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Abstract

This paper presents a fast method for determining an ap-
proximation of the local penetration information for intersect-
ing polyhedral models. As opposed to most techniques, this
algorithm requires no specific knowledge of the object’s geom-
etry or topology, or any pre-processing computations. In or-
der to achieve real-time performance even for complex, non-
convex models, we decouple the computation of the local pen-
etration directions from the computation of the corresponding
local penetration depths: for any pair of intersecting objects,
we partition the penetrating zones into coherent regions, and
we determine for each of these regions a local penetration di-
rection. Then, for each of these regions, we estimate a local
penetration depth in the previously computed penetration di-
rection. This method has been implemented and tested on
a 2.0 GHz Pentium PC with a NVIDIA GeForce FX 5900
graphics card with AGP 4× and 768MB of RAM. The exam-
ples indicate that a meaningful local penetration information
can be computed for complex models and challenging intersec-
tion scenarios within a few milliseconds.

1 Introduction

The penetration depth information, i.e. the minimum
translation required to separate two objects, is often use-
ful for computing an appropriate collision response, or for
backtracking simulation to the first time of contact. The
exact penetration depth, however, is typically very difficult
to compute, and several approximate methods have been in-
troduced in the past. Although efficient, these methods of-
ten require some specific knowledge of the objects geome-
tries (e.g. convexity) or topologies (e.g. closed manifold), or
special pre-processing computations [Cam97, GS87, KR92,
Ber01, KLM02, OJSL04]. Moreover, some of these methods
might not always be fast enough for real-time interaction with
complex models.

In this paper, we present a fast method that computes an
approximation of the local penetration information and re-
quires no pre-processing nor specific knowledge of the objects’
geometry and topology. We only assume that a collision de-
tection function has processed a pair of objects made of trian-
gles (general triangle soups with no connectivity information),
and has output a list of pairs of intersecting triangles as well
as the corresponding intersection segments.

Essentially, we simplify the problem by attempting to com-
pute meaningful local penetration information. Moreover, we
decouple the computation of the local penetration directions

and the corresponding local penetration depths: first, we par-
tition the penetrating zones into coherent regions, and we
determine a local penetration direction for each of these re-
gions. Then, for each of these regions, we estimate a local
penetration depth along the computed penetration direction.

We do not attempt to compute the exact penetration depth,
but to provide estimates of local penetration depth as effi-
ciently as possible. For this reason, we make several simplify-
ing assumptions and design heuristics which work best when
these assumptions are applicable, and still provide meaning-
ful estimates in degenerate or complex cases (e.g. non-closed
objects). We believe that, although not exact, our algorithm
provides a sufficiently good approximation of the local pen-
etration directions and depths, especially when interactive
performance is crucial.

The overall pipeline of our algorithm consists of three
stages:

1. Intersection segment clustering. We assume that
the collision detection algorithm determines a list of in-
tersection segments. The first stage clusters these inter-
section segments into intersection curves, which define
locally coherent penetration regions.

2. Intersection curve fitting and clustering. When the
intersection segments have been clustered into intersec-
tion curves, we perform a final clustering and estimate
an local penetration direction for each intersection curve.

3. Local penetration depth computation. For each
intersection curve and its corresponding local penetration
direction, we determine a local penetration depth, i.e.
the minimum signed distance required to locally separate
the objects in this direction.

Figure 1 shows the penetration information computed by
our algorithm on two intersecting Stanford bunnies (48,000
triangles each). In this example, the penetration information
is computed in less than three milliseconds.

2 Intersection segment clustering

This section describes the first stage of our algorithm to
compute the local contact information. We assume that the
collision detection algorithm has output a list of ns inter-
section segments, where each segment corresponds to a non-
degenerate intersection between two non-coplanar triangles.
This assumption corresponds to the usual output of a trian-
gle/triangle intersection test [Mol97]. More precisely, each
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2 Intersection segment clustering

Figure 1: Two polyhedral bunnies (48,000 triangles each) intersect. Our algorithm clusters the intersection segments into a single
intersection curve (left, highlighted in the center part), and determines the corresponding penetration direction and depth, which allows
to separate the bunnies (right), in less than three milliseconds.

intersection segment is described by its two endpoints p1 and
p2.

In the first stage of our algorithm, we attempt to deter-
mine locally coherent penetration regions by clustering these
intersection segments into intersection curves. Since we do
not make any assumptions on the object’s topology, there is
no guarantee that the intersection segments should be or even
can be clustered into coherent intersection curves. This is typ-
ically the case for models consisting of non-manifold surfaces
and even for “soups of polygons”. Thus, we design a technique
that works well in practice for most cases.

Even for simple objects, the problem of clustering the inter-
section segments into intersection curves is difficult, mainly
because we do not assume any knowledge of the object geom-
etry or topology. In particular, the intersection curves could
be open, if the intersecting objects themselves are not closed,
or contain loops. Moreover, due to finite precision computa-
tions, two adjacent intersection segments on an intersection
curve might not have a common endpoint. Also, some numer-
ical issues in the collision detection stage might lead to some
missing intersection segments, and thus result in incomplete
sets of intersection segments for the penetration depth com-
putation stage.

The simple yet effective technique we present proceeds as
follows. Assume c − 1 curves have already been determined,
and we want to determine a c-th curve from the remaining
intersection segments, i.e. the free intersection segments. One
of these free intersection segments is selected and arbitrarily
oriented (i.e. the beginning and the end of the segment are
arbitrarily set). This segment is the first one in the c-th curve,
and is also the current end segment of the curve. We build
the curve by repeatedly appending a free intersection segment
to the current end segment of the curve. More precisely, we
append the free intersection segment for which one of the two
endpoints is the closest to the end endpoint of the current
end segment. This closest segment is removed from the list of
the free segments, and becomes the new current end segment.
The construction of the c-th curve continues as long as there
exists a free intersection segment that is sufficiently close to
the current end segment. When the construction of the c-th
curve stops, the algorithm stops, provided that there is no free
intersection segment left. Otherwise, a new free intersection

segment is selected and arbitrarily oriented, and a new curve,
the (c + 1)-th one, is constructed.

Despite its simplicity, a naive implementation of this algo-
rithm would yield a quadratic complexity in the number of
intersection segments, essentially due to the proximity query
step, which determines the closest segment to another seg-
ment. Another reason for the quadratic complexity is in the
management of the list of free intersection segments, when
proper care is not taken. This is not practical when many
intersection segments have been output by the collision de-
tection functions, as we must perform the penetration depth
estimation in real time for many interactive applications (e.g.
games, VR, etc).

In order to achieve a nearly linear runtime complexity in
the number of intersection segments, we use a combination
of a heap and a hashtable. The heap is used to manage the
list of free intersection segments, and is implemented as a
doubly-linked list stored in an array. The hashtable is used
to perform the proximity queries in nearly linear time using
a spatial partitioning method. Basically, we subdivide the re-
gion surrounding the intersection segments into uniform grids
and we store the non-empty space cells in a hashtable, to
reduce the memory consumption. Although the method is
well-known, we carefully design the data structures so as to
be able to perform insertion in the hashtable in constant time,
and the proximity queries in nearly constant time (cf. online
appendix1). Using these data structures, the clustering of
the intersection segments can be performed in nearly linear
time in the number of intersection segments. When a new set
of intersection segments has to be clustered, each segment is
stored in the heap, while each of its endpoints is stored in the
hashtable. When the algorithm tries to determine the closest
free endpoint to a specific endpoint e, the hashtable is used
to traverse the list of endpoints which are contained in the
same grid cell as e and determine the closest one. Assuming
each grid cell contains at most a few endpoints, the clustering
is performed in linear time.

1The data structure details are in an appendix available online at the
web site listed at the end of the paper.
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4 Local penetration depth computation

3 Intersection curve fitting and clus-
tering

When the first stage of our algorithm completes, the inter-
section segments have been clustered into intersection curves.
We then proceed to the second stage of our algorithm, in
which we perform a final clustering and estimate an average
penetration direction for each intersection curve.

This second stage is performed using oriented bounding
boxes (OBBs). For each of the intersection curves output by
the first stage of our algorithm, we determine a fitting OBB
using principal component analysis [GLM96]. For each inter-
section curve, a 3×3 covariance matrix of the positions of the
curve’s endpoints is computed. This matrix is diagonalized
using an iterative method [PTVF92], and the eigenvectors of
the covariance matrix indicate the OBB axes. The OBB cen-
ter and dimensions are then computed to obtain the smallest
OBB which has these axes and contains the curve’s endpoints.

In a first step, the OBBs are used to perform a final cluster-
ing of the intersection curves into larger intersection curves.
This final clustering helps connecting curve segments that
were not connected during the previous stage, either because
of missing intersection segments or because two endpoints
that should have been connected were stored in two different
grid cells. Basically, we repeatedly merge two intersection
curves as long as the directional L2 distance between their
fitting OBBs is below some threshold εOBB (cf. Section 5).
Whenever two curves are merged into a new curve, we deter-
mine a new fitting OBB around the new curve. The process
stops when no curves can be merged. Although this step is
quadratic in the number of intersection curves, the number
of curves at the beginning of stage two is typically very small
(as opposed to the number of intersection segments), thus
merging curves is typically very fast.

When the final set of intersection curves is obtained, we de-
fine the average penetration direction for each curve to be the
axis of the fitting OBB which corresponds to the smallest di-
mension of the OBB, i.e. the axis with the smallest associated
eigenvalue. The rationale for this choice is that, for simple
intersection geometry and a small amount of penetration, the
actual penetration direction, i.e. the one corresponding to
the direction of the minimal translation required to separate
the objects, is well approximated by the normal of the plane
fitting the intersection curve (cf. Section 5).

4 Local penetration depth computa-
tion

As stated in the introduction, the efficiency of our approach
comes from the fact that we address the problem of estimat-
ing the minimal penetration depth by decoupling the esti-
mation of the penetration direction and the determination of
the corresponding directional penetration depth. The first two
stages of our algorithm are crucial in helping to determine po-
tential local coherent penetration regions and corresponding
penetration directions, by making use of the only knowledge
available: the intersection segments.

The third and final stage of our algorithm simply deter-

Figure 2: The penetration depth is determined by rendering both
objects in both potential penetration directions. (a) First object,
direction +n. (b) second object, direction −n. These first two
renderings enable us to determine the penetration depth in direc-
tion d = +n. (c) first object, direction −n. (d) second object,
direction +n. These last two renderings allow us to determine the
penetration depth in direction d = −n. The actual penetration
depth is the smallest of the two rendering passes.

mines a directional penetration depth for each intersection
curve. When the directional penetration depth has been de-
termined for each curve, the penetration depth per intersec-
tion segment endpoint is set to be the directional penetration
depth of the belonging curve, offset by the signed distance of
the endpoint to the curve’s fitting plane.

In order to estimate the directional penetration depths, we
use the graphics hardware. Essentially, for a given pair of
objects and a given intersection curve, we render the objects
in the penetrating region and perform readbacks of the z-
buffer to determine the maximal penetration depth at pixel
resolution, in the direction previously determined.

Assume the penetration direction is ±n. The direction sign
is still undetermined because we do not know which one of the
two directions +n or −n would require the smallest transla-
tion to separate the objects. We thus estimate the penetration
in both directions and select the smallest one.

Assume we begin by estimating the penetration depth in
direction d = +n. We proceed in two stages. First, we set the
center of the viewing frame to be the center of the OBB which
fits the intersection curve, and we set the view direction to be
d. We then render the first object and read the z-buffer back
into a first two-dimensional array. Then, we reverse the view
direction to −d and render the second object, and read the
z-buffer back into a second two-dimensional array. In each
case, the view limits are set such as to bound the intersection
curves and contain the whole object behind the fitting plane
(cf. Figure 2). The directional penetration depth is set to
the maximum of the pairwise differences of the two penetra-
tion depth arrays. The efficiency of this last stage essentially
depend on the complexity of the objects to render, and the
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Figure 3: Three penetration depth scenarios. (a) Even in case of a complex intersection scenario, our algorithm determines a satisfying
partitioning of the intersection segments, and the corresponding local penetration information. (b) Holes in the base of the bunnies
(left) lead to open intersection curves appropriately detected by our algorithm (center), still allowing to precisely separate the objects
(right). (c) Two dragon models (300,000 triangles each) intersect (left). Our algorithm clusters 1,491 intersection segments in a single
curve (center) and determines a penetration information which allows to precisely separate the objects (right), in 9.5 milliseconds.

size of the z-buffer region used to determine the penetration
depth. The size of the z-buffer also determines the precision
of the penetration depth determination (cf. Section 5).

5 Implementation and Examples

5.1 Parameters

Our algorithm uses one tunable parameter per stage, whose
value can be set depending on the application, the objects,
and the desired performance. In the following, we indicate
how these parameters might be set.

• Number of grid cells. The first parameter occurs in
the first stage of our algorithm. If the number of cells is
too small, then the performance of the first stage tends

to become quadratic because of the proximity query step.
In contrast, if the total number of grid cells is too high,
then two segments which belong to the same curve might
not be connected (especially if some segments are miss-
ing). In order to determine the number of grid cells au-
tomatically, we note that a curve is mono-dimensional
by definition, and thus there is on average a linear rela-
tionship between the number of intersection segments ns

and the number of grid cells for each side of the bound-
ing box. Consequently, we express the number of grid
cells for each side ng as a linear function of the number
of intersection segments: ns = kng (total number of cells
in the grid is n3

g). Our preliminary tests have shown that
a good value for k is 50 for our benchmarks.

• OBB/OBB distance threshold. This parameter de-
termines when two intersection curves should be merged.
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6 Discussion

If the threshold is too large, there is a risk that two curve
segments belonging to the same curve would not be de-
tected. However, if the threshold is too small, two in-
tersection curves might be merged without a need for it.
In both cases, the quality of the penetration depth di-
rection is degraded. Depending on the application, this
parameter might be used to control the locality of the
contact information. Assuming that on average at most
one intersection segment is locally missing in a curve,
the distance threshold can be set to the average length
of an intersection segment, which can be precomputed
from the average size of a triangle in the models involved
in the application.

• Z-buffer size. Both the precision and the performance
of the third stage depend on the size of the region used
to render the objects and determine the local penetra-
tion depth. If this region is too small, there is a risk
that the penetration depth won’t take into account the
sharp features of the penetration regions. In contrast,
if this region is too large, it might take too long to
read back. In our tests, we have used a constant buffer
size of 64x64 (128x128 for the entire test, which involves
four renderings). We are currently investigating different
methods to determine the region size adaptively. One of
the methods can be simply setting it proportionally to
the projected size of the penetration region, in order to
have a constant precision when the objects are rasterized.
We note that if reading-back the depth-buffer becomes
a bottleneck, occlusion queries can be used to perform
the depth estimation directly on the graphics hardware
[OJSL04].

5.2 Benchmarks

This section presents various examples obtained with our
algorithm. The benchmarks have been carried out on a
2.0GHz Pentium PC with a NVIDIA GeForce FX 5900 graph-
ics card, AGP4x, and 768MB of RAM. Several polyhedral
models have been used for the tests, and we report the most
challenging ones performed on a pair of Stanford bunnies
(48,000 triangles each, cf. Figure 1)and a pair of Stanford
dragons (about 300,000 triangles each, cf. Figure 3.c). These
complex models give rise to several interesting intersection
scenarios.

Figure 3 describes three such general scenarios. In all these
cases, our algorithm determines the appropriate intersection
curves and provides meaningful contact information, which
allow us to separate the objects. The intersection curves
within the OBBs are displayed, as well as the local penetra-
tion vectors. We note that, even in case of multiple intersec-
tion regions (Fig. 3(a)) or in case of degenerate intersection
curves (such as the open curve in Fig. 3(b)), our algorithm is
able to return useful penetration information.

In order to determine the performance of our algorithm in
practice, we have generated random intersecting configura-
tions for the two bunnies, and measured the time taken by
each stage in each case.

Figure 4 reports the time required to cluster the intersec-
tion segments into intersection curves (in msec), depending

on the number of intersection segments. Figure 4 clearly in-
dicates that the carefully implemented data structures allow
us to perform the clustering in linear time, depending on the
number of intersection segments. Moreover, the timings in
Figure 4 also show the efficiency of the first stage: one thou-
sand intersection segments can be clustered in roughly one
millisecond.

The timings of the second stage do not exhibit any simple
structure, because they depend on the number of segments
per initial curve, on the number of initial curves, and on the
number of curves after the final clustering. For the same set of
intersecting configurations, we have observed that the average
time required by the second stage is 0.33 msec, with a worst
case slightly less than 1 msec.

Figure 5 shows the time required by the third (also last)
stage of our algorithm in milliseconds (msec), depending on
the number of intersection curves to process. The graph
clearly reports the expected linear-time performance, when
the depth-buffer size and the pair of objects do not change.
On average, the time taken by stage three for the two Stan-
ford bunnies is about 2 msec per intersection region. Note
that this includes the time to set the buffers, the view-points,
render the objects, read the depth-buffer back, and perform
the per-pixel depth computation.

Figure 4: Total time (in msec) spent in clustering the intersection
segments depends on the number of intersection segments. Care-
fully designed data structures allow us to perform the clustering
in linear time.

6 Discussion

We have described a fast method to determine meaningful
local penetration directions and depths very efficiently. Our
algorithm has the following limitations:

• Locality. Our algorithm only determines local penetra-
tion information, which could be a potential problem for
consistency in collision response. But, it might be pos-
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Figure 5: Total time (in msec) spent in the third stage of our
algorithm and the determination of the local penetration depth
depend on the number of intersection curves to process. When
the size of the depth-buffer is fixed, the computation time per
intersection curve is nearly constant.

sible to use information acquired at previous time steps
to alleviate the problem.

• Topology assumptions. We have assumed that the lo-
cal intersection between two objects is a non-degenerate
polygonal curve with no loops. Thus, our algorithm does
not handle cases where more than two intersection seg-
ments endpoints meet at the same point (more than one
curve will be reported).

• Penetration direction approximation. Our algo-
rithm assumes that the local penetration direction can
be well approximated by the smallest axis of the OBB
which bounds the intersection curve.

• Penetration distance approximation. The direc-
tional penetration depth is approximate. In particular,
there is no guarantee that the local penetration can be
completely removed by only using the local penetration
information returned by an approximation algorithm. In
the example of Figure 6, some portion of the penetrating
cylinder is not fully contained in the bounding box used
to estimate the penetration depth in the final stage of
our algorithm, and the full penetration is not detected.

• Image-precision errors. Our algorithm makes use of
the graphics hardware to determine the directional pen-
etration depth, up to pixel resolution. This can prevent
fine, sharp features to be taken into account when deter-
mining the penetration depth.

In practice, however, we observed that our algorithm returns
meaningful and useful penetration information even for dif-
ficult intersection scenarios involving complex, general (non-
convex) objects. Furthermore, the algorithm was able to de-
termine local penetration information within just a few mil-
liseconds.

Figure 6: In this deep penetration example, our method cannot
retrieve the exact penetration depth, because some portion of the
penetrating cylinder is not fully contained in the bounding box
used to estimate the penetration depth in the final stage of our
algorithm.

7 Web Information

Details of our data structures for intersection seg-
ment clustering are described in an appendix available
at http://www.acm.org/jgt/papers/RedonLin06, and on the
project web page at http://gamma.cs.unc.edu/LFPD.
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