
Published in Journal of Graphics Tools, Vol. 12, No. 2 (2007). 1

Unified Distance Formulas for
Halfspace Fog

Eric Lengyel
Terathon Software

lengyel@terathon.com

Abstract. In many real-time rendering applications, it is necessary to model a fog vol-
ume that is bounded by a single plane but is otherwise infinite in extent. This paper pre-
sents unified formulas that provide the correct distance traveled through a fog halfspace
for all possible camera and surface point locations. Such formulas effectively remove the
need to code for multiple cases separately, thereby achieving optimal fragment shading
performance on modern rendering hardware.

1. Introduction

A fog volume bounded by a single plane, but otherwise infinite in extent, has many uses
in interactive rendering applications. For example, the bounding plane could represent the
maximum height that a fog bank reaches in an outdoor environment, it could coincide
with a water plane to restrict fog application to underwater surfaces, or it could serve as
the boundary between fogged and unfogged indoor areas. In such cases, the partial dis-
tance within the fog volume through which light travels between a surface point and the
camera must be determined for each pixel rendered. Managing this calculation can be
cumbersome, however, due to the different possible configurations of a surface point and
the camera position with respect to the bounding plane. Furthermore, an implementation
that handles distinct configurations as separate cases can suffer from poor performance
caused by fragment shader code containing branches or using some kind of conditional
execution. We therefore derive unified formulas that provide the correct distance traveled
through a fog halfspace for all surface points and camera positions, allowing a single
fragment shader to be used in all cases. One formula is derived for a volume having a
constant fog density, and a second formula is derived for a volume having a fog density
that increases linearly with distance from the bounding plane.

2. Background

As summarized in the following table, OpenGL defines three different fog modes that
each calculate a fog fraction f in terms of a fog density ρ and the distance d that light

 2

travels through the fog [Leech 04]. (In the GL_LINEAR case, an additional constant e
represents the distance at which the fog fraction is zero, corresponding to fully saturated
fog.)

Fog Mode Fog Fraction

GL_LINEAR  f ρ e d 

GL_EXP  expf ρd 

GL_EXP2  2 2expf ρ d 

Once f has been calculated for a fragment being rasterized, it is clamped to the range
 0,1 , and the fragment’s final color rC is blended with a constant fog color fC to produce
the color C which is written to the frame buffer using the formula

  1r fC f C f C   . (1)

 Ordinarily, the distance d is taken to be the total distance between the camera and the
center of a fragment being rasterized.1 In this paper, we consider fog volumes that are
bounded by a plane dividing space into a fogged halfspace and an unfogged halfspace. To
calculate the appropriate fog fraction f in this case for an arbitrary camera position, we
need to determine the portion of the distance between the camera and a fragment’s center
that lies within the fogged halfspace to use as the value of d. Note that once the correct
distance d has been calculated, any formula may be used to calculate the fog fraction f,
not just the conventional OpenGL formulas.
 We represent the bounding plane between fogged and unfogged halfspaces by the
four-dimensional vector , , ,x y z wF F F FF . We shall assume that the plane’s normal
(described by the x, y, and z components of F) has unit length and, as a convention, that
the normal points away from the fogged halfspace. Recall that the dot product between
the plane F and a homogeneous point P having a w coordinate of one gives the signed
distance between the plane and the point. As illustrated in Figure 1, all points having a
negative distance to the plane lie in the fogged halfspace, and all points having a positive
distance to the plane lie in the unfogged halfspace. As explained later, whether points
lying in the plane itself are considered fogged is unimportant and may be chosen one way
or the other.

1The OpenGL specification allows an implementation to approximate this distance with the fragment’s cam-
era-space depth.

 3

Figure 1. A point P in the fogged halfspace forms a negative dot product with the plane vector F,
and a point in the unfogged halfspace forms a positive dot product with the plane vector.

3. Constant Density Fog Halfspace

We first consider a volume in which the fog density is given by a constant ρ. Suppose
that the point P represents a fragment inside a triangle being rasterized and that the point
C represents the camera position. When determining the partial distance along the direc-
tion from P to C lying within the fogged halfspace, there are four cases to consider based
on the signs of F P and F C, as shown in Figure 2.

Figure 2. There are four distinct configurations to consider when calculating the partial distance
along the direction from a surface point P to the camera position C that lies within the fogged
halfspace.

P

P

F

F  P > 0

F  P < 0

Unfogged halfspace

Fogged halfspace

P F

C

F

P

C

P F

C
P

F

C

(a) (b)

(c) (d)

 4

 In the case that P and C both lie on the positive side of the fog plane, no part of the
line segment connecting the two points intersects the fogged halfspace, and thus no fog
should be applied to the fragment corresponding to the point P. In the case that P and C
both lie on the negative side of the fog plane, the entire distance C P should be used to
calculate the amount of fog that should be applied.
 The remaining two cases, in which F P and F C have opposite signs, require us to
calculate the point at which the line segment connecting P and C intersects the plane F. If
we define the function  t t Q P V, where we have introduced  V C P as the tradi-
tional “view vector”, then a quick calculation yields

 t


 


F P

F V
 (2)

as the parameter value for which  tQ lies in the plane. (Note that the w coordinate of V
is zero.) In the case that 0 F C , the distance traveled through the fog between P and C
is t V . In the case that 0 F C , the fogged distance is  1 t V .
 The following table summarizes the distances traveled through the fogged halfspace
for the four cases illustrated in Figure 2.

Case F P F C Distance d

(a) Positive Positive 0

(b) Negative Positive





F P
V

F V

(c) Positive Negative 1
   

F P
V

F V

(d) Negative Negative V

To satisfy the goal of optimal real-time rendering performance, we seek a single formula
that gives the correct distance d for all cases simultaneously. Such a formula avoids ex-
pensive branches or other conditional code in the fragment shader.
 First, we can make use of the fact that F V is always positive in case (b) and always
negative in case (c). By applying an absolute value to F V, we can merge cases (b) and
(c) into one formula and write d as

 d k
 

   

F P
V

F V
, (3)

where the constant k is defined as

1, if 0;

0, otherwise.
k

  


F C
 (4)

 5

If Equation (3) were applied to case (a), then we would always obtain a negative distance
when we want a distance of zero. If it were applied to case (d), then we would always
obtain a distance greater than V when we want the distance V itself. Fortunately, this
means that we can clamp the scale value to the range  0,1 as follows to obtain the correct
distance in all four cases.

 satd k
 

   

F P
V

F V
 (5)

The sat function represents the saturate operation available on all modern graphics pro-
cessors that clamps values to the range  0,1 .
 If the direction between the points P and C is perpendicular to the fog boundary
plane’s normal, then 0 F V and we encounter a division-by-zero hazard in Equation
(5). In this case, F P and F C must have the same sign, so the distance d becomes

   sat sgnd    F C V . (6)

The saturate operation maps the infinity to one if the camera lies inside the fog volume
and zero otherwise, giving the correct results.
 If the points P and C both lie in the plane F, then 0 F P and 0 F V , leading to a
zero-divided-by-zero expression in Equation (5) that produces a floating-point NaN (Not
a Number) value. Whether a NaN is mapped to zero or one by the saturate operation is
unspecified, but either case is acceptable because the pixel corresponding to the point P is
guaranteed to have neighbors for which 0d  and neighbors for which d  V .

4. Linear Density Fog Halfspace

Multiplying the distance given by Equation (5) by a constant density value produces a fog
volume that can appear too thick near the boundary plane. A constant density can also
produce the appearance of a harsh transition between fogged and unfogged pixels when
the camera is positioned near the boundary plane. A more natural result can be achieved
by utilizing a density function  ρ P that is zero on the bounding plane and increases line-
arly with distance into the fog volume. A comparison between constant density and linear
density is shown in Figure 3.
 Let the density function  ρ P be defined as

    ρ a  P F P (7)

for some positive constant a, and let dg represent the amount of fog applied along a dif-
ferential length ds, given by the product

  dg ρ ds P . (8)

F
ag
Th
th

B
vo
th

u
pr
ra
F
ov

te

(a)

(c)

igure 3. Image
ges (b) and (d)
he camera is p

he camera lies i

By integrating
olume, we ob
he fog fraction

Let the fun
 0,1 , wher

ressed in term
ations of the p
C are both p
ver the entire

In the rema
er t given by E

es (a) and (c) s
) show a fog vo
placed 5 meters
in the boundary

g along the pa
btain a functi
n formulas.
ction  u Q

re we continu
ms of u as ds 
points P and
positive, then
distance betw

aining two cas
Equation (2) i

g P

show a fog vol
olume rendered
s above the fog
y plane in imag

artial path bet
ion  g P that

u P V repre
ue to use V

du V . We
C with respe

n   0g P . In
ween P and C

 

2

g dg

a



 


C

P

P

ses, for which
is one of the l

 
0

t

ρ u P Q

 (b)

 (d)

lume rendered
d with a linear
g volume’s bo
ges (c) and (d)

tween the poi
t can be subs

esent the line
 C P. The
again need to

ect to the bou
n the case that
C to obtain

  



1

0

g ρ u

 

 Q

V F P F

h F P and F
limits of integ


2

a
du V

with constant
r density functi

oundary plane i
.

ints P and C
stituted for th

e segment con
differential

o consider the
undary plane.
at 0 F P and



.

du



V

F C

C have oppo
gration. If onl

  2


F P
V

F V
,

density 0.ρ 
ion   0ρ  P
in images (a) a

 that lies insi
he product ρd

nnecting P a
distance ds c
e four possibl
. Of course, i
d 0 F C , w

osite signs, th
ly 0 F P , w

04, and im-

 .008 F P .
and (b), and

ide the fog
d in any of

and C with
can be ex-
le configu-
if F P and

we integrate

(9)

he parame-
we have

(10)

6

 7

and if only 0 F C , we have

       1 2

2t

a
g ρ u du

 
        

F P
P Q V V F P F C

F V
. (11)

 The fog functions  g P for all four cases shown in Figure 2 are summarized in the
following table.

Case F P F C Fog Function  g P

(a) Positive Positive 0

(b) Negative Positive
  2

2

a 


F P
V

F V

(c) Positive Negative
  2

2

a  
      

F P
V F P F C

F V

(d) Negative Negative  
2

a
   V F P F C

As in the constant density formula, we can merge cases (b) and (c) by applying an abso-
lute value to the quantity F V and adjusting the sign of the term containing it. This yields
the unified function

       2

2

a
g k

 
       

F P
P V F P F C

F V
 (12)

for these two cases, where k is still defined by Equation (4). In order to incorporate case
(d) into this formula, we need to eliminate the last term inside the brackets whenever F P
and F C have the same sign. This can be accomplished by replacing F P with

   min 1 2 ,0k F P in the last term to arrive at the formula

         2min 1 2 ,0

2

ka
g k

  
       

F P
P V F P F C

F V
. (13)

Note that this formula also works for case (a) since both terms are eliminated if F P and
F C are both positive.

 In Equation (13), if the quantity F V is zero, then it is always true that the numerator
of the last term is also zero. Although in practice a zero-divided-by-zero situation is rare
enough to be ignored, a small positive ε can be added to F V without affecting the fog
function’s value significantly to guarantee that a NaN is not produced.

 8

5. Implementation

We finish with a discussion of the implementation of Equations (5) and (13) using
OpenGL fragment shaders. Example code is given in the GL high-level shading language
defined by the GL_fragment_shader extension, now a core feature of the OpenGL
2.0 standard.
 For a fog volume of constant density, the quantities ρV, F P, and F V are calculated
in a vertex program and interpolated across triangles during rasterization. The value of k
only needs to be calculated once for a particular camera position, and it is stored in a con-
stant register. The following fragment shader can be used to calculate the product ρd and
then apply the GL_EXP fog fraction formula. Note that to match the fog fraction that
would be produced by OpenGL, the density ρ should be multiplied by 1 ln 2 because the
exp2 function exponentiates using the base 2 instead of the base e. (This function was
chosen over the exp function to match the underlying hardware functionality of typical
GPUs.)

uniform float k; // (F dot C <= 0.0)
varying float3 rhoV;
varying float F_dot_V;
varying float F_dot_P;

void main()
{
 float4 color = ...; // final color

 // Calculate distance * rho using Equation (5)
 float d = saturate(k - F_dot_P / abs(F_dot_V));
 d *= length(rhoV);

 // Calculate fog fraction and apply
 float f = saturate(exp2(-d));

 gl_FragColor.rgb = color.rgb * f +
 gl_FogParameters.color.rgb * (1.0 - f);
 gl_FragColor.a = color.a;
}

 For a fog volume of linearly varying density, we can calculate the quantities  2a V,
 k   F P F C , and   1 2k F P at each vertex and interpolate them during triangle

rasterization. The fragment shader implementation of the linear density function is shown
in the following code listing, which calculates  g P and then applies the GL_EXP fog
fraction formula.

 9

uniform float3 aV; // (a / 2) * V
varying float c1; // k * (F dot P + F dot C)
varying float c2; // (1 - 2k) * (F dot P)
varying float F_dot_V;

void main()
{
 float4 color = ...; // final color

 // Calculate g(P) using Equation (13)
 float g = min(c2, 0.0);
 g = -length(aV) * (c1 - g * g / abs(F_dot_V));

 // Calculate fog fraction and apply
 float f = saturate(exp2(-g));

 gl_FragColor.rgb = color.rgb * f +
 gl_FogParameters.color.rgb * (1.0 - f);
 gl_FragColor.a = color.a;
}

References

[Leech 04] Jon Leech and Pat Brown, eds. “The OpenGL Graphics System, Version
2.0.” Technical Specification, Silicon Graphics, Inc., 2004. Online at http://www.
opengl.org/documentation/specs/version2.0/glspec20.pdf.

[Legakis 98] Justin Legakis. “Fast Multi-Layer Fog.” Conference Abstracts and Applica-
tions (SIGGRAPH 98), p. 266, 1998.

