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ABSTRACT
Convolutional neural networks (CNNs) have recently been successfully used in the medical field to
detect and classify pathologies in different imaging modalities, including in mammography. One
disadvantage of CNNs is the need for large training datasets, which are particularly difficult to obtain
in the medical domain. One way to solve this problem is using a transfer learning approach, in which a
CNN, previously pre-trained with a large amount of labelled non-medical data, is subsequently fine-
tuned using a smaller dataset of medical data. In this paper, we use such a transfer learning approach,
which is applied to three different networks that were pre-trained using the Imagenet dataset. We
investigate how the performance of these pre-trained CNNs to classify lesions in mammograms is
affected by the use, or not, of normalised images during the fine-tuning stage. We also assess the
performance of a support vector machine fed with features extracted from the CNN and the combined
use of handcrafted features to complement the CNN-extracted features. The obtained results are
encouraging.
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1. Introduction

The interpretation of mammographic images can be very diffi-
cult to radiologists and, according to Jalalian et al. (2013), they
fail to detect 10–30% of breast cancers, mainly because screen-
ing is a repetitive and fatiguing task (Sampat et al. 2005).

Therefore, Computer-Aided Detection/Diagnosis tools were
created to assist the detection and diagnosis of early stage
cancers, decreasing false negative rate and improving radiol-
ogists’ efficiency (Jalalian et al. 2013; Arevalo et al. 2016; Tang
ASTI 2014; Ganesan et al. 2013).

Since 2006, deep learning algorithms have become an impor-
tant tool in the field of big data and artificial intelligence (Jiao
et al. 2016). These algorithms simulate the human visual system
and are able to learn complex relationships between labelled
data samples; their fields of application include, but are not
limited to, image understanding, speech recognition and natural
language processing (Arevalo et al. 2016; Jiao et al. 2016).

Convolutional neural networks (CNNs) are one example of
deep learning algorithms that proved to be successful (Jiao
et al. 2016). They were introduced by Fukushima and later
improved by LeCun et al. and are considered the most suc-
cessful type of deep learning algorithms in image understand-
ing (Arevalo et al. 2016). CNNs have been used in complex
tasks such as visual object recognition and image classification
(Jiao et al. 2016). In the biomedical image processing field,
CNNs are applied in several areas such as electron microscopy
images, breast histology images, mammography images and

magnetic resonance images of the brain (Jiao et al. 2016;
Arevalo et al. 2016).

In medical image classification, CNNs could be trained
from scratch. However, that would require large amounts of
data and extensive computational/memory resources and
could, eventually, lead to overfitting and convergence pro-
blems (Tajbakhsh et al. 2016). To prevent these issues, it is
possible to fine-tune a pre-trained CNN model that has
been trained using a large amount of non-medical labelled
data such as the one that can be found in the ImageNet
database, which offers more than 1.2 million categorised
natural images (Shin et al. 2016).

In this paper, we have applied CNNs to solve the pro-
blem of mammographic lesion classification into benign or
malign classes.

Figure 1 illustrates the differences between both types of
lesions mentioned before. Note that regular contours are
compatible with benign lesions, while an irregular shape is
often associated with malignancy (Pisco 2003). Therefore, we
have studied the performance of three different types of CNN
implementations when fine-tuned using images that were, or
were not, normalised, allowing us to understand the impact of
normalisation on the lesion classification results. We have also
analysed the performance of a support vector machine (SVM)
fed with features extracted from the CNN. Finally, we have
evaluated the use of handcrafted features to complement the
CNN-extracted features.
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2. State-of-art

Deep learning-based algorithms have recently shown poten-
tial for applications in digital pathology. Since 2012, these
algorithms are being used in major computer vision competi-
tions, such as the ImageNet Large Scale Visual Recognition
Competition, showing the best performance in their class
(Wang et al. 2016).

CNNs have already been used by other researchers in the
medical image field and, specifically, in the mammographic
image field. Table 1 summarises the works of some of them,
which are described in detail below.

Our study has initially been guided by the work of Arevalo
et al. (2016), who proposed a new method that was applied to
the BCDR-F03 (Film Mammography Dataset Number 3) dataset
from the Breast Cancer Digital Repository. The method
includes baseline descriptors, such as Handcraft features
(HCfeats), Histogram of oriented gradients and Histogram of
gradient divergence, in a supervised feature learning approach
that incorporated a CNN. For image classification, the activa-
tions from the penultimate layer were extracted and used as
input of an SVM. The authors also used different CNN models
(CNN2, which consisted in a single connected layer combined
with a fully connected layer, CNN3, which consisted in two
convolutional layers and a fully connected layer and DeCAF –
a pre-trained model with ImageNet) obtaining AUC mean
values of 0.780, 0.820 and 0.820, respectively, when combined
with HCfeats, and nearly 0.76, 0.82 and 0.79, respectively,
when used standalone.

Wichakam and Vateekul (2016) published another study
that combined deep convolutional networks, used as an auto-
matic feature extraction tool, and an SVM, used as a classifier,
for mass detection on digital mammograms and applied them
to the INBreast dataset. Different approaches in the deep
convolutional networks allowed reaching the best accuracy
performance of 98.44% (with the SVM-FC1 of the A3
architecture).

Jiao et al. (2016) used images from the Digital Database for
Screening (DDSM) dataset and applied a fine-tuning operation
on the trained deep CNN model in LSVRC (dataset containing
more than one million labelled natural images), in order to
extract middle-level and high-level features from different
hierarchical levels and used them to train two classifiers for
the decision procedure. In the testing process, if the results of
linear SVM applied on high- and mid-level features were con-
sistent, they would add them to the subset – result 1.
However, if the outcomes were inconsistent, they would use
the original grey information of the training set to calculate
the lesion closeness to the benign or malignant class, creating
sub-classes that were used to obtain the similarity measure,
which helped them to achieve the result 2. The final outcome
contained both results 1 and 2. At the end, and with deep
features of different layers, they obtained a classification accu-
racy of 96.7%, surpassing the results from other researchers
indicated by them and having better results than if they had
used middle and high features separately. Finally, they com-
pared their network with the most used variations of Alex net.
So, with the Caffe ref and VGG models, they obtained accuracy
values of 92% and 97%, respectively (Jiao et al. 2016).

In their work, Yi et al. (2017) used the DDSM database and
the best result was obtained with an ensembled GoogLeNet-
based architecture (in parallel training), which achieved an
accuracy of 0.85 and an AUC value of 0.91. They concluded
that instead of using a network that has an architecture built
to process craniocaudal (CC) and medio-lateral oblique (MLO)
views independently, better results could be obtained with a
single network taking into consideration both views. They
created a visualisation method based on what they called
Directed Dream Images, which would enhance and exaggerate
some aspects of the image, creating patterns that corre-
sponded to a high malignant/benign score based on images

Figure 1. Example of benign lesion on the left and malign lesion on the right (image from the BCDR-FM dataset).

Table 1. State-of-art summary.

Author Dataset Preprocess Classifier Classes
Performance

(mean)

Arevalo et al.
(2016)

BCDR-
F03

GCN + LCN CNN + SVM 2 (B/M) 76.0–82.0%
(AUC)

Wichakam and
Vateekul
(2016)

INBreast – CNN + SVM 2 (B/M) 90.63–
98.44%
(Acc)

Jiao et al.
(2016)

DDSM μ & std CNN + SVM 2 (B/M) 92.0–97.0%
(Acc)

Yi et al. (2017) DDSM μ CNN (Pre-
trained)

2 (B/M) 58.0–85.0%
(Acc)

Sun et al.
(2016)

Own – CNN(SSL)
&SVM

2 (B/M) 82.36–
88.18%
(AUC)
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seen in training data, which were learned by the CNN as
clinically relevant features.

Sun et al. (2016), developed a new semi-supervised learn-
ing (SSL) algorithm that allows the use of a small amount of
labelled data and a relatively small amount of unlabelled data
to train a CNN. They concluded that unlabelled data may only
be used as supplementary, because it could not replace
labelled data, which definitely improves the overall accuracy
because it contains more accurate information from the radi-
ologist. However, they presented some results with unlabelled
data to train the CNN, getting an AUC value of 0.8818 with the
SSL method. Using an SVM with labelled data only or mixed
data, the AUC values were 0.8236 and 0.8535, respectively.

3. Lesion classification using CNNs with transfer
learning

3.1 Transfer learning for lesion classification

In this paper, we propose to study the application of several
classification models and preprocessing strategies for mass
detection in digitised mammograms.

It is well known that CNNs require large amounts of data to
be properly trained. However, in the medical field, it is usually
difficult to obtain such large datasets, which is due not only to
the limited number of exams produced in a single facility, but
also to the amount of work that is needed for hand labelling of
the samples. So, our work will be based on a transfer learning
approach; we will reuse CNNs that were previously trained for a
different task and fine-tune them to our current problem.

The three different pre-trained models studied in this paper
were previously used to perform classification in the ImageNet
ILSVRC challenge data: CNN-F (Fast, imagenet-vgg-f) model,
CNN-M (Medium, imagenet-vgg-m) models (Chatfield et al.
2014), and Caffe reference model (Jia et al. 2014). We fine-
tuned these networks in order to achieve the classification of
benign or malign lesions from the mammographic images.

In order to apply the pre-trained models to our problem,
we have adapted the software MatConvNet (Vedaldi and Lenc
2015) available for Matlab (System specifications: Matlab
R2015a and Intel i7-3820 CPU @ 3.60GHz with 32GB RAM).

3.2 The networks

As mentioned above, three different pre-trained models were
used in this work: CNN-F, CNN-M and Caffe. The first two were
chosen because they are often referenced in the literature;
besides, Caffe is a new version of the DeCAF model, which was

used by Arevalo et al. (2016). Therefore, using these three
networks, inter-comparison of results can be achieved.

Table 2 presents the differences between the three pre-
trained networks. In the convolutional layers’ columns, indicated
as ‘Conv#’, the ‘num × size × size’ set indicates the number of
convolution filters and their receptive field size. The indications
‘st.’ and ‘pad.’ represent the convolution stride and the spatial
padding, whereas the LRN is the Local Response Normalisation
with or without the max-pooling down-sampling factor. In the
fully connected layers’ columns, indicated as (‘Full#’), the number
indicates their dimensionality; besides, ‘Full6’ and ‘Full7’ are reg-
ularised using dropout and the last layer corresponds to the
softmax classifier. Except for the last layer, the Rectification
Linear Unit is the activation function for all weight layers
(Chatfield et al. 2014).

The architecture of the CNN-F model consists 8 learnable
layers (5 convolutional layers and 3 fully connected layers),
and the fast processing is guaranteed by the 4-pixel stride in
the first convolutional layer. On the other hand, the CNN-M
architecture, in the first convolutional layer, has a decreased
stride and smaller receptive field and, in the second convolu-
tional layer, has a larger stride keeping the computation time
reasonable (Chatfield et al. 2014).

The Caffe reference model, like the others mentioned before,
has a complete set of layers, which are used for visual tasks such
as classification, and trains the model using a standard stochas-
tic gradient descent algorithm (Jia et al. 2014).

3.3 The dataset

We have used the BCDR-FM dataset (Film Mammography
Dataset) from the Breast Cancer Digital Repository (http://
bcdr.inegi.up.pt), which includes 1125 studies with 3703 MLO
and CC images of 1010 patient cases, mostly female gender
(998), from 20 to 90 years old. The dataset also contains 1044
identified – and clinically described – lesions, 1517 manually
made segmentations and BI-RADS classifications carried out
by specialised radiologists (Arevalo et al. 2016).

The downloaded dataset, named BCDR-F03 – ‘Film
Mammography Dataset Number 3’, which is a subset of the
BCDR-FM, comprises 736 grey-level digitised mammograms
(426 benign and 310 malign mass lesions) from 344 patients.
These are distributed into MLO and CC views with image size
of 720 × 1168 (width × height) pixels and a bit depth of 8 bits
per pixel in TIFF format; included are also clinical data and
image-based descriptors. Although a digital dataset is avail-
able, we have used the digitised dataset to enable the

Table 2. CNN pre-trained models used in this work (adapted from Chatfield et al. 2014).

Archit. Conv1 Conv2 Conv3 Conv4 Conv5 Full6 Full7 Full8

CNN-F 6411 × 11 st.4,
pad.0 LRN,
× 2pool

256 × 5 × 5 st.1,
pad.2 LRN,
× 2pool

256 × 3 × 3 st.1,
pad.1

256 × 3 × 3 st.1,
pad.1

256 × 3 × 3 st.1, pad.1
× 2pool

4096
dropout

4096
dropout

1000 soft-
max

CNN-M 96 × 7 × 7 st.2,
pad.0 LRN,
× 2pool

256 × 5 × 5 st.2,
pad.1 LRN,
× 2pool

512 × 3 × 3 st.1,
pad.1

512 × 3 × 3 st.1,
pad.1

512 × 3 × 3 st.1,pad.1
× 2pool

4096
dropout

4096
dropout

1000
softmax

Caffe 96 × 11 × 11
st.4,pad.0
LRN,

× 2pool

256 × 5 × 5 st.1,
pad.2 LRN,
× 2pool

384 × 3 × 3 st.1,
pad.1

384 × 3 × 3 st.1,
pad.1

256 × 3 × 3 st.1,pad.1
× 2pool

4096
dropout

4096
dropout

1000
softmax
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comparison with the work of Arevalo et al. (2016); besides,
digital images have a bigger bit depth of 14 bits per pixel.

The preprocessing stage of our work is similar to the one
used in Arevalo et al. (2016), namely: (i) cropping a ROI of
150 × 150 pixels using the information of the bounding box
of the segmented region, being the aspect ratio always pre-
served even when the lesion’s dimensions are bigger than the
ROI. However, when the lesion is next to the border of the
image, we translate the square crop, thus changing image
coordinates and including the surrounding breast pattern,
instead of zero-padding the outer portion of the crop; (ii)
data augmentation using a combination of flipping and 90,
180 and 270 degrees rotation transformations.

3.4 Image normalisation

The data normalisation procedure used in this work is similar
to the one proposed by Arevalo et al. (2016); it consists in a
Global Contrast Normalisation (GCN), obtained by subtracting
the mean of the intensities in the image (calculated per image
and not per pixel) to each pixel, and a Local Contrast
Normalisation (LCN) (Arevalo et al. 2016).

We have then divided images into three groups: 50% for
training, 10% for validation and 40% for testing. The images’
input size for the different models was 224 × 224 pixels; the
parameters’ exploration space comprised three fully con-
nected layers, 50 epochs, an fc8 initially randomised layer,
five learning rate values (1e−2, 1e−3, 1e−4, 5e−2, 5e−3 and
5e−4), the three pre-trained models (vgg-f, vgg-m and caffe)
and the use, or not, of normalised images – see Figure 2.

4. Experiments

After the fine-tuning of the three networks using the train and the
validation sets (which comprised 2800 and 560 images, respec-
tively) with and without normalisation, we have chosen the best
parameters to apply to the test set (comprised of 2240 images); in
the subsequent experiments, the training set comprised 3360
images due to the merge of the initial training and validation sets.

Afterwards, we have chosen the network with the best per-
formance and extracted the activations from one or several of
the last layers, from the sixteenth to the nineteenth layer. Used
separately or combined two-by-two, three-by-three, or all
together, the extracted activations were then used to train an
SVM in order to assess if the classification performance improved.

After that, we have used handcrafted features given by the
dataset authors, once more to assess if there was an

improvement in the classification results. These handcrafted fea-
tures include Intensity features (mean, median, maximum, mini-
mum, standard deviation, skewness and kurtosis), Shape features
(area, perimeter, circularity, elongation, y_centre_mass, x_cen-
tre_mass and form) and Texture features (contrast, correlation
and entropy). Beyond these, we have also included age and
density information, and used all of them together or separately
to see which ones had larger influence in the classification
performance.

5. Results and discussion

The results of the parameters’ exploration are shown in
Tables 3 and 4. With normalised training and validation
sets, the best AUC mean value was achieved using the
Caffe reference model (AUC mean = 0.775, std = 0.014), fol-
lowed by the CNN-F model (AUC mean = 0.752, std < 0.001)
and the CNN-M (AUC mean = 0.743, std = 0.005). This is
somewhat surprising given that the CNN-M is a more power-
ful model (the filters are larger) than the CNN-F.

Relatively to the training and validation sets created without
normalisation, the best AUC mean value was achieved by the
CNN-M model (AUC mean = 0.785, std = 0.003), followed by the
Caffe reference model (AUC mean = 0.769, std = 0.002) and the
CNN-F model (AUC mean = 0.763, std = 0.004). The CNN-M did
improve by a significant amount with and without normalisation
(from an AUC mean value of 0.743–0.785, respectively).

Once the best combination of parameters to each model was
determined, new results were obtained using the test set (and
the new merged training set), which are presented in Table 5.
Figure 3 also shows the graphic for the run that yielded the best
AUC value. It is possible to see that we have achieved the best
AUC mean value of 0.813 (std = 0.001) with the Caffe reference
model and no normalisation, surpassing the result of 0.79 in
Arevalo et al. (2016), which was obtained with the combined
use of the DeCAFmodel, normalised images and an SVM instead
of a softmax layer (since they considered that the former had
better performance as classifier than the latter). Relatively to the
computational time, the Caffe model was the fastest, with
22.66 min for training and 2.58 min for testing, totalling
25.24 min; in general, one observed that time increased when
normalised image crops were used.

As it happened with the validation set, the best AUC mean
values were achieved using images without normalisation,
namely 0.776 with CNN-M and 0.767 with CNN-F, which are
similar to the ones obtained during the fine-tuning stage. The
AUC mean values with normalised images are lower than
those obtained with the validation set, especially the one

Figure 2. Examples of 150 × 150 crop images; the first two were obtained without normalisation, whereas the last two were obtained with normalisation.
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yielded by the Caffe model, which was substantially lower
(AUC mean = 0.584; previous one was 0.775).

After obtaining the AUC mean values only with a CNN, we
have chosen the network with the best performance, which
was the Caffe reference model, and extracted the activations
from the last layers, namely from the sixteenth to the nine-
teenth layers. Furthermore, we have tested the combination of
the different extracted features (two-by-two, three-by-three, or
all of them). The results are presented in Table 6. In general, the
AUC mean values are lower than the ones obtained with the

standalone CNN and the best performance was achieved with
activations from the sixteenth layer (AUC mean = 0.773; best
run, AUC = 0.784), and the combination of the sixteenth and
eighteenth layers (AUC mean = 0.772; best run, AUC = 0.786).

Regarding the results presented in Table 6, the best accuracy is
obtained using the sixteenth layer or this one combined with the
seventeenth layer; the sensibility is rather low for all the tested
combinations, with the best result obtained using the features
from the seventeenth layer (0.557); regarding specificity, the best
result of 0.846 is obtained using the combined features extracted
from the sixteenth and eighteenth layers, which also yielded the
best result in terms of precision (0.743); the best results in terms of
f-measure (0.628) is obtained using the features from the sixteenth
and seventeenth layers together.

As the best AUC results were obtained using the activations
from the sixteenth layer, assembling the handcrafted features,
age and breast density, yielded the results that are presented in
Table 7. Note that, generally, the AUC mean values are similar
or higher than the previous ones. The best performance was
achieved when combining shape with texture features
(AUC mean = 0.801), shape and texture features with density
(AUC mean = 0.800), intensity, shape and texture features (AUC
mean = 0.799), and intensity, shape and texture features with
density (AUC mean = 0.799). Shape and texture seem to be the
handcrafted features that have the biggest influence in the
classification process (AUC mean = 0.796 and 0.782, respec-
tively), which is accordance with the fact that irregular shapes
and heterogeneous textures are related to malignant lesions
(Pisco 2003; Yi et al. 2017).

Table 5. Results in bold correspond to the best mean AUC values achieved for each network. CNN applied to images with and without normalisation. Training on the
merged train and validation sets and testing on the test set.

Network Batch size Epochs Learning rate Norm Top1err train mean Top1err test mean AUC mean AUC std Time approx. (min.)

CNN-F 256 50 5e−3 Yes 0.196 0.378 0.721 0.001 28.31
CNN-F 256 50 1e−2 No 0.171 0.296 0.767 0.002 25.81
CNN-M 64 50 5e−4 Yes 0.173 0.355 0.733 0.002 76.84
CNN-M 64 50 5e−4 No 0.146 0.288 0.776 0.006 76.25
Caffe 256 50 5e−2 Yes 0.324 0.488 0.584 0.004 27.28
Caffe 256 50 5e−3 No 0.190 0.251 0.813 0.001 25.24

Figure 3. Example AUC for the best run achieved with Caffe using images
without normalisation process (AUC = 0.814).

Table 3. Results in bold correspond to the best mean AUC values achieved for
each network. CNN parameter exploration, with five repetitions, using normal-
ised images (only the train and validation sets were used).

Network
Batch
size

Learning
rate

Top1err
train mean

Top1err valida-
tion mean

AUC
mean

AUC
std

CNN-F 256 1e−2 0.208 0.267 0.752 0.002
CNN-F 256 1e−3 0.302 0.360 0.720 0.006
CNN-F 256 1e−4 0.371 0.500 0.638 0.007
CNN-F 256 5e−2 0.371 0.500 0.646 0.037
CNN-F 256 5e−3 0.231 0.252 0.752 0.000
CNN-F 256 5e−4 0.356 0.479 0.678 0.000
CNN-M 64 1e−2 0.112 0.304 0.734 0.008
CNN-M 64 1e−3 0.186 0.286 0.732 0.001
CNN-M 64 1e−4 0.321 0.381 0.738 0.008
CNN-M 64 5e−2 0.332 0.359 0.739 0.040
CNN-M 64 5e−3 0.133 0.290 0.739 0.003
CNN-M 64 5e−4 0.212 0.263 0.743 0.005
Caffe 256 1e−2 0.205 0.251 0.758 0.001
Caffe 256 1e−3 0.298 0.342 0.716 0.004
Caffe 256 1e−4 0.371 0.500 0.687 0.014
Caffe 256 5e−2 0.329 0.334 0.775 0.014
Caffe 256 5e−3 0.224 0.251 0.753 0.000
Caffe 256 5e−4 0.337 0.458 0.696 0.036

Table 4. Results in bold correspond to the best mean AUC values achieved for
each network. CNN parameter exploration, with five repetitions, using images
with no normalisation (only the train and validation sets were used).

Network
Batch
size

Learning
rate

Top1err
train mean

Top1err valida-
tion mean

AUC
mean

AUC
std

CNN-F 256 1e−2 0.203 0.326 0.763 0.004
CNN-F 256 1e−3 0.254 0.361 0.748 0.018
CNN-F 256 1e−4 0.371 0.500 0.686 0.013
CNN-F 256 5e−2 0.370 0.483 0.745 0.005
CNN-F 256 5e−3 0.206 0.310 0.762 0.006
CNN-F 256 5e−4 0.336 0.420 0.696 0.013
CNN-M 64 1e−2 0.095 0.265 0.757 0.019
CNN-M 64 1e−3 0.150 0.265 0.781 0.005
CNN-M 64 1e−4 0.232 0.353 0.765 0.003
CNN-M 64 5e−2 0.203 0.334 0.742 0.040
CNN-M 64 5e−3 0.107 0.270 0.760 0.009
CNN-M 64 5e−4 0.170 0.270 0.785 0.003
Caffe 256 1e−2 0.177 0.323 0.767 0.003
Caffe 256 1e−3 0.230 0.376 0.765 0.004
Caffe 256 1e−4 0.371 0.500 0.680 0.021
Caffe 256 5e−2 0.345 0.425 0.740 0.013
Caffe 256 5e−3 0.190 0.325 0.769 0.002
Caffe 256 5e−4 0.281 0.381 0.756 0.003
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Age, density and intensity, when used alone, do not appear
to have influence in the classification performance, since no
increase in AUC mean values was observed. On the other
hand, when combined with others, sometimes they deterio-
rate the classification performance.

6 Conclusions

In this paper, we studied the application of CNNs to the
problem of mammogram lesion classification. We have evalu-
ated three different implementations of CNNs and two
approaches of image normalisation.

In terms of the results obtained with the three different CNNs
implementations, in the case of the normalised images with the
testing set, the results decreased substantially comparatively to the
previous results obtained with the validation set, mostly in Caffe
model, which yielded an AUC mean value of 0.584. When the
images where fed to the networks without normalisation, in the
testing set, the Caffe model achieved the best AUC mean value
(0.813), followed by CNN-M and CNN-F, 0.776 and 0.767,
respectively.

Regarding the image normalisation, the results reveal that
the normalisation process proposed by Arevalo et al. (2016)
decreases the classification performance of the networks.
Perre et al. (2018) considered that the image normalisation
method that is chosen can change the classification perfor-
mance, depending on which type of pre-trained CNN model is
selected.

The fact that all crop images were composed by the surround-
ing breast pattern (e.g. instead of being zero padded) and, in some
cases, that the lesion was not centred, may have been an advan-
tage for the CNN learning process without confounding factors.

After we extracted the different activations’ layers and applied
them to an SVM, we found that the best performance was
achieved using the sixteenth layer, with an AUC mean value
equal to 0.773. However, the classification result is lower than
the one obtained with the respective CNN model (Caffe), which
goes against the opinion of Arevalo et al. (2016), since they
consider that the SVM has a better performance than the soft-
max classifier used in the CNN.

The handcrafted features increased the classification perfor-
mance. Besides, their combined use allowed to achieve an AUC
mean value of 0.799. Shape and texture were the preferred
information to the SVM and their combined use resulted in an
AUC mean value of 0.801. Breast density showed great influence
in the classification when combined with shape and texture for
example, with an AUCmean value of 0.800. Intensity and age did
not show great influence in the classification performance.

As future work, we intend to: test another type of classifiers
with the CNN features as input; train the CNN in one database
and testing them in a different database, and instead of doing
a binary classification, try to include another label called ‘nor-
mal’ to detect normal tissue.
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