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Abstract.   In many real-time rendering applications, it is necessary to model a fog vol-
ume that is bounded by a single plane but is otherwise infinite in extent. This paper pre-
sents unified formulas that provide the correct distance traveled through a fog halfspace 
for all possible camera and surface point locations. Such formulas effectively remove the 
need to code for multiple cases separately, thereby achieving optimal fragment shading 
performance on modern rendering hardware. 

1. Introduction 

A fog volume bounded by a single plane, but otherwise infinite in extent, has many uses 
in interactive rendering applications. For example, the bounding plane could represent the 
maximum height that a fog bank reaches in an outdoor environment, it could coincide 
with a water plane to restrict fog application to underwater surfaces, or it could serve as 
the boundary between fogged and unfogged indoor areas. In such cases, the partial dis-
tance within the fog volume through which light travels between a surface point and the 
camera must be determined for each pixel rendered. Managing this calculation can be 
cumbersome, however, due to the different possible configurations of a surface point and 
the camera position with respect to the bounding plane. Furthermore, an implementation 
that handles distinct configurations as separate cases can suffer from poor performance 
caused by fragment shader code containing branches or using some kind of conditional 
execution. We therefore derive unified formulas that provide the correct distance traveled 
through a fog halfspace for all surface points and camera positions, allowing a single 
fragment shader to be used in all cases. One formula is derived for a volume having a 
constant fog density, and a second formula is derived for a volume having a fog density 
that increases linearly with distance from the bounding plane. 

2. Background 

As summarized in the following table, OpenGL defines three different fog modes that 
each calculate a fog fraction f in terms of a fog density ρ and the distance d that light 
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travels through the fog [Leech 04]. (In the GL_LINEAR case, an additional constant e 
represents the distance at which the fog fraction is zero, corresponding to fully saturated 
fog.) 
 

Fog Mode Fog Fraction 

GL_LINEAR  f ρ e d   

GL_EXP  expf ρd   

GL_EXP2  2 2expf ρ d   

 
Once f has been calculated for a fragment being rasterized, it is clamped to the range 
 0,1 , and the fragment’s final color rC  is blended with a constant fog color fC  to produce 
the color C which is written to the frame buffer using the formula 

  1r fC f C f C   . (1) 

 Ordinarily, the distance d is taken to be the total distance between the camera and the 
center of a fragment being rasterized.1 In this paper, we consider fog volumes that are 
bounded by a plane dividing space into a fogged halfspace and an unfogged halfspace. To 
calculate the appropriate fog fraction f in this case for an arbitrary camera position, we 
need to determine the portion of the distance between the camera and a fragment’s center 
that lies within the fogged halfspace to use as the value of d. Note that once the correct 
distance d has been calculated, any formula may be used to calculate the fog fraction f, 
not just the conventional OpenGL formulas. 
 We represent the bounding plane between fogged and unfogged halfspaces by the 
four-dimensional vector , , ,x y z wF F F FF . We shall assume that the plane’s normal 
(described by the x, y, and z components of F) has unit length and, as a convention, that 
the normal points away from the fogged halfspace. Recall that the dot product between 
the plane F and a homogeneous point P having a w coordinate of one gives the signed 
distance between the plane and the point. As illustrated in Figure 1, all points having a 
negative distance to the plane lie in the fogged halfspace, and all points having a positive 
distance to the plane lie in the unfogged halfspace. As explained later, whether points 
lying in the plane itself are considered fogged is unimportant and may be chosen one way 
or the other. 
 
 

                                                      
1The OpenGL specification allows an implementation to approximate this distance with the fragment’s cam-
era-space depth. 
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Figure 1. A point P in the fogged halfspace forms a negative dot product with the plane vector F, 
and a point in the unfogged halfspace forms a positive dot product with the plane vector. 

3. Constant Density Fog Halfspace 

We first consider a volume in which the fog density is given by a constant ρ. Suppose 
that the point P represents a fragment inside a triangle being rasterized and that the point 
C represents the camera position. When determining the partial distance along the direc-
tion from P to C lying within the fogged halfspace, there are four cases to consider based 
on the signs of F P and F C, as shown in Figure 2. 

 
Figure 2. There are four distinct configurations to consider when calculating the partial distance 
along the direction from a surface point P to the camera position C that lies within the fogged 
halfspace. 
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 In the case that P and C both lie on the positive side of the fog plane, no part of the 
line segment connecting the two points intersects the fogged halfspace, and thus no fog 
should be applied to the fragment corresponding to the point P. In the case that P and C 
both lie on the negative side of the fog plane, the entire distance C P  should be used to 
calculate the amount of fog that should be applied. 
 The remaining two cases, in which F P and F C have opposite signs, require us to 
calculate the point at which the line segment connecting P and C intersects the plane F. If 
we define the function  t t Q P V, where we have introduced  V C P as the tradi-
tional “view vector”, then a quick calculation yields 

 t


 


F P

F V
 (2) 

as the parameter value for which  tQ  lies in the plane. (Note that the w coordinate of V 
is zero.) In the case that 0 F C , the distance traveled through the fog between P and C 
is t V . In the case that 0 F C , the fogged distance is  1 t V . 
 The following table summarizes the distances traveled through the fogged halfspace 
for the four cases illustrated in Figure 2. 
 

Case F P F C Distance d 

(a) Positive Positive 0 

(b) Negative Positive 





F P
V

F V
 

(c) Positive Negative 1
   

F P
V

F V
 

(d) Negative Negative V  

 
To satisfy the goal of optimal real-time rendering performance, we seek a single formula 
that gives the correct distance d for all cases simultaneously. Such a formula avoids ex-
pensive branches or other conditional code in the fragment shader. 
 First, we can make use of the fact that F V is always positive in case (b) and always 
negative in case (c). By applying an absolute value to F V, we can merge cases (b) and 
(c) into one formula and write d as 

 d k
 

   

F P
V

F V
, (3) 

where the constant k is defined as 

 
1, if 0;

0, otherwise.
k

  


F C
 (4) 
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If Equation (3) were applied to case (a), then we would always obtain a negative distance 
when we want a distance of zero. If it were applied to case (d), then we would always 
obtain a distance greater than V  when we want the distance V  itself. Fortunately, this 
means that we can clamp the scale value to the range  0,1  as follows to obtain the correct 
distance in all four cases. 

 satd k
 

   

F P
V

F V
 (5) 

The sat function represents the saturate operation available on all modern graphics pro-
cessors that clamps values to the range  0,1 . 
 If the direction between the points P and C is perpendicular to the fog boundary 
plane’s normal, then 0 F V  and we encounter a division-by-zero hazard in Equation 
(5). In this case, F P and F C must have the same sign, so the distance d becomes 

   sat sgnd    F C V . (6) 

The saturate operation maps the infinity to one if the camera lies inside the fog volume 
and zero otherwise, giving the correct results. 
 If the points P and C both lie in the plane F, then 0 F P  and 0 F V , leading to a 
zero-divided-by-zero expression in Equation (5) that produces a floating-point NaN (Not 
a Number) value. Whether a NaN is mapped to zero or one by the saturate operation is 
unspecified, but either case is acceptable because the pixel corresponding to the point P is 
guaranteed to have neighbors for which 0d   and neighbors for which d  V . 

4. Linear Density Fog Halfspace 

Multiplying the distance given by Equation (5) by a constant density value produces a fog 
volume that can appear too thick near the boundary plane. A constant density can also 
produce the appearance of a harsh transition between fogged and unfogged pixels when 
the camera is positioned near the boundary plane. A more natural result can be achieved 
by utilizing a density function  ρ P  that is zero on the bounding plane and increases line-
arly with distance into the fog volume. A comparison between constant density and linear 
density is shown in Figure 3. 
 Let the density function  ρ P  be defined as 

    ρ a  P F P  (7) 

for some positive constant a, and let dg  represent the amount of fog applied along a dif-
ferential length ds, given by the product 

  dg ρ ds P . (8) 
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and if only 0 F C , we have 

       1 2

2t

a
g ρ u du

 
        

F P
P Q V V F P F C

F V
. (11) 

 The fog functions  g P  for all four cases shown in Figure 2 are summarized in the 
following table. 
 

Case F P F C Fog Function  g P  

(a) Positive Positive 0 

(b) Negative Positive 
  2

2

a 


F P
V

F V
 

(c) Positive Negative 
  2

2

a  
      

F P
V F P F C

F V
 

(d) Negative Negative  
2

a
   V F P F C  

 
As in the constant density formula, we can merge cases (b) and (c) by applying an abso-
lute value to the quantity F V and adjusting the sign of the term containing it. This yields 
the unified function 

       2

2

a
g k

 
       

F P
P V F P F C

F V
 (12) 

for these two cases, where k is still defined by Equation (4). In order to incorporate case 
(d) into this formula, we need to eliminate the last term inside the brackets whenever F P 
and F C have the same sign. This can be accomplished by replacing F P with 

   min 1 2 ,0k F P  in the last term to arrive at the formula 

         2min 1 2 ,0

2

ka
g k

  
       

F P
P V F P F C

F V
. (13) 

Note that this formula also works for case (a) since both terms are eliminated if F P and 
F C are both positive. 

 In Equation (13), if the quantity F V is zero, then it is always true that the numerator 
of the last term is also zero. Although in practice a zero-divided-by-zero situation is rare 
enough to be ignored, a small positive ε can be added to F V  without affecting the fog 
function’s value significantly to guarantee that a NaN is not produced. 
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5. Implementation 

We finish with a discussion of the implementation of Equations (5) and (13) using 
OpenGL fragment shaders. Example code is given in the GL high-level shading language 
defined by the GL_fragment_shader extension, now a core feature of the OpenGL 
2.0 standard. 
 For a fog volume of constant density, the quantities ρV, F P, and F V are calculated 
in a vertex program and interpolated across triangles during rasterization. The value of k 
only needs to be calculated once for a particular camera position, and it is stored in a con-
stant register. The following fragment shader can be used to calculate the product ρd  and 
then apply the GL_EXP fog fraction formula. Note that to match the fog fraction that 
would be produced by OpenGL, the density ρ should be multiplied by 1 ln 2 because the 
exp2 function exponentiates using the base 2 instead of the base e. (This function was 
chosen over the exp function to match the underlying hardware functionality of typical 
GPUs.) 
 
uniform float k;            // (F dot C <= 0.0) 
varying float3 rhoV; 
varying float F_dot_V; 
varying float F_dot_P; 
 
void main() 
{ 
 float4 color = ...;    // final color 
  
 // Calculate distance * rho using Equation (5) 
 float d = saturate(k - F_dot_P / abs(F_dot_V)); 
 d *= length(rhoV); 
  
 // Calculate fog fraction and apply 
 float f = saturate(exp2(-d)); 
  
 gl_FragColor.rgb = color.rgb * f + 
  gl_FogParameters.color.rgb * (1.0 - f); 
 gl_FragColor.a = color.a; 
} 
 

 For a fog volume of linearly varying density, we can calculate the quantities  2a V, 
 k   F P F C , and   1 2k F P  at each vertex and interpolate them during triangle 

rasterization. The fragment shader implementation of the linear density function is shown 
in the following code listing, which calculates  g P  and then applies the GL_EXP fog 
fraction formula. 
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uniform float3 aV;         // (a / 2) * V 
varying float c1;          // k * (F dot P + F dot C) 
varying float c2;          // (1 - 2k) * (F dot P) 
varying float F_dot_V; 
 
void main() 
{ 
 float4 color = ...;    // final color 
  
 // Calculate g(P) using Equation (13) 
 float g = min(c2, 0.0); 
 g = -length(aV) * (c1 - g * g / abs(F_dot_V)); 
 
 // Calculate fog fraction and apply 
 float f = saturate(exp2(-g)); 
 
 gl_FragColor.rgb = color.rgb * f + 
  gl_FogParameters.color.rgb * (1.0 - f); 
 gl_FragColor.a = color.a; 
} 
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