Linear-Time Poisson-Disk Patterns

Thouis R. Jones, David R. Karger ${ }^{\dagger}$

February, 2011

Abstract

We present an algorithm for generating Poisson-disk patterns taking $O(N)$ time to generate N points. The method is based on a grid of regions which can contain no more than one point in the final pattern, and uses an explicit model of point arrival times under a uniform Poisson process.

1 Introduction

There is a long-standing interest in Poisson-disk patterns in the graphics community, primarily for their use in sampling Yel83, Coo86, Mit87]. There have been many algorithms for generating such patterns. Direct implementation of "dart-throwing" Mit87, MF92 produces true Poisson-disk patterns, but is slow to converge. Approximations from relaxation Llo83 or tiling ODJ04, HDK01 can produce patterns similar to Poisson-disk patterns more efficiently. Recently, exact methods taking log-linear time $(O(N \log N)$ where N is the total number of points) have been described DH06, Jon06, as well as a method with empirical $O(N)$ speed, but lacking a rigorous proof of this performance WCE07.

We present an algorithm with provable $O(N)$ performance. The algorithm maintains two data structures: a grid of regions in which points might still be inserted, and a bucket (i.e., an unordered set) of regions where a point will be generated (a subset of the grid). At each step of the algorithm, a region is taken from the bucket, a new point is inserted in

[^0]that region, and nearby regions are updated and possibly added to the bucket. The bucket is only empty when no more points can be added (i.e., the pattern is maximal). The work for each iteration is $O(1)$, for a total cost of $O(N)$.

Python source code is included in the ancillary data with this paper.

2 Background

The Poisson Disk distribution can be defined as the limit of a uniform two-dimensional Poisson process with a minimum-distance rejection criterion. Successive points are independently drawn from the uniform distribution on $[0,1]^{2}$. If a new point is at least distance R from all points already accepted, it is also accepted. Otherwise, it is rejected. We call this the naïve algorithm. The choice of R controls the minimum distance between points (for N points in the unit square, $\pi R^{2} N / 4 \approx 0.548$ as $R \rightarrow 0$ [DWJ91].

Efficient algorithms for Poisson-disk patterns rely on generating new points in regions where they are guaranteed (or highly probable) to be accepted DH06, Jon06, WCE07. In order to guarantee equivalence of results with the naïve algorithm, these methods have used $O(\log N)$ area-weighted binary search to find where to insert a new point DH06, Jon06, or weighted spatial indexing WCE07 with theoretical $O(\log N)$ but empirical $O(1)$ cost.

3 Method

Our algorithm can be seen as an optimization of the naïve algorithm using a spatial data structure. We

Figure 1: A point p is shown with its neighbor grid squares in grey. If p 's arrival time is earlier than any of its neighbors, it will be accepted and added to the output. The free regions of p 's neighbors will then be updated to the dark gray areas. This may result in points such as q being invalidated. In q 's case, a replacement point q^{\prime} will be generated in its new free region, $A_{q^{\prime}}$. The time of arrival of q^{\prime} will be $t_{q}+t_{+}$, where t_{+}is drawn from an exponential distribution parameterized by the size of the updated free region.
store a grid with spacing $\leq R / \sqrt{2}$ such that no more than one point can land in any grid square in the final pattern. We model (implicitly) a uniform 2D Poisson process on $[0,1]^{2}$, with rate $\lambda=1$, by storing at each grid square the location and time of the earliest point landing in that square. These points and their arrival times will be updated as the algorithm progresses.

Each grid square has three associated pieces of data: the free region within that square where new points might be generated, a random point within that free region, and a time-of-arrival for that point under a the Poisson process. Initially, the free region for each grid square is the entire square, each point
is chosen uniformly within its square, and the times of arrival are drawn from $A_{0} e^{-A_{0} t}$, where A_{0} is the area of a grid square.

We also define a neighbor relationship from points to grid squares, where the neighbors of a point are any grid squares within R of the point (see figure 11).

The first insight of our paper is that any point p that has time-of-arrival t_{p} lower than any of its neighbors can be added to the output immediately, as this indicates that p arrives before any other point that could prevent it from being accepted. On acceptance, the free regions of p 's neighbors are updated (see figure 1).

It is possible that accepting p will invalidate a point q from another grid square with $\|p-q\|_{2}<R$ and $t_{q}>t_{p}$, in which case q is removed from the grid and a new point q^{\prime} in the updated free region is created with a new and later $t_{q^{\prime}}$ (see figure 1).

The second key insight of our algorithm is that the new $t_{q^{\prime}}$ should be t_{q} plus a random variable drawn from the exponential distribution parameterized by the area of the updated free region $A_{q^{\prime}}$, i.e., $t_{q^{\prime}}=$ $t_{q}+t_{+}$, where t_{+}is drawn from $A_{q^{\prime}} e^{-A_{q^{\prime}} t_{+}}$.

The logic is as follows. The points p and q represent the first arrivals in their respective grid squares, at times t_{p} and t_{q} (in the naïve algorithm). When q is invalidated by p, the time until another point arrives (in the now smaller free region) is modeled by an exponential process with parameter $A_{q^{\prime}}$.

To track which points are candidates for acceptance, we traverse the grid and identify every point that has a time of arrival earlier than any of its neighbors (ignoring neighbors that have already had their points accepted). We term these points locally early, and add them to a bucket (an unordered set). At each iteration, we can take any point from the bucket, and add it to the output pattern.

Accepting p may lead to new points becoming locally early, which are then added to the bucket. Likewise, if a point q is invalidated by p 's acceptance, points with q 's grid square in their neighbors may become locally early, as q 's replacement q^{\prime} will have $t_{q^{\prime}}>t_{q}$.

Each iteration is $O(1)$ provided we can update, compute the area of, and sample uniformly from the free space of a grid square in $O(1)$ time. Previous

Figure 2: Performance (PD samples per second) over a range of exclusion radii (0.64 to 0.004 in a geometric progression with ratio 0.8) within the unit square. The number of samples generated by the Poisson arrival process versus the number accepted Poisson Disk samples is also shown.
work has demonstrated specialized data structures DH06 for exactly these purposes. In our reference implementation, we use a constructive planar geometry library and approximate disks with polygons for simplicity but without a loss of generality. We show the performance of our algorithm in terms of samples per second, as well as number of samples generated by the uniform Poisson arrival process versus accepted Poisson Disk samples (see figure 2). Since the size of grid squares is determined by the radius of the PD samples, the geometric complexity of the free space is $O(1)$.

4 Discussion

We have introduced an algorithm for generating Poisson-disk patterns in provable $O(1)$ time per generated sample. Our main insight, compared to recent $O(\log N)$ per point algorithms, is that rather than choosing the location for the next point based on area-weighted binary search, we can use an area-parameterized exponential distribution to order
points in time under a uniform Poisson arrival process. While previous algorithms generate each point in sequence, with an implicit time linked to their sequential generation, we create many points with explicit arrival times and order them (in a local fashion) to find those that should be accepted.

Acknowledgements

The authors wish to thank Ron Perry, Peter-Pike Sloan, and the MIT CSAIL Computer Graphics Group for helpful comments on this paper.

References

[Coo86] Robert L. Cook. Stochastic sampling in computer graphics. ACM Trans. Graph., 5(1):51-72, 1986.
[DH06] Daniel Dunbar and Greg Humphreys. A spatial data structure for fast poissondisk sample generation. In SIGGRAPH '06: ACM SIGGRAPH 2006 Papers, pages 503-508, New York, NY, USA, 2006. ACM.
[DWJ91] R. Dickman, J.-S. Wang, and I. Jensen. Random sequential adsorption: Series and virial expansions. J. Chem. Phys., pages 8252-8257, 1991.
[HDK01] Stefan Hiller, Oliver Deussen, and Alexander Keller. Tiled blue noise samples. In VMV, pages 265-272, 2001.
[Jon06] Thouis R. Jones. Efficient generation of Poisson-disk sampling patterns. journal of graphics tools, 11(2):27-36, 2006.
[Llo83] S. Lloyd. An optimization approach to relaxation labeling algorithms. Image and Vision Computing, 1(2):85-91, 1983.
[MF92] Michael McCool and Eugene Fiume. Hierarchical poisson disk sampling distributions. In Proceedings of the conference on Graphics interface '92, pages 94-105, 1992.
[Mit87] Don P. Mitchell. Generating antialiased images at low sampling densities. In Siggraph '87 Conference Proceedings, pages 65-72, 1987.
[ODJ04] Victor Ostromoukhov, Charles Donohue, and Pierre-Marc Jodoin. Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graph., 23(3):488-495, 2004.
[WCE07] Kenric B. White, David Cline, and Parris K. Egbert. Poisson disk point sets by hierarchical dart throwing. In $R T$ '07: Proceedings of the 2007 IEEE Symposium on Interactive Ray Tracing, pages 129-132, Washington, DC, USA, 2007. IEEE Computer Society.
[Yel83] John I. Jr. Yellot. Spectral consequences of photoreceptor sampling in the rhesus retina. Science, pages 382-385, 1983.

[^0]: *Institut Curie, thouis.jones@curie.fr
 \dagger MIT CSAIL, karger@mit.edu

