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Abstract 

With the increase in spatial, spectral and temporal resolutions of earth observing systems, 

geospatial and remote sensing (RS) image research is shifting towards a big data paradigm. One 

of the most important challenges in RS big data is image segmentation, which is defined as a 

process to group pixels together by a pre-defined criteria. Image segmentation allows for the 

extraction of features such as roads, or habitats or buildings. Image segmentation is rendered 

more difficult with big data because the computing power on single platforms cannot keep pace 

with the size and velocity of new data. Big datasets must be decomposed for analysis in 

distributed and parallel computing platforms. Decomposition through techniques like slicing by 

spatial extent obscures the geometric and topological information in geospatial data, for example 

generating fake artifacts. To address these challenges, we propose a geospatial 

cyberinfrastructure (GCI) that coordinates cloud computing, MapReduce framework, image 

segmentation algorithms, a spatial extent splitting method and a recomposing technique using 

moving window. This GCI is evaluated on cloud computing to identify features in a 312.07GB 

high resolution color aerial photo with Hadoop. K-means based image segmentation is selected 

as the case study. We deploy the architecture in a private cloud computing and public cloud 

implementation. The results demonstrate the benefits of the decomposing and recomposing 

methods in segmenting images, removing fake artifacts, and reducing information distortion. 



More general problems in big data are revealed, among them I/O problems, particularly in the 

amount of pre-processing and post-processing that will be required in any analysis of big 

imagery data. We conclude with implications for scalability and suggestions to speedup 

decomposition and recomposition. 

Index Terms—Big Data, Image Segmentation, Geospatial CyberInfrastructure, Spatial Feature 

Extraction, Cloud Computing, MapReduce, Decomposition, Recomposition 

1. Introduction 
As an important type of raster data often used with GIS (Geographic Information 

Systems), remote sensing (RS) imagery provides the standard approach to Earth observation and 

geospatial knowledge (Richards 2013). However, RS technologies are rapidly changing, with 

increases in the spatial, spectral and temporal resolutions of the imagery. For example, the 

IKONOS sensor provides 1-m spatial resolution panchromatic images with 3 days revisiting 

interval (Richards 2013). These enhanced resolutions reveal detailed spatiotemporal information 

about landscape usage and changes. At the same time, they also result in large volumes of data. 

This leads to a ‘big data’ challenge in RS and GIScience research. 

The phenomenon of big data does not only pose substantial challenges in data 

management, but also the corresponding data analysis and the provisioning of computing 

resource. Because the expanding volume of imagery data exceeds the memory size of most 

computers, new computing technologies are being investigated as part of GCI (Geospatial 

CyberInfrastructure) research (Yang et al. 2010).  These new GCIs can provide parallel 

computing services for geospatial data analysis with a large body of computing resources, 

including grid computing (Wang and Liu 2009), CUDA (Compute Unified Device Architecture) 

(Xia et al. 2011) and cloud computing (Yang et al. 2011).  



We are particularly interested in cloud computing, which has become the standard 

platform for analyzing big data (Yang et al. 2013). Cloud computing is defined as a coordinated 

remote servers accessible via the Internet. Cloud computing has attracted considerable research 

interest in GIScience because it provides a very large computing resource with on-demand 

provisioning; this type of provisioning offers efficiencies in resource allocation (i.e., users 

purchase hardware time as a service and only as needed); much of the big data already “lives” in 

the cloud; and numerous server-side tools have been migrated to the cloud. Our GCI coordinates 

cloud computing with a MapReduce framework to address the challenge of big data in RS 

research. MapReduce is an approach to manage the distribution of large scale computing tasks 

(Dean and Ghemawat 2008), which has been studied for geospatial data analysis in RS and GIS 

(Almeer 2012).  

This paper is organized as following. Section 2 introduces the background of big data and 

related works about image segmentation in RS, and we also present the specific challenges 

brought by large RS imagery datasets in this section. We propose a four-layered image 

segmentation GCI in Section 3.  We then test this GCI in Section 4 with a high resolution color 

aerial photo (50cm spatial resolution and 312.07 GB) using a k-means image segmentation 

algorithm. We choose k-means because it is one of the most popular clustering algorithms and 

has seen broad application across numerous geospatial domains (Jain 2010). Conclusions and 

future works are described in Section 5. The contribution of this paper is three-fold: (1) we 

delineate issues in RS image segmentation specific to big data; (2) we propose GCI that 

integrates image segmentation algorithms and advanced computing techniques; and (3) we 

present guidelines for deciding between private/public cloud computing platforms for big RS 

data analysis. 



2. Literature Review 
 

2.1.	Spatial	Information,	Features	and	Image	Segmentation	
Spatial information, represented as different spatial features, plays a pivotal role in RS 

knowledge discovery (Liu and Buhe 2000). Various spatial features in RS images include edge, 

texture, interest points and shapes. Feature extraction algorithms have been used to extract 

different spatial objects of interest (Ren and Ma 2010). Among these, image segmentations are 

among the most widely applied in classification (Mather and Tso 2010), object based image 

analysis (Blaschke 2010), and change detection studies (Radke et al. 2005). Image segmentation 

is the process of clustering the image into multiple groups of pixels (also called segments) based 

on similarity criteria (e.g., texture and digital number). We use one of the image segmentation 

algorithms in this case study (k-means) to illustrate the workflow of our GCI.  

Image segmentation algorithms have been studied in RS for decades and have been 

extended with different computing techniques. For example, Gruia et al. (2007) customize Fuzzy 

c-means clustering algorithm for grid computing to segment MODIS (Moderate Resolution 

Imaging Spectroradiometer) satellite images. They report speedup and efficiency improvements 

using grid computing and they point out the importance of joining separate clustering results 

from each computing node. Due to the small size of their testing data (65MB), their works 

focuses on the computational intensity of image segmentation. 

A number of researchers focus on distributed k-means algorithm for image segmentation. 

Backer et al. (2013) implement parallel k-means image segmentation on a GPU (Graphics 

Processing Unit). They find the massive parallel processing capacity of GPUs significantly 

exceeds that of CPUs. They did need to customize the k-means so that it could be parallelized 



and their approach assumes all the data is already loaded into GPU memory. Liu and Cheng 

(2012) present parallel k-means algorithm with cloud computing. They point out that the relation 

between computational time growth and data volume increasing is not obvious, which further 

confirms the potential of cloud computing for big RS data. Lv et al. (2010) apply the algorithms 

proposed by Zhao et al. (2009) to segment large remote sensing imagery datasets. These works 

also emphasizes the computational intensity, in this case of k-means image segmentation. Our 

research begins to shift the focus from, for example, computational intensity to distributing, 

managing and analyzing big data. 

2.2	The	Challenge	of	Big	Data	in	RS	Image	Segmentation	
 

Handling big data has become increasingly important with the rapid changes in data 

acquisition approaches, ranging from business transaction records to real-time traffic 

surveillance datasets (Manyika et al. 2011). The quality of data has also been enhanced by new 

technologies, such as the high resolution satellite sensing systems like Ikonos, QuickBird, 

WorldView and GeoEye (Richards 2013). It is widely accepted to describe big data by the 

combination of the “4Vs”: volume (large volume size), variety (multiple data types), velocity 

(data is produced at fast speed) and veracity (accuracy of data becomes more important) (Gupta 

et al. 2012). Researchers already have begun to study big RS data, as evinced by papers on in 

fields like forestry, land use change, ecology (Hampton et al. 2013; Harrison 2013; Michael and 

Miller 2013). 

Big RS imagery datasets offer an excellent example of the 4Vs. The large volume of big 

RS imagery datasets is caused by two factors: (1) the improvement of spatial and spectral 

resolutions of sensing instruments, and (2) the emergence of new sensing systems (Richards 

2013). The first factor produces images with fine resolution conveying more detailed geospatial 



information; whereas, the second factor generates different resolutions and data formats. 

Therefore, an accurate overview of the big RS imagery is generally unavailable on many existing 

computing platforms. For us, the variety of big RS imagery not only refers to various image 

types, but also to the large body of image analysis methods. We are receiving data with far 

greater frequency, consequently, high velocity can be interpreted as the high temporal resolution 

in new sensing systems, which enables the study of multi-temporal land use and land cover 

change detection (Lu et al. 2004). The veracity is characterized by the error and noisy 

information in big RS imagery, including sensing system errors, atmospheric impact, and noisy 

information introduced by data pre-processing (Lee et al. 1990).  

Big RS images differ from the other types of big data. As a typical raster data, 

information is not only contained in the digital values recorded in each band, but also its 

geospatial position and its position within the file. By contrast, the big data contributed by 

Twitter (Bughin et al. 2010) can be stored in separate files and, with the exception of time, the 

order of Twitter records has a limited impact on the results of data mining (Ediger et al. 2010).  

Big RS imagery differs from big Twitter data. Figure 2-1 shows (a) the spectral signature 

of one sampling point in the parking ground and (c) the spectral signature of one sampling point 

from the highway. They display quite similar results because both parking ground and highway 

are cement products. In the spatial context, it is the topological and geometric information of 

these pixels help us classify “road” and “parking”, not individual pixel values. With big RS 

imagery, the topological and geometric information becomes more complicated and should be 

handled carefully, for feature level image analysis.  

 



 

 

Figure 2-1 (a) Spectral signature of one sampling point on the parking ground; (b) Airborne Visible / 

Infrared Imaging Spectrometer image; (c) Spectral signature of one sampling point on the highway; (d) A fake “road” 

generated by image splitting 

 

Because the volume of big data exceeds the memory of most computers, splitting the big 

data into small chunks or use of sampling methods offers an effective way to handle the data 

(Cohen et al. 2009). While fine for some types of big data (e.g., Twitter), for big RS imagery 

they may change the original geometric and topological information. Sampling may be highly 

biased because it breaks the raster cell structure and relationship between pixels is altered.  

A significant challenge lies in segmenting images across split image chunks. It is akin to 

“can’t see the forest for the trees.” Figure 2.2 shows the separate image segmentation process 

with image chunks; in which features are extracted locally with significant global information 

lose.  Topological and geometric information in the original big RS image is inevitably altered in 



the splitting processing as data is distributed over numerous computing nodes. These challenges 

will become more important as data grows in size, speed, and variety. 

One of the outcomes of splitting the image is the creation of artificial borders. These are 

borders that do not exist in real life. For example, artificial borders might “cut” a narrow strip 

from the parking ground in Figure 2-1 (b), and label it as “road”. As we show in Figure 2-1 (d), a 

fake “road” is created by the splitting process. Compared with other types of big data, big RS 

imagery needs to be processed with the goal of preserving as much original geometric and 

topological information as possible.  

 

 

Figure 2-2 Splitting Figure 2-1 (b) into 2×2 chunks and segmenting each chunk, the image segmentation is 

generated by eCognition®, with scale=50 and color=0.5 

In Figure 2-2, most of the highways are segmented into several independent features due 

to the artificial borders introduced by image splitting. The artificial borders change the geometric 

information of highways and bring additional errors into the following image analysis process 



(e.g., classification). In Figure 2-2, the artificial borders lead to nine additional road segments, 

because local processing with each image chunk cannot distinguish between the real and 

artificial borders. We name this type of challenge as artificial border challenge in big RS imagery. 

In this paper, we remove these false segments caused by the artificial border challenge using a 

decomposition/recomposition based workflow management framework. The details of artificial 

border challenge are summarized in Table 2-1. These are a collection of five challenges in which 

image splitting causes fake features in image segmentation (Figure 2-2). All these challenges 

grow with big data and will likely see greater attention in GIS and RS research.  

Table 2-1 Artificial Border Challenge 
 

Challenge Name Explanation Example 
Edge Ambiguity Some edges or 

features are treated 
as the image border 
by mistake 

A line of fence at the image 
chunk border disappears in 
image segmentation process 
because it is treated as 
image border 

   
Feature Bisection Dividing one feature 

into two or more 
features 

Cutting a road into two road 
segments 

Fake Feature Creation Create two or more 
features from 
original feature  

Parallel cutting of one road 
into two distinct road 
segments 

Feature Transformation Change the type of 
the original feature 

Segmenting parts of the 
parking lot into road 
segment and smaller 
parking lot (Figure 2-2) 

Feature Distortion Change the 
properties of the 
original feature 

Generating a parking lot 
smaller than its actual size in 
original RS image 

  

 

  



2.3	Addressing	Big	Data	through	GCIs	
Although there is very little work about using GCI for RS image analysis, GCI has 

already been proven as an effective solution in big data processing (Wright and Wang 2011). 

Research in GCIs spans numerous topics. These include the transformation of GCI from a 

technology-centered to a human-centered paradigm (Díaz et al. 2011), workflow optimization in 

geospatial data analysis (Zhang and Tsou 2009), semantic web with semantic knowledge system 

(Sieber et al. 2011), interfaces for public sciences (Ramamurthy 2006), and interactions among 

GCIs (Yang and Raskin 2009). Several researchers are adapting GCIs for specific research 

problems (Yang et al. 2011). For example, Liang et al. (2010) build a GCI based on social 

networks and hybrid P2P (Peer-to-Peer) techniques to enable sharing and visualization of big 

environmental sensing datasets. Díaz et al. (2011) present a GCI architecture for large user 

generated information management and semi-automatic web service built-up using these big data. 

The emergent computing technologies in current GCI research have been summarized by Yang 

et al. (2010), among which cloud computing and MapReduce are highlighted for managing the 

exponentially growing geospatial datasets. 

Rajasekar et al. (2010) highlights the need to utilize GCI in RS research to manage the 

increasing data volume, and Xue and Diao (2010) confirm the pivotal role GCI plays in 

analyzing big RS datasets. However, GCIs have not been studied systematically for big RS 

image segmentation. Big RS imagery datasets requires scalable data management, as the 

response to the volume and velocity. Like vector-based GCIs, a raster based GCI needs to 

geometry and topology. Concerning issues in variety, a single image segmentation algorithm 

may be insufficient to cover different types of data. Therefore, a broad range of image 

segmentation algorithms should be implementable. Wherever possible, new flexible computing 

techniques should be utilized.  



One flexible technique is utilization of the cloud for GCIs, which already have improved 

performance in handling big geospatial data. For example, the Google App Engine (Zahariev 

2009) is utilized to index and retrieve large spatial image data online (Wang et al. 2009). Li et al. 

(2010) build a new GCI based on the Microsoft Azure platform to retrieve and re-project 

MODIS satellite data. Their cloud computing implementation is able to generate a 90 times 

speedup over a single desktop implementation. The cloud computing special issue of the 

International Journal of Digital Earth (2013) further reveals the strength of cloud computing in 

processing big geospatial data and summarizes the wide application of cloud computing based 

GCI in geospatial research (Yang et al. 2013).  

MapReduce also has been shown to be valuable for image analysis. Generally, there are 

two phases in MapReduce: the map phase and the reduce phase. The map phase splits the 

original datasets into a number of key/value pairs and executes data analysis algorithms with the 

generated key/value pairs. The reduce phase takes the output from the map phase and combines 

them to form the final results. MapReduce monitors the execution of all tasks; failed tasks are 

automatically rescheduled on other computing nodes (Dean and Ghemawat 2008). Golpayegani 

and Halem (2009) test MapReduce with AIRS (Atmospheric Infrared Sounder) images for 

gridding problem solving, which showed MapReduce is efficient in processing large spaceborne 

RS images. Zhao et al. (2009) develop parallel k-means algorithm with MapReduce. Previous k-

means could run only on one computer; they extend it so the analysis could be distributed 

alongside the data. Lv et al. (2010) apply the algorithms proposed by Zhao et al. (2009) to 

segment large RS imagery datasets. This further emphasizes the important role MapReduce plays 

in RS research. However, these authors have not explored all the implications of MapReduce 

(e.g., the creation of artificial borders when data is distributed) and they did not explicate 



computing resource provisioning needs for big data (e.g., the leasing cost of the virtual machines, 

input/output issues in moving large data sets). We distinguish between image segmentation to 

find features and image splitting to divide the image into manageable chunks, although there are 

interesting similarities between the two. 

3. Using GCI as A Solution for Image Segmentation in Big RS Imagery 
Data 

3.1 Architecture of the Image Segmentation GCI 
We propose a GCI that combines cloud computing, MapReduce parallel computing 

framework and RS image segmentation algorithms as a holistic solution for the challenges posed 

by big RS image data.  

 

Figure 3-1 GCI Architecture 

The architecture of our GCI is shown in Figure 3-1, which is composed of four layers 

(from bottom to top): cloud computing resource layer, resource management layer, workflow 

management layer and the image segmentation process layer. The computing resource interface 

is designed to utilize both computing resources from private and public cloud computing 

providers, which also can be used to build a hybrid public/private cloud. The resource 

management layer is developed with Hadoop, which is an open source implementation of 



MapReduce (Borthakur 2007). This layer also includes HDFS (Hadoop Distributed File System), 

which is a scalable distributed storage system compatible with Hadoop computing framework. 

The workflow management layer is built on top of Eucalyptus open-source cloud computing 

manager, containing the decomposition and recomposition manager. Since image splitting plays 

such a large role in our image segmentation, the functionalities of the workflow management 

layer will be discussed in greater detail in Section 3.2. Finally, different RS image segmentation 

algorithms, corresponding pre-processing methods, and the accuracy assessment functions 

compose the image segmentation process layer. This layer will be discussed further in Section 

3.3.  

3.2 The Workflow Management Layer 
The general workflow of segmenting big RS imagery is depicted in Figure 3-2, which 

consists of decomposition and recomposition steps. The decomposition manages the following 

functions: 

1) Split the big RS imagery into image chunks with spatial extent decomposition method; 

2) Schedule image segmentation algorithm in multiple parallel map tasks in Hadoop 

with each image chunk. The generated image segments overlays are cached in the 

local storage of each computing node, which will be fetched by the reduce task.  

The recomposition manager provides functionalities to: 

3) Collect the image segments from all map tasks; 

4) Execute our window based fake segment removing algorithm; 

5) Merge all the chunks to generate the holistic results. 

 



 

Figure 3-2 Overview of the Decomposition/Recomposition Workflow Management Framework 

A detailed description of these steps are given is Figure 3-3. For each big RS imagery, 

only one reduce task is scheduled in Hadoop, which is granted the global view because the fake 

segments removal needs to access the global information.  



 

Figure 3-3 Steps of Decomposition/Recomposition with MapReduce 

3.2.1 Spatial Extent Image Splitting Method 
The splitting of big RS imagery plays a pivotal role in decomposition process. On one 

hand, the splitting process should generate chunks of small spatial extent because small size can 

be better handled by map tasks (Dean and Ghemawat 2008). However, a, smaller chunk size 

means a larger number of chunks, which impacts analysis. Liu et al. (2012) propose a pyramid 

partitioning algorithm to split the big RS imagery into small chunks with different levels of 

resolutions for MapReduce processing. However, big RS imagery, which cannot be loaded into 

the memory of computers, prevents the generation of the pyramid hierarchy. And this method 



does not account for the memory sharing problem. Several map tasks might be scheduled on one 

computing node so frequent swapping operation caused by large image chunks will significantly 

deteriorate the computing performance.  

We propose a two-tiered spatial extent image splitting method layered onto a areal-based 

splitting method that generates image chunks with equal size. The areal-based splitting divides a 

big RS imagery into equal-area sub-rectangles (or squares) according to the abscissa and ordinate 

values (Maulik and Sarkar 2012). The spatial extent image splitting method calculates the size of 

each image chunk as the lower bound of the GCD (greatest common divisor) of the average 

memory allocated to each map task and the data size allocated to each map task, as:  

                                    (3.2.1-1) 

N represents the total number of pixels in the big RS imagery; m is the number of map 

tasks; S is the memory size of each computing node; and k represents the number of computing 

nodes. We assume all the slave nodes have the same computing resource and image chunks are 

split equally (chunk size may vary at the border of big RS imagery). !
"

 is the largest chunk size 

that balances the load, whereas #×%
"

 is the largest chunk size can be processed by each map task at 

the same time. This spatial extent splitting method ensures the load balancing and computing 

performance of each map task.  

3.2.2 Moving Window based Fake Segment Removal 
We utilize the moving window (Papps 1992) based clustering method to remove the fake 

segments generated by the artificial splitting border. Some segments will be joined to reduce the 

overall number of segments; other segments will be removed because they reflect edges of image 

chunks (see red lines in Figure 3-3). When the resulting segments are collected from the map 

tasks, segments that were extracted at the domain borders of each image chunk are marked. The 



size of the moving window is set to the same value as the image chunk. The image segmentation 

algorithm (called image clustering in Pham 2001) is employed with the 8 neighbour chunks, as 

shown in Figure 3-3. This clustering process does not create any new segments, but tests whether 

the segments at the border of the image chunk can be merged with the neighbouring segments. 

Our test is comprised of using K-means algorithm a second time to identify new edge segments. 

The original segments are overlaid and subtracted. If pieces of segments remain then we know to 

combine the segments from adjoining chunks. This process continues until all the image chunks 

have been checked. In this way, the artificial border challenge is resolved.  

 

Figure 3-3 Moving Window based Segment Merging Process 

 

Algorithm: Moving Window based Segments Merging 
Input: image chunk array C, and corresponding segments overlay S 
Output: new image segments overlay S’ 
        for each image chunk ci in C: 
             load(corresponding si);  
             mark all the segment on the border of si and store them as B; 
             N=load(neighbors of ci); 
             A=merge(ci,N); 
             B’=cluster(A); 
             for each border segment bi in B: 
                   load(corresponding bi’ from B’);  
                   difference=compare(bi’,bi); 
                   if (difference > threshold) then 
                         si=si - bi; 
                         bi=merge(bi ,bi’); 
                         si=si + bi; 
            end for  
            i=i+1; 
            load(ci);  
        end for 
        S’=merge(s1’…sn’); 
end 

 



3.3 Image Segmentation Layer 
In our GCI, the image segmentation layer provides various algorithms for data handling 

and image segmentation, including the pre-processing methods (Meinel and Neubert 2004), 

accuracy assessment approaches (Möller and Lymburner 2007), as well as different image 

segmentation algorithms (e.g, fuzzy c-means, k-means, and region-growing method). The 

appropriate algorithms can be automatically deployed to the separate computing nodes, as 

“moving code to the data” mechanism of Hadoop.  

After the image is split and distributed, standard RS pre-processing algorithms conducts 

atmospheric and radiometric correction. Then the image segmentation algorithms are executed. 

All pre-processing and image segmentation is done on the individual map computing nodes. 

When the image segmentation process is complete on the individual nodes, the workflow layer 

resumes control with the reduce phase. Control is returned to the image segmentation layer if an 

accuracy assessment (e.g., calibration) is required. 

4. Evaluation of the GCI for Image Segmentation of Big RS Imagery 

4.1 Image Segmentation in Two Deployments  
We utilize the GCI as an approach to handle big RS imagery and to conduct image 

segmentation. To evaluate the architecture, we used a 312.07GB RGB aerial photo mosaic (60 

cm, taken at Costa Rica 2004). The image segmentation algorithm we choose is k-means based 

image segmentation (Ray et al. 1999), due to its popularity and robust computational complexity. 

The splitting method is our spatial extent splitting methods in Section 3.2.1, and artificial borders 

and corresponding fake segments are removed with our moving window based approach in 

Section 3.2.2. Although we choose k-means image segmentation algorithm, other types of image 

segmentation can be deployed as well.  



We evaluated our GCI with two different deployments, using private and public cloud. 

We chose two deployments as it reflects the realities of modern implementations, such as 

resource restraints of researchers (e.g., cost of hardware and software). To eliminate the 

difference between public and private cloud, we setup the VMs with the same configuration, 

using Eucalyptus and Amazon EC2. We choose Eucalyptus to build the private cloud because it 

provides the same interface as Amazon EC2. In this way, we can create virtual machine (VM) 

instances with negligible difference between the private and public cloud within our GCI. 

Hadoop 1.0.0 version is selected as the implementation of MapReduce, which is installed on 

VMs with CentOS 6.4 as the operating system. The detailed information about our testbed is 

listed in Table 4-1. The physical computing resource refers to the hardware configuration, while 

the virtual resource is the configuration of VMs (the information of physical machines from 

Amazon EC2 at running time cannot be obtained). 

In these two different deployments, 10 map VM and 1 reduce VM are utilized 

respectively. After the testing image is uploaded to HDPS, approximate 500MB image chunks 

are created by our spatial extent splitting method. Then k-means image segmentation is 

conducted in map VMs and moving window based segment merging algorithm is schedule in the 

single reduce VM. The computation time and cost of the two deployments are delineated in 

Table 4-2 and 4-3, respectively. 

  



Table 4-1 Details of the Two Testbeds  
 Private Cloud Public Cloud 
   

Physical CPU Four Intel® six-core XEON 
E5-2620 2.0 GH   

N/A 

Virtual CPU One for map VM and four 
for reduce VM (One 
VCPU= 2.0 GHz 2007 
Xeon processor) 

One for map VM and four 
for reduce VM (One 
VCPU= 2.0 GHz 2007 
Xeon processor) 

Physical Memory 64 GB N/A 
Virtual Memory 3.75 GB for map VM and 

15 GB for reduce VM 
3.75 GB for map VM and 
15 GB for reduce VM 

Physical Network 1 Gbpbs N/A 
Virtual Network 1 Gbpbs for all VMs Medium for map VM and 

high for reduce VM 
Physical Storage 4 TB N/A 
Virtual Storage 410 GB for map VM and 

80GB for reduce VM 
410 GB for map VM and 
80GB for reduce VM 

OS CentOS 6.4 CentOS 6.4 
VMs 10 map and 1 reduce VMs 10 map and 1 reduce VMs 

 
Table 4-2 Cost of Image Segmentation Test in Amazon EC2 

 Time (Hours) Cost (Dollars) 
   

Data Uploading ~82.5  ~$28.5 
Decomposition Computing ~68.4 ~$8.21*10 
Recomposition Computing ~98.7 ~$44.42 

Result Downloading ~33.3 ~$3 
Total  ~282.9 ~$158.02 

 

Table 4-3 Cost of Image Segmentation Test in Eucalyptus Cloud 
 Time (Hours) Cost (Dollars) 
   

Data Uploading N/A  N/A 
Decomposition Computing ~61.27 N/A 
Recomposition Computing ~90.4 N/A 

Result Downloading N/A N/A 
Total  ~151.67 N/A 

 

By comparing the segment results before and after the recomposition process in Amazon 

EC2, we find 487 fewer segments. We also note that data transfer has taken approximately 41 

percent of the computation time and 20 percent of the total costs with public cloud computing. 



In the Eucalyptus private cloud, there is no data upload and download, but only 

decomposition and recomposition processes. The decomposition requires 40 percent of the total 

computation time, while the recomposition requires the rest. There are operating costs with the 

testing with Amazon EC2; the hardware costs are front in the private cloud. We also compare the 

segmentation results before and after the recomposition process and find 379 segments have 

been removed.  

4.2 Discussion  
Big RS image segmentation is evaluated with two different deployments, a private and a 

public cloud. Image segmentation appeared to be successful. We observed segments extracted 

and some of these segments were removed or combined. A windshield would be needed to fully 

test the efficacy of our method, but it appears that the segments induced by splitting the images, 

were rejoined effectively. That is, they were identified in the map VMs and then combined in 

reduce VM, via the moving window. However, the bottleneck in the recomposition process 

cannot be neglected, which needs to be parallelized in future research.  

From Table 4-2 and 4-3, it appears that the private cloud offers a better choice for image 

segmentation in big RS imagery datasets due to lessened computation time and costs. However, 

the cost of purchasing the hardware, setting up the private cloud, and maintaining the cloud 

environment cannot be neglected. Moreover, the hardware resource in our private cloud testbed 

is quite small compared with the public cloud, which limits scalability as images grow larger. 

We cannot use additional map tasks in our experiment because the hardware computing resource 

of the private cloud is insufficient. Considering all the hidden costs, using public cloud for big 

RS imagery processing appears to be more economical for short-term projects.  

Not surprisingly, big data in RS resulted in high I/O costs, regardless of the deployment. 

Research scientists may choose private cloud to avoid part of these costs, but moving big data 



across map and reduce VMs is quite expensive. Authors agree that research in cloud computing 

should be devoted to a full accounting of big data I/O costs (Khajeh-Hosseini et al. 2012; Kondo 

et al. 2009).  

It should be noted that a public cloud computing also involves security and privacy issues 

(Yu et al. 2010). Because different applications and services share the same computing resource 

pool in public cloud computing, we cannot easily guard against information leakages or 

surveillance. Considering the current development of cloud computing, a private cloud may be 

preferred for big RS image segmentation.  

5. Conclusion 
In this paper, we have discussed the specific characteristics of big RS imagery dataset, 

and pointed out challenges of image segmentation processing with the big data. A new GCI that 

coordinates cloud computing, MapReduce, and image segmentation algorithms is proposed, with 

decomposition/recomposition workflow management framework. The decomposition process 

splits the big RS imagery into small image chunks and processes them with image segmentation 

algorithms in parallel as the map phase in MapReduce. The recomposition process collects 

extracted segments from each map task, and utilizes a moving window based segment merging 

method to remove the fake features generated by artificial borders, as the reduce phase. We 

evaluate the performance of our proposed GCI with both public cloud computing and private 

cloud computing implementation, which shows promising results.  

The largest bottleneck in the image segmentation at this time appears to be in the testing 

of removing artefacts created by artificial borders as mentioned in Table 2-1. Here we might 

employ a sampling technique to examine the exact nature of the segments that are left over from 

the moving window. The bottleneck of our GCI mainly lies in two aspects: the first one is that 



reduce cannot be scheduled before the finish of all the map tasks; the second lies in the 

nonparallel execution of recomposition process. In the future, we will investigate how to extend 

recomposition as hierarchical recomposition process for parallelization. The workflow of 

MapReduce may further be optimized for big RS imagery datasets processing. Intensive I/O 

operation in our GCI should also be taken into account. We plan to explore parallel I/O 

framework and the compression method (Lee et al. 2012) to improve the performance of our 

GCI for image segmentation in big RS imagery datasets. In conclusion, using GCI to integrate 

cloud computing and MapReduce presents great opportunity for big RS imagery analysis. 
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