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Skeletal muscle segmentation from MRI dataset using a model-based approach
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HUPNVS, Université Paris VII, INSERM U-773, Paris, France

Magnetic resonance imaging (MRI) and computed tomography scans are used to assess muscle volume, but the manual
segmentation, slice by slice, is long and tedious. We proposed an improvement in the deformation of a parametric-specific
object method using image processing. The 3D subject-specific geometry was reconstructed based on a few selected number
of MRI slices by fast rough contouring using polygons. These polygons were matched to the muscle shape by an
optimisation method using an original cost function. Then, parametric-specific object was constructed and deformed. The
shape was improved using a loop and the cost function in all MRI slices. The 11 main muscles of the thigh were considered,
and the time required to get the shape of all muscles was 21min, with a volume error inferior to 5% and a point-surface
distance error (2RMS) inferior to 5mm. This method provides a good compromise between segmentation time and an
accurate representation of the muscles shape.
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1. Introduction

Muscle volume decrease is an important factor related to

the muscle weakness observed with age (Narici et al.

2003), neuromuscular pathology (Malaiya et al. 2007) or

injury (Williams et al. 2005). In vivo muscle volume

estimation is then of great interest for clinical patient

follow-up as for biomechanical analysis, which requires

patient-specific muscle geometry (Arnold et al. 2000;

Blemker et al. 2007). However, muscle volume estimation

remains a great challenge when seeking for accuracy,

reproducibility and speed.

Muscle volume has been evaluated using magnetic

resonance imaging (MRI) axial slices (Tracy et al. 1999,

2003; Fukunaga et al. 2001; Lund et al. 2002; Eng et al.

2007; Morse et al. 2007; Sudhoff et al. 2009) or computed

tomography (CT)-scan axial slices (Rice et al. 1989;

Overend et al. 1992; Jolivet et al. 2008). Muscle 3D

reconstruction was assessed by manual contouring of

many images in which muscle of interest was present

(Tracy et al. 1999; Fukunaga et al. 2001; Eng et al. 2007),

but the process is long and tedious, and such studies are

only conducted on a limited number of subjects. Muscle

volume was also estimated using only a given number of

cross-sectional muscle area (Lund et al. 2002; Tracy et al.

2003; Morse et al. 2007), but in such cases, the muscle

shape is not accessible. Very few studies use automatic

muscle segmentation because of the noise included in the

images. To our knowledge, only two studies focus on

muscle segmentation on MRI using model-based approach

applied for the first one on masseter muscles and for

the second one (Gilles and Magnenat-Thalmann 2010) on

the lower limb muscles. The first method implies the

construction of a first coarse segmentation based on a

priori knowledge of the specific muscle geometry followed

by an optimisation of the muscle boundary, whereas the

second method uses a scalable simplex surface equipped

with reversible medial representations which could be less

adapted for pathological patient.

Our group recently proposed a method, based on the

deformation of a parametric-specific object (DPSO), to

assess muscle geometry using a reduced number of axial

images (Jolivet et al. 2008): a manual contouring is

performed on this reduced set of images, then a

parametric shape-based interpolation combined with a

kriging technique allows to get a surface model without

using the intermediate CT slices and without any a

priori knowledge related to the muscle shape. The

method has been validated (Jolivet et al. 2008), and it

has been shown that the accuracy of muscle volume

estimation using DPSO method (i.e. a function of the

reduced number of slices used for muscles) converges

very quickly (Sudhoff et al. 2009). Although this

method provides a drastic improvement in reconstruc-

tion time, it still requires a thorough digitisation of the

reduced set of slices. Moreover, from the obtained

solution, image-processing techniques could allow

automatic improvement by taking into account the

intermediate images.
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The objective of this study was to propose and evaluate

an improvement in the DPSO muscle segmentation

method based on specific image analysis.

2. Materials and methods

The proposed method is based on the DPSO method, which

is briefly described hereafter and illustrated in Figure 1.

First, from all the slices associated with a dedicated

muscle, a reduced number Ns of slices are considered

(Figure 1(a)): two at the extremities (S1 and SNs
) and the

others at regularly spaced levels.

On each slice Si of the reduced set (i is the slice

number), a fine manual contouring Cmani is performed.

Then, a best-fit ellipse Ei is associated with the contour,

described by three parameters: length ai, width bi and

orientation ui with regard to a global coordinate system

(Figure 1(b)). A set of n equidistant points is defined both

on the contour and on the ellipse, respectively, named PCij

and PEij (j is the point number).

For each intermediate slice (k is the intermediate slice

number), which is not contoured, an intermediate ellipse

Eintk is defined using cubic spline interpolation of the

descriptive parameters (Figure 1(c)). n equally distributed

points PEkj are also considered.

The whole set of points on the ellipses (PEij and PEkj)

describe a simplified parametric model of the muscle

(Figure 1(c)). The points on the contours of the reduced set

(PCij) are used as control points to deform this simplified

model using a kriging technique (Trochu 1993), yielding

the solution for muscle parametric subject-specific model

(Figure 1(d)) allowing for muscle volume computation

(Figure 1(e)). In this study, image processing was used to

improve the process at two levels:

. Semi-automatic contouring of the reduced set of

images, with a fast manual contouring followed by

automatic adjustment,

. Automatic adjustment of the intermediate contours

resulting from the kriging technique in order to take

advantage of the information on the image and to

increase the accuracy.

In both cases, automatic adjustment of an initial

contour is done using an optimisation method with a

specific cost criterion that is detailed hereafter.

2.1 Simplified contour generation and its optimisation

In this new approach, the fine manual contouring Cmani

that was performed on the reduced set of slices is

substituted by a rough polygon Cpolyi (Figure 2(a)) in order

to gain segmentation time. Then, an image-based

optimisation process is carried out to improve this

polygonal contour automatically, leading to a robust

optimised contour Copti (Figure 2(c)).

For that, p points PCpolyij are equally distributed on the

polygon contour as presented in Figure 2(b) (j is the number

of the point on the contour).A cost functionG is then used to

identify the optimal position Xijk of these points along the

local normal of the polygonal contour in their close

neighbourhood (k is the number of the point along the

normal). k ¼ 2=3 £ p was arbitrarily chosen and equally

distributed, respectively, along ~n and 2~n directions.

This cost function G is the product of three terms: GGrad

(image gradient),GInt (pixel intensity) andGDist (distance to

the initial contour). They are defined as follows:

. Gradient cost functionGGradðXijkÞ: a Sobel filter in the
two orthogonal directions in the image yielded the

gradient value GradðXijkÞ for each point Xijk. Then, a

gradient cost was computed using a Laplacian–

Gaussian function (Sobel and Feldman 1973):

GGradðXijkÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p e2
1
2
ðGradðXijkÞ2mÞ=s ð1Þ

Figure 1. DPSO method presented for a reduced set of six slices.



with m ¼ maxkðGradðXijkÞÞ and s ¼ m=2
This function allowed to detect the variation in pixel

intensity. Specifically in the example of Figure 2, the

function was used to detect the boundaries between

the muscular tissue (in black) and the fat tissue (in white).

The Gaussian function grants a higher importance to the

high value of the gradient.

. Pixel intensity cost function GIntðXijkÞ: Rpoly and RX

were regions defined by the contour Cpolyi and the

modified contour C
0
polyi

considering the location of

the point Xijk. Pð:Þ denotes the number of pixel in a

region, meanð:Þ the mean intensity of pixel in a

region and varð:Þ the variance of pixel intensity:

If PðRXÞ $ PðRpolyÞ:

GIntðXijkÞ ¼ 12
meanðRX 2 RpolyÞ2meanðRpolyÞ
�� ��

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðRpolyÞ

p : ð2Þ

The added region should have the same pixel intensity

as the initial region. The more the GIntðXijkÞ is close to 1,

the more similar the pixel intensities are.

If PðRXÞ , PðRpolyÞ:

GIntðXijkÞ ¼ meanðRpoly 2 RXÞ2meanðRpolyÞ
�� ��

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðRpolyÞ

p : ð3Þ

The removed region should have a different pixel

intensity from the initial area. In this case, the larger the

GIntðXijkÞ is close to 1, the more different the pixel

intensities are.

This function allowed to choose the point among those

which present a high value of GGrad and to keep a global

coherence of the pixel intensity if no points are highlighted

with the GGrad function.

. Distance cost function GDistðXijkÞ:

GDistðXijkÞ ¼
maxpðkXijp 2 PCpolyijkÞ2 kXijk 2 PC polyijk

maxpðkXijp 2 PC polyijkÞ
:

ð4Þ

This function allowed to limit the deviation of the

contour if the boundaries between two muscles were not

distinct. For example, in Figure 2, the biceps femoris long

head muscle (segmented muscle) and the semitendinosus

muscle (on the right of the segmented muscle) were

difficult to distinguish.

. Cost function definition G:

GðXijkÞ ¼ GIntðXijkÞ�GIntðXijkÞ�GDistðXijkÞ: ð5Þ

. All the positions of p points of the contour Cpolyi are

optimised at the minimum of the cost function

GðXijkÞ, and Cpolyi became Copti (Figure 2(c)):

Copti ¼ fmax
j;k

GðXijkÞ} ð6Þ

2.1.1 Interpolation process

The two steps of the interpolation process are derived from

the classical DPSO method, briefly described in the

following.

(1) For each optimised contour Copti , an equivalent

ellipse Ei is determined (Jolivet et al. 2008). This

ellipse is described by its centre, axis orientations,

width and length parameters as previously described

(Figure 2(d)). Then, intermediate ellipses Eintj are

defined on each slice that is not incorporated into the

reduced set of slices. A cubic spline interpolation is

used to evaluate the values of parameters for the

location of these slices. On all the ellipses Ei and

Eintj , p points are equally distributed in the 3D

coordinate system related to the image acquisition

device. Thus, a 3D surface object is defined, based

on these 3D points of the whole set of ellipses.

(2) Thesecondstep consistedof a nonlineardeformation

on this surface, using kriging algorithm (Trochu

1993; Jolivet et al. 2008). Points that describedEi are

used as control points to globally deform the 3D

surface object so that each of those points fits exactly

description points of theCopti contours. At the end of

Figure 2. Optimisation process of the rough contouring.



this interpolation process, thefirst estimate ofmuscle

contour Cintk is obtained for each intermediate slice.

These contours are progressively used as an initial

solution for themuscle segmentation of intermediate

slices using an iterative process described in the

following paragraph.

2.1.2 Iterative process

The iterative process is illustrated in Figure 3. The

intermediate contoursCintk that are adjacent toCopti contours

are denoted Cadjk . They are optimised using the method

described previously and becomemuscle optimised contours

denoted Copt;adjk . Therefore, the reduced set of optimised

contours includes both the previousCopti and thenewCopt;adjk

contours. The interpolation process is then applied for slices

inwhich contours have not yet been optimised. This iterative

procedure is applied until an optimised muscle contour is

defined for each slice between S1 and SNs
.

2.2 Muscle segmentation evaluation

MRI acquisitions of the hip and the thigh were acquired for

four subjects (Table 1).

The local ethical committee granted its approval for

this study (CPP Ile de France VI, Hôpital Pitié- Salpêtriére,

Paris, France, 119-08). A Philips Panorama HFO 1.5 T

MRI was used to obtain a series of axial images from the

superior iliac crest to the ankles in decubitus position of

the subject with feet taped together. Acquisitions were

realised with spin echo T1 sequence (TR 680ms and TE

50ms) and the Q-body coil. Slice thickness was 10mm

with a pixel resolution of 0.78 £ 0.78mm2.

Muscles of the thigh were considered. The anterior

muscle group was composed of rectus femoris (RF),

vastus lateralis, vastus medialis and vastus intermedialis

that were grouped together in the vastus muscle group

(VMG), sartorius (S) and tensor fasciae latae muscle (TF).

Biceps longus (BL), biceps brevis (BB), semitendinous

(ST) and semimembranous (SM) of the posterior muscle

group were also reconstructed for all subjects as gracilis

muscle (G).

First, to evaluate the segmentation error induced by the

automatic contour optimisation of the rough polygon, the

point-to-curve distance between the points of the proposed

method and the reference contour was computed. For

seven slices, 50 points per slice, per muscles were

projected along the normal of the reference contour, and

the distance between the pair of points was calculated. The

2RMS point-to-curve distance error was studied for each

muscle.

Second, muscles included in this study were manually

outlined in all images of acquisition. For each muscle,

using all contours, a 3D surface object was generated,

named MRef , and reference muscle volume (Vm;Ref) was

computed for each muscle.

Finally, to analyse the sensitivity of the muscle

segmentation to the size of the reduced set of MRI images

NS, the convergence of the muscle volume Vm;Ns
and of the

3Dmuscle shapeMNs
was evaluated with NS varied from 2

to 7, as seven slices are sufficient to obtain convergence

(Sudhoff et al. 2009). To estimate shape differences

between MRef and MNs
, point-to-surface distance was

determined between each point of MNs
and surface of

MRef . Mean distance and 2 root-mean-square (2RMS) that

corresponded to 95% confidence interval were computed

for each MNs
.

Table 1. Population characteristics: age (years), height (cm)
and weight (kg).

Sex Age (years) Weight (kg) Height (cm)

Subject 1 F 27 53 162
Subject 2 F 32 81 181
Subject 3 F 27 82 182
Subject 4 F 26 56 174
Mean 28 68 175
STD 2.7 15.6 9.2

Figure 3. Illustration of muscle segmentation procedure. Cpoly,
rough manual polygon; Copti , optimised contour; Cadj, adjacent to
an optimised contour (before optimisation); and Copt;adj, adjacent
to an optimised contour (after optimisation).



3. Results

The mean number of image on which each muscle was

visible is indicated in Table 2. The global 2RMS point-to-

curve distance error for the contour segmentation was

1.29mm, with a maximum of 2.26mm for the BFS muscle

and a minimum for GRA muscle with 0.63mm (Table 3).

The volume difference (Figure 4) decreases when the

number of manual contours Ns increases. If we consider a

difference lower than5%, sixmanualmuscle contourswould

be required for ST muscle, five for BFS, RF and SAR and

four for BFL,GRA, SM,TFL andVMG, instead of seven for

RF and SAR, six for BFL, five for BFS, GRA, SM, TFL and

ST and four for VMG with the non-optimised method.

Point-to-surface distance between surface MNs
and

surface of MRef (Figure 5) decreases when the number of

manual contours Ns increases. If we consider a difference

lower than 5mm, five manual muscle contours would be

required for RF, SM, ST and VMG muscles, four for BFS,

BFL, SAR and TFL and three for GRA.

4. Discussion

This study proposed a method to obtain a fast and accurate

segmentation of muscle and was applied on the muscles of

the thigh. This method required manual muscle contours

on a reduced number of images, and the segmentation

process was realised in two steps: the first coarse

segmentation followed by an optimisation iterative

procedure. With respect to the already published

techniques, this new development regards the automatic

contour optimisation (ACO) based on a cost function

containing an original coherence criterion. ACO allowed

time reduction in the manual processing of the reduced set

of contours. It also allowed automatic adjustment of the

intermediate slices that were previously unprocessed using

DPSO method. The cost function appeared efficient

because the DPSO method provided an initial solution,

which was already close to the adjusted one. Table 4

summarises the improvements in the proposed method.

The sensitivity analysis of the number of manual

muscle contours showed that the volume difference

between the segmented muscle and the reference muscle

volume, obtained by manually contouring all the images in

which muscle of interest was present, lowered to 5% with

only 4–6 manual muscle contours, depending on the

muscle. While the previous DPSO method needed a

reduced set of seven slices and 26min to build the whole

model, this new approach needs only five slices and

21min, which is of great interest regarding the classical

manual segmentation time that was up to 80min.

A significant part of the enhancement is due to the

iterative interpolation process that is very efficient on

long-curved path muscle such as the SAR.

Some limitations had to be dealt with. A difficulty was

to identify slices where considered muscles appeared or

disappeared because the muscle–tendon transition is not

really clear. A previous study has shown that this

uncertainty of these extreme slice locations leads to an

error estimation lower than 2.1%, depending on the muscle

(Sudhoff et al. 2009). However, this requires well-trained

operators, and further improvements are necessary to

reduce operator dependence, particularly in longitudinal

studies in which the muscles change and the operators are

not necessarily the same.

Table 2. Number of slices for each of the nine visible muscles included in the study (mean, maximum and minimum) and reference
muscle volume computed from the segmentation generated from muscle contours (mean, maximum and minimum).

Number of slices Reference Volume (cm3)
Muscle Abbreviation Mean (min–max) Mean (min–max)

Biceps femoris short head BFS 17 (14–20) 91 (66–121)
Biceps femoris long head BFL 22 (17–27) 159 (112–203)
Rectus femoris RF 25 (22–26) 236 (193–288)
Gracilis GRA 26 (24–29) 92 (57–121)
Sartorius SAR 40 (38–44) 123 (91–157)
Semimembranosus SM 13 (14–19) 165 (97–236)
Semitendinosus ST 24 (15–28) 160 (104–225)
Tensor fasciae latae TFL 12 (10–13) 59 (40–83)
Vastus intermedialis
Vastus lateralis VMG 24 (21–28) 1394 (1048–1774)
Vastus medialis

Table 3. Point-to-curve distance error between the points of the proposed method and the reference contour (7 slices, 50 points per slice).

Muscle BFL BFS GRA RF SAR ST SM TFL VMG Global

Mean 0.65 0.88 0.42 0.75 0.62 0.59 0.69 0.56 0.73 0.70
2*RMS 1.08 2.26 0.63 1.24 1.35 0.88 1.09 0.98 1,06 1.29



Figure 4. Volume difference in per cent between reference volume Vm;Ref and segmented volume Vm;Ns
for each muscle included in the

study (dotted line represents the DPSO method Jolivet et al. (2008) and continuous line represents the presented method).

Figure 5. Point-to-surface distance between surface MNs
and surface of MRef for each muscle included in the study (dotted line

represents the DPSO method Jolivet et al. (2008) and continuous line represents the presented method).



As for various medical images, segmentation is an

uneasy task because of the noise included in the images.

Especially the boundary of two muscles (e.g. whole vastus

or BFS and BFS) was not easy to identify. The cost

function GDistðXijkÞ limited the aberrant solution,

especially during the iterative process. A manual

correction might be necessary to improve the estimated

shape. For this study, no manual corrections were made.

The location of the slices Si included in the reduced set

could affect the definition of the first coarse segmentation;

consequently, refinement step would also be affected. In

this study, these slices were equally spaced. The cost

function that was used for the optimisation process

combined the classical gradient cost function with two

functions related to coherence criteria: a distance criterion,

based on the fact that the initial contour is already close to

the real one, and a pixel intensity criterion, based on the

fact that the global signal intensity for the muscle is clearly

differentiated from the surrounding. The distance criterion

can be less relevant for muscles that undergo wide and

sudden change in shape and cross-sectional area, because

in this case the initial contour for the optimisation process

remains quite different from the real contour, and the

combined criteria for segmentation did not fully succeed in

retrieving this solution: particularly, the 10-mm slice

thickness used in this study, corresponding to routine

clinical protocol, is a limitation, while thinner slices would

probably allow to take progressively into account this

shape variation. For such routine protocols, it could be

interesting to use training data-set to determine the optimal

location of the slices for manual contouring (Ng et al.

2009). Nevertheless, in general, the iterative process

proposed in this study with optimisation of muscle contour

gradually ensured to optimise an estimated muscle contour

that was close to muscle contour solution that would be

obtained with full manual reconstruction.

Some muscles were inconstantly distinguishable

because the fascia between those two muscles is not

visible in most of the cases. This was the case of the vastus

medialis muscle and the vastus lateralis muscle, and their

volume was evaluated together (Sudhoff et al. 2009).

Another limitation was the difficulty in evaluating the

reference muscle volume in vivo. In many studies as in this

study, the reference standard measure of muscle volume

was the volume computed using manual muscle contour in

all images in which muscle was present. Thus, accuracy of

this reference volume estimation was not clear. Manual

segmentation of in vitro MRI acquisition of forearm

followed by dissection and volume measurement demon-

strated that volume estimation accuracy was related to

area-to-volume ratios and related error was.10% for high

value of this ratio (Eng et al. 2007). Moreover, inter-

operator reproducibility study, including two operators,

focused on muscles crossing the knee and showed that

volume error estimation between the operators with entire

manual procedure on MRI acquisition of the lower limb

was between 2.7% and 13.9% depending on the muscles

(Sudhoff et al. 2009).

The image processing with the use of the cost function

allowed an easier way to segment the muscle contours.

However, this method induced a global 2RMS point-to-

curve distance error of 1.29mm. This error was due to the

difficulty in distinguishing the boundaries between the

muscles, especially for the BFS muscle, which had an error

of 2.26mm.GRA appeared as the easiermuscle to segment,

as it is along the fat tissue and has a thick fascia and had an

error of 0.63mm. Those muscles are visible in Figure 2(a).

In conclusion, the method of muscle segmentation

presented allowed estimating the muscle volume in vivo

by minimising human intervention from MRI acquisition.

Using the results of sensitivity analysis, clinicians could

define the number of manual contours to perform muscle

segmentation for a given expected precision on volume

estimation.
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