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Abstract

We propose an automatic pipeline for creating shape modelling suitable parametric meshes of the 

trapeziometacarpal (TMC) joint from clinical CT images for the purpose of batch processing and 

analysis. The method uses 3D random forest regression voting (RFRV) with statistical shape 

model (SSM) segmentation. The method was demonstrated in a validation experiment involving 

65 CT images, 15 of which were randomly selected to be excluded from the training set for 

testing. With mean root mean squared (RMS) errors of 1.066 mm and 0.632 mm for the first 

metacarpal and trapezial bones respectively, and a segmentation time of ~2 minutes per CT image, 

the preliminary results showed promise for providing accurate 3D meshes of TMC joint bones for 

batch processing.
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1. Introduction

The trapeziometacarpal (TMC) joint is highly susceptible to osteoarthritis (OA), and can 

impair the upper extremity by up to 50 % (Pellegrini Jr 2005). Several factors have been 

implicated in its pathogenesis, with biomechanical factors paramount (Hunter et al. 2005). 

Morphology of the first metacarpal and trapezial bones are important biomechanical factors 

that must be considered as they affect the moment arms of muscles and ligaments, joint 

kinematics, posture during tasks, and the cartilage stresses and strains during contact(Arnold 

and Delp 2001, Halilaj et al. 2014, Nanno et al. 2006).
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Anatomically accurate 3D models of the TMC joint can be obtained through segmentation 

of clinical CT volumes. However, traditional manual and semi-automatic segmentation 

methods are time-consuming and require manual intervention to complete the segmentation 

of an image volume. The segmented data, usually in the form of point clouds, require 

meshing or triangularisation prior to musculoskeletal modelling, finite element analysis, or 

shape modelling. Therefore, these methods are unsuitable in workflows that involve batch 

processing, where the speed of segmentation is important, minimal user input is desired, and 

data may be required in certain formats for further processing.

Automatic segmentation methods address the main disadvantages of both manual and semi-

automatic methods by removing the requirement of manual intervention; they are time 

efficient, and can be used in batch processes. This would allow for a potential clinical tool 

such as an automated pipeline that processes CT volumes for useful information such as the 

corresponding stress distributions. However, automatic segmentation methods such as region 

growing, active shape models (ASM), point distribution model based statistical shape model 

(SSM) segmentation methods, may suffer from decreased robustness because of their 

reliance on correct initialisation, linear search spaces perpendicular to the model surface, 

high contrast edges, and high resolution relative to object feature size. In the wrist, these 

automatic segmentation methods struggle with the crowding of carpal bones and small joint 

spaces relative to voxel dimensions that create low contrast edges, especially in lower 

resolution clinical CT.

Three-dimensional random forest regression voting (RFRV) automatic shape model 

segmentation uses randomly sampled image features (e.g. 3D Haar-like features) to train a 

forest of decision trees to predict the most likely image location of the desired model. This 

has been demonstrated in 2D with facial recognition (Cootes et al. 2012) and 2D 

segmentation of the proximal femur (Lindner et al. 2013), and more recently demonstrated 

in 3D in the Liver (Norajitra et al. 2015). This method can be combined with parametric 

statistical shape modelling to create an automatic segmentation pipeline that has increased 

robustness to initialisation, increased speed of segmentation, and automatic meshing for 

downstream analysis.

The purpose of this paper is to present a pipeline for automatically creating parametric 

meshes of the TMC joint from clinical CT images for the purpose of batch processing, shape 

modelling, and analysis. We detail the pipeline below then present quantitative segmentation 

results on a set of 65 clinical CT images of the wrist.

2. Methods

The method uses a SSM combined with RFRV to perform automatic segmentation of the 

TMC joint. For each bone, a SSM is first created and trained with segmented point clouds. 

Random forest (RF) regressors are trained on CT image data for each node. During 

segmentation, RF regressors predict the location of nodes in new CT images and the SSM is 

fit to the predicted nodes.
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2.1 Statistical shape model

A parametric shape model is required to train the RF regressors, constrain the possible 

segmentation geometries, and to yield a parametric mesh of the desired geometry.

The parametric SSM is generated using a published method (Schneider et al. 2015) that is 

based on techniques described by Zhang et al. (2014). In summary, this method uses a 

custom template mesh consisting of cubic Lagrange elements (Nielsen 1987) to represent 

the morphology. The mesh is designed to capture the morphological variation in anatomical 

landmark regions across the population. The template mesh is then fit to all point clouds in 

the training set through an iterative fitting process involving a series of coarse and fine fits. 

The fitted meshes of the training set are then rigidly aligned with a partial Procrustes 

alignment that conserves size.. Principal component analysis (PCA) (section 2.2) is 

performed on the mesh nodal coordinates to produce an initial shape model. This process is 

repeated to propagate correspondence by using the shape model instead of the template 

mesh, until the RMS error is less than the in-plane pixel resolution (Zhang, Malcolm, 

Hislop-Jambrich, Thomas and Nielsen 2014). The final shape model is produced by 

performing a final PCA on the nodal coordinates of the correspondent training set meshes.

2.2 Principal component analysis

Principal component analysis is performed to remove linear dependencies and for 

dimensionality reduction and allows any shape, x, in the training set to be reconstructed by 

the weighted sum of n principal components, ɸ, and the mean shape, x (Heimann and 

Meinzer 2009, Schneider, Zhang, Crisco, Weiss, Ladd, Nielsen and Besier 2015, Zhang, 

Malcolm, Hislop-Jambrich, Thomas and Nielsen 2014):

x = x + ∑
i = 0

n
ωiɸi (1)

2.3 Random forest regression voting

Segmentation can be achieved by automatically locating the position of each mesh node in 

the CT image. This detection is performed by a RF regressor trained for each node. In this 

work, we used the scikit-learn1 implementation of the RF regressor (Breiman 2001, 

Pedregosa et al. 2011).

For each regressor, 3D Haar-like features (section 2.4) are randomly sampled about the 

corresponding mesh node in an omni-directional search space. Each regressor learns the 

spatial distribution of the feature response about each node by associating the feature 

response with the corresponding displacement vector between the feature centroid and the 

node coordinates (Figure 1). When features are sampled from an unseen image, the 

regressors can predict its displacements based on the feature response sampled, allowing for 

prediction of nodal locations.

1http://scikit-learn.org/stable/
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During segmentation, the mean mesh of the SSM is initialised, ideally in a neighbourhood of 

the desired object. Each tree in the RF regressor of each node votes by estimating the 

displacement vector that points to the location of the mesh node from the sampled 3D Haar-

like feature. This creates a distribution of votes that predict the location of the node in the 

CT volume. The mean location of the votes is taken as the final prediction of the best-

matched image location of the mesh node. This process is performed for each node in each 

mesh to obtain the predicted nodal locations of the desired image geometry in a single 

iteration. The mean mesh is then fit to the predicted nodal locations using deformations 

permitted by the SSM (Equation 1), resulting in a segmented mesh. Meshes segmented with 

this shape model are also parametric, allowing subsequent analysis of morphology and stress 

analysis to be directly compared in the same frame of reference.

2.4 3D Haar-like features

Haar-like features are used in image object recognition and have been used in image 

segmentation in 2D (Cootes, Ionita, Lindner and Sauer 2012) and 3D (Norajitra and Maier-

Hein 2017, Norajitra, Meinzer and Maier-Hein 2015). Haar-like features are calculated by 

comparing the difference in summed pixel intensity between regions of pixels (in 2D) or 

voxels (in 3D) within a bounding box These regions may be labelled as ‘dark’ and ‘light’, 

where the bounds of the ‘light’ region can be randomised to create an infinite set of 3D 

Haar-like features (Lindner, Thiagarajah, Wilkinson, Consortium, Wallis and Cootes 2013, 

Norajitra and Maier-Hein 2017). Due to this formulation, 3D Haar-like features do not 

support more complex features that have more than one ‘light’ region, such as chequered 3D 

Haar-like features, which can provide important textural information. In this study, we used 

a fixed set of eight 3D Haar-like features (Figure 2), including three features with one ‘light’ 

region, three features with two ‘light’ regions, three features with axis aligned chequered 

regions (two ‘light’ and two ‘dark’ regions), and one feature with completely chequered 

regions (four ‘dark’ and four ‘light’ regions). These features can be calculated efficiently by 

precomputing the integral image using the equation 2. The difference in summed pixel 

intensity can then be calculated using equation 3 (Norajitra and Maier-Hein 2017).

I∑ x, y, z = ∑
x′ ≤ x
y′ ≤ y
z′ ≤ z

i x′, y′, z′ (2)

Σc = Σxmax, ymax, zmax
− Σxmin − 1, ymax, zmax

− Σxmax, ymin − 1, zmax
+ Σxmin − 1, ymin − 1, zmax

− Σxmax, ymax, zmin − 1 + Σxmin − 1, ymax, zmin − 1
+ Σxmax, ymin − 1, zmin − 1 − Σxmin − 1, ymin − 1, zmin − 1

(3)
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3. Validation experiment

The method described above was applied to a set of 65 CT images from healthy adult males 

and females. The wrist was imaged in clinical neutral position with a 16-slice CT scanner 

(GE LightSpeed 16, General Electric, Milwaukee, WI). The scanner was set with the 

following settings: tube voltage at 80 kVp, tube current at 80 mA, slice thickness of 0.625 

mm, and in-plane resolution of 0.4 mm × 0.4 mm. The trapezia and first metacarpals were 

segmented semi-automatically using Mimics v12.11, and exported as triangulated surfaces. 

The vertices of the triangulated surfaces were extracted to obtain a training set of point 

clouds for the SSM.

Fifty CT images were randomly selected to be the training data set for the SSM and the RF 

regressors, and the remaining 15 CT images were used to evaluate the accuracy and 

performance of the method. Two parametric template meshes were created, one for the first 

metacarpal, consisting of 398 nodes and 97 cubic Lagrange elements, and one for the 

trapezium, consisting of 344 nodes and 52 cubic Lagrange elements. These template meshes 

were used to create two SSMs, one for each bone in the joint, which were consolidated into 

a complete model of the TMC joint, consisting of 742 nodes. 50 CT sampling windows, with 

a size of 10 × 10 × 10 voxels, were randomly sampled within an omnidirectional search 

space of 30 voxels about each node in the CT image. Integral images were computed, and 

3D Haar-like features were calculated and used to train the RF regressors that consisted of 

20 random decision trees. The time required to train 742 RF regressors took approximately 3 

hours on an Intel Xeon quad core computer.

To evaluate the accuracy and performance of the method, we applied the trained RF 

regressors to the remaining 15 CT images not used in training. The TMC joint model was 

initialised in the centre of the CT images, near the in-image TMC joint bones. The RF 

regressors then predicted the locations of all 742 mesh nodes. The meshes of each bone were 

fit to the corresponding predicted node locations with the weighted sum of principal 

components; by minimising the least squared error between the predicted nodal coordinates 

and shape model node coordinates, producing a segmented parametric mesh of the TMC 

joint bones.

4. Results

The segmentation time for all 15 datasets was approximately 30 minutes on an Intel Xeon 

quad core computer. The underlying image size was approximately 512×512×346 voxels. 

The integral image was computed in less than 5 seconds. The average surface-to-surface 

RMS error between automatically segmented mesh and manually segmented ground truth 

for all 15 datasets was 1.066 mm in the first metacarpal and 0.632 mm in the trapezium 

(Table 1). Figure 3 shows the mean pointwise error distribution of all 15 datasets. The 

largest errors appear to occur in regions of high curvature. Figure 4 shows the segmentation 

of a randomly selected dataset overlapped with the ground truth.
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5. Discussion

These results show promise for a fully automatic segmentation pipeline that creates 

anatomically accurate parametric meshes from CT image data. Since the deformation of the 

mesh geometry was restricted by the SSM, the segmented shapes of the bones were 

constrained to be anatomically accurate. Pointwise error distribution plots of the 

automatically segmented surface compared with the manually segmented ground truth 

indicated that the error was highest about regions of high curvature (Figure 3). The mean 

error in the first metacarpal was 0.997 mm ± 0.372 mm, and 0.564 mm ± 0.282 mm in the 

trapezium, which may be considered reasonable depending on the purpose of the model. The 

mean % volume overlap was 84.12 % in the first metacarpal and 86.03 % in the trapezium, 

is comparable to the intermediate rigid model fitting results on the liver reported by 

Norajitra, Meinzer and Maier-Hein (2015), except in a much smaller joint. However, for the 

purpose of contact biomechanics at the articular surfaces of the joint, these errors may 

require further reduction, as the maximum errors (2.110 mm in the first metacarpal and 

1.776 mm in the trapezium) are comparable to the size of the joint space in the TMC joint (~ 

2 mm).

This pipeline appears to be robust to variation in the location of initialisation of the shape 

model. The success of ASMs and region growing algorithms are highly dependent on correct 

initialisation. In our test scenarios, as the TMC joint bones were the subject of interest, we 

assumed that the in-image position of the TMC joint bones would be close to the centre, and 

thus, it seemed reasonable to initialise the shape model in the centre of the CT images. 

However, the TMC joint was not perfectly located in the centre in any of the datasets, and 

was located up to 30 mm away. Despite this, the pipeline managed to segment the TMC joint 

bones to RMS errors of 1.066 mm in the first metacarpal and 0.632 mm in the trapezium. 

We expect that these errors can be improved by using a multi-scale approach (Norajitra and 

Maier-Hein 2017). First, RF regressors trained with large windows and distances can be 

used to initialise the mesh closer to the joint. Afterwards, incremental improvements in 

segmentation can be attempted by using RF regressors trained on smaller windows and 

distances. As the pipeline performs quickly (~2 minutes per segmentation) this step can be 

repeated a number of times to increase the accuracy of segmentation without sacrificing too 

much time. Furthermore, Norajitra and Maier-Hein (2017) showed in three organs (liver, 

spleen, and kidney) that a multi-scale approach could remove the need for careful model 

initialisation. Their success may also be owing to the use of randomised features which can 

give a richer description of encountered anatomical structures. This could be implemented in 

our pipeline and theoretically would allow the random forest to make better classifications 

and further reduce the segmentation error. Further improvements in segmentation accuracy 

could be achieved by relaxing the SSM constraints in the final iteration of fitting. In another 

study, Norajitra, Meinzer and Maier-Hein (2015) reported an improvement in segmentation 

accuracy with the application of a deformable surface algorithm during the final step in 

fitting. This was to allow the surface to deviate from the rigid shape constraint of the SSM, 

and to compensate for the liver’s high variability in shape. Although the variability in the 

TMC joint is low (Schneider et al., 2015), we expect that the accuracy of TMC segmentation 

would improve with this approach.
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6. Conclusion

We have presented a pipeline for automatically creating parametric meshes of the TMC joint 

from CT images of the wrist, using RFRV combined with parametric statistical shape 

modelling. This method has demonstrated increased flexibility in terms of segmentation 

error with regards to the location of initialisation compared to methods such as active shape 

modelling and region growing. The use of 3D Haar-like features were used to teach the 

spatial characteristics of the images to the RF regressors, and to predict the location of mesh 

nodes in new images. Our results were promising, with mean RMS errors of 1.066 mm and 

0.632 mm for the first metacarpal and trapezial bones respectively. We propose a multi-scale 

approach involving a series of coarse to fine segmentations in concert with feature 

randomization to improve the segmentation accuracy. This pipeline has the potential to be 

used for rapid segmentation of clinical CT images, for the purpose of implant design, 

biomechanics analysis, and in surgical planning.
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Figure 1. 
3D Haar-like features (red boxes) and corresponding displacements (arrows) are used to 

train a RF regressor on the spatial distribution of features around each node of the shape 

model mesh. During segmentation, the shape model mesh (white dotted line) is initialised 

and 3D Haar-like features (red boxes) are sampled (dashed lines) from the mesh node (red 

point on white dotted line). The regressor for each node uses the features to predict the 

correct location (arrow) of the node (red point) in the CT image.
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Figure 2. 
The ten types of 3D Haar-like features that were used to train the RF regressors. Feature 

values were calculated by comparing the difference in summed pixel intensities in the dark 

and light bounding boxes.
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Figure 3. 
Mean pointwise error distribution. The volar-radial view (A), and dorsal view (C) are shown 

for the first metacarpal. The volar view (B) and dorsal view (D) are shown for the trapezium.
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Figure 4. 
Segmented TMC joint bones. Red shows ground truth. Yellow shows automatically 

segmented mesh.
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Table 1.

Calculated error distributions (in mm) for test population (n = 15). Percentage volume overlap was calculated 

using the tanimoto metric T A, B = A ∩ B / A ∪ B .

Mean Error RMS Error Max Error Min Error Mean % Volume Overlap

1st Metacarpal 0.997 ± 0.372 1.066 2.110 0.0457 84.12%

Trapezium 0.564 ± 0.282 0.632 1.776 0.013 86.03%
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