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Abstract

Spherical harmonic transform plays an important role in research in shape description. Current

computation methods involve expensive voxelization, and are prone to numerical errors associated

with the size of the voxels. This paper describes a fast and accurate technique for computing spherical

harmonic coe�cients directly from the description of the mesh.

1 Introduction

If M is a closed embedded surface in 3-space then there is a solid volume V bounded by M . Fixing a
point P , one can consider the intersection of V with a sphere Sr of radius r around P . In general, we
choose P at the centroid of the object. The intersection Mr = V ∩ Sr is a region of the sphere. The
characteristic function χr of this region (1 for points inside, 0 for those outside) can be approximated by
a sum of spherical harmonics Y m

l (θ, ϕ) in the spherical coordinates. Theoretically, the expansion of χr

in terms of spherical harmonics is written as:

χr(θ, ϕ) =
∞∑

l=0

∑
|m|≤l

cr
lmY m

l (θ, ϕ) (1)

This expansion corresponds to a frequency-based decomposition of χr. In practice, since higher order
coe�cients cr

lm correspond to �ner details of the objects (maybe noise), we limit this summation to a
bandwidth denoted as bw :

χr(θ, ϕ) ≈
bw∑
l=0

∑
|m|≤l

cr
lmY m

l (θ, ϕ) (2)

A collection of such approximations of the characteristic function χr, for several values of r, has proved
to be useful as shape-descriptors for searching and identifying 3D objects [3, 8].

In this paper, we show how to compute the coe�cients of the spherical harmonic representation of
χr quickly and accurately when the surface M is given by a polyhedral mesh. The computation of each
coe�cient cr

lm has an O(n) complexity, where n is the number of triangles of the mesh.
Standard algorithms [3, 6, 7] compute a voxelization of V and then use this discrete approximation

to �nd the coe�cients. The discretization introduces errors in the integrations needed to compute the
harmonic coe�cients. In contrast, our method does not require this discrete approximation of V to
calculate the integration. The numerical quality of the voxelized methods can approximate ours when
the voxel grid is chosen small enough. Mesh voxelization can be computed in a time that is approximately
linear in the number of voxels that meet the mesh [5]. The integration of the function over these voxels
is then linear in the number of voxels. Our algorithm is linear in the number of mesh triangle. Thus if
the voxelization generates approximately a constant number of voxels per triangle, the two methods have
identical asymptotic running times.

This paper is organized as follows. The next section proposes a means to decompose the spherical
harmonic transform of χr into a sum of more elementary spherical harmonic transforms computed on
a set of spherical triangles. Section 3 gives a theoretical discussion to compute the spherical harmonic
coe�cients. Section 4 presents two methods to compute this harmonic coe�cient for a single spherical
triangle. Finally, section 5 gives some experimental results followed by the conclusion in section 6.
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sphere Sr. EG is the
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(c) A is inside the sphere Sr

and Sr intersects the edge BC.
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(d) A, B and C are
outside the sphere. All
arcs are geodesics

Figure 1: intersections of the sphere Sr and a tetrahedron H.

2 Details

The volume V can be de�ned as a union of tetrahedra, one from each triangle of the mesh to the point
P . The triangles of the mesh are assumed to be oriented consistently, i.e., for two neighboring triangles,
the shared edge has two di�erent directions. If the normal of a triangle and P are in the opposite side
with respect to the triangle, the corresponding tetrahedron is said to be positive, and negative otherwise.

Let {Hk, k = 1, . . . , n} denote the set of signed tetrahedra. We split {Hk} into two subsets {H+
i } and

{H−
j } according to the signs of the tetrahedra. The signed volume enclosed by the triangulated mesh

can be represented as :

V =

(⋃
i

H+
i

)
−

⋃
j

H−
j

 (3)

More formally, this means that a point is de�ned to be in V if the sum of the signs of all tetrahedra
that it occupies is positive. Zhang and Chen [10] have shown that this decomposition can be used to
calculate global volumetric moments on V as a sum of elementary volumetric moments computed on each
tetrahedron of the decomposition.

moment(V ) =
∑

k

sign(Hk)moment(Hk) (4)

We extend this property to directly compute the spherical harmonic transform of the triangulated
mesh M . To compute the spherical harmonic coe�cients of χr, we observe that the set Mr = V ∩ Sr

is a signed union of spherical triangles {Tk, k = 1, ..., sn} arising from the intersections of the sphere
Sr with the tetrahedra of V . Let χTk

denote the characteristic function of Tk. Therefore χr can be
represented as :

χr(θ, ϕ) =
∑

k

sign(Tk)χTk
(θ, ϕ) (5)

and
cr
l,m =

∑
k

sign(Tk)cr
l,m|Tk

(6)

The decomposition of Mr into a signed union of spherical triangles is obtained from the intersection
of Sr with the set of signed tetrahedra {Hk}. There are four general cases for the intersection of Sr and
the tetrahedron H = PABC (recall that P is the center of the sphere).

• If A,B and C are inside Sr, then there is no intersection.

• If one of A,B and C is outside Sr, then Sr intersects the edges of H at three points forming a
spherical triangle T (�gure 1(a)).
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• If two of A,B and C are outside Sr, then Sr intersects the edges of H at four or six points forming
a union of two spherical triangles T1 ∪ T2 (�gure 1(b) and 1(c)).

• If A,B and C are all outside Sr, then Sr intersects the edges of H at three points forming a spherical
triangle T (�gure 1(d)). An interior part of the triangle ABC may be inside Sr. Then the spherical
triangle T does not entirely lie inside H (�gure 2(a)). To deal with that case, let Q be a point on
ABC lying inside Sr. Then the tetrahedron H can be seen as the union of the tetrahedra PABQ,
PBCQ and PCAQ (�gure 2(b)) which can be treated as in the second case (�gure 1(b) or 1(c)).
Note that those tetrahedra raise spherical triangles with at most one non geodesic arc for each.
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Figure 2: particular case of a triangle ABC whose vertices are outside the sphere but not the entire
triangle.

The sign of a spherical triangle is inherited from the tetrahedron it comes from. We compute the
spherical harmonic coe�cients for the characteristic function of a single spherical triangle EFG, and then
sum the results. The details of the summation process are described in the next section.

3 The coe�cients for a single spherical triangle

In this section, we describe the calculation of the harmonic coe�cients over a single spherical triangle T .
We �rst describe it for general spherical triangles and then address some special cases.

3.1 General case

To �nd the spherical harmonic coe�cient cr
l,m|T for the characteristic function χT , we must compute:

cr
l,m|T =

∫ ∫
S2

χT (θ, ϕ)Y
m

l (θ, ϕ) sin(θ)dθdϕ (7)

Y m
l is the spherical harmonic of degree l and order m where l ≥ 0 and m ≤ |l|, θ ∈ [0 π] is the polar

angle from the z-axis, and ϕ ∈ [0 2π[ is the azimuthal angle in the xy-plane from the x-axis (�gure
3). The expression of cr

l,m|T is the projection of χT on Y m
l since the spherical harmonics are a set of

orthogonal functions. Recall that Y m
l (θ, ϕ) is de�ned as :

Y m
l (θ, ϕ) = klmPm

l (cos θ)eimϕ (8)

klm is a constant depending on l and m, and Pm
l is the associated Legendre Polynomial [9]. For more

details about spherical harmonics see [1, 4].
The expression to be integrated is nonzero only for points in EFG, so cr

l,m|T simpli�es to

cr
l,m|T =

∫ ∫
T

Y
m

l (θ, ϕ) sin(θ)dθdϕ (9)
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Figure 3: direction of θ and ϕ in the spherical coordinate

By taking into account the bounds of θ and ϕ, the integral becomes

cr
l,m|T =

∫ ϕ2

ϕ1

∫ θ2(ϕ)

θ1(ϕ)

Y
m

l (θ, ϕ) sin(θ)dθdϕ (10)
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Figure 4: the θ, ϕ bounds for the spherical triangle T

ϕ1 and ϕ2 denote the bounds for ϕ for the spherical triangle T (Figure 4(a)). The inner integration
corresponds to the integration along the geodesic path from θ1(ϕ) to θ2(ϕ). The relations θ1(ϕ) and
θ2(ϕ) can be determined from the equations of the arcs of the spherical triangle (intersection between a
plane and Sr). However, these relations are not linear and they depend mainly on the dimension and
orientation of the spherical triangle EFG.

Note that if FG is not a geodesic arc and that we meet the situation described in �gure 4(b), then the
inner integration will be incorrect. In this case, the spherical triangle can be split along a geodesic arc
into two spherical triangles (with at most one non geodesic arc on each) and on which we can calculate
the harmonic coe�cient as in �gure 4(a).

The harmonic coe�cients cr
l,m|T are complex. They are related to each other by the following relation:

cr
l,−m|T = (−1)mcr

l,m|T (11)

This allows one to do half as much work as would be otherwise necessary.

(l −m)Pm
l (x) = x(2l − 1)Pm

l−1(x)− (l + m− 1)Pm
l−2(x) (12)

Note that the recurrence relation of Legendre polynomials de�ned in equation 12 cannot be turned into a
simple recurrence relation on spherical harmonic coe�cients. This is not surprising since it insures that
higher order harmonic coe�cients cannot be expressed in terms of lower order harmonic coe�cients.

3.2 Special spherical triangles

In this subsection, we describe three special cases of the spherical triangle. In the �rst case, the spherical
triangle passes across the great circle ϕ = 0 (�gure 5(a)). The bounds of ϕ are not in correct order if one
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integrates from ϕ1 = min(ϕ) to ϕ2 = max(ϕ). So we reverse the bounds and integrate as follows:

cr
l,m|T =

∫ 2π

ϕ2

∫ θ2(ϕ)

θ1(ϕ)

Y
m

l (θ, ϕ) sin(θ)dθdϕ +
∫ ϕ1

0

∫ θ2(ϕ)

θ1(ϕ)

Y
m

l (θ, ϕ) sin(θ)dθdϕ (13)

In the second case, the spherical triangle contains the north or south poles (θ equals 0 or π respec-
tively). The bounds of θ may lead to incorrect results. Without loss of generality let us consider a
spherical triangle containing the north pole N . We divide the triangle T = EFG into three spherical
triangles T1 = NEF , T2 = NFG and T3 = NGE and then compute the sum of the integrations over
each spherical triangle individually (Figure 5(b)).

In rare cases, the spherical triangle can be degenerate. This case is raised by the intersection of
a degenerate tetrahedron (i.e. it has a zero volume) and the sphere. The spherical triangle in this
case is reduced to a geodesic arc on the sphere. So, the surface integration on the sphere for that arc
is 0 (θ1(ϕ) = θ2(ϕ) in equation 10). This is trivial since the volume of this tetrahedron is zero and
volumetrically it does not contribute to the signed volume of the model.

(b)(a)

ϕ = 0

ϕ1

ϕ2

z

y

x

y

x

F

E

G

N

Figure 5: two special cases for θ and ϕ.

4 Evaluating the Integration

In this section, we propose two alternatives to avoid the nonlinear relationship between θ and ϕ. The
�rst one is based on symbolic integration using any auxiliary library that supports symbolic integrations,
like MATLAB or MATHEMATICA. The second one is based on numerical estimation of the integral.

4.1 Symbolic Integration

Actually, as far as we know, symbolic packages do not permit to �nd the �nal symbolic form of the
integration expressed in equation 10 with respect to the relation between θ and ϕ. However, we can
calculate the symbolic form of integration :∫ ∫

Y
m

l (θ, ϕ) sin(θ)dθdϕ (14)

without the bounds of θ and ϕ. Then, we approximate the spherical triangle to vertical slices and evaluate
the obtained formulae with the bound of each slice.

Consider without loss of generality that the spherical triangle EFG is such that ϕE ≤ ϕF ≤ ϕG and
θE ≥ θF , as shown in �gure 6. Therefore, the integral that computes Cr

l,m|T can be divided into two
subintegrals I1 and I2 :

Cr
l,m|T = I1 + I2 (15)

where I1 and I2 are as follows :

I1 =
∫ ϕF

ϕE

∫ θEF (ϕ)

θEG(ϕ)

Y
m

l (θ, ϕ) sin(θ)dθdϕ (16)

I2 =
∫ ϕG

ϕF

∫ θF G(ϕ)

θEG(ϕ)

Y
m

l (θ, ϕ) sin(θ)dθdϕ (17)

5



���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�

�
�
�
�

E

G

F

θEG
(ϕ)

θEF (ϕ)

θFG(ϕ)

I2I1

ϕi2ϕi1 ϕj2ϕj1

θ

ϕ

Figure 6: discretization of the spherical triangle into vertical slices

(l,m) θ part ϕ part
(0, 0) − cos(θ) ϕ
(1, 0) −1/4 ∗ cos(2 ∗ θ) ϕ
(1, 1) 1/2 ∗ sign(sin(θ)) ∗ (cos(θ) ∗ sin(θ)− θ) ie−iϕ

(2, 0) −1/8 ∗ cos(3 ∗ θ) + 1/8 ∗ cos(θ) ϕ
(2, 1) −1/8 ∗ (2− 2 ∗ cos(2 ∗ θ))(3/2) ie−iϕ

(2, 2) −3 ∗ cos(θ) + cos(θ)3 ie−2iϕ/2

Table 1: examples of integration of θ and ϕ parts

θuv(ϕ) is the relation between θ and ϕ on the boundary uv of the considered spherical triangle. Splitting
each of I1, I2 into stepwise subintegrals according to {ϕik

}s
k=0 and {ϕjk

}t
k=0 respectively, we get:

I1 '
s−1∑
k=0

∫ ϕik+1

ϕik

∫ θEF (ϕik
)

θEG(ϕik+1
)

Y
m

l (θ, ϕ) sin(θ)dθdϕ where ϕi0 = ϕE and ϕis
= ϕF (18)

I2 '
t−1∑
k=0

∫ ϕjk+1

ϕjk

∫ θF G(ϕjk
)

θEG(ϕjk+1
)

Y
m

l (θ, ϕ) sin(θ)dθdϕ where ϕj0 = ϕF and ϕjt
= ϕG (19)

We discretize the spherical triangle into small enough vertical slices and integrate over each one separately,
as shown in �gure 6. Of course, the accuracy depends on the number of slices. Practically, this number
can be chosen heuristically by regarding the increase (or decrease) of θ with respect to the increasing
of ϕ. For example, if ∆ϕ � ∆θ, the number of steps is taken according to ∆θ and vice versa, where
∆ϕ = maxϕ−minϕ and ∆θ = max θ −min θ.

On the other hand, the variables θ and ϕ are separated in Y m
l (θ, ϕ) (see equation 8). Considering that

θ and ϕ are independent, the integration can be done for each one separately. Therefore the integration
can be written as: ∫ ∫

Y
m

l sin(θ)dθdϕ = klm

(∫
Pm

l (cos θ) sin θdθ

)(∫
e−imϕdϕ

)
(20)

Therefore, the integration of θ and ϕ parts can be done symbolically using MATLAB and stocked in
an external �le to be evaluated later. The integration of ϕ part is easy. It is equal to ie−imϕ/m for
m 6= 0, and ϕ for m = 0. The integration of θ part is more complicated than that of ϕ part. Symbolic
integrations used for lower order spherical harmonic coe�cients are shown in table 1.

Finally, the symbolic formulae are evaluated for each slice using its θ, ϕ bounds, as shown in equations
18 and 19.

The symbolic integration has the following advantages:

• the formulae are exact,

• the symbolic formulae are stocked o�ine, so we maintain the execution time,

• execution time is faster than that of the numerical estimation described in next subsection, since it
is only an inline evaluation of coded formulae with respect to θ and ϕ bounds.
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Figure 7: a spherical triangle and its corresponding euclidean triangle.

The symbolic integration also has some disadvantages:

• it neglects the exact dependency between θ and ϕ,

• it can not calculate the integrations of high order spherical harmonics because of the limitation of
the available symbolic libraries (MATLAB can not compute integrations for the harmonics of order
greater than 27),

• it is not trivial to de�ne an explicit method that controls the level of division of the spherical
triangle into small slices.

4.2 Numerical Estimation

A spherical triangle EFG bounded by geodesic arcs can be parametrized by the euclidean triangle sharing
the same vertices (�gure 7). If ABC is a triangle of the mesh, then the cone from the origin P that
is subtended by ABC intersects the sphere in a spherical triangle EFG with geodesic edges. Radial
projection from ABC to EFG is a parameterization of this triangle, and can be used to integrate any
function over the triangle. The function we want to integrate is :

χȲ m
l (θ, ϕ) (21)

where χ, for each point of EFG, is one if the point is between the triangle ABC and the origin, and zero
otherwise. In fact, each point Q on the euclidean triangle EFG can be written as:

Q = λE + βF + (1− λ− β)G 0 ≤ λ ≤ 1 0 ≤ β ≤ 1 0 ≤ λ + β ≤ 1 (22)

We can parametrize (θ, ϕ) by (λ, β) using the conversion from the cartesian to spherical coordinates:

θ(λ, β) = arctan

√
x(λ, β)2 + y(λ, β)2

z(λ, β)
(23)

ϕ(λ, β) = arctan
y(λ, β)
x(λ, β)

(24)

Therefore, the integration over a spherical triangle bounded by geodesic arcs becomes:

cr
l,m|T =

∫ 1

0

∫ 1

0

Y
m

l (θ(λ, β), ϕ(λ, β)) sin θ(λ, β)J
[

θ, ϕ

λ, β

]
dλdβ (25)

where J
[

θ,ϕ
λ,β

]
is the Jacobian of (θ, ϕ) with respect to (λ, β). Equation (25) can be evaluated using one

of numerical integrations implemented in any scienti�c library. The examples presented in this article
were evaluated using the plain Monte Carlo integration implemented in the GNU Scienti�c Library, GSL
[2] with 103 as the size of the iteration space.

The numerical estimation has the following advantages:

• it need not partition the spherical triangle, so its accuracy is more than the �rst one,
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• it maintains implicitly the dependency between θ and ϕ,

• it can compute high order harmonic coe�cients,

However, its main drawback is that it is not fast because of the many numerical parameters (error bound,
number of iterations. . . ).

The numerical estimation described in this section can handle the case of the spherical triangle whose
one boundary is not geodesic but also spherical triangles that miss an interior part (�gure 2(a)) without
splitting it into smaller ones. In fact, numerical integrations are achieved by evaluating the function at
sample points that lie on the region of interest. The test of inside/outside the tetrahedron is what's done
by the function χ, and in practice this means simply checking each sample and throwing out those which
lie outside the tetrahedron, and evaluating Ȳ (θ, ϕ) on the others and summing, and then dividing by the
total count of both accepted and rejected samples.

From the advantages and disadvantages of the symbolic integration and numerical estimation, we
prefer the numerical estimation to the symbolic integration.

5 Experimental Results

We have tested our method with di�erent kinds of objects. Indeed, the quality of the spherical harmonic
description of the object depends both on the number of spheres and on the bandwidth bw. To simplify
the calculations, we normalize the models and translate them so that the centers of masses coincide with
the origin. The spheres are chosen to be equispaced. We can exploit an interesting property o�ered by
our decomposition. When the radius of the sphere changes and the intersection of the tetrahedron H and
the sphere is always as depicted in �gure 1(d) then the spherical harmonic coe�cients associated to H
remain the same. Figure 8 and 9 show a reconstruction of di�erent kind of models using di�erent spheres
radii and bandwidths.

(a) original (b) 50 spheres (c) original (d) 100 spheres

Figure 8: reconstruction of a polygonized torus and aircraft using bw = 64

(a) original (b) 100 spheres (c) original (d) 100 spheres

Figure 9: reconstruction of a horse and Isis statue using bw = 64

6 Conclusion

The proposed method allows us to compute the spherical harmonic coe�cients directly from any closed
triangulated mesh. The integrations performed over a single triangle are independent of the other trian-
gles. Therefore the calculation can be parallelized without any overlapping problem.

For more information about the code, a web site is now available at http : //liris.cnrs.fr/mmousa/.
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