for QBFs is ϕ[P/v̂(P)] to denote
the formula ϕ where every occurrence of any variable p ∈ P is replaced for � in case that v̂(p) = t
and replaced for ⊥ in the case that v̂(p) = f. For ϕ[{p}/v̂({p})] we use the simplified notation
ϕ[p/v̂(p)]. Another immediate result we make use of in this work is the following.

Lemma 2.3: Let v̂ be an interpretation, ϕ a QBF, and p ∈ P . Then v̂ |= ϕ if and only if v̂ |=
ϕ[p/v̂(p)]. Also, if P are all the free variables of ϕ, then v̂ |= ϕ if and only if for all interpretations
ŵ it is the case that ŵ |= ϕ[P/v̂(P)].

Normal forms of (quantified) formulas play an important role for theoretical and practical
purposes. A well-known normal form for QBFs is the prenex normal form (PNF). A QBF ϕ is in
PNF if ϕ is of the form Q1p1Q2p2, . . . , Qnpnψ with pi ∈ P and Qi ∈ {∀, ∃} for 1 ≤ i ≤ n as well
as ψ being a quantifier-free formula. The computational complexity of deciding whether ϕ is
satisfiable depends on the prefix type. Every propositional formula has the prefix type �0 = �0.
Let ϕ be a closed QBF with prefix type �i (respectively, �i) and P a set of m > 0 propositional
variables. Then the formula ∀Pϕ (respectively, ∃Pϕ) is of type�i+1 (respectively,�i+1) for i ≥ 0.

We assume familiarity with the complexity classes P, NP and coNP. We also make use of
the polynomial hierarchy, that can be defined (using oracle Turing machines as superscript) as
follows: �P

0 = �P
0 = P, �P

i+1 = NP�
P
i , �P

i+1 = coNP�
P
i for i ≥ 0. In general, deciding whether

a QBF ϕ is satisfiable is �P
k complete if ϕ has prefix type �k and otherwise if ϕ has prefix type

�k , then the problem is �P
k complete (k ≥ 1).

A language is in the complexity class DP if it is the intersection of a language in NP and a
language in coNP. The canonical problem of DP is SAT UNSAT, the problem of deciding whether
for a pair (ϕ1,ϕ2) of propositional formulas, ϕ1 is satisfiable and ϕ2 is unsatisfiable.

2.2. Abstract dialectical frameworks

An abstract dialectical framework (ADF) is a directed graph whose vertices represent statements
which can be accepted or not. The links represent dependencies: the status of a node s only
depends on the status of its parents (denoted parents(s)), that is, the nodes with a direct link to
s. In addition, each node s has an associated acceptance condition Cs specifying the conditions
under which s can be accepted. Cs is a function assigning to each subset of parents(s) one of the
truth values t, f.

Definition 2.4: An ADF is a tuple D = (S, L, C) where

• S is a set of statements (positions, nodes),
• L ⊆ S × S is a set of links,
• C = {Cs}s∈S is a set of total functions Cs : 2parents(s) → {t, f}, one for each statement s. Cs

is called acceptance condition of s.
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We represent the acceptance conditions C as a collection {ϕs}s∈S of propositional formulas,
which provide a compact way to specify Boolean functions. This leads to the logical represen-
tation of ADFs we use in this paper where an ADF D is a pair (S, C) with the set of links L
implicitly given as (a, b) ∈ L iff a appears in ϕb.

We consider ADF semantics as defined by Brewka et al. (2013). A semantics σ assigns to
an ADF D a collection of two or three valued interpretations, denoted by σ(D). To distinguish
between interpretations of ADFs and QBFs we use v̂, ŵ for QBF interpretations and v, w for inter-
pretations of ADFs. For σ we consider in this paper admissible, complete, grounded, preferred,
model and stable semantics of ADFs. We denote the semantics by adm, com, grd, prf, mod and
stb.

The interpretations map statements to truth values. We use {t, f, u} as truth values, denot-
ing true, false and undecided, respectively. The three truth values are partially ordered by ≤i

according to their information content: we have u <i t and u <i f and no other pair in <i. The
information ordering ≤i extends in a straightforward way to interpretations v1, v2 over S in that
v1 ≤i v2 iff v1(s) ≤i v2(s) for all s ∈ S.

A three valued interpretation v is two valued if all statements are mapped to either true or
false. For a three valued interpretation v, we say that a two valued interpretation w extends v iff
v ≤i w. This means that all statements mapped to u by v are mapped to t or f by w. We denote by
[v]2 the set of all two valued interpretations that extend v.

For an ADF D = (S, C), s ∈ S and a three valued interpretation v, the characteristic function
�D(v) = v′ is given by

v′(s) =

⎧⎪⎨
⎪⎩

t if w(ϕs) = t for all w ∈ [v]2,

f if w(ϕs) = f for all w ∈ [v]2,

u otherwise.

That is, the operator returns a three valued interpretation, mapping a statement s to t, or, respec-
tively f, if all two-valued interpretations extending v evaluate ϕs to true, respectively false. If there
are w1, w2 ∈ [v]2, s.t. w1(ϕs) = t and w2(ϕs) = f, then the result is u. Note that the characteris-
tic function is defined on three-valued interpretations, while we evaluate acceptance conditions
under two-valued interpretations (two-valued extensions of three-valued interpretations).

Definition 2.5: Let D = (S, L, C) be an ADF. A three valued interpretation v is

• in adm(D) if v ≤i �D(v);
• in com(D) if v = �D(v);
• in grd(D) if v ∈ com(D) and there is no w ∈ com(D) with w <i v;
• in prf(D) if v ∈ adm(D) and there is no w ∈ adm(D) with v <i w.

No other elements except those stipulated by the items above are in adm(D),com(D),grd(D) and
prf(D), respectively.

For any ADF one has that all preferred interpretations are complete and all complete interpre-
tations are admissible. Brewka et al. (2013) have also shown that the operator �D is monotonic
for any ADF D, hence an interpretation v is the grounded interpretation of an ADF D if and only
if it is equal to the ≤i least fixpoint (l.f.p.) of �D. The l.f.p. can be calculated by iteratively apply-
ing �D starting with the interpretation US mapping all statements s ∈ S of D to u. Then �0

D := US

and �i+1
D := �D(�

i
D) for i ≥ 0.

The mod and stb semantics rely on two valued interpretations. A two valued interpretation v is
a model of an ADF D = (S, C = {ϕs}s∈S) if v(s) = v(ϕs) for all s ∈ S. Stable models are defined
via a reduct.
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Figure 1. ADF example.

Table 1. All admissible interpretations of the ADF from
Figure 1.

a b c

v1 u u u adm
v2 u f u adm
v3 u t u adm
v4 t t u adm
v5 u t t adm
v6 t u u adm, com, grd
v7 t f u adm, com, prf
v8 t t t adm, com, prf, mod

Note: Right-most column shows further semantics the interpretations belong to.

Table 2. Complexity results for semantics of ADFs.

σ adm com prf grd mod stb

Credσ �P
2 -c �P

2 -c �P
2 -c coNP-c NP-c �P

2 -c

Skeptσ trivial coNP-c �P
3 -c coNP-c coNP-c �P

2 -c

Verσ coNP-c DP-c �P
2 -c DP-c in P coNP-c

Definition 2.6: Let D = (S, L, C) be an ADF with C = {ϕs}s∈S . A two-valued model v of D is
a stable model of D iff Ev = {s ∈ S | v(s) = t} equals the statements set to true in the grounded
interpretation of the reduced ADF Dv = (Ev, Lv, Cv), where Lv = L ∩ (Ev × Ev) and for s ∈ Ev

we set ϕv
s = ϕs[b/⊥ : v(b) = f].

Example 2.7: In Figure 1 we see an example ADF D = ({a, b, c}, C) with ϕa = b ∨ ¬b ≡ �,
ϕb = b and ϕc = c → b. The acceptance conditions are also shown below the statements.

The admissible interpretations of D are shown in Table 1. Furthermore the right-most column
shows further semantics the interpretations belong to. For instance the interpretation v8 mapping
each statement to true is admissible, complete and preferred in D and a model of D. This ADF
has no stable model. The only model of D is v8, with the reduct of this model being Dv8 = D.
The grounded interpretation of D is v6, which is different than v8. Therefore v8 is not a stable
model.

We recall three important reasoning tasks on ADFs for a semantics σ . A statement s is credu-
lously accepted in an ADF D for σ if s is true in at least one v ∈ σ(D). The corresponding decision
problem is denoted by Credσ . If s is true in all v ∈ σ(D), then it is skeptically accepted in D
w.r.t. σ , the decision problem denoted by Skeptσ . Lastly, the verification problem, Verσ , decides
whether a given three (two) valued interpretation v is a σ interpretation for a given ADF D, that
is, whether it holds that v ∈ σ(D). The computational complexity of reasoning in ADFs is sum-
marised in Table 2. The results were shown by Brewka et al. (2013), Strass and Wallner (2014)
and Wallner (2014).



Argument and Computation 155

Example 2.8: Continuing Example 2.7 we can see that a is skeptically accepted w.r.t. preferred
semantics in the ADF D. (i.e. Skeptprf(a, D) is true). The statement b is not skeptically accepted
for preferred semantics, however it is credulously accepted under this semantics. In fact here all
statements are credulously accepted under admissible, complete, preferred and model semantics.
As on all ADFs, credulous and skeptical acceptance coincide for grounded semantics and in this
example only a is accepted w.r.t. the grounded semantics.

3. Encodings

In this section we present the encodings of reasoning tasks for ADFs into QBFs. After
dealing with some preliminaries for our encodings, we develop for each semantics σ ∈
{adm, com, grd, prf, mod, stb} a defining encoding function, denoted by Eσ . Given an ADF D =
(S, C), Eσ returns a QBF whose models correspond to the σ interpretations of D. Such defining
encoding functions return the encoding of the enumeration problem for the different semantics
and can be used in a generic fashion to provide encodings for the reasoning tasks we consider in
this work. We describe how to do so at the end of Section 3.2.

This method for providing encodings has the advantage of being general in the sense that
the encodings of the reasoning tasks we provide at the end of Section 3.2 for some semantics
σ remain correct if the defining encoding function Eσ is redefined. On the other hand, whether
or not the encodings for the reasoning tasks are mapped to a fragment of QSAT that matches
the complexity of the tasks depends on the definition of the encoding function. For a few of the
reasoning tasks we consider in this work, the defining encoding functions we provide result in
encodings that are not sensitive to the complexity of the tasks. These cases either are equivalent
to some other reasoning task for which we provide encodings that are adequate with respect to the
complexity, or otherwise we provide alternative complexity sensitive encodings in Section 3.3.

As indicated above, we begin with some preliminaries. To express constraints on the values to
which an interpretation on ADFs can map statements, in our encodings we make use of variables
that stand for the statements of an ADF. Since the definitions of semantics of ADFs often refer to
several interpretations (e.g. the extensions of a given interpretation) to express such definitions
in the language of quantified Boolean logic we in fact need to use several disjoint sets of propo-
sitional variables standing for statements to implicitly refer to these different interpretations in
our encodings. We generate such sets by using priming (with p′ denoting the primed version of a
propositional variable p) on a base set of variables representing the statements of a given ADF.
We call variables which stand for statements of ADFs variable set copies of the set of statements.

Definition 3.1: Let S be a set of statements. Then (by abuse of notation) S as a set of propo-
sitional variables is a variable set copy of S. If P is a variable set copy of S, then so is
P′ := {p′ | p ∈ P}.

The (meta) notation S̄ refers to an arbitrary variable set copy of S. s̄ then denotes the variable
corresponding to s ∈ S in S̄. Given a propositional formula ϕ, ϕ̄ is ϕ but with each variable s

appearing in ϕ replaced with s̄. For an ADF D = (S, C = {ϕs}s∈S) we define C̄ := {ϕ̄s}s∈S . ¯̄S also

refers to an arbitrary variable set copy of S. ¯̄s, ¯̄ϕ and ¯̄C are defined analogously to s̄,ϕ̄, and C̄.

The purpose of introducing the notation S̄ and ¯̄S in Definition 3.1 is that this enables stating
the content of the propositions in this section in a manner that covers any possible variable set
copy that can be used when instantiating the encodings the propositions refer to. This makes it
possible to simplify proofs about properties of encodings which are constructed in a modular
fashion.
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To encode expressions about two valued interpretations on a set of statements S as QBFs
we use a variable set copy of S. To refer to three valued interpretations inside QBFs on the
other hand we follow the procedure that has already been used by Arieli and Caminada (2013)
to encode expressions about (three valued) labellings for AFs. Specifically, we assume that for
every set S̄ of propositional variables representing statements of some ADF the alphabet of QBFs
also contains the set of signed variables corresponding to S̄.

Definition 3.2: Let S̄ be a variable set copy of a set of statements S. Then S̄3 := {s̄⊕ | s ∈ S} ∪
{s̄� | s ∈ S} is the set of signed variables associated to S̄.

The intended meaning of s̄⊕ is that s is accepted and s̄� that s is rejected under some
interpretation. Intuitively, a statement is undecided if both s̄⊕ and s̄� are false in a model.

ADF semantics are based on three or two truth values. Since there are four possible truth
value assignments for a statement s via s̄⊕, s̄� ∈ S̄3, we need to restrict attention to coher-
ent interpretations for QBFs, which exclude the possibility for a model to satisfy both s̄⊕

and s̄�.

Definition 3.3: Let S̄ be a variable set copy of a set of statements of S. A two valued
interpretation v̂ is coherent on S̄3 if there is no s ∈ S such that v̂(s̄⊕) = t and v̂(s̄�) = t.

We now formally define the correspondence we require of the models of the QBFs returned
by a defining encoding Eσ for a semantics σ and the σ interpretations of the ADFs.

Definition 3.4: Let S be a set of statements and S̄ a variable set copy of S. A two valued
interpretation v̂ on S̄ corresponds to a two valued interpretation v on S, denoted as v̂ ∼=S̄ v if
v(s) = v̂(s̄) for all s ∈ S. A coherent two valued interpretation v̂′ on S̄3 corresponds to a three
valued interpretation v′ on S, denoted as v̂′ ∼=S̄3

v′ if the following three conditions are met:

• v′(s) = t if and only if v̂′(s̄⊕) = t and v̂′(s̄�) = f;
• v′(s) = f if and only if v̂′(s̄⊕) = f and v̂′(s̄�) = t; and
• v′(s) = u if and only if v̂′(s̄⊕) = f and v̂′(s̄�) = f.

The following lemma is a straightforward consequence of Definition 3.4 we make often use
of in the proofs of correctness of the encodings we provide in this work.

Lemma 3.5: Let S be a set of statements, S̄ and ¯̄S variable set copies of S, v̂1 and v̂2 two valued
(QBF) interpretations, and v1 and v2 three or two valued interpretations on S.

(1) Assume that S̄3 and ¯̄S3 are disjoint, v̂1 is coherent on S̄3, v̂2 is coherent on ¯̄S3, v̂1
∼=S̄3

v1

and v̂2
∼=¯̄S3

v2. Then v̂ := v̂1[ ¯̄S3/v̂2(
¯̄S3)] is also coherent on each of S̄3 and ¯̄S3, and it is

also the case that v̂ ∼=S̄3
v1 and v̂ ∼=¯̄S3

v2.

(2) Assume that v̂1 is coherent on S̄3, v̂1
∼=S̄3

v1 and v̂2
∼=¯̄S v2. Then v̂ := v̂1[ ¯̄S/v̂2(

¯̄S)] is also

coherent on S̄3 and it is also the case that v̂ ∼=S̄3
v1 and v̂ ∼=¯̄S v2.

(3) Assume that v̂2 is coherent on ¯̄S3, v̂1
∼=S̄ v1 and v̂2

∼=¯̄S3
v2. Then v̂ := v̂1[ ¯̄S3/v̂2(

¯̄S3)] is also

coherent on ¯̄S3 and it is also the case that v̂ ∼=S̄ v1 and v̂ ∼=¯̄S3
v2.

(4) Assume that S̄ and ¯̄S are disjoint, v̂1
∼=S̄ v1 and v̂2

∼=¯̄S v2. Then for v̂ := v̂1[ ¯̄S3/v̂2(
¯̄S3)] it is

also the case that v̂ ∼=S̄ v1 and v̂ ∼=¯̄S v2.
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Proof: (sketch) Let T1 = S̄3 and T2 = ¯̄S3 in item (1), T1 = S̄3 and T2 = ¯̄S in item (2), T1 = S̄ and

T2 = ¯̄S3 in item (3) and T1 = S̄ and T2 = ¯̄S in item (4). Then all these items follow from the fact
that v̂ and v̂1 as defined in each of the items agree on the variables in T1 while v̂ and v̂2 agree on
the variables in T2 (and that T1 and T2 are disjoint).

We are finally in a position to provide the formal definition of a defining encoding function
Eσ for a given semantics σ for ADFs. Given an ADF D = (S, C), Eσ returns a QBF whose every
model corresponds (in the sense of Definition 3.4) to one of the σ interpretations of D (‘sound-
ness’). In turn, every σ interpretation corresponds to a model of ϕ (‘completeness’). Given a
variable set copy S̄ of S and depending on whether σ returns two valued or three valued inter-
pretations, Eσ returns a QBF with free variables in a set of signed (S̄3) or unsigned (S̄) variables
standing for the statements of the ADFs, respectively. We thus write Eσ [(S̄, C̄)] for the applica-
tion of the defining encoding function Eσ to the ADF D = (S, C). In addition to soundness and
completeness, when σ returns three valued interpretations (σ ∈ {adm, com, prf, grd, mod, stb}),
Eσ [(S̄, C̄)] must also be a QBF whose models are coherent on S̄3 in the sense of Definition 3.3.

Definition 3.6: Let σ ∈ {adm, com, prf, grd, mod, stb}. A defining encoding function for σ is a
total function Eσ from ADFs to QBFs. Given an ADF D = (S, C) and a variable set copy S̄
of S it returns a QBF Eσ [S̄, C̄] with free variables in S̄3 if σ ∈ {adm, com, prf, grd} and in S̄ if
σ ∈ {mod, stb}. Furthermore,

(1) (Coherence) If σ ∈ {adm, com, prf, grd}, then any two valued interpretation v̂ such that
v̂ |= Eσ [S̄, C̄] is coherent on S̄3.

(2) (Soundness)
(a) If σ ∈ {adm, com, prf, grd} and v̂ is a two valued interpretation such that v̂ |=

Eσ [S̄, C̄], then the three valued interpretation v on S such that v̂ ∼=S̄3
v is a σ

interpretation of D.
(b) If σ ∈ {mod, stb} and v̂ is a two valued interpretation such that v̂ |= Eσ [S̄, C̄], then the

two valued interpretation v on S such that v̂ ∼=S̄ v is a σ interpretation of D.
(3) (Completeness)

(a) If σ ∈ {adm, com, prf, grd} and v is a three valued σ interpretation of D, then for any
two valued interpretation v̂ such that v̂ ∼=S̄3

v, it holds that v̂ |= Eσ [S̄, C̄].
(b) If σ ∈ {mod, stb} and v is a two valued σ interpretation of D, then for any two valued

interpretation v̂ such that v̂ ∼=S̄ v, it holds that v̂ |= Eσ [S̄, C̄].

3.1. Basic modules

When encoding the reasoning tasks associated to ADFs as QBFs we make repeated use of some
simple modules. In the first place, given a variable set copy S̄ of a set of statements S, the
following formula ‘filters out’ interpretations which are not coherent on S̄3:

coh[S̄] :=
∧
s∈S

¬(s̄⊕ ∧ s̄�).

Lemma 3.7: Let S̄ be a variable set copy of a set of statements S. A two valued interpretation v̂
is coherent on S̄3 if and only if v̂ |= coh[S̄].

Proof: A two valued valuation v̂ is coherent on S̄3 according to Definition 3.3 if and only if
there is no s ∈ S such that v̂(s̄⊕) = t and v̂(s̄�) = t. This is the case if and only if for each s ∈ S,
v̂ |= ¬(s̄⊕ ∧ s̄�), that is,v̂ |= ∧

s∈S ¬(s̄⊕ ∧ s̄�) = coh[S̄].
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In order to encode the definitions of ADF semantics as QBFs we often need to express that
v(s) ≤i v′(s) on all s ∈ S for two interpretations of an ADF D = (S, C). The formula

S̄3 ≤i
¯̄S3 :=

∧
s∈S

((s̄⊕ → ¯̄s⊕
) ∧ (s̄� → ¯̄s�

))

does precisely that assuming both v and v′ are three valued and using the variable set copies S̄

and ¯̄S to implicitly refer to the mappings to truth values of v and v′, respectively.

Lemma 3.8: Let S be a set of statements, S̄ and ¯̄S disjoint variable set copies of S.

(1) Let v̂ be a two valued interpretation that is coherent on S̄3 and ¯̄S3 such that v̂ |= S̄3 ≤i
¯̄S3.

Then for three valued interpretations v, v′ on S such that v̂ ∼=S̄3
v and v̂ ∼=¯̄S3

v′ it is the case
that v ≤i v′.

(2) Let v and v′ be three valued interpretations on S such that v ≤i v′. Then for any two valued

interpretation v̂ such that v̂ ∼=S̄3
v and v̂ ∼=¯̄S3

v′, it is the case that v̂ |= S̄3 ≤i
¯̄S3.

Proof:

(1) Let v̂ be a two valued interpretation that is coherent on S̄3 and ¯̄S3 and assume that v̂ |=
S̄3 ≤i

¯̄S3 = ∧
s∈S((s̄

⊕ → ¯̄s⊕
) ∧ (s̄� → ¯̄s�

)). Let also v, v′ be three valued interpretations

on S such that v̂ ∼=S̄3
v and v̂ ∼=¯̄S3

v′. For an arbitrary s ∈ S, since v̂ |= (s̄⊕ → ¯̄s⊕
) ∧ (s̄� →

¯̄s�
) and v̂ ∼=S̄3

v as well as v̂ ∼=¯̄S3
v′if v(s) = t then v̂(s̄⊕) = t, hence v̂(¯̄s⊕

) = t and so also
v′(s) = t. In the same manner, one can conclude that if v(s) = f then v′(s) = f must be
the case. Finally if v(s) = u, then v(s) ≤i v′(s) whatever the value of v′(s). In conclusion,
v(s) ≤i v′(s) and since s ∈ S was arbitrary v ≤i v′.

(2) Let v and v′ be three valued interpretations on S such that v ≤i v′ and v̂ a two valued
interpretation such that v̂ ∼=S̄3

v and v̂ ∼=¯̄S3
v′. For an arbitrary s ∈ S, if v(s) = x ∈ {t, f}

then also v′(s) = x must be the case. Hence, it follows from Definition 3.4 that if v̂(s̄⊕) = t
then also v̂(¯̄s⊕

) = t and if v̂(s̄�) = t then v̂(¯̄s�
) = t. Therefore v̂ |= (s̄⊕ → ¯̄s⊕

) ∧ (s̄� →
¯̄s�
) and since s ∈ S was arbitrary v̂ |= ∧

s∈S((s̄
⊕ → ¯̄s⊕

) ∧ (s̄� → ¯̄s�
)) = S̄3 ≤i

¯̄S3.

Note that the reason Lemma 3.8 is split into two items instead of being written using an ‘if

and only if’ is that, given a set S of statements and variable set copies S̄ and ¯̄S of S, there exist
exactly two three valued interpretations v and v′ on S that correspond to a coherent two valued

interpretation v̂ on S̄3 and ¯̄S3, respectively, while for three valued interpretations v and v′ on S

there exist (infinitely) many coherent two valued interpretations on S̄3 and ¯̄S3 that correspond to

v and v′ (all variables that are not in S̄3 and ¯̄S3 can be assigned any truth value).
The formula below

S̄3 ≤i
¯̄S :=

∧
s∈S

((s̄⊕ → ¯̄s) ∧ (s̄� → ¬¯̄s))

encodes that v ≤i v′ in case v is a three valued interpretation on a set of statements S and v′ is a
two valued interpretation on S.
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Lemma 3.9: Let S be a set of statements, S̄ and ¯̄S variable set copies of S.

(1) Let v̂ be a two valued interpretation that is coherent on the set of signed variables S̄3 and

such that v̂ |= S̄3 ≤i
¯̄S. Then for the three and two valued interpretations v and v′ on S

such that v̂ ∼=S̄3
v and v̂ ∼=¯̄S v′, it is the case that v ≤i v′.

(2) Let v and v′ be three and two valued interpretations on S such that v ≤i v′. Then for any

two valued interpretation v̂ such that v̂ ∼=S̄3
v and v̂ ∼=¯̄S v′, it is the case that v̂ |= S̄3 ≤i

¯̄S.

Proof: The proof is similar to that of Lemma 3.8.

3.2. Encodings

Having covered the preliminaries, in this section we set out to provide the encodings of ADF
reasoning to QSAT. As already explained, we do so by first giving defining encoding functions
for each of the semantics we consider in this work. To give a defining encoding function for
admissible semantics of ADFs we slightly reformulate the definition of admissible interpretations.

Proposition 3.10: Let D = (S, {ϕs}s∈S) be an ADF and v a three valued interpretation on S. Then
v ∈ adm(D) iff v(s) ≤i w(ϕs) for all s ∈ S and w ∈ [v]2.

Proof: Let v be a three valued interpretation such that v ∈ adm(D). For an arbitrary s ∈ S,
if v(s) = x for x ∈ {t, f}, one has that v(s) ≤i �D(v)(s) ≤i w(ϕs) for all w ∈ [v]2. If v(s) = u
then v(s) ≤i w(ϕs) whatever the value of w(ϕs) for all w ∈ [v]2. In conclusion, since s ∈ S was
arbitrary v(s) ≤i w(ϕs) for all s ∈ S and w ∈ [v]2.

Assume now that v(s) ≤i w(ϕs) for all s ∈ S and w ∈ [v]2. For an arbitrary s ∈ S, assume first
that w(ϕs) = t for all w ∈ [v]2. In that case v(s) = t or v(s) = u and, hence, v(s) ≤i �D(v)(s) = t.
In the same manner if w(ϕs) = f for all w ∈ [v]2, then v(s) = f or v(s) = u must be the case
and again v(s) ≤i �D(v)(s) = f. Finally, if neither w(ϕs) = t nor w(ϕs) = f for all w ∈ [v]2,
that is, there exist w, w′ ∈ [v]2 such that w(s) = t and w′(s) = f, then v(s) = u = �D(v)(s). In
conclusion, v(s) ≤i �D(v)(s) and since s ∈ S was arbitrary v ≤i �D(v).

This leads us to the defining encoding function for admissible semantics of ADFs, which
essentially encodes evaluation of ADFs with respect to the admissible semantics by recasting the
condition expressed in Proposition 3.10 in the language of QBFs.

Proposition 3.11: Given an ADF D = (S, C = {ϕs}s∈S) and a variable set copy S̄ of S, let the
function Eadm return a QBF with free variables in S̄3

Eadm[S̄, C̄] := coh[S̄] ∧ ∀S̄((S̄3 ≤i S̄) →
∧
s∈S

((s̄⊕ → ϕ̄s) ∧ (s̄� → ¬ϕ̄s))).

Then Eadm is a defining encoding function for adm.

Proof: Coherence of Eadm follows from the fact that for any two valued interpretation v̂ such that
v̂ |= Eadm[S̄, C̄] for an arbitrary ADF D = (S, C) it is also the case that v̂ |= coh[S̄] and, hence,
according to Lemma 3.7, v̂ is coherent on S̄3.

In order to prove soundness assume that v̂ is a two valued interpretation, D = (S, C =
{ϕs}s∈S) an ADF, and v̂ |= Eadm[S̄, C̄]. Then, v̂ |= ∀S̄((S̄3 ≤i S̄) → ∧

s∈S((s̄
⊕ → ϕ̄s) ∧ (s̄� →

¬ϕ̄s))) which, by Lemma 2.1 implies that v̂[S̄/ŵ(S̄)] |= (S̄3 ≤i S̄) → ∧
s∈S((s̄

⊕ → ϕ̄s) ∧ (s̄� →
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¬ϕ̄s)) for any two valued interpretation ŵ. In particular, ẑ |= (S̄3 ≤i S̄) → ∧
s∈S((s̄

⊕ → ϕ̄s) ∧
(s̄� → ¬ϕ̄s)) with ẑ := v̂[S̄/ŵ(S̄)] for any two valued valuation ŵ such that ŵ ∼=S̄ w for some
w ∈ [v]2. Now, by Lemma 3.5 ẑ is coherent on S̄3 and ẑ ∼=S̄3

v as well as ẑ ∼=S̄ w. Since w ∈ [v]2

it follows that v ≤i w and according to Lemma 3.9, ẑ |= S̄3 ≤i S̄. Hence, also ẑ |= ∧
s∈S((s̄

⊕ →
ϕ̄s) ∧ (s̄� → ¬ϕ̄s)) must be the case. Consider now an arbitrary s ∈ S and assume that v(s) = t.
In that case, since ẑ ∼=S̄3

v, by Definition 3.4 ẑ(s̄⊕) = t and, hence, since ẑ |= s̄⊕ → ϕ̄s, also
ẑ |= ϕ̄s must be the case. Since ẑ ∼=S̄ w, this means that also w |= ϕs, that is, w(ϕs) = t must
be the case. In the same manner, if v(s) = f, since ẑ |= s̄� → ¬ϕ̄s, w(¬ϕs) = t holds, that is,
w(ϕs) = f. Finally, if v(s) = u, then v(s) ≤i w(ϕs) whatever the value of w(ϕs). In conclusion,
v(s) ≤i w(ϕs) and, since s and w are arbitrary, moreover v(s) ≤i w(ϕs) for every s ∈ S and
w ∈ [v]2. In conclusion, by Proposition 3.10 v ∈ adm(D) is the case.

To prove completeness, assume v ∈ adm(D) for an ADF D = (S, C = {ϕs}s∈S). Consider
a two valued interpretation v̂ such that v̂ ∼=S̄3

v. By Definition 3.4 and Lemma 3.7 then also
v̂ |= coh[S̄]. Consider now an arbitrary two valued interpretation ŵ and assume that ẑ |= S̄3 ≤i S̄
for ẑ := v̂[S̄/ŵ(S̄)]. By Lemma 3.5 ẑ is also coherent on S̄3 while ẑ ∼=S̄3

v as well as ẑ ∼=S̄ w.
Hence, according to Lemma 3.9, v ≤i w and since w is two valued this means that w ∈ [v]2.
Since v ∈ adm(D) according to Proposition 3.10 this means that v(s) ≤i w(ϕs) for all s ∈ S. Con-
sider an arbitrary s ∈ S. If ẑ(s̄⊕) = t, then since ẑ is coherent on S̄3 and ẑ ∼=S̄3

v it must be the case
that v(s) = t. Hence, since v(s) ≤i w(ϕs) also w(ϕs) = t must hold and, therefore, since ẑ ∼=S̄ w
also ẑ(ϕ̄s) = t must be the case. Therefore ẑ |= s̄⊕ → ϕ̄s. In the same manner, from the assump-
tion that ẑ(s̄�) = t one arrives at ẑ |= s̄� → ¬ϕ̄s. In conclusion, ẑ |= (s̄⊕ → ϕ̄s) ∧ (s̄� → ¬ϕ̄s)

and since s ∈ S was arbitrary in fact ẑ |= ∧
s∈S((s̄

⊕ → ϕ̄s) ∧ (s̄� → ¬ϕ̄s)). Hence ẑ |= (S̄3 ≤i

S̄) → ∧
s∈S((s̄

⊕ → ϕ̄s) ∧ (s̄� → ¬ϕ̄s)) and since ŵ in ẑ := v̂[S̄/ŵ(S̄)] was arbitrary according
to Lemma 2.1 v̂ |= ∀S̄((S̄3 ≤i S̄) → ∧

s∈S((s̄
⊕ → ϕ̄s) ∧ (s̄� → ¬ϕ̄s))). Finally, it follows that

v̂ |= coh[S̄] ∧ ∀S̄((S̄3 ≤i S̄) → ∧
s∈S((s̄

⊕ → ϕ̄s) ∧ (s̄� → ¬ϕ̄s))) = Eadm[S̄, C̄].

Example 3.12: The following is the encoding for the ADF D = (S, C) from Example 2.7 w.r.t.
the admissible semantics (using S̄ = S as variable set copy). Here we use the abbreviation S3 ≤i

{ϕs}s∈S := ∧
s∈S((s̄

⊕ → ϕ̄s) ∧ (s̄� → ¬ϕ̄s)) to express the conjunct at the end of the encoding
presented in Proposition 3.11.

Eadm[S, C] = coh[S] ∧ ∀{a, b, c}((S3 ≤i S) → (S3 ≤i {ϕs}s∈S))

coh[S] = ¬(a⊕ ∧ a�) ∧ ¬(b⊕ ∧ b�) ∧ ¬(c⊕ ∧ c�)

S3 ≤i S = ((a⊕ → a) ∧ (a� → ¬a)) ∧ ((b⊕ → b) ∧ (b� → ¬b))

∧ ((c⊕ → c) ∧ (c� → ¬c))

S3 ≤i {ϕs}s∈S = ((a⊕ → (b ∨ ¬b)) ∧ (a� → ¬(b ∨ ¬b)))∧
((b⊕ → b) ∧ (b� → ¬b)) ∧ ((c⊕ → (c → b)) ∧ (c� → ¬(c → b)))

Any interpretation mapping the free variables a⊕ and b� to t and a�, b⊕, c⊕, c� to f satisfies
Eadm[S, C] and corresponds to the interpretation v7 ∈ adm(D) from Table 1.

The following proposition gives the defining encoding for the complete semantics. The first
conjunct of Ecom[S̄, C̄] for some ADF D = (S, C = {ϕs}s∈S) and variable set copy S̄ ensures that
any model of Ecom[S̄, C̄] corresponds to an admissible interpretation v of D. The conjunct on
the right is slightly more involved and expresses that v is also complete if v(s) = u for some
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s ∈ S only if there exist w, w′ ∈ [v]2 such that w(ϕs) = t and w′(ϕs) = f (see the proof sketch of
Proposition 3.13).

Proposition 3.13: Given an ADF D = (S, C = {ϕs}s∈S) and a variable set copy S̄ of S, let the
function Ecom return a QBF with free variables in S̄3

Ecom[S̄, C̄] := Eadm[S̄, C̄] ∧
∧
s∈S

((¬s̄⊕ ∧ ¬s̄�) → ∃S̄′ ∪ S̄′′((S̄3 ≤i S̄′) ∧ (S̄3 ≤i S̄′′) ∧ ϕ̄′
s ∧ ¬ϕ̄′′

s )).

Then Ecom is a defining encoding function for com.

Proof: (sketch) Note first that for a three valued valuation v and an ADF D = (S, C = {ϕs}s∈S),
v ∈ com(D) if and only if (i) v ∈ adm(D) and (ii) v(s) = u is the case for some s ∈ S only if there
exist w, w′ ∈ [v]2 such that w(ϕs) = t and w′(ϕs) = f. That v ∈ com(D) implies that v satisfies (i)
and (ii) is immediate from the definition of complete interpretations. For the converse, (i), that is,
v ≤i �D(v), implies that v(s) = �D(v)(s) for s ∈ S such that v(s) = t and v(s) = f. On the other
hand (ii), which spells out the conditions under which �D(v)(s) = u for some s ∈ S, implies that
also v(s) = �D(v)(s) for s ∈ S such that v(s) = u.

Coherence follows directly from Proposition 3.11 and the fact that for any two valued
interpretation v̂ such that v̂ |= Ecom[S̄, C̄] it is also the case that v̂ |= Eadm[S̄, C̄] for any ADF
D = (S, C). Proof of soundness and completeness involves showing that for a two valued inter-
pretation v̂, v̂ |= Ecom[S̄, C̄] if and only if the three valued interpretation v such that v̂ ∼=S̄3

v
satisfies (i) as defined above which is encoded via Eadm[S̄, C̄] and (ii) which is encoded via∧

s∈S((¬s̄⊕ ∧ ¬s̄�) → ∃S̄′ ∪ S̄′′((S̄3 ≤i S̄′) ∧ (S̄3 ≤i S̄′′) ∧ ϕ̄′
s ∧ ¬ϕ̄′′

s )). This can be shown in a
similar fashion to the proof of Proposition 3.14 via Lemmas 2.1, 3.5 and 3.9 as well as
Proposition 3.11.

Using again the encoding for admissibility we encode preferred semantics in the next proposi-
tion. The defining encoding function returns a QBF that specifies that the result should correspond
to an admissible interpretation v and for any admissible interpretation v′ with greater or equal
information content it must be the case that v(s) = v′(s) for all s ∈ S, that is, v is an admissible
interpretation that is maximally informative with respect to ≤i.

Proposition 3.14: Given an ADF D = (S, C) and a variable set copy S̄ of S, let the function Eprf

return a QBF with free variables in S̄3

Eprf[S̄, C̄] := Eadm[S̄, C̄] ∧ ∀S̄′
3(Eadm[S̄′, C̄′] → ((S̄3 ≤i S̄′

3) → (S̄′
3 ≤i S̄3))).

Then Eprf is a defining encoding function for prf.

Proof: Coherence of Eprf follows from the fact that for any two valued interpretation v̂ such that
v̂ |= Eprf[S̄, C] for an arbitrary ADF D = (S, C) it is also the case that v̂ |= Eadm[S̄, C̄] and, hence,
according to Proposition 3.11, v̂ is coherent on S̄3.

In order to prove soundness assume that v̂ is a two valued interpretation, D = (S, C) an ADF,
and v̂ |= Eprf[S̄, C̄]. Then, also v̂ |= Eadm[S̄, C̄] and, hence, according to Proposition 3.11, any
three valued interpretation v such that v̂ ∼=S̄3

v is an admissible interpretation of D. Assume
that there exists v′ ∈ adm(D) such that v′ >i v. Now, since v̂ |= Eprf[S̄, C̄] it is also the case
that v̂ |= ∀S̄′

3(Eadm[S̄′, C̄′] → ((S̄3 ≤i S̄′
3) → (S̄′

3 ≤i S̄3))) and, hence, according to Lemma 2.1
v̂[S̄′

3/w(S̄
′
3)] |= Eadm[S̄′, C̄′] → ((S̄3 ≤i S̄′

3) → (S̄′
3 ≤i S̄3)) for any interpretation ŵ. In particu-

lar, ẑ |= Eadm[S̄′, C̄′] → ((S̄3 ≤i S̄′
3) → (S̄′

3 ≤i S̄3)) with ẑ := v̂[S̄′
3/v̂

′(S̄′
3)] for any two valued
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valuation v̂′ such that v̂′ ∼=S̄′
3

v′. Now, by Lemma 3.5 ẑ ∼=S̄3
v and ẑ ∼=S̄′

3
v′. Since ẑ ∼=S̄′

3
v′ by Propo-

sition 3.11 ẑ |= Eadm[S̄′, C̄′]. Also, since v′ >i v, by Lemma 3.8, ẑ |= S̄3 ≤i S̄′
3 and, hence, it must

also be the case that ẑ |= S̄′
3 ≤i S̄3 which, according to Lemma 3.8 contradicts the assumption that

v′ >i v. Hence, there does not exist v′ ∈ adm(D) such that v′ >i v and v is therefore a preferred
interpretation of D.

To prove completeness, assume v ∈ prf(D). Consider a two valued interpretation v̂ such
that v̂ ∼=S̄3

v. Since v ∈ adm(D) by Proposition 3.11, v̂ |= Eadm[S̄, C̄]. Consider now an arbi-
trary two valued interpretation v̂′ such that ŵ |= Eadm[S̄′, C̄′] for ŵ := v̂[S′

3/v̂
′(S′

3)], that is,
also v̂′ |= Eadm[S̄′, C̄′]. By Proposition 3.11 this means that v′ ∈ adm(D) for the three valued
interpretation v′ such that ŵ ∼=S̄′

3
v′ (and v̂′ ∼=S̄′

3
v′). Assume now that also ŵ |= S̄3 ≤i S̄′

3 but

ŵ �|= S̄′
3 ≤i S̄3. Since by Lemma 3.5 also ŵ ∼=S̄3

v and hence ŵ is coherent on S̄3 in addition to
S̄′

3, by Lemma 3.8 this implies that v ≤i v′ and v′ �≤i v, that is, v′ >i v, which is in contradic-
tion with v ∈ prf(D). Hence ŵ |= (S̄3 ≤i S̄′

3) → (S̄′
3 ≤i S̄3) and, therefore, ŵ |= Eadm[S̄′, C̄′] →

((S̄3 ≤i S̄′
3) → (S̄′

3 ≤i S̄3)). Since v̂′ in ŵ = v̂[S̄′
3/v̂

′(S̄′
3)] was arbitrary, by Lemma 2.1 this

means that v̂ |= ∀S̄′
3(Eadm[S̄′, C′] → ((S̄3 ≤i S̄′

3) → (S̄′
3 ≤i S̄3))). In conclusion we have v̂ |=

Eadm[S̄, C̄] ∧ ∀S̄′
3(Eadm[S̄′, C̄′] → ((S̄3 ≤i S̄′

3) → (S̄′
3 ≤i S̄3))) = Eprf[S̄, C̄].

Example 3.15: The following is the encoding for the ADF D = (S, C) from Example 2.7 w.r.t.
the preferred semantics (using S̄ = S as variable set copy).

Eprf[S, C] = Eadm[S, C] ∧ ∀{a′⊕, a′�, b′⊕, b′�, c′⊕, c′�}(Eadm[S′, C′]

→ ((S3 ≤i S′
3) → (S′

3 ≤i S3)))

Eadm[S, C] = coh[S] ∧ ∀{a, b, c}((S3 ≤i S) → (S3 ≤i {ϕs}s∈S))

coh[S] = ¬(a⊕ ∧ a�) ∧ ¬(b⊕ ∧ b�) ∧ ¬(c⊕ ∧ c�)

S3 ≤i S = ((a⊕ → a) ∧ (a� → ¬a)) ∧ ((b⊕ → b) ∧ (b� → ¬b))

∧ ((c⊕ → c) ∧ (c� → ¬c))

S3 ≤i {ϕs}s∈S = ((a⊕ → (b ∨ ¬b)) ∧ (a� → ¬(b ∨ ¬b))) ∧ ((b⊕ → b) ∧ (b� → ¬b))

∧ ((c⊕ → (c → b)) ∧ (c� → ¬(c → b)))

Eadm[S′, C′] = coh[S′] ∧ ∀{a′, b′, c′}((S′
3 ≤i S′) → (S′

3 ≤i {ϕ′
s}s∈S))

coh[S′] = ¬(a′⊕ ∧ a′�) ∧ ¬(b′⊕ ∧ b′�) ∧ ¬(c′⊕ ∧ c′�)

S′
3 ≤i S′ = ((a′⊕ → a′) ∧ (a′� → ¬a′)) ∧ ((b′⊕ → b′) ∧ (b′� → ¬b′))

∧ ((c′⊕ → c′) ∧ (c′� → ¬c′))

S′
3 ≤i {ϕ′

s}s∈S = ((a′⊕ → (b′ ∨ ¬b′)) ∧ (a′� → ¬(b′ ∨ ¬b′))) ∧ ((b′⊕ → b′) ∧ (b′� → ¬b′))

∧ ((c′⊕ → (c′ → b′)) ∧ (c′� → ¬(c′ → b′)))

S3 ≤i S′
3 = ((a⊕ → a′⊕) ∧ (a� → a′�)) ∧ ((b⊕ → b′⊕) ∧ (b� → b′�))

∧ ((c⊕ → c′⊕) ∧ (c� → c′�))

S′
3 ≤i S3 = ((a′⊕ → a⊕) ∧ (a′� → a�)) ∧ ((b′⊕ → b⊕) ∧ (b′� → b�))

∧ ((c′⊕ → c⊕) ∧ (c′� → c�))
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To give the defining encoding function for the grounded semantics we use a similar technique
as for the preferred semantic. Instead of the module for admissible interpretations we use com-
plete semantics and require that the result is information minimal. A three valued interpretation
v is preferred for an ADF D if for all v′ ∈ adm(D) we have either that v and v′ are incomparable
w.r.t. ≤i, or that v′ ≤i v. The grounded interpretation is the ≤i-minimal complete interpretation
and thus all complete interpretations are comparable to the grounded interpretation. Therefore
the encoding for the grounded semantics is slightly simpler than the one for preferred, where the
check for comparability has to be included.

Proposition 3.16: Given an ADF D = (S, C) and a variable set copy S̄ of S, let the function Egrd

return a QBF with free variables in S̄3

Egrd[S̄, C̄] := Ecom[S̄, C̄] ∧ ∀S̄′′
3 (Ecom[S̄′′, C̄′′] → (S̄3 ≤i S̄′′

3 )).

Then Egrd is a defining encoding function for grd.

Proof: (sketch) Egrd[S̄, C̄] encodes the fact that the grounded interpretation of an ADF D =
(S, C) is the ≤i minimal complete interpretation of D. Ecom[S̄, C̄] encodes that the grounded
interpretation is complete while ∀S̄′′

3 (Ecom[S̄′′, C̄′′] → (S̄3 ≤i S̄′′
3 )) encodes minimality. Coherence

follows from Proposition 3.13 while soundness and completeness can be shown in a simi-
lar fashion to the proof of Proposition 3.14 also making use of Proposition 3.13, as well as
Lemmas 2.1, 3.5 and 3.8.

Having established the encodings for the three valued semantics on ADFs we now proceed to
the remaining two valued semantics. We begin with two valued models.

Proposition 3.17: Given an ADF D = (S, C = {ϕs}s∈S) and a variable set copy S̄ of S, let the
function Emod return a QBF with free variables in S̄

Emod[S̄, C̄] :=
∧
s∈S

(s̄ ↔ ϕ̄s).

Then Emod is a defining encoding function for mod.

Proof: Let D = (S, C = {ϕs}s∈S) be an ADF. For a two valued interpretation v̂ it is the case that
v̂ |= Emod[S̄, C̄] = ∧

s∈S(s̄ ↔ ϕ̄s) if and only if v̂ |= s̄ ↔ ϕ̄s for every s ∈ S. This holds if and only
if v̂(s̄) = v̂(ϕ̄s) for every s ∈ S. So given a two valued interpretation v̂ such that v̂ |= Emod[S̄, C̄],
since v̂(s̄) = v̂(ϕ̄s) for every s ∈ S, also v(s) = v(ϕs) for every s ∈ S and the interpretation v such
that v̂ ∼=S̄ v, that is, v ∈ mod(D). On the other hand given an interpretation v ∈ mod(D), any two
valued interpretation v̂ such that v̂ ∼=S̄ v will satisfy that v̂(s̄) = v̂(ϕ̄s) for every s ∈ S and hence
v̂ |= Emod[S̄, C̄].

We provide the defining encoding for the stable semantics in Proposition 3.23. The encoding
function maps every ADF D = (S, C = {ϕs}s∈S) to a QBF consisting of three conjuncts. We first
require that any model of the QBF correspond to a two valued model v of D. The second conjunct
encodes that the statements mapped to t by v coincide with those mapped to t by the grounded
interpretation of the reduct Dv as defined in Definition 2.6. The last conjunct applies the defining
encoding function of the grounded semantics to a modified version of D via a relatively simple
syntactic trick, which essentially boils down to computing the grounded interpretation of the
ADF Dv

∗ := (S, C∗ := {ϕ∗
s }s∈S) with ϕ∗

s := ϕs if v(s) = t and ϕ∗
s := ⊥ if v(s) = f. We prove in
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Lemma 3.21 that the grounded interpretation of Dv and Dv
∗ are equal when restricting attention

to the assignments to the variables in Ev = {s ∈ S | v(s) = t}. Before this we introduce some
auxiliary terminology in Definitions 3.18 to 3.20.

Definition 3.18: Let S be a set of statements. Then US is the interpretation on S mapping each
s ∈ S to u.

Definition 3.19: Let D = (S, C) be an ADF and v be a two or three valued interpretation on S.
Then ED

v := {s | s ∈ S and v(s) = t}.

When it is clear from the context to which ADF D we are referring we will more often than not
drop the D from the notation ED

v as in the preceding paragraph, that is, write Ev instead.

Definition 3.20: Let v and v′ be two or three valued interpretations on S ∪ T1 and S ∪ T2,
respectively for some sets S, T1, and T2. Then

• v =�S v′ if v(s) = v′(s) for every s ∈ S,
• v <i�S v′ if v(s) <i v′(s) for every s ∈ S, and
• v ≤i�S v′ if v(s) ≤i v′(s) for every s ∈ S.

Lemma 3.21: Let D = (S, C = {ϕs}s∈S) be an ADF and v a three valued interpretation on S.
Then, grd(Dv

∗) =�Ev grd(Dv) where Dv
∗ := (S, C∗ := {ϕ∗

s }s∈S) with ϕ∗
s := ϕs if v(s) = t and ϕ∗

s :=
⊥ if v(s) = f.

Proof: We prove by induction on n ≥ 0 that �n
Dv∗

≤i�Ev �
n
Dv and �n+1

Dv∗
≥i�Ev �

n
Dv . From this then

the lemma follows since consider a k ≥ 0 such that �k
Dv∗

= l.f.p. (�Dv∗) and �k
Dv = l.f.p. (�Dv).

In that case, one has that grd(Dv
∗) = l.f.p. (�Dv∗) = �k

Dv∗
≤i�Ev �

k
Dv = l.f.p. (�Dv) = grd(Dv)

and grd(Dv) = l.f.p. (�Dv) = �k
Dv ≤i�Ev �

k+1
Dv∗

= �k
Dv∗

= l.f.p. (�Dv∗) = grd(Dv
∗). In other words,

grd(Dv
∗) ≤i�Ev grd(Dv) and grd(Dv

∗) ≥i�Ev grd(Dv), hence grd(Dv
∗) =�Ev grd(Dv).

The base case (n = 0) of the inductive proof holds trivially since �0
Dv∗

= US =�Ev UEv = �0
Dv

and �1
Dv∗

≥i�Ev �
0
Dv = UEv since UEv is the ≤i least interpretation on EV .

Before proving the inductive step note first that �1
Dv∗
(s) = f for every s ∈ S such that v(s) = f

(since for every w ∈ [US]2 it is the case that w(ϕ∗
s ) = w(⊥) = f). Hence, since the characteristic

operator is monotonic in fact �n
Dv∗
(s) = f and so also w(s) = f for every w ∈ [�n

Dv∗
]2 holds for

every s ∈ S such that v(s) = f and each n > 0. A consequence of this is

• Observation A: w(ϕs) = w(ϕs[b/⊥ : v(b) = f]) for every s ∈ Ev, w ∈ [�n
Dv∗

]2 and n > 0.

A second fact that will be of use in the proof of the inductive step is

• Observation B: if v and v′ are two interpretations, v ≤i�S′ v′ for some set S′, and ψ is
a propositional formula with all variables that occur in ψ being in S′, then if for every
w ∈ [v]2 it is the case that w(ψ) = x for x ∈ {t, f} then also for every w′ ∈ [v′]2 it holds that
w′(ψ) = x.

This is because if there exists some w′ ∈ [v′]2 such that w′(ψ) �= x (x ∈ {t, f}), then, since
v ≤i�S′ v′ ≤i w′ there also exists a w ∈ [v]2 such that w =�S′ w′ and therefore w(ψ) �= x which
is a contradiction.

Assume now (induction hypothesis) that �n
Dv∗

≤i�Ev �
n
Dv and �n+1

Dv∗
≥i�Ev �

n
Dv for n > 0. We

first prove that then also �n+1
Dv∗

≤i�Ev �
n+1
Dv . For this consider first that for an arbitrary s ∈ Ev
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it is the case that �n+1
Dv∗
(s) = t. This means that for every w ∈ [�n

Dv∗
]2 it holds that w(ϕ∗

s ) =
w(ϕs) = t. Because of Observation A this also means that for every w ∈ [�n

Dv∗
]2 it holds that

w(ϕs[b/⊥ : v(b) = f]) = t. Now, since by induction hypothesis �n
Dv∗

≤i�Ev �
n
Dv , by Observation B

this implies that also for every w′ ∈ [�n
Dv ]2 it is the case that w′(ϕs[b/⊥ : v(b) = f]) = t in which

case �n+1
Dv (s) = t. In the same manner one can prove that if �n+1

Dv∗
(s) = f then also �n+1

Dv (s) = f

must be the case. Finally, if �n+1
Dv∗
(s) = u then �n+1

Dv∗
(s) ≤i �

n+1
Dv (s) whatever the value of �n+1

Dv (s).

Since s ∈ Ev was arbitrary one can conclude that �n+1
Dv∗

≤i�Ev �
n+1
Dv .

To prove that �n+2
Dv∗

≥i�Ev �
n+1
Dv from the induction hypothesis assume now that for an arbi-

trary s ∈ Ev it is the case that �n+1
Dv (s) = t. This means that for every w ∈ [�n

Dv ]2 it holds that
w(ϕs[b/⊥ : v(b) = f]) = t. By the induction hypothesis �n+1

Dv∗
≥i�Ev �

n
Dv , hence by Observation

B also for every w′ ∈ [�n+1
Dv∗

]2 it holds that w′(ϕs[b/⊥ : v(b) = f]) = t. Finally, by Observation

A one has that in fact for every w′ ∈ [�n+1
Dv∗

]2 it is the case that w′(ϕs) = w′(ϕ∗
s ) = t. Hence,

�n+2
Dv∗
(s) = t. In the same manner one can prove that if �n+1

Dv (s) = f also �n+2
Dv∗
(s) = f. Finally, if

�n+1
Dv (s) = u then �n+2

Dv∗
(s) ≥i �

n+1
Dv (s) whatever the value of �n+2

Dv∗
(s). Since s ∈ Ev was arbitrary

one can conclude that �n+2
Dv∗

≥i�Ev �
n+1
Dv .

Before finally giving the defining encoding for the stable semantics we generalise the nota-
tion ϕ[T/v(S)] for the case that T is a set of signed or unsigned variables representing a set of
statements S and v is an interpretation on an ADF D = (S, C). We use this notation in the proof of
Proposition 3.23 as well as when encoding the verification problem for an arbitrary ADF semantic
in Proposition 3.25.

Definition 3.22: Let ϕ be a QBF and S̄ a variable set copy of a set of statements S. Then
ϕ[S̄/v(S)] with v a two valued interpretation on S denotes the QBF ϕ′ with s̄ replaced for �
in case v(s) = t and s̄ replaced for ⊥ in case v(s) = f. ϕ[S̄3/v(S)] with v a three (or two) valued
interpretation on S denotes the QBF ϕ′ where

• s̄⊕ is replaced for � and s̄� is replaced for ⊥ in case v(s) = t;
• s̄⊕ is replaced for ⊥ and s̄� is replaced for � in case v(s) = f; and
• s̄⊕ and s̄� are replaced for ⊥ in case v(s) = u.

In the defining encoding for the stable semantics given in Proposition 3.23, any priming applied to
the modified acceptance conditions {ϕ̄′

s ∧ s̄}s∈S (of an ADF D = (S, {ϕs}s∈S) and w.r.t. a variable
set copy S̄) within the sub-module Egrd[S̄′, {ϕ̄′

s ∧ s̄}s∈S] is applied only to the acceptance condition
ϕ̄′

s and not to s̄ for every s ∈ S. So, for example, {ϕ̄′
s ∧ s̄}′′s∈S = {ϕ̄′′′

s ∧ s̄}s∈S . See Example 3.24 for
how this works in practice.

Proposition 3.23: Given an ADF D = (S, C) and a variable set copy S̄ of S, let the function Estb

return a QBF with free variables in S̄

Estb[S̄, C̄] := Emod[S̄, C̄] ∧
∧
s∈S

(s̄ ↔ s̄′⊕) ∧ Egrd[S̄′, {ϕ̄′
s ∧ s̄}s∈S].

Then Estb is a defining encoding function for stb.

Proof: Let D = (S, C) be an ADF. In order to prove soundness consider a two valued interpreta-
tion v̂ such that v̂ |= Estb[S̄, C̄]. Then v̂ |= Emod[S̄, C̄] from which it follows via Proposition 3.17
that v ∈ mod(D) for the interpretation v such that v̂ ∼=S̄ v. Now, it is also the case that v̂ |=
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Egrd[S̄′, {ϕ̄′
s ∧ s̄}s∈S] and hence by Lemma 2.3 v̂ |= Egrd[S̄′, {ϕ̄′

s ∧ s̄}s∈S][S̄/v̂(S̄)]. Since v̂(s̄) = v(s)
for all s ∈ S the latter is equivalent to v̂ |= Egrd[S̄′, {ϕ̄′

s ∧ s̄}s∈S][S̄/v(S)]. From Proposition 3.16
it follows that v′ = grd(D#) for the interpretation v′ such that v̂ ∼=S̄′ v′ and the ADF D# =
(S, {ϕ#

s }s∈S)where ϕ#
s = ϕs ∧ � if v(s) = t and ϕ#

s = ϕs ∧ ⊥ if v(s) = f. Note that since ϕs ∧ � ≡
ϕs and ϕs ∧ ⊥ ≡ ⊥ for any s ∈ S the ADF D# is equivalent to the ADF Dv

∗ := (S, C∗ := {ϕ∗
s }s∈S)

defined as in Lemma 3.21. Hence, v′ = grd(Dv
∗). Finally, consider an arbitrary s ∈ S such that

v(s) = t, that is, s ∈ Ev. Since v̂ |= ∧
s∈S(s̄ ↔ s̄′⊕), in particular v̂ |= s̄ ↔ s̄′⊕. Hence, given that

v̂ ∼=S̄ v and therefore v̂(s̄) = t, it must also be the case that v̂(s̄′⊕) = t. From this it follows that
since v̂ ∼=S̄′ v′ also v′(s) = t and since s ∈ Ev was arbitrary in fact Ev ⊆ Ev′ . In the same manner
from the fact that v̂ |= ∧

s∈S(s̄ ↔ s̄′⊕) one can also conclude that Ev′ ⊆ Ev and, hence, Ev = Ev′ .
Since v′ = grd(Dv

∗) from Lemma 3.21 it follows that ED
v = EDv

v′′ where v′′ = grd(Dv).
To prove completeness, let D = (S, C) be an ADF and v a two valued interpretation such

that v ∈ stb(D). Then v ∈ mod(D) and ED
v = EDv

v′′ for v′′ = grd(Dv). From Lemma 3.21 it fol-

lows that also ED
v = E

Dv
∗

v′ for v′ = grd(Dv
∗). As has been argued for in the proof of soundness,

the ADF Dv
∗ is equivalent to the ADF D# defined as above and hence v′ = grd(D#). Let v̂ be

a two valued interpretation such that v̂ ∼=S̄ v and v̂ ∼=S̄′ v′. Then since v ∈ mod(D) and v̂ ∼=S̄ v
it follows from Proposition 3.17 that v̂ |= Emod[S̄, C̄]. Also, since v′ = grd(D#), one has that
v̂ |= Egrd[S̄′, {ϕ̄′

s ∧ s̄}s∈S][S̄/v(S)] = Egrd[S̄′, {ϕ̄′
s ∧ s̄}s∈S][S̄/v̂(S̄)]. This by Lemma 2.3 is equiva-

lent to v̂ |= Egrd[S̄′, {ϕ̄′
s ∧ s̄}s∈S]. Finally, from the fact that ED

v = E
Dv

∗
v′ , v̂ ∼=S̄ v, and v̂ ∼=S̄′ v′ it is

easy to show that v̂(s̄) = t if and only if v̂(s̄′⊕) = t for each s ∈ S and hence v̂ |= ∧
s∈S(s̄ ↔ s̄′⊕).

In conclusion, v̂ |= Emod[S̄, C̄] ∧∧s∈S(s̄ ↔ s̄′⊕) ∧ Egrd[S̄′, {ϕ̄′
s ∧ s̄}s∈S] = Estb[S̄, C̄].

Example 3.24: The following is a part of the encoding for the ADF D = (S, C) from Exam-
ple 2.7 w.r.t. the stable semantics (using S̄ = S as variable set copy).

Estb[S, C] = Emod[S, C] ∧ Egrd[S′, {ϕ′
s ∧ s}s∈S] ∧ (a ↔ a′⊕) ∧ (b ↔ b′⊕) ∧ (c ↔ c′⊕)

Emod[S, C] = (a ↔ (b ∨ ¬b)) ∧ (b ↔ b) ∧ (c ↔ (c → b))

V1 = {a′′′⊕, a′′′�, b′′′⊕, b′′′�, c′′′⊕, c′′′�}
Egrd[S′, {ϕ′

s ∧ s}s∈S] = Ecom[S′, {ϕ′
s ∧ s}s∈S] ∧ ∀V1(Ecom[S′′′, {ϕ′′′

s ∧ s}s∈S] → (S′
3 ≤i S′′′

3 ))

V2 = {a′′, b′′, c′′, a′′′, b′′′, c′′′}
Ecom[S′, {ϕ′

s ∧ s}s∈S] = Eadm[S′, {ϕ′
s ∧ s}s∈S] ∧ ((¬a′⊕ ∧ ¬a′�) → ∃V2((S

′
3 ≤i S′′)

∧ (S′
3 ≤i S′′′) ∧ ((b′′ ∨ ¬b′′) ∧ a) ∧ ¬((b′′′ ∨ ¬b′′′) ∧ a)))∧

((¬b′⊕ ∧ ¬b′�) → ∃V2((S
′
3 ≤i S′′) ∧ (S′

3 ≤i S′′′) ∧ (b′′ ∧ b)

∧ ¬(b′′′ ∧ b))) ∧ ((¬c′⊕ ∧ ¬c′�) → ∃V2((S
′
3 ≤i S′′) ∧ (S′

3 ≤i S′′′)∧
((c′′ → b′′) ∧ c) ∧ ¬((c′′′ → b′′′) ∧ c)))

Eadm[S′, {ϕ′
s ∧ s}s∈S] = coh[S′] ∧ ∀{a′, b′, c′}((S′

3 ≤i S′) → (S′
3 ≤i {ϕ′

s ∧ s}s∈S))

S′
3 ≤i {ϕ′

s ∧ s}s∈S = ((a′⊕ → ((b′ ∨ ¬b′) ∧ a)) ∧ (a′� → ¬((b′ ∨ ¬b′) ∧ a)))∧
((b′⊕ → (b′ ∧ b)) ∧ (b′� → ¬(b′ ∧ b)))∧
((c′⊕ → ((c′ → b′) ∧ c)) ∧ (c′� → ¬((c′ → b′) ∧ c)))

. . .
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Note in this example how Egrd[S′, {ϕ′
s ∧ s}s∈S] and Ecom[S′, {ϕ′

s ∧ s}s∈S] are expanded without
applying priming to any s within a modified acceptance condition of the form ϕ′

s ∧ s.

Having the defining encoding function for a semantics σ , encodings for the reasoning tasks we
consider with respect to σ can be given in a generic manner as is condensed in Proposition 3.25.

Proposition 3.25: Let D = (S, C) be an ADF, s∗ ∈ S, σ ∈ {adm, com, prf, grd, mod, stb}, and v
a three (or two) valued interpretation. If σ ∈ {adm, com, prf, grd}, then let x = s∗⊕ and T = S3.
Otherwise if σ ∈ {mod, stb}, then let x = s∗ and T = S. It holds that

(1) Credσ (s∗, D) = yes iff ∃T(Eσ [S, C] ∧ x) is satisfiable;
(2) Skeptσ (s∗, D) = yes iff ∀T(Eσ [S, C] → x) is satisfiable; and
(3) Verσ (v, D) = yes iff Eσ [S, C][T/v(S)] is satisfiable.

Proof:

(1) Assume first that Credσ (s∗, D) = yes. This means that there exists an interpretation v ∈
σ(D) such that v(s∗) = t. Let v̂ be a two valued interpretation such that v̂ ∼=T v. Then,
since Eσ is a defining encoding for σ , v̂ |= Eσ [S, C]. Also, since v(s∗) = t and v̂ ∼=T v, it is
the case that v̂ |= x. Hence v̂ |= Eσ [S, C] ∧ x and by Corollary 2.2 then ∃T(Eσ [S, C] ∧ x)
is satisfiable.

Assume now that ∃T(Eσ [S, C] ∧ x) is satisfiable. Then by Corollary 2.2 there exists
a two valued interpretation v̂ such that v̂ |= Eσ [S, C] ∧ x. Let v be the three valued inter-
pretation such that v̂ ∼=T v. Then since v̂ |= Eσ [S, C] and Eσ is a defining encoding for σ ,
v ∈ σ(D). Also, since v̂ |= x one has that v(s∗) = t. Hence Credσ (s∗, D) = yes.

(2) Assume first that Skeptσ (s∗, D) = yes. This means that for every interpretation v ∈ σ(D)
it is the case that v(s∗) = t. Let v̂ be a two valued interpretation such that v̂ |= Eσ [S, C]. In
that case, since Eσ is a defining encoding for σ , if v′ is a three valued interpretation such
that v̂ ∼=T v′, it holds that v′ ∈ σ(D). Hence v′(s∗) = t and, therefore, v̂ |= x. As a conse-
quence v̂ |= Eσ [S, C] → x and, since v̂ was arbitrary, by Corollary 2.2 ∀T(Eσ [S, C] → x)
is satisfiable.

Assume now that ∀T(Eσ [S, C] → x) is satisfiable. Then by Corollary 2.2 for every
two valued interpretation v̂ it is the case that v̂ |= Eσ [S, C] → x. Let v be any three
valued interpretation such that v ∈ σ(D) and v̂′ a two valued interpretation such that
v̂′ ∼=T v. Then v̂′ |= Eσ [S, C] and hence, since v̂′ |= Eσ [S, C] → x, also v̂′ |= x. Therefore
v(s∗) = t and, since v was arbitrary, it is the case that v′(s∗) = t for any v′ ∈ σ(D), that
is, Skeptσ (s∗, D) = yes.

(3) Assume first that Verσ (v, D) = yes. This means that v ∈ σ(D). Let v̂ be a two valued
interpretation such that v̂ ∼=T v. Then, since Eσ is a defining encoding for σ , v̂ |= Eσ [S, C].
By Lemma 2.3 this means that Eσ [S, C][T/v̂(T)] = Eσ [S, C][T/v(S)] is true (satisfiable).

Assume now that Eσ [S, C][T/v(S)] is satisfiable and let v̂ be a two valued inter-
pretation such that v̂ |= Eσ [S, C][T/v(S)]. Note then that v̂[T/v(S)] |= Eσ [S, C] where
v̂[T/v(S)] is defined mirroring Definition 3.22. Also if v′ is the three valued interpretation
such that v̂[T/v(S)] ∼=T v′ then v′ = v and since Eσ is the defining encoding function for
σ , v ∈ σ(D).

Many of the encodings shown above are adequate w.r.t. their complexity (see Table 2 for
the complexity of the reasoning tasks)1 . Since for any ADF D = (S, C) and s∗ ∈ S we have
Credadm(s∗, D) = Credcom(s∗, D) = Credprf(s∗, D) we can use the encodings for admissibility
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in these cases. Transforming ∃T(Eadm[S, C] ∧ x) to PNF results in a formula of prefix type �2,
that is, a QBF in a class of QBFs for which satisfiability is �P

2 complete (Credadm is also �P
2

complete). Note that, in fact, although ∃T(Ecom[S, C] ∧ x) results in a QBF with more vari-
ables per statement than the encoding for credulous reasoning w.r.t. admissible semantics it
also respects the complexity of the reasoning task. We similarly arrive at QBFs in PNF which
match the corresponding complexity for Skeptprf, Credmod and Skeptmod. For instance, the QBF
∀T(Eprf[S, C] → x) can be transformed to a PNF with prefix type �3. Skeptical acceptance w.r.t.
admissible semantics is trivial. The encodings of Veradm(v, D) and Verprf(v, D) are also adequate,
the first resulting in a formula with prefix type �1 when converted to PNF and the second
with type �2. The encodings for Vercom(v, D) and Vergrd(v, D) can also be considered ‘ade-
quate’ in the sense that the encodings mirror the structure of the SAT UNSAT problem. Finally,
Vermod(v, D) can be seen as an encoding of the verification problem for propositional logic which
is in P.

For the remaining queries our encodings do not result in QBFs with a prefix type matching
the complexity of the corresponding decision problem on ADFs. The reason for this is that the
encodings for the grounded semantics, if translated to PNF, have a higher prefix type (third level)
than the complexity of the corresponding decision problems would suggest. The encodings for the
stable semantics in turn depend on the defining encoding function for the grounded semantics and
are, hence, not adequate w.r.t. the complexity either. We give complexity sensitive encodings of
all the reasoning tasks w.r.t. the grounded and stable semantics in Section 3.3, which requires us to
deviate from the methodology we followed in this section. These are also a bit more involved than
the more ‘natural’ encodings of these reasoning tasks given in this section, requiring more propo-
sitional variables per statement in the ADF. Finally since Skeptcom(s∗, D) = Skeptgrd(s∗, D), also
skeptical acceptance w.r.t. complete semantics can be encoded with a lower prefix type than the
one which results from using ∀T(Ecom[S, C] → x) by using the encoding of Skeptgrd(s∗, D) we
provide in Section 3.3.

3.3. Complexity sensitive encodings for the grounded and stable semantics

As already indicated, in this section we provide alternatives to those encodings from
Section 3.2 which are not in a fragment of QSAT which matches the complexity of the
reasoning task.

We consider first credulous and skeptical acceptance of statements with respect to the
grounded semantics. One way of arriving at adequate encodings for these decision problems is by
making use of a characterisation of grounded interpretations given by Strass and Wallner (2014),
for the statement of which we make use of the following definition:

Definition 3.26: Let D = (S, {ϕs}s∈S) be an ADF and v an interpretation. The following are some
properties v can satisfy.

(1) For each s ∈ S such that v(s) = t there exists an interpretation w ∈ [v]2 for which
w(ϕs) = t.

(2) For each s ∈ S such that v(s) = f there exists an interpretation w ∈ [v]2 for which
w(ϕs) = f.

(3) For each s ∈ S such that v(s) = u there exist interpretations w1 ∈ [v]2 and w2 ∈ [v]2 such
that w1(ϕs) = t and w2(ϕs) = f.

The above mentioned characterisation of grounded interpretations is expressed in the following
proposition by Strass and Wallner (2014):
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Proposition 3.27: Let D be an ADF. Then v is the grounded interpretation of D if and only if v
is the ≤i least interpretation satisfying Properties 1–3 in Definition 3.26.

This characterisation leads to an alternative way of defining the encoding function for the
grounded semantics as is expressed in the next proposition.

Proposition 3.28: Given an ADF D = (S, C = {ϕs}s∈S) and a variable set copy S̄ of S, let the
function Egrd return a QBF with free variables in S̄3

Egrd[S̄, C̄] := coh[S̄] ∧ ψ ∧ (∀S̄′
3((coh[S̄′] ∧ χ) → (S̄3 ≤i S̄′

3)))

ψ :=
∧
s∈S

((s̄⊕ → ∃S̄((S̄3 ≤i S̄) ∧ ϕ̄s)) ∧ (s̄� → ∃S̄((S̄3 ≤i S̄) ∧ ¬ϕ̄s))∧

((¬s̄⊕ ∧ ¬s̄�) → ∃S̄ ∪ S̄′((S̄3 ≤i S̄) ∧ (S̄3 ≤i S̄′) ∧ ϕ̄s ∧ ¬ϕ̄′
s)))

χ :=
(∧

s∈S

((s̄′⊕ → ∃S̄((S̄′
3 ≤i S̄) ∧ ϕ̄s)) ∧ (s̄′� → ∃S̄((S̄′

3 ≤i S̄) ∧ ¬ϕ̄s))∧

((¬s̄′⊕ ∧ ¬s̄′�) → ∃S̄ ∪ S̄′((S̄′
3 ≤i S̄) ∧ (S̄′

3 ≤i S̄′) ∧ ϕ̄s ∧ ¬ϕ̄′
s)))

)
.

Then Egrd is a defining encoding function for grd.

Proof: (sketch) Given an ADF D = (S, C = {ϕs}s∈S), the proof involves showing that for any
two valued interpretation v̂, v̂ |= Egrd[S̄, C̄] if and only if the interpretation v such that v̂ ∼=S̄ v
is the ≤i least interpretation satisfying Properties 1–3 in Definition 3.26. That v ∈ grd(D) then
follows from Proposition 3.27.

The proof can be fashioned after the proofs regarding defining encoding functions in
Section 3.2 by using Lemmas 2.1, 3.5, 3.7, 3.8 and 3.9 in addition to Proposition 3.27.

For and ADF D = (S, C), Egrd[S, C][S3/S] can be rewritten mirroring the structure of the SAT
UNSAT problem as is shown in the appendix, thus reflecting the complexity of Vergrd which is DP

complete. Giving complexity sensitive encodings for credulous and skeptical acceptance on the
other hand requires to deviate from the template of Proposition 3.25 and rather make use of the
characterisation of acceptance of statements with respect to the grounded semantics as expressed
in the following immediate corollary of Proposition 3.27.

Corollary 3.29: Let D = (S, C) be an ADF, s∗ ∈ S, and v the grounded interpretation of D. Then
v(s∗) = x for x ∈ {t, f} if and only if w(s∗) = x for every interpretation w that satisfies Properties
1–3 in Definition 3.26 w.r.t. D.

Proof: Assume first that v is the grounded interpretation of D, v(s∗) = x for x ∈ {t, f} and let w
be an interpretation that satisfies Properties 1-3 in Definition 3.26. Then from Proposition 3.27 it
follows that v ≤i w and, hence also v(s∗) = x since t and f are the maximal elements of {t, f, u}
with respect to ≤i. The converse follows because v also satisfies Properties 1–3.

That w(s∗) = x for x ∈ {t, f} and every w satisfying Properties 1–3 of Definition 3.26 for an
ADF D = (S, C = {ϕs}s∈S) can be encoded as in the next proposition.

Proposition 3.30: Given an ADF D = (S, C = {ϕs}s∈S) and a variable set copy S̄ of S, let the
function Agrd return a closed QBF

Agrd(s∗, S̄, C̄, x) := ∀S̄3((coh[S̄] ∧ ψ) → t)
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ψ :=
∧
s∈S

((s̄⊕ → ∃S̄((S̄3 ≤i S̄) ∧ ϕ̄s)) ∧ (s̄� → ∃S̄((S̄3 ≤i S̄) ∧ ¬ϕ̄s))∧

((¬s̄⊕ ∧ ¬s̄�) → ∃S̄ ∪ S̄′((S̄3 ≤i S̄) ∧ (S̄3 ≤i S̄′) ∧ ϕ̄s ∧ ¬ϕ̄′
s))),

where t = s̄∗⊕ if x = t and t = s̄∗� if x = f. Then, Agrd(s∗, S̄, C̄, x) with x ∈ {t, f} is satisfiable if
and only if w(s∗) = x for every interpretation w satisfying Properties 1–3 of Definition 3.26.

Proof: (sketch) The proof can be fashioned after the proofs regarding defining encoding
functions in Section 3.2 by using Lemmas 2.1, 3.5, 3.7 and 3.9 as well as Corollary 2.2.

Then the following proposition gives adequate encodings w.r.t. their complexity for Skeptgrd and
Vergrd (we remind the reader that Skeptgrd and Credgrd are equivalent since there exists only one
grounded interpretation for any ADF).

Proposition 3.31: Given an ADF D = (S, C) and an s∗ ∈ S let the function Sgrd return a closed
QBF

Sgrd(s∗, S, C) := Agrd(s∗, S, C, t).

Then Skeptgrd(s∗, D) = Credgrd(s∗, D) = yes if and only if Sgrd(s∗, S, C) is satisfiable.

Proof: This proposition follows directly from Proposition 3.30 and Corollary 3.29.

When converted to PNF the encodings which are returned by the function Sgrd are QBFs with pre-
fix type �1 as is shown in the appendix, hence reflecting the complexity of Skeptgrd = Credgrd

(= Skeptcom) which is coNP complete.
Corollary 3.29 can also be used to provide an alternative defining encoding function for the

stable semantics as is expressed in Proposition 3.32. Given an ADF D, the encodings returned
by this defining encoding function are based on the fact that verifying whether a two valued
interpretation v is equal to the grounded interpretation v′ of the reduct Dv is equivalent to check-
ing whether each statement mapped to x ∈ {t, f} is mapped to the same truth value x by all
interpretations w satisfying Properties 1–3 of Definition 3.26 w.r.t. Dv.

Proposition 3.32: Given an ADF D = (S, C = {ϕs}s∈S) and a variable set copy S̄ of S, let the
function Estb return a QBF with free variables in S̄

Estb[S̄, C̄] := mod[S̄, C̄]∧
∧
s∈S

(s̄ → Agrd(s, S̄′, {ϕ̄′
s ∧ s̄}s∈S , t))∧

∧
s∈S

(¬s̄ → Agrd(s, S̄′, {ϕ̄′
s ∧ s̄}s∈S , f)).

Then Estb is a defining encoding function for stb.

Proof: (sketch) The proof is similar to that of Proposition 3.23, using Propositions 3.17 and 3.30,
Corollary 3.29 as well as Lemmas 2.3, 3.5 and 3.21.

Applying Proposition 3.25 using this alternative characterisation of the defining encoding
function for the stable semantics gives complexity adequate encodings for verification (encod-
ings of prefix type �1) and acceptance of statements (encodings of prefix type �2 and �2 for
credulous and skeptical acceptance, respectively). In conclusion, we have now provided com-
plexity sensitive reductions to QSAT of all the reasoning tasks we set out to tackle in this work.
We refer to the appendix for a summary of all the encodings written in such a manner that they
reflect the complexity of the reasoning tasks.
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4. Conclusion

We have presented encodings of several reasoning tasks defined on ADFs into the language of
QBFs in a manner that is ‘adequate’ with respect to the complexity of the reasoning tasks. This
allows for taking advantage of recent developments for QBF solvers and thereby tackling the
high complexity of reasoning problems for ADFs.

An initial feasibility study of our encodings was conducted in Diller et al. (2014), comparing
a prototype system QADF2 to the system DIAMOND by Ellmauthaler and Strass (2013, 2014).
DIAMOND is the only other comparable ADF system known to us and is based on reductions to
the language of Answer-Set Programming (ASP). The performance analysis reported on by Diller
et al. (2014) suggests that our system is at the very least competitive with respect to DIAMOND
(version 0.9 adapted by us to support reasoning about acceptance of statements) for the reasoning
tasks we studied (credulous and skeptical acceptance with respect to the admissible and preferred
semantics, respectively). Nonetheless, compared to the success of QBF solvers in other domains,
the results indicate that there is room for improvement.

Thus, future work will focus mainly on tuning of the encodings and implementation to
improve performance. In particular, it may be that QBF solvers are struggling to efficiently
deal with the signed variables in our encodings, a concept we have borrowed from Arieli and
Caminada (2013); this issue needs further investigation. Another point on our agenda is to spe-
cialise our encodings for ‘less complex’ ADFs (e.g. bipolar ADFs). Also, additional complexity
in the structure of the encodings due to the Tseitin transformation that is required to transform
the encodings to the prenex conjunctive normal form (PCNF) required by most QSAT solvers
may be avoided by using a QSAT solver that does not require the input to be in PCNF. Finally
we plan to investigate algorithms using recent advances in incremental QBF solving (Lonsing
& Egly, 2014). Incremental algorithms can, for example, compute a preferred interpretation by
incrementally computing admissible interpretations with increasing information until an infor-
mation maximal interpretation is found. For AFs such an incremental approach has already
been carried out and implementations based on incremental SAT showed a good performance
(Cerutti, Dunne, Giacomin, & Vallati, 2013; Cerutti, Giacomin, Vallati, & Zanella, 2014; Dvořák,
Järvisalo, Wallner, & Woltran, 2014). By utilising incremental QBF solving one can generalise
the algorithms developed for AFs to ADFs and potentially inherit the good performance of this
approach.
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Notes
1. We refer to the appendix for rewritings of all encodings (of non-trivial reasoning tasks) in such a manner

that their structure reflects the complexity of the associated reasoning problems, that is, the encodings
are transformed to PNF or, when they correspond to DP complete problems, are written in such a way
that they mirror the structure of the SAT UNSAT problem.

2. http://www.dbai.tuwien.ac.at/proj/adf/qadf/

http://www.dbai.tuwien.ac.at/proj/adf/qadf/
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Dvořák, W., Järvisalo, M., Wallner, J. P., & Woltran, S. (2014). Complexity-sensitive decision procedures
for abstract argumentation. Artificial Intelligence, 206, 53–78.



Argument and Computation 173

Egly, U., Eiter, T., Tompits, H., & Woltran, S. (2000). Solving advanced reasoning tasks using quan-
tified Boolean formulas. In H. A. Kautz & B. W. Porter (Eds.), Proceedings of the seventeenth
national conference on artificial intelligence and twelfth conference on on innovative applica-
tions of artificial intelligence (AAAI/IAAI-2000) (pp. 417–422). Palo Alto, CA: AAAI Press/
The MIT Press.

Egly, U., & Woltran, S. (2006). Reasoning in argumentation frameworks using quantified Boolean formulas.
In P. E. Dunne & T. J. M. Bench-Capon (Eds.), Proceedings of the first conference on computational
models of argument, COMMA 2006, Vol. 144 of Frontiers in artificial intelligence and applications,
Liverpool, (pp. 133–144).

Ellmauthaler, S., & Strass, H. (2013). The DIAMOND system for argumentation: Preliminary report. In M.
Fink & Y. Lierler (Eds.), Proceedings of the sixth international workshop on answer set programming
and other computing paradigms, ASPOCP 2013, Istanbul (pp. 97–108).

Ellmauthaler, S., & Strass, H. (2014). The DIAMOND system for computing with abstract dialectical frame-
works. In S. Parsons, N. Oren, C. Reed, & F. Cerutti (Eds.), Proceedings of the fifth international
conference on computational models of argument, COMMA-2014, Vol. 266 of Frontiers in artificial
intelligence and applications (pp. 233–240). Amsterdam: IOS Press.

Ferraris, P., & Giunchiglia, E. (2000). Planning as satisfiability in nondeterministic domains. In H. A. Kautz
& B. W. Porter (Eds.), Proceedings of the seventeenth national conference on artificial intelligence and
twelfth conference on innovative applications of artificial intelligence, AAAI/IAAI-2000 (pp. 748–753).
Palo Alto, CA: AAAI Press / The MIT Press.

Franco, J., & Martin, J. (2009). A history of satisfiability. In A. Biere, M. Heule, H. van Maaren, & T.
Walsh (Eds.), Handbook of satisfiability, Vol. 185 of Frontiers in artificial intelligence and applications
(pp. 3–74). Amsterdam: IOS Press.

Giunchiglia, E., Marin, P., & Narizzano, M. (2009). Reasoning with quantified Boolean formulas. In A.
Biere, M. Heule, H. van Maaren, & T. Walsh (Eds.), Handbook of satisfiability, Vol. 185 of Frontiers
in artificial intelligence and applications (pp. 761–780). Amsterdam: IOS Press.

Giunchiglia, E., Narizzano, M., & Tacchella, A. (2007). Quantifier structure in search-based procedures
for QBFs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 26,
497–507.

Ling, A. C., Singh, D. P., & Brown, S. D. (2005). FPGA logic synthesis using quantified Boolean satisfia-
bility. In F. Bacchus & T. Walsh (Eds.), Proceedings of the eighth international conference on theory
and applications of satisfiability testing, SAT 2005, Vol. 3569 of Lecture notes in computer science
(pp. 444–450). Berlin: Springer.

Lonsing, F., & Egly, U. (2014). Incremental QBF solving. In B. O’Sullivan (Ed.), Principles and practice
of constraint programming – Proceedings of the 20th international conference, CP 2014, Vol. 8656 of
Lecture notes in computer science (pp. 514–530). Berlin: Springer.

Lonsing, F., & Seidl, M. (Eds.) (2013). Informal workshop report on the international workshop on
quantified Boolean formulas 2013.

Mneimneh, M. N., & Sakallah, K. A. (2003). Computing vertex eccentricity in exponentially large graphs:
QBF formulation and solution. In E. Giunchiglia & A. Tacchella (Eds.), Proceedings of the sixth inter-
national conference on theory and applications of satisfiability testing (SAT-2003), Vol. 2919 of Lecture
notes in computer science (pp. 411–425). Berlin: Springer.

Rintanen, J. (1999). Constructing conditional plans by a theorem-prover. Journal of Artificial Intelligence
Research, 10, 323–352.

Strass, H. (2013). Approximating operators and semantics for abstract dialectical frameworks. Artificial
Intelligence, 205, 39–70.

Strass, H., & Wallner, J. P. (2014). Analyzing the computational complexity of abstract dialectical frame-
works via approximation fixpoint theory. In C. Baral, G. D. Giacomo, & T. Eiter (Eds.), Proceedings of
the 14th international conference on principles of knowledge representation and reasoning, KR 2014
(pp. 101–110). Palo Alto, CA: AAAI Press.

Wallner, J. P. (2014). Complexity results and algorithms for argumentation – Dung’s frameworks and beyond
(PhD thesis, Vienna University of Technology, Institute of Information Systems).



174 M. Diller et al.

Appendix. Summary of encodings
In this section we list those encodings we have provided in our work that are adequate with respect to the
complexity of the reasoning tasks. We present them in such a manner that they reflect the complexity of the
reasoning tasks, that is, they are either in PNF or mirror the structure of the SAT UNSAT problem which
is prototypical for the complexity class DP. For this we transform the encodings given in Section 3 using
renaming of variables and the following equivalences (denoted by ≡ ) for arbitrary QBFs ϕ, ψ and p ∈ P
not occurring free in ψ .

• ¬∃pϕ ≡ ∀p¬ϕ,
• ¬∀pϕ ≡ ∃p¬ϕ,
• (Qpϕ) ∧ ψ ≡ Qp(ϕ ∧ ψ) for any Q ∈ {∃, ∀},
• ϕ ∧ (Qpψ) ≡ Qp(ϕ ∧ ψ) for any Q ∈ {∃, ∀},
• (∃pϕ) → ψ ≡ ∀p(ϕ → ψ),
• (∀pϕ) → ψ ≡ ∃p(ϕ → ψ),
• ϕ → (Qpψ) ≡ Qp(ϕ → ψ) for any Q ∈ {∃, ∀}.

In order to avoid excessive priming in the presentation of the encodings below we will often use
alternative ‘base sets’ to the one given in Definition 3.1 (namely S) to generate the variable set copies
of a set of statements S. Specifically, we will also consider sets Sj := {sj | s ∈ S}, Sj,k := {sj,k | s ∈ S},
Sj∇ := {sj∇ | s ∈ S}, Sj,k∇ := {sj,k∇ | s ∈ S} for any j, k ≥ 1 and ∇ ∈ {+, −} as base sets. S1′

, S3+′′
, S2−′

and S3,2−′′′
are then all examples of variable set copies that can be generated as in Definition 3.1. In the list

of encodings below D = (S = {s1, . . . , sn}, C = {ϕs}s∈S) is an ADF, v an interpretation on S and s∗ ∈ S. We
also remind the reader that the notation ϕ[S/v(S)] andψ[S3/v(S)] we use in the encodings of the verification
tasks has been introduced in Definition 3.22.

(1) PNF of Veradm(v, D)

Veradm(v, D) ≡ ∀S

(
coh[S] ∧ ((S3 ≤i S) →

∧
s∈S

((s⊕ → ϕs) ∧ (s� → ¬ϕs)))

)
[S3/v(S)]

(2) PNF of Credadm(s∗, D) ( = Credcom(s∗, D) = Credprf(s∗, D))

Credadm(s∗, D) ≡ ∃S3∀S

(
coh[S] ∧ ((S3 ≤i S) →

∧
s∈S

((s⊕ → ϕs) ∧ (s� → ¬ϕs))) ∧ s∗⊕
)

(3) Vercom(v, D)

Vercom(v, D) ≡
⎛
⎝∀Sψ ∧ ∃

⋃
1≤j≤n

(Sj′ ∪ Sj′′)
∧

1≤j≤n

χj

⎞
⎠ [S3/v(S)]

ψ :=
(

coh[S] ∧ ((S3 ≤i S) →
∧
s∈S

((s⊕ → ϕs) ∧ (s� → ¬ϕs)))

)

χj := ((¬sj
⊕ ∧ ¬sj

�) → ((S3 ≤i Sj′) ∧ (S3 ≤i Sj′′ ) ∧ ϕj′
sj ∧ ¬ϕj′′

sj ))

(4) PNF of Verprf(v, D)

Verprf(v, D) ≡ ∀S ∪ S′
3∃S′(ψ ∧ (χ → ω))[S3/v(S)]

ψ :=
(

coh[S] ∧ ((S3 ≤i S) →
∧
s∈S

((s⊕ → ϕs) ∧ (s� → ¬ϕs)))

)
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χ :=
(

coh[S′] ∧ ((S′
3 ≤i S′) →

∧
s∈S′

((s⊕ → ϕ′
s) ∧ (s� → ¬ϕ′

s)))

)

ω := ((S3 ≤i S′
3) → (S′

3 ≤i S3))

(5) PNF of Skeptprf(s∗, D)

Skeptprf(s∗, D) ≡ ∀S3∃S ∪ S′
3∀S′((ψ ∧ (χ → ω)) → s∗⊕)

ψ :=
(

coh[S] ∧ ((S3 ≤i S) →
∧
s∈S

((s⊕ → ϕs) ∧ (s� → ¬ϕs)))

)

χ :=
(

coh[S′] ∧ ((S′
3 ≤i S′) →

∧
s∈S′

((s⊕ → ϕ′
s) ∧ (s� → ¬ϕ′

s)))

)

ω := ((S3 ≤i S′
3) → (S′

3 ≤i S3))

(6) Vergrd(v, D)

Vergrd(v, D) ≡
⎛
⎝∃V

∧
1≤j≤n

ψj ∧ ∀S′
3 ∪ V

⎛
⎝ ∧

1≤j≤n

χj → ω

⎞
⎠
⎞
⎠ [S3/v(S)]

V :=
⋃

1≤j≤n

(Sj′ ∪ Sj′′ ∪ Sj′′′ ∪ Sj′′′′ )

ψj := (coh[S] ∧ (sj
⊕ → ((S3 ≤i Sj′) ∧ ϕj′

sj)) ∧ (sj
� → ((S3 ≤i Sj′′) ∧ ¬ϕj′′

sj ))∧
((¬sj

⊕ ∧ ¬sj
�) → ((S3 ≤i Sj′′′ ) ∧ (S3 ≤i Sj′′′′ ) ∧ ϕj′′′

sj ∧ ¬ϕj′′′′
sj )))

χj := ((coh[S′] ∧ (s′
j
⊕ → ((S3 ≤i Sj′)) ∧ ϕj′

sj)) ∧ (s′
j
� → ((S3 ≤i Sj′′ ) ∧ ¬ϕj′′

sj ))∧

((¬s′
j
⊕ ∧ ¬s′

j
�
) → ((S3 ≤i Sj′′′ ) ∧ (S3 ≤i Sj′′′′ ) ∧ ϕj′′′

sj ∧ ¬ϕj′′′′
sj )))

ω := (S3 ≤i S′
3)

(7) PNF of Credgrd(s∗, D) = Skeptgrd(s∗, D) = Skeptcom(s∗, D)

Credgrd(s∗, D) ≡ ∀V

⎛
⎝
⎛
⎝coh[S] ∧

∧
1≤j≤n

ψj

⎞
⎠ → s∗⊕

⎞
⎠

V := S3 ∪
⋃

1≤j≤n

(Sj′ ∪ Sj′′ ∪ Sj′′′ ∪ Sj′′′′ )

ψj := ((sj
⊕ → ((S3 ≤i Sj′) ∧ ϕj′

sj )) ∧ (sj
� → ((S3 ≤i Sj′′ ) ∧ ¬ϕj′′

sj ))∧
((¬sj

⊕ ∧ ¬sj
�) → ((S3 ≤i Sj′′′ ) ∧ (S3 ≤i Sj′′′′ ) ∧ ϕj′′′

sj ∧ ¬ϕj′′′′
sj )))

(8) PNF of Vermod(v, D)

Vermod(v, D) ≡
(∧

s∈S

(s ↔ ϕs)

)
[S/v(S)]
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(9) PNF of Credmod(s∗, D)

Credmod(s∗, D) ≡ ∃S

((∧
s∈S

(s ↔ ϕs)

)
∧ s∗

)

(10) PNF of Skeptmod(s∗, D)

Skeptmod(s∗, D) ≡ ∀S

((∧
s∈S

(s ↔ ϕs)

)
→ s∗

)

(11) PNF of Verstb(v, D)

Verstb(v, D) ≡
⎛
⎝∀V1 ∪ V2

⎛
⎝∧

s∈S

(s ↔ ϕs) ∧
∧

1≤j≤n

(sj → ψ+
j ) ∧

∧
1≤j≤n

(¬sj → ψ−
j )

⎞
⎠
⎞
⎠ [S/v(S)]

V1 :=
⋃

1≤j≤n

(Sj+
3 ∪ Sj−

3 )

V2 :=
⋃

1≤j,k≤n

(Sj,k+′ ∪ Sj,k−′ ∪ Sj,k+′′ ∪ Sj,k−′′ ∪ Sj,k+′′′ ∪ Sj,k−′′′ ∪ Sj,k+′′′′ ∪ Sj,k−′′′′
)

ψ+
j :=

⎛
⎝
⎛
⎝coh[Sj+] ∧

∧
1≤k≤n

χ+
j,k

⎞
⎠ → sj+

j
⊕
⎞
⎠

ψ−
j :=

⎛
⎝
⎛
⎝coh[Sj−] ∧

∧
1≤k≤n

χ−
j,k

⎞
⎠ → sj−

j
�
⎞
⎠

χ∇
j,k := (ω∇

j,k,1 ∧ ω∇
j,k,2 ∧ ω∇

j,k,3)

ω∇
j,k,1 := (sj∇

k

⊕ → ((Sj∇
3 ≤i Sj,k∇′

) ∧ (ϕj,k∇′
sk ∧ sk)))

ω∇
j,k,2 := (sj∇

k

� → ((Sj∇
3 ≤i Sj,k∇′′

) ∧ ¬(ϕj,k∇′′
sk ∧ sk)))

ω∇
j,k,3 := (ξ∇

j,k,1 → ξ∇
j,k,2)

ξ∇
j,k,1 := (¬sj∇

k

⊕ ∧ ¬sj∇
k

�
)

ξ∇
j,k,2 := ((Sj∇

3 ≤i Sj,k∇′′′
) ∧ (Sj∇

3 ≤i Sj,k∇′′′′
) ∧ ϕj,k∇′′′

sk ∧ sk ∧ ¬(ϕj,k∇′′′′
sk ∧ sk))

(12) PNF of Credstb(s∗, D)

Credstb(s∗, D) ≡ ∃S∀V

⎛
⎝∧

s∈S

(s ↔ ϕs) ∧
∧

1≤j≤n

(sj → ψ+
j ) ∧

∧
1≤j≤n

(¬sj → ψ−
j ) ∧ s∗

⎞
⎠

V1 :=
⋃

1≤j≤n

(Sj+
3 ∪ Sj−

3 )

V2 :=
⋃

1≤j,k≤n

(Sj,k+′ ∪ Sj,k−′ ∪ Sj,k+′′ ∪ Sj,k−′′ ∪ Sj,k+′′′ ∪ Sj,k−′′′ ∪ Sj,k+′′′′ ∪ Sj,k−′′′′
)
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ψ+
j :=

⎛
⎝
⎛
⎝coh[Sj+] ∧

∧
1≤k≤n

χ+
j,k

⎞
⎠ → sj+

j
⊕
⎞
⎠

ψ−
j :=

⎛
⎝
⎛
⎝coh[Sj−] ∧

∧
1≤k≤n

χ−
j,k

⎞
⎠ → sj−

j
�
⎞
⎠

χ∇
j,k := (ω∇

j,k,1 ∧ ω∇
j,k,2 ∧ ω∇

j,k,3)

ω∇
j,k,1 := (sj∇

k

⊕ → ((Sj∇
3 ≤i Sj,k∇′

) ∧ (ϕj,k∇′
sk ∧ sk)))

ω∇
j,k,2 := (sj∇

k

� → ((Sj∇
3 ≤i Sj,k∇′′

) ∧ ¬(ϕj,k∇′′
sk ∧ sk)))

ω∇
j,k,3 := (ξ∇

j,k,1 → ξ∇
j,k,2)

ξ∇
j,k,1 := (¬sj∇

k

⊕ ∧ ¬sj∇
k

�
)

ξ∇
j,k,2 := ((Sj∇

3 ≤i Sj,k∇′′′
) ∧ (Sj∇

3 ≤i Sj,k∇′′′′
) ∧ ϕj,k∇′′′

sk ∧ sk ∧ ¬(ϕj,k∇′′′′
sk ∧ sk))

(13) PNF of Skeptstb(s∗, D)

Skeptstb(s∗, D) ≡ ∀S∃V

⎛
⎝
⎛
⎝∧

s∈S

(s ↔ ϕs) ∧
∧

1≤j≤n

(sj → ψ+
j ) ∧

∧
1≤j≤n

(¬sj → ψ−
j )

⎞
⎠ → s∗

⎞
⎠

V1 :=
⋃

1≤j≤n

(Sj+
3 ∪ Sj−

3 )

V2 :=
⋃

1≤j,k≤n

(Sj,k+′ ∪ Sj,k−′ ∪ Sj,k+′′ ∪ Sj,k−′′ ∪ Sj,k+′′′ ∪ Sj,k−′′′ ∪ Sj,k+′′′′ ∪ Sj,k−′′′′
)

ψ+
j :=

⎛
⎝
⎛
⎝coh[Sj+] ∧

∧
1≤k≤n

χ+
j,k

⎞
⎠ → sj+

j
⊕
⎞
⎠

ψ−
j :=

⎛
⎝
⎛
⎝coh[Sj−] ∧

∧
1≤k≤n

χ−
j,k

⎞
⎠ → sj−

j
�
⎞
⎠

χ∇
j,k := (ω∇

j,k,1 ∧ ω∇
j,k,2 ∧ ω∇

j,k,3)

ω∇
j,k,1 := (sj∇

k

⊕ → ((Sj∇
3 ≤i Sj,k∇′

) ∧ (ϕj,k∇′
sk ∧ sk)))

ω∇
j,k,2 := (sj∇

k

� → ((Sj∇
3 ≤i Sj,k∇′′

) ∧ ¬(ϕj,k∇′′
sk ∧ sk)))

ω∇
j,k,3 := (ξ∇

j,k,1 → ξ∇
j,k,2)

ξ∇
j,k,1 := (¬sj∇

k

⊕ ∧ ¬sj∇
k

�
)

ξ∇
j,k,2 := ((Sj∇

3 ≤i Sj,k∇′′′
) ∧ (Sj∇

3 ≤i Sj,k∇′′′′
) ∧ ϕj,k∇′′′

sk ∧ sk ∧ ¬(ϕj,k∇′′′′
sk ∧ sk))
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