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Abstract

This thesis presents an automatic pathology (AutoPath) approach to detect prostatic
adenocarcinoma based on the morphological analysis of high resolution whole

mount histopathology images of the prostate. We are proposing a novel technique
of labeling individual glands as benign or malignant exploiting only gland spe-

cific features. Two new features, the Number of Nuclei Layers and the Epithelial
Layer density are proposed here to label individual glands. To extract the features,

individual gland and nuclei units are segmented automatically. The nuclei units
are segmented by employing a marker-controlled watershed algorithm. The gland

units are segmented by consolidating their lumina with the surrounding layers of
epithelium and nuclei. The main advantage of this approach is that it can detect

individual malignant gland units, irrespective of neighboring histology and/or the
spatial extent of the cancer. Therefore, a more sensitive annotation of cancer can be

achieved by the proposed AutoPath technique, in comparison to the current clini-
cal protocol, where the cancer annotation is performed at the regional macro level

instead of glandular level technique.
We have also combined the proposed gland-based approach with a regional ap-

proach to perform automatic cancer annotation of the whole mount images. The
proposed algorithm performs the task of cancer detection in two stages: at first

with pre-screening of the whole mount images in a low resolution (5×), and then
ii) a finer annotation of the cancerous regions by labeling individual glands at a

higher magnification (20×). In the first stage, the probable cancerous regions are
classified using a random forest classifier that exploits the regional features of the

tissue. In the second stage, gland specific features are used to label individual gland
units as benign or malignant. The strong agreement between the experimental re-
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sults and the pathologist’s annotation corroborates the effectiveness of the proposed

technique. The algorithm has been tested on 70 images. In a 10-fold cross vali-
dation experiment it achieved average sensitivity of 88%, specificity of 94% and

accuracy of 93%. This surpasses the accuracy of other methods reported to date.
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Chapter 1

Introduction

Prostate cancer is currently the second most prevalent type of cancer for men and

ranks third among the cancer related deaths of men worldwide [17]. Prostate can-
cer is usually suspected when a high level of prostate specific antigen (PSA) is

detected in blood tests. A digital rectal examination (DRE), in which the physician
palpates the prostate through the rectum is then performed to detect any abnor-

malities within the prostate. Anomalies in these tests lead clinicians to conduct
a prostate biopsy. A prostate gland biopsy is a diagnostic procedure which in-

volves removal and examination of small samples of tissue. Examination of the
microscopic biopsy specimens by pathologists is an important step for confirming

the diagnosis of malignancy and guiding the treatment [40]. In case of advanced

cancers, surgeons often perform Radical Prostatectomy (RP) on patients, i.e., sur-
gical removal of the entire prostate. The prostate specimen removed during the RP

procedure is processed and analyzed by a pathologist in order to determine further
treatment, such as radiation or hormone treatment, depending on the extend and lo-

cation of the cancer found in the specimen. In some cases, the prostate specimen is
sliced in parallel transversal slices that cross the entire organ at intervals of 4-8 mm,

in order to facilitate the comparison of prostate images acquired pre-operatively tis-
sue histopathology. The histopathology slices obtained from the cross section of

these ex vivo prostate are termed as Whole Mount (WM) slides. Fig. 1.1 shows
a typical WM slide of the prostate. The black marks present in the image are the

coarse annotation by the pathologist on the glass slide before digitization.
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Figure 1.1: A typical whole mount histopathology slide of prostate.

The analysis of these WM slides has been an area of special interest in recent
years. The analysis of the WM images help to predict the long term disease out-

come of the RP patients i.e., the possibility of recurrence of cancer in adjacent
organs. The whole mount pathology analysis after RP can also be used as ground

truth to determine the ability of imaging, such as multi-parametric magnetic reso-
nance imaging, to detect cancer.

In clinical practice, the analysis of the WM slides is performed by patholo-
gists manually. Since the level of structural detail in these images is very high,

the process of annotating and grading the entire image is very time consuming
and also subjective to human pathologists’ expertise. Therefore, for future work in

prostate cancer prognosis and image-based diagnosis, it is important that an auto-
matic pathology approach that is consistent and accurate in classifying cancer be

developed. This is the objective of the AutoPath research work described in this
thesis.
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Figure 1.2: Four pathology zones of prostate.

1.1 Prostate Anatomy and Pathology
The prostate is a gland in the male reproductive system. Its function is to store and
secrete a slightly alkaline fluid which usually constitutes 20−30% of the volume

of the semen. In healthy adult males its size is slightly larger than a walnut. The
weight of a healthy prostate in adult males ranges from 7 to 16 gms with an average

weight about 11 grams [21], [23]. The prostate sits above the base of the penis and
below the urinary bladder and backs onto the front wall of the rectum. The apex of

the prostate is pointed down to the perineum as opposed to the base which is wider
and located next to the bladder. The prostatic urethra is the portion of the urethra

that runs from the urinary bladder through the prostate and exits from the apex via
the urinary sphincter which is a group of muscles that prevents involuntary leakage

of urine. The prostate is surrounded by a membrane called the prostatic capsule. In
pathology, the regions of the prostate are classified as zones Fig. 1.2. The prostate

gland has four distinct glandular regions:

• Peripheral zone (PZ): This zone occupies approximately 70% of the volume
of gland. 70−80% of prostatic cancers originate in the peripheral zone [8].
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• Central zone (CZ): This zone constitutes approximately 25% of the prostate

gland. About 5% of prostate cancer cases originate in the central zone [8].

• Transition zone (TZ): The transition zone is the innermost part of the prostate

gland and surrounds the urethra. It makes up about 5% of the prostate vol-
ume. About 10% of prostate cancers occur in this zone. This zone also

enlarges with age and can result in benign prostatic enlargement [8].

• Anterior fibro-muscular zone (or stroma): The anterior zone is located close
to the abdomen (away from the rectum). This zone constitutes 5% of the

gland volume and is composed mostly of muscular tissue [8].

The main histopathological structural unit in the prostate is called a gland.
Fig. 1.3 shows the structure of a normal gland unit. It mainly comprises a lumen

of irregular shape, a layer of epithelial cells, and nuclei surrounding the lumina.
The unit is supported by a surrounding fibro-muscular stroma. Each of these com-

ponents correspond to a different color when the slides are stained using a Hema-
toxylin and Eosin (H&E) solution. In response to the solution, the nuclei turn into

dark blue objects and the epithelial layer and stroma turn into different shades of

purple to pink. The morphological and architectural features of the glands indicate
whether the gland is benign or malignant. Fig. 1.5 illustrates the different appear-

ances of cancerous and benign glands. Cancerous glands tend to have a single layer
of nuclei with a higher ratio of epithelial layer area to lumen area.

By examining the glandular tissue features in the microscopic histopathology
sections, the pathologist determines the histological grades. The most widespread

technique for histological grading is the Gleason grading system [14].
This grading scheme was developed by a pathologist, Dr. Gleason during the

1970s. In this grading system, the prostate cancer can be classified into 5 grades
representing a number ranging from 1 to 5, where 1 is the most benign and 5 is the

most malignant case. A classic Gleason grading diagram containing the five basic
tissue patterns associated with five cancer grades is shown in Fig. 1.4a. Gleason

grading is based upon the distribution of nuclei and morphology of gland structures
in the image. Fig 1.4b-f shows the evolution of glandular and nuclear regions in

the different grades of prostate cancers in real pathological images. As can be
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1. Lumen

4. Stroma

3. Nuclei layer

2. Luminal Secretory

Epithelial layer

Figure 1.3: A normal gland structure.

observed from the figures, in the lower grades of cancer (Grade 1 and 2) the glands

still maintain an irregular shape like normal glands but they get smaller in size and
the concentration of nuclei increases slightly. In higher grades (3 and 4) the glands

are smaller, and instead of having an irregular shape they tends to have a more
regular circular or elliptical shape. The distance between the glands increases. In

Grade 5 cancer, no distinct glands can be observed. Instead, there is a random
concentration of nuclei floating randomly in the stroma. The aggressiveness of

prostate cancer are scored by combining the top two grades present in a particular
region. For example, if a tissue region has 50% Grade 3 cancer, 30% Grade 4

cancer, and 20% other Grade cancers then the corresponding Gleason score of the

tissue region will be 3+4=7.

1.2 Literature Review
The analysis of pathological images has been an area of interest during the last few
years. Normally referred as Digital Pathology, the aim of this field has been to

distinguish between the normal and abnormal tissue. Research in this area can be
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e) f)

c)

d)

b)a)

Figure 1.4: Examples of the five grades of the Gleason grading system. a)
Classic Gleason grading diagram drawn by Dr. Gleason [14]. (b-f)
Evolution of Gleason grades from 1 to 5, respectively
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broadly divided into two categories: work on biopsy specimens and work on whole

mount pathology images.
Most of the research in this field has been carried out on the biopsy specimen

samples. A method to distinguish the moderately and poorly differentiated lesions
of prostate tissues was presented by Stotzka et al. in [34]. The decision was based

on a number of features obtained from the shape and texture of the glands. The
nuclear roundness factor analysis (NRF) is proposed in [9] to predict the behavior

of low grade samples. Since this technique requires manual nuclear tracing, it is

time consuming and tedious. Jafari-Khoujani et al. [19] proposed a method for
grading the pathological images of prostate biopsy samples by using energy and

entropy features calculated from multi-wavelet coefficients of an image. These
multi-wavelet features were used by a k-nearest neighborhood classifier for classi-

fication and a leave one out procedure [19] was applied to estimate the error rate.
In other research, prostate cancer grading was carried out using fractal dimension

analysis [16]. In [16], the authors proposed fractal dimension based texture fea-
tures that were extracted through a differential box counting method. These fea-

tures were combined with an entropy-based fractal dimension estimation method
as a fractal-dimension based feature set to analyze pathological images of prostate

carcinoma. This research focuses only on the separation of the different grades
on manually detected cancerous region. Tabesh et al. [36] proposed a two stage

system for prostate cancer diagnosis and Gleason grading. The color, morphome-
tric and texture features are extracted from the tissue images. Then, linear and

quadratic Gaussian classifiers were used to classify images into cancer/noncancer
classes and then further into low and high grade classes.

Since the grading of the cancer depends on gland morphology and nuclei distri-
bution, proper segmentation of these has been an active area of research interest for

last couple of years. A good part of the research activity addressed the segmenta-
tion of nuclei, as they are clearly visible on histology. Bamford and Lovell [3] used

an active contour scheme for segmenting nuclei in pap-stained cervical cell images.
A fuzzy logic engine was proposed by for segmentation of prostate tissue that uses

both color and shape based constraints [5]. But these studies focus only on find-
ing the nuclei units only. Segmentation of multiple structures on prostate histology

has been carried out by Gao et al. using a color-based histogram thresholding tech-
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nique to enhance regions of cytoplasm and nuclei to aid in manual cancer diagnosis

[13]. Recently, Naik et al. proposed an automatic gland segmentation algorithm
[28]. A Bayesian classifier is used to detect candidate gland regions by utilizing

low-level image features to find the lumen, epithelial cell cytoplasm, and epithelial
nuclei of the tissue. Then, the features calculated from the boundaries of the gland

that characterize the morphology of the lumen and gland region have been used to
grade the cancer tissue. The most recent articles on cancer classification in biopsy

specimen have been summarized in Table I. As can be observed from the table,

among the recent literature, Naik et al. [28] gives the best accuracy.
Compared to the cancer classification works on biopsy specimens, there have

been fewer reports on automatically annotating whole mount images. Gorelick et

al. proposed an automatic cancer classification method for sub-images extracted

from whole mount images [15] using the superpixel [12], [37] partitioning and
Ada-Boost classification [33]. The authors did not report the performance of anno-

tating complete whole mount images. Monaco et al. [26] proposed an algorithm
for annotating cancerous regions in whole mount slides using gland features. The

reported technique segmented gland lumens and classified glands into normal or
cancer by (i) using gland size feature to assign initial gland labels and (ii) applying

a probabilistic pairwise Markov model (PPMM) to update gland labels. See Table
I for a summary of the results reported for biopsy specimen and WM images.

Most of these previous works do not evaluate the features that are determined
for each individual gland unit. Since prostatic adenocarcinoma is the cancer per-

taining to the gland unit and the pathological changes in malignant tissue occur
at the gland level, a clinically more relevant approach would be to incorporate

the gland specific features in the computational cancer detection process. In a
recent article on gland classification, Nguyen et al. [31] achieved an accuracy

of 0.79 in classification of benign and malignant glands by exploiting region-
specific/contextual features such as percentage of nuclei pixels, lumen shape sim-

ilarity, lumen size similarity, and neighborhood. Since the proposed technique
utilizes contextual information for classifying individual glands, therefore in cases

where benign gland appear in close proximity of malignant glands, the technique
will most likely fail. In addition, the proposed technique does not perform nuclei

segmentation but utilizes percentage of nuclei pixels as classification. Therefore,
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Figure 1.5: Visual comparison between a) benign and b) cancerous prostate
glands.

multiple smaller nuclei (usually in benign) and single large nuclei (usually in ma-
lignant) will result in similar feature index which will not be true representative of

the gland condition. In comparison to that, our proposed features are strictly gland

specific and involve i) pixel labeling, ii) segmentation of each nuclei in the gland,
and iii) finding the number of layers of nuclei for each gland from angle-dependent

histograms. The advantage of this technique is that it can detect a malignant/suspi-
cious gland irrespective of the region properties. In cases where malignant glands

are present in close proximity to benign glands, this approach might provide a more
sensitive cancer annotation compared to approaches that use region-dependent im-

age features [31].
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Table 1.1: Literature review

Authors Dataset size Classes Accuracy
Doyle et al. 2006 [19] 22 (biopsy) cancer/non-cancer 88%
Tabesh et al. 2007 [36] 268 (biopsy) Low/High grade 81%
Naik et al. 2008 [28] 44 (biopsy) Benign, Grade-3, Grade-4, Grade-5 90%
Tai et al. 2010 [16] 1000 (biopsy) Benign, Grade-3, Grade-4, Grade-5 86%

Monaco et al. 2012 [26] 40 (37 quarter sections, 13 WM) Benign/malignant 90%
Gorelick et al. 2013 [15] 991 sub-images from 50 WM sections Cancer/non-cancer 90%
Nguyen et al. 2012 [31] 48 images Gland labeling 79%
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1.3 Summary of the Proposed Technique
The AutoPath technique proposed in this thesis performs automatic cancer classifi-

cation on WM prostate in two stages, i) screening of probable cancerous regions at
low magnification (5×) and ii) finer annotation of the detected cancerous regions

at high magnification (20×). To extract the tissue features in the first stage, we
automatically segment the individual gland units and its associated tissue compo-

nents. The whole image is divided into small blocks and features extracted from
each of these blocks are fed into a random forest classifier [7] to detect benign and

malignant regions of the image. Further analysis of the detected regions is per-
formed in the second stage at a higher magnification. At this step, the malignant

regions are detected based on their gland-specific properties. We propose two new
features for classifying glands, i) Number of Nuclei Layers (NNL) and ii) Ratio of

Epithelial Layer area to Lumen area (REL). To extract the first feature, nuclei units
have been automatically segmented from the image using a marker-controlled wa-

tershed algorithm[25]. The introduction of these two gland-specific features allow
us to detect malignant or suspicious glands without relying on surrounding histol-

ogy. Therefore, a more specific and sensitive annotation of the images is possible.
We have tested our technique on 70 images obtained from 30 patients. In a 10-

fold cross validation we have achieved an average sensitivity of 84%, specificity of
94%, and accuracy of 93%. A flow-chart of the proposed technique is illustrated in

Fig. 1.6 and the detailed explanation of each step is provided in the methodology
section.
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Figure 1.6: Flow-chart of the proposed algorithm.
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1.4 Thesis Organization
We start with Chapter 2 explaining the screening phase of our prostate cancer de-

tection technique exploiting regional features. This chapter discusses the gland
segmentation algorithm, regional feature extraction, and the application of random

forest classifier in classifying benign and malignant regions. Chapter 3 describes
the glandular level classification of the proposed technique providing the details of

nuclei segmentation and glandular feature extraction. We present the performance
evaluation of our algorithm in Chapter 4. Finally, conclusions, achievements and

future directions of our work are laid out in Chapter 5.
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Chapter 2

Cancer Classification Using
Regional Features

2.1 Introduction
In prostatic adenocarcinoma, a tumor is defined to be comprised of a group of
malignant gland units. The arrangement and architecture of the glands in the tumor

deviate from the healthy tissue type depending the cancer grade. The higher the
cancer grade, the more deviation of the tissue architecture is observed. At this

stage we have quantified these changes in tissue architecture and based on that
we have screened the pathology slices for the possible cancerous regions. For

the screening phase, only the 5× magnification level have been utilized. At this
magnification, the image resolution is 2µmm per pixel. In the first step, the entire

image is divided into small blocks of 0.5 mm×0.5 mm images. The choice of the
block size corresponds to the size of the smallest annotated region present in our

dataset. Each of these blocks are categorized into probable cancerous and non-
cancerous region by using a random forest classifier [7]. The features exploited by

the classifier are extracted from the segmented gland images.
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Figure 2.1: Gland segmentation. a) A sample image block, b) labeled image
where each histological component is represented by a different color, c)
enlarged view of a small window in the labeled image, d) lumen objects
(the red mark corresponds the initial gland boundary), and e) segmented
gland unit after consolidating surrounding epithelial layer-nuclei object
with the gland lumen.

2.2 Gland Segmentation
The gland segmentation algorithm has been partially adopted from the work of
Nguyen et al. [30]. In the first step, each image block has been segmented into

five categories, i.e., i) Gland lumen, ii) Cytoplasm, iii) Nuclei, iv) Stroma, and v)
Annotation mark. This segmentation uses the distinct color information of each

category. Variations in illumination caused by variations in staining or changes in
ambient lighting conditions at the time of digitization may dramatically affect im-

age characteristics and then potentially affect the performance of the algorithm. In
the RGB color space the lighting information and the color information is blended

together. This is why each sub-region is converted from RGB color space to Lab
color space. The Lab space consists of a luminosity layer ‘L’, chromaticity-layer

‘a’ indicating where color falls along the red-green axis, and chromaticity-layer ‘b’
indicating where the color falls along the blue-yellow axis. By converting to Lab
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color space the lighting information is confined into only one channel, L. Small

training patches of each categories has been used to train the classifier, which la-
bels each pixel of the image into one of the five different categories listed above.

For ith pixel in either test data or training data, the pixel is represented as Di, j

where i = {1,2, ...,n}; n is the number of data points and j = {1,2}, for the two
chromaticity layers in the Lab color space. The classification algorithm uses a
linear discriminant analysis to label the testing pixels. Given a training data set
with class known for each of the data point, the jth component of the mean vector
for class k is simply the mean for variable j over the Nk data points in group k.

¯D j,k =
1

Nk
∑
n∈k

Dn, j, (2.1)

where n ∈ k indicates the set of data points in group k.

The covariances matrices for each class is considered to be equal and estimated
as single pooled estimate of S, with entries

Si, j =
1

N −K

N

∑
n=1

(
xn;i − ¯xk(n);i

)(
xn; j − ¯xk(n); j

)
, (2.2)

where ¯xk(n);i is the ith component of the mean vector for which class the data point

n belongs to, k(n). Then the squared Mahalanobis distance from a data vector x to
the mean of group of k is given by

z2
k = (x− x̄k)

′
S−1(x− x̄k). (2.3)

As a result of pooled estimate of covariance matrix, all the determinants of
covariance estimate is equal and the Bayes’ formula for estimating posterior prob-

ability of data vector x to class k is reduces to

Pk(x) =
qkexp[−0.5z2

k ]

∑K
l=1 qlexp[−0.5z2

l ]
. (2.4)

Then the data vector x is assigned to the class with which it has maximum
posterior probability. For ith point, lets assume the data vector is x, the the corre-

sponding pixel label (li) will be the li = argmaxPi(x).
The training patches used in the classifier are manually selected from 5 differ-
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ent patient images. The number of training patches and the number of training pix-

els for each category are: lumen: 2 (Number of pixels: 1580), nuclei: 4 (Number
of pixels: 440), epithelial layer: 4 (Number of pixels: 1564), stroma: 10 (Number

of pixels: 3033), and annotation: 2 (Number of pixels: 1503). Among the histol-
ogy components, the stroma units exhibit highest variation in color information.

Therefore, more number of training patches for these category has been utilized.
By contrast, the lumen and nuclei are the most homogenous tissue components in

the image and hence lower number of training patches from these categories have

been utilized.
Fig. 2.1b-c shows the result of the color based segmentation of an example

image sub-region. For pixel labeling, we have used linear discrimination analysis
instead of the Voronoi tesselation based approach from [30]. In the Vronoi tessela-

tion approach, the training points create a Voronoi tessellation [2] of the Lab space.
Each training point is associated with one convex polygon which includes all points

closer to it than any other training point. Each test point is assigned to the same
class associated with the training point of the polygon to which it belongs. The

main drawback of Voronoi tesselation approach is that when the number of test-
ing samples is large, the classification time for each testing data point is very high

compared to that of linear discriminant analysis [20]. Therefore, when the number
of testing samples is, very large the reported Voronoi tesselation based approach

will be very expensive to compute.
After having labeled the image into the categories listed above, first we group

together the lumen pixels using a connected-components algorithm [35] which uses
the eight-connectivity property. Then, the flood-fill [22] algorithm is employed to

label all the pixels in the connected neighborhood. By putting a constraint on the
maximum possible size of the lumen, some objects are discarded that are too big

to be considered as a gland. This constraint eliminates the background object of
the histology section that has almost the same color information as lumen objects.

Around each lumen object, a lumen boundary is extracted. This is considered to
be the primary gland boundary (see Fig. 2.1d). As stated earlier in the introduction

section, a complete gland unit consists of the lumen and its surrounding layer of
epithelial cells and nuclei. Therefore, to segment a complete gland unit we have to

consolidate the surrounding epithelial layer and nuclei with the lumen. To accom-
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plish this, an iterative search around δ ×δ neighborhood centered at each boundary

point of the lumen is carried out. Here, δ is set to 3 pixels, the minimum neigh-

borhood window length, in order to eliminate the possibility of adding any extra
non-gland pixels to the gland unit. The pixels labeled as epithelial layer or nu-

clei within this neighborhood are grouped together with the lumen object and the
corresponding gland boundary is updated. This procedure stops when the gland

boundary reaches the pixels labeled as stroma. Also, under the assumption that a
true gland unit is always surrounded by epithelial layer, the lumen pixels that are

not surrounded by the cytoplasm and nuclei are discarded as false lumen objects.
Fig. 2.1e illustrates the resultant segmented gland units.

2.3 Feature Extraction
From each block of the image, an array of nine features related to the arrangement

and morphology of the lumen, nuclei, and epithelial layer of the gland is extracted.
The histological changes occurring in the malignant regions are most pronounced

in these three tissue components. The stroma rarely shows any alteration in malig-
nant regions. Malignant regions in prostate histology are usually characterized by

group of closely packed glands that are similar in shape, whereas in benign regions,
the glands usually have highly irregular shapes. The malignant glands are usually

circular in shape and posses a thicker epithelial layer. In high grade of cancers,
the malignant regions also exhibit high concentration of randomly floating nuclei.

Based on these observations, we have synthesized a set of nine features to classify

benign and malignant regions. Following are the detail description of the features:
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Table 2.1: Features extracted from each image block

Nuclei features

Entropy of the Nuclei En = ∑Pn × logPn

pixel distribution (En) Pn is the spatial histogram of nuclei pixels

Nuclei Density (ND)
ND = An

Ab

An = Total area of nuclei units (in pixels)
Ab = Total area of the block image (in pixels)

Lumen features

Mean Lumen
Roundness Metric (MLRM) LRMi = (π×EDi)

Pi
;

Pi = Perimeter of the ith lumen
Standard Deviation of the EDi = Equivalent diameter of the ith lumen

Lumen Roundness Metric (SLRM)
Maximum Number of

Lumens per Cluster Lumens (MNLC)

Average Number of In this block image, MNLC=6;
Lumens per Cluster (ANLC) ANLC=(5+6+3)/3=4.67

Epithelial features Average Epithelial layer EDGi = Ae(i)
Aglandi

Density per Gland unit (AEDG) Aei = Area of epithelial layer of ith gland
Standard deviation of Epithelial layer (SEDG) Aglandi = Area of the ith gland

Density per Gland unit
Overall Epithelial layer Density (ED) ED = Ae

Ab

Ae = Total area of the epithelial layer (in pixels)
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2.3.1 Nuclei Features

Nuclei Density, ND

This feature is calculated by taking the ratio of nuclear area to the total area of the
image block. Formally, Nuclei density, ND = An

Ab
, where An = Total area of nuclei

units (in pixels) and Ab = Total area of the block image (in pixels).

Nuclei Entropy, En

This feature is proposed here to capture the randomness of nuclei appearance in

the block image. It is a newly proposed feature in cancer classification. We have

quantified the Entropy of the nuclei pixels as, En = ∑Pn × logPn. Here, Pn is the
spatial histogram of nuclei pixels.

2.3.2 Lumen Features

Lumen Roundness Metric (LRM)

The LRM is a measure of circularity of the lumen shapes. Two features, Average
LRM (ALRM) and Standard deviation of the LRM (SLRM) are extracted from

each of the image blocks to incorporate the shape information in the feature set.
The LRM of ith gland is calculated as, LRMi =

(π×EDi)
Pi

. Here Pi = Perimeter of the

ith lumen and EDi = Equivalent diameter of the ith lumen.

Lumen Cluster

: Clustering of the lumens is a common regional property of prostatic adenocar-
cinoma. Two new features, Maximum Number of Lumens per Cluster (MNLC)

and Average Number of Lumens per Cluster are calculated in each image block to
represent the clustering of lumens in the feature set.

2.3.3 Epithelial Features

Three new features associated with the epithelial layer structure are proposed here.
The malignant regions usually posses a higher epithelial area compared to the nor-
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mal regions. The overall Epithelial Density (ED) is calculated by taking ratio of

epithelial area to total area of the image block, i.e., ED = Ae
Ab

, where Ae = Total
area of the epithelial layer (in pixels). In addition to the overall higher density of

epithelial layers, the individual glands also posses a thicker epithelial layer. The
Epithelial layer Density per Gland unit (EDG) for ith gland in the image block is

calculated as EDGi = Ae(i)
Aglandi

, where Aei = Area of epithelial layer of ith gland and

Aglandi = Area of the ith gland.
These features are tabulated in Table 2.1.

2.4 Classification of Malignant Regions
These features are utilized by the random forest classifier for separating benign and
malignant blocks. The random forest algorithm was developed by Leo Breiman

and Adele Cutler [7]. Random forests are a combination of tree predictors where
each tree depends on the values of a random vector sampled independently with

the same distribution for all trees in the forest. Each tree in the random forest
can be considered as a ‘weak’ learner and in the ensemble they come together to

form a ‘strong’ learner. Single decision trees often have high variance or high bias.
Random forests attempt to mitigate the problems of high variance and high bias by

averaging to find a natural balance between the two extremes. Each tree of random
forest ensemble has been trained by randomly selecting two thirds of the samples

each time with replacement. The remaining samples are used to test the tree and the
mean squared error in classification of all the trees constitutes the out-of-the-bag

classification error. Fig. 2.2 illustrates the plot of the out of the bag classification
error against the number of trees. As the number of trees in the ensemble goes up,

the classification error goes down. As can be observed from the figure, with our
proposed features the out of the bag classification error goes down to 0.04 for 100

trees.
In the random forest classifier model, there are two parameters to be tuned, i)

minimum leaf size and ii) threshold of class probability for the classifier model. We
have determined the optimum value for these parameters by performing a Receiver

Operating Characteristics (ROC) analysis on 50 out of the 70 images of the dataset.
The parameter selection process and the detail cross-validation of the classifier are
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Figure 2.2: Plot of Out-of-the-bag classification error against the number of
grown trees.

described in detail in the results section. The remaining 20 images constitutes test

set and the performance of the proposed technique on the test is obtained by a leave-
25%-out experiment with the tuned model parameters. After the classification, the

detected blocks are grouped together to form a continuous area. Fig. 2.3 illustrates
the result of the first stage of cancer annotation on a sample image. More results

are provided in the results chapter. A finer annotation of the detected regions is
performed in the next step at a higher magnification.

2.5 Conclusion
In this chapter, we presented a cancer annotation approach at the regional level.
With the help of the extracted features from segmented gland units, a random for-

est classifier separates the probable cancerous regions from the benign regions.
The array of regional features proposed here quantify the histopathology changes
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a) b)

Figure 2.3: Performance of the proposed algorithm on a test image. a) Cyan
annotation is performed by pathologist and considered as the ground
truth. b) Result of the screening phase of the proposed technique.

occurring in a cancerous region. Changes in all the tissue components, such as lu-
men, epithelium, and nuclei, are accounted here to generate a unique set of features

that is used for classification using a random forest classifier.
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Chapter 3

Cancer Classification Using
Glandular Features

3.1 Introduction
Glands are the basic building blocks of the prostate. Prostatic adenocarcinoma, the
most common type of prostate cancer i.e., prostatic adenocarcinoma is originate

from the epithelium layer of the glands. Subsequently, the evolution of malignancy
is most evident at the glandular level. Here we focus on the quantification of the

changes that occur in the individual gland units from high resolution images. In this
step, the detected regions from the previous step are further magnified to perform

gland-level analysis. In our experiments, we use whole-mount histology scans at
magnification of 20× with a resolution of 0.5 µm per pixel. The gland units in

the cancer-probable regions are classified based on their individual gland specific
properties. The features exploited here are, 1) Number of Nuclei Layers and 2)

Ratio of Epithelial Layer Area to Lumen Area. To quantify the number of nuclei
layer associated with each gland, the nuclei units are segmented automatically.

Then based on these two features, the benign and malignant glands are separated
and the final annotation consolidating the malignant glands is obtained.
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3.2 Segmentation of the Nuclei Unit
The nucleus is the smallest visible histological component present in a pathology

image. Several techniques for segmenting nuclei [1], [3], [4], [6], [18], [24], [38],
[39] have already been proposed exploiting very high magnification images (40×
or higher). However, automatic segmentation of nuclei from images with lower
magnification is yet to be investigated. Here we employ a modified watershed

algorithm for automatic nuclei segmentation exploiting the foreground and back-
ground object markers.

For the nuclei segmentation, only the ‘R’ channel of the image has been used
since it produces maximum histogram separation between nuclei and non-nuclei

objects. The nuclei objects appear as dark objects in the tissue image. The ‘R’
channel is inverted to make the nuclei units foreground objects for segmentation

(see Fig. 3.1 a). The preprocessing steps before applying the marker controlled
watershed algorithm are the background subtraction and thresholding. The back-

ground of the image is estimated by performing a morphological opening of the
image with a disk shaped structural element of radius 10. The radius is chosen such

that the element cannot fit inside an individual nuclei unit. Therefore, nuclei units
are not affected by the morphological filtering to estimate the background. The

threshold for separating the nuclei units is computed by minimizing the intra-class
variance of the image [32]. The resultant preprocessed image after background

subtraction and thresholding is shown in Fig. 3.1b.

The segmentation function used in this watershed algorithm is the gradient im-
age. But before applying the watershed algorithm, foreground and background

markers need to be computed to reduce over segmentation. To compute the fore-
ground markers, morphological opening and closing by reconstruction is performed

on the preprocessed image (Fig. 3.1b) to create a flat maxima inside each of the
foreground objects which are used as the foreground markers. The watershed ridge

line calculated from the Euclid distance transform of the thresholded binary image
is taken as the background marker (see Fig. 3.1c). After computing the markers,

the final watershed segmentation is performed on the gradient image of the prepro-
cessed input scene. This gradient image is modified by placing regional minima

in the marked pixels of foreground and background objects of the image (see Fig
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c) d)

e) f)

Figure 3.1: a) Input scene: inverted ‘R’ channel of the histopathology image,
b) preprocessed image after background subtraction and thresholding, c)
computed foreground and background markers overlaid on the prepro-
cessed image, d) modified gradient image with regional minima placed
at the foreground and background object markers, e) labeled image of
the segmented nuclei after watershed transform, and f) segmented nu-
clei (marked by green boundary).
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Figure 3.2: a) Graphical illustration of Yang calculation. b) Sample
histopathology scene with a single benign (marked with blue ellipse)
and two malignant gland units (marked with red ellipses). c), d), and
e) illustrate the different appearances of the histograms (Yang) of benign
and malignant glands.

3.1d). These modified regional minima limits the number of segments produced

the watershed segmentation. Fig. 3.1d-e illustrates the final segmentation of the
nuclei units.

3.3 Extraction of Gland-specific Features

3.3.1 Number of Nuclei Layers (NNL)

To determine the number of nuclei layers pertaining to each gland, at first the seg-

mented nuclei objects are paired with the corresponding gland unit that minimizes
the distance between the centroid of the nuclei and the gland lumen boundary. For

each of the combined gland-nuclei object, an ellipse is fit around it. The angular
location of each of the nuclei is evaluated by calculating the angle of the connect-

27



ing line of the gland centroid and corresponding nuclei centroid (see Fig. 3.2a).

Then the feature NNL is evaluated from the histogram Yang of angular locations of
nuclei. Customized bin spacing has been utilized to account for glands of differ-

ent sizes. The bin spacing for the histogram is evaluated as 360◦/Pg, where Pg is
the perimeter of the corresponding ellipse surrounding the gland. Then the NNL

is evaluated by counting the total number of instances where multiple nuclei have
the same angular bin in the histogram and then normalizing it by dividing by Pg.

Mathematically, NNL = 1
Pg
|{n|Yang(n) >= 1}|. Fig. 3.2c-e illustrates the different

nature of histogram, Yang in case of benign and malignant glands. As can be ob-
served from the figure, the benign histogram provides more instances of multiple

nuclei having same angular location.

3.3.2 Ratio of Epithelial Layer area to Lumen Area (REL)

This feature is evaluated by simply taking the ratio of the epithelial layer area to

lumen area of the gland. In case of malignant glands, fast multiplication of cells
lead the epithelial layer to invade more in to gland lumen. As a result, the ratio gets

larger in case of malignant gland units.
After the feature extraction we choose optimum thresholds on the features,

τNNL and τREL for the classification of benign and malignant glands. We classify a

gland (Gi) as benign when the parameters fulfill the following criteria, LabelGi =
{Benign|NNL(Gi) > τNNL ,REL(Gi) < τREL}. These threshold parameters are tuned

by performing a ROC analysis that will be discussed in the following section of the
thesis.

3.4 Consolidation of Glands
The final stage of the algorithm consolidates the malignant glands into continuous
regions. The glands are separated into distinct groups based on their parent region

from the previous step. One approach for the encapsulation of the detected glands
is to generate a convex hull of the gland centroids. Unfortunately, since the true

spatial extent of the prostate cancer rarely forms convex hulls, using such an al-
gorithm will not represent the true extent of the detected regions. As a solution to

this problem we have utilized α-shape approach [11] of generating a continuous
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boundary from a point cloud. In this approach, a continuous area from a point

cloud can be generated by point pairs that can be touched by an empty disc of
radius α . A graphical illustration of the hull generation is presented in Fig. 3.3.

To implement this technique, at first 2-D Delauney [10] triangulation of the points
are obtained. Each edge/triangle of the Delaunay triangulation is associated with

a characteristic radius, the radius of the smallest empty circle containing the edge
or triangle. For a specific radius α , the α-complex of the given set of points is

the complex formed by the set of edges and triangles whose radii are at most α .

The union of the edges and triangles in the α-complex forms the α-shape. Here

we have chosen the radius α = 0.12 mm in the order of a typical size of a malig-

nant gland unit. Fig. 3.4 illustrates the final annotation obtained by the proposed
technique on the sample image demonstrated in the previous chapter.

3.5 Conclusion
This chapter elaborates on the detail of individual gland labeling which include

nuclei segmentation, gland-specific feature extraction, and consolidation technique
for detected malignant glands. Apart from cancer annotation, these gland specific

features have the the potential to diagnose other prostate anomalies too, such at-
rophy and benign prostatic hyperplasia. One limitation of individual gland based

approach is the less frequent Grade 5 cancers. At Grade 5, the individual glands
get raptured and no longer becomes visible as a single gland unit. Therefore, indi-

vidual gland labeling will generate false negative regions. One future improvement
on this technique can be to propose a solution to this problem.
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Figure 3.3: a) Graphical illustration of boundary hull generation by α-shape
approach.
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Figure 3.4: a) Experimental result of the proposed technique after incorpo-
rating the glandular level classification with the regional cancer classi-
fication.
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Chapter 4

Experimental Results

4.1 Dataset
The proposed algorithm has been evaluated on 70 different histopathology images

obtained from 30 radical prostatectomy patients. These whole mount histopathol-
ogy images are digitized at 20× magnification (0.5 µm per pixel) with an Aperio

scanner. Each image was annotated by two pathologists. At first, the images were
marked by a pathologist on the glass slide before digitization. Then, a second

pathologist performed a detailed annotation on the digitized images. The anno-
tations from the second pathologist have been used here as the gold standard to

evaluate the performance of the proposed algorithm.

4.2 Parameter Tuning for Random Forest Classifier
Among the 70 images, 50 have been exploited to develop the random forest clas-
sifier model. The parameters of the random forest classifier, the minimum leaf

size of the tree and the classification threshold have been tuned by performing a
10-fold cross validation for each set of the parameters on the 50 images. For each

leaf parameter in the set Rd flea f = {1,12,23, ...,100} a ROC curve is generated

by varying the threshold Rd fth = {0.20,0.23,0.26, ...,0.80}. Fig. 4.1 illustrates
the the ROC curve obtained for the optimum Rd flea f value. Table III provides

the Area Under the Curve (AUC) for each of the ROC curves. At the optimum
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Figure 4.1: ROC analysis for the parameter tuning of the random forest clas-
sifier. Here the ROC curve with Rd flea f = 12 is shown. At the optimum
operating point the sensitivity Sn = 0.94 and specificity Sp = 0.83.

operating point, the parameters are Rd flea f = 12 and Rd fth = 0.58. At this opti-
mum point the sensitivity is 0.94 and specificity is 0.83. With these parameters,

the remaining 20 images have been tested in a leave-25%-out cross validation ex-
periment. In 50 independent repetitions of the experiment, the algorithm achieved

sensitivity, specificity, and accuracy are 0.88, 0.92, and 0.92, respectively. The
probable malignant regions detected after the random forest classification are then

further classified using their gland specific properties.
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Table 4.1: AUC obtained by our algorithm for different parameter values of
Rd flea f .

Rd flea f 1 12 23 34 45 56 67 78 89 100
AUC 0.90 0.93 0.94 0.92 0.90 0.92 0.88 0.87 0.85 0.80

4.3 Parameter Tuning for Individual Gland
Classification

The performance of the algorithm at the gland level is influenced by the choice of
the parameter values REL and NNL. We tune the parameters by performing a similar

ROC analysis on a set of individually labeled benign and malignant glands. A total
of 4230 labeled glands have been used in this tuning process. The ROC curve of the

classifier is generated by varying the parameter NNL as {0,0.08,0.16, ...,4}. To de-
termine the effect of varying REL on the classifier performance the following oper-

ation has been performed: for each choice of REL in the set REL = {0,0.25, ...,2.5}
the individual ROC curve by varying NNL has been generated. We choose the

thresholds τNNL and τREL corresponding to the optimum operating point in the

ROC curve. In this experiment, we found the thresholds to be τNNL = 2.36 and

τREL = 0.92. At the optimum operating point, the sensitivity and specificity are 0.79

and 0.85, respectively. In each test image, the glands present in the pre-screened
malignant regions are classified using these two parameters. With the gland level

analysis, the sensitivity, specificity, and the accuracy of the proposed technique
reaches 0.88, 0.94, and 0.93, respectively.

4.4 Qualitative Performance Evaluation
For qualitative performance evaluation, we have illustrated four test WM images

from four different patients (see Fig. 4.3- 4.6). The first column represents the WM
images with the pathologist’s annotation (green). The middle column is the inter-

mediate classification result at the 5× resolution (blue) and the third column is the
final annotation after the gland-level analysis (green). A strong agreement between

the final annotation and the pathologist’s annotation corroborates the effectiveness
of the proposed algorithm.
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Figure 4.2: ROC analysis of the individually labeled gland dataset. Here, the
ROC curve for REL = 0.93 is shown. At the optimum operating point
the sensitivity Sn = 0.79 and specificity Sp = 0.85.

4.5 Discussion
The individual gland classification approach is the major novelty of the proposed

approach. When this technique is applied independently without combining with
the regional approach, it can detect other tissue anomalies in the prostate. Most of

the prostate diseases are closely related to the individual gland units and directly
affect gland morphology [21]. Therefore, beyond cancer annotation, this individ-

ual gland labeling can potentially generate a map of abnormality in prostate tissue.
Since, these abnormalities are not reported in current clinical protocol of WM anal-

ysis, a gold standard to compare the performance of the proposed technique could
not be collected. When we perform the individual gland labeling of the whole

mount images, a distribution of the abnormal glands is observed. Apart from de-
tecting malignant glands, the approach detects glands from Prostatic Intraepithelial
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a) b)

c)

Figure 4.3: Performance of the proposed technique on a sample test image
(Case: 1). a) The test image with both pathologists’ annotation overlaid.
The cyan annotation is from the second pathologist and considered as
the ground truth. b) The blue mark is the intermediate annotation after
random forest classification at 5× resolution. c) The green mark is the
final cancer annotation obtained by the proposed technique.The blue
dots represent the detected malignant gland units.

Neoplasia (PIN), seminal vesicle , and prostatic atrophy. Fig. 4.12, illustrates an

example image of applying individual gland classification in WM images. The
enlarged figures illustrates the detected malignant glands, atrophic glands, and pre-

cancerous PIN. Further improvement of this technique to detect only malignant
units can be achieved by identifying basal cell layers that are present in only the

benign units. To identify basal layer, a different chemical staining of the pathol-
ogy images with Glutathione S-Transferase π (GST-π) is required [27]. More test

images with the individual gland segmentation is illustrated in Fig. 4.13- 4.39.

36



a) b)

c)

Figure 4.4: Performance of the proposed technique on a sample test image
(Case: 2). a) The test image with both pathologists’ annotation overlaid.
The cyan annotation is from the second pathologist and considered as
the ground truth. b) The blue mark is the intermediate annotation after
random forest classification at 5× resolution. c) The green mark is the
final cancer annotation obtained by the proposed technique.The blue
dots represent the detected malignant gland units.

The combined classification accuracy obtained by our proposed technique is
the highest among the previously reported techniques on automatic cancer anno-

tation of whole mount slides [26], [29]. Incorporating individual gland based ap-
proach with the region based approach increases the specificity by 2% and accuracy

by 1%.
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a) b)

c)

Figure 4.5: Performance of the proposed technique on a sample test image
(Case: 3). a) The test image with both pathologists’ annotation overlaid.
The cyan annotation is from the second pathologist and considered as
the ground truth. b) The blue mark is the intermediate annotation after
random forest classification at 5× resolution. c) The green mark is the
final cancer annotation obtained by the proposed technique.The blue
dots represent the detected malignant gland units.
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a) b)

c)

Figure 4.6: Performance of the proposed technique on a sample test image
(Case: 4). a) The test image with both pathologists’ annotation overlaid.
The cyan annotation is from the second pathologist and considered as
the ground truth. b) The blue mark is the intermediate annotation after
random forest classification at 5× resolution. c) The green mark is the
final cancer annotation obtained by the proposed technique.The blue
dots represent the detected malignant gland units.
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a) b)

c)

Figure 4.7: Performance of the proposed technique on a sample test image
(Case: 5). a) The test image with both pathologists’ annotation overlaid.
The cyan annotation is from the second pathologist and considered as
the ground truth. b) The blue mark is the intermediate annotation after
random forest classification at 5x resolution. c) The green mark is the
final cancer annotation obtained by the proposed technique.The blue
dots represent the detected malignant gland units.
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a) b)

c)

Figure 4.8: Performance of the proposed technique on a sample test image
(Case: 6). a) The test image with both pathologists’ annotation overlaid.
The cyan annotation is from the second pathologist and considered as
the ground truth. b) The blue mark is the intermediate annotation after
random forest classification at 5x resolution. c) The green mark is the
final cancer annotation obtained by the proposed technique.The blue
dots represent the detected malignant gland units.
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a) b)

c)

Figure 4.9: Performance of the proposed technique on a sample test image
(Case: 7). a) The test image with both pathologists’ annotation overlaid.
The cyan annotation is from the second pathologist and considered as
the ground truth. b) The blue mark is the intermediate annotation after
random forest classification at 5x resolution. c) The green mark is the
final cancer annotation obtained by the proposed technique.The blue
dots represent the detected malignant gland units.
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a) b)

c)

Figure 4.10: Performance of the proposed technique on a sample test image
(Case: 8). a) The test image with both pathologists’ annotation over-
laid. The cyan annotation is from the second pathologist and consid-
ered as the ground truth. b) The blue mark is the intermediate an-
notation after random forest classification at 5x resolution. c) The
green mark is the final cancer annotation obtained by the proposed
technique.The blue dots represent the detected malignant gland units.
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a) b)

c)

Figure 4.11: Performance of the proposed technique on a sample test im-
age (Case: 9). a) The test image with both pathologists’ annotation
overlayed. The cyan annotation is from the second pathologist and
considered as the ground truth. b) The blue mark is the intermediate
annotation after random forest classification at 5x resolution. c) The
green mark is the final cancer annotation obtained by the proposed
technique.The blue dots represent the detected malignant gland units.
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Figure 4.12: Illustration of the individual gland labeling on whole mount im-
ages. Enlarged view of four different types of detected glands, 1).
Atrophy, 2) PIN, 3) Malignant glands, and 4) Seminal vesicle.
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Figure 4.13: Illustration of the individual gland labeling on a sample whole
mount image (Test image:1)
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Figure 4.14: Illustration of the individual gland labeling on a sample whole
mount image (Test image:2)

47



Figure 4.15: Illustration of the individual gland labeling on a sample whole
mount image (Test image:3)
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Figure 4.16: Illustration of the individual gland labeling on a sample whole
mount image (Test image:4)
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Figure 4.17: Illustration of the individual gland labeling on a sample whole
mount image (Test image:5)
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Figure 4.18: Illustration of the individual gland labeling on a sample whole
mount image (Test image:6)
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Figure 4.19: Illustration of the individual gland labeling on a sample whole
mount image (Test image:7)
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Figure 4.20: Illustration of the individual gland labeling on a sample whole
mount image (Test image:8)
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Figure 4.21: Illustration of the individual gland labeling on a sample whole
mount image (Test image:9)
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Figure 4.22: Illustration of the individual gland labeling on a sample whole
mount image (Test image:10)
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Figure 4.23: Illustration of the individual gland labeling on a sample whole
mount image (Test image:11)
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Figure 4.24: Illustration of the individual gland labeling on a sample whole
mount image (Test image:12)
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Figure 4.25: Illustration of the individual gland labeling on a sample whole
mount image (Test image:13)
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Figure 4.26: Illustration of the individual gland labeling on a sample whole
mount image (Test image:14)
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Figure 4.27: Illustration of the individual gland labeling on a sample whole
mount image (Test image:15)
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Figure 4.28: Illustration of the individual gland labeling on a sample whole
mount image (Test image:16)
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Figure 4.29: Illustration of the individual gland labeling on a sample whole
mount image (Test image:17)
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Figure 4.30: Illustration of the individual gland labeling on a sample whole
mount image (Test image:18)
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Figure 4.31: Illustration of the individual gland labeling on a sample whole
mount image (Test image:19)
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Figure 4.32: Illustration of the individual gland labeling on a sample whole
mount image (Test image:20)
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Figure 4.33: Illustration of the individual gland labeling on a sample whole
mount image (Test image:21)
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Figure 4.34: Illustration of the individual gland labeling on a sample whole
mount image (Test image:22)
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Figure 4.35: Illustration of the individual gland labeling on a sample whole
mount image (Test image:23)
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Figure 4.36: Illustration of the individual gland labeling on a sample whole
mount image (Test image:24)
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Figure 4.37: Illustration of the individual gland labeling on a sample whole
mount image (Test image:25)
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Figure 4.38: Illustration of the individual gland labeling on a sample whole
mount image (Test image:26)
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Figure 4.39: Illustration of the individual gland labeling on a sample whole
mount image (Test image:27)
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Chapter 5

Conclusions

5.1 Summary of Contributions
In this thesis, we have proposed a technique for automatic cancer annotation ex-

ploiting both regional and gland-specific properties. Combining these two aspects
of histology, we have been able to achieve the best performance of automatic

prostate cancer annotation. The major contributions of the works are:

1. Gland segmentation: Here, we have implemented an algorithm to automat-
ically segment the gland units. We have employed linear discriminant anal-

ysis for labeling the tissue components associated with the gland units such
as lumen, nuclei, epithelium, and stroma. The application of the linear dis-

criminant analysis provides a faster classification compared to other similar
technique of pixel labeling that uses voronoi tesselation based classification

[30]. The segmentation of the gland units facilitates the extraction of features
associated with it that are used to classify benign and malignant regions.

2. Nuclei Segmentation: We have also proposed a technique for nuclei seg-
mentation using a marker controlled watershed algorithm. To the best of our

knowledge this is the first technique to segment nuclei from images at 20×
magnification. The existing techniques of nuclei segmentation are performed

on 40× or higher magnification [1], [3], [4], [6], [18], [24], [38], [39], .
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3. Quantification of Number of Nuclei Layers: We observed that the number

of nuclei layers is one of the most important features for classification of
individual gland unit. Here, We have proposed an innovative technique for

the quantification of the number of nuclear layers. The number of layers
are quantified by calculating the angular histogram of the nuclei surrounding

each gland. The average of the number of bins in the histogram having mul-
tiple nuclei occurrences represents the Number of Nuclei Layers associated

with the gland.

4. Individual Gland classification: Here, we have presented the first technique

for labeling individual glands in prostate using gland-specific features only.
We have proposed two novel features for labeling individual glands: number

of nuclei layers and ratio of epithelial layer. The application of this individ-
ual gland-based technique will lead to a more sensitive cancer annotation. In

addition to cancer annotation, these gland-specific properties might also be
useful in identifying other prostate anomalies such as atrophy, benign pro-

static hyperplasia, and prostatic intraepithelial neoplasia.

5. Regional feature set: We have also proposed a set of regional tissue features
to detect cancerous regions in WM images. We observed that in the malig-

nant tissue regions the morphology and architecture of the histology compo-
nents i.e., i) lumen, ii) epithelial layer, and iii) nuclei are altered from their

normal condition. Hence we have proposed a set of nine features associated
with these tissue components to capture these morphology and architectural

changes. Among the nine features six of them are newly proposed features.
The high classification accuracy of the random forest classifier corroborates

the effectiveness the of the proposed feature set.

6. Cancer annotation using regional and glandular features: Here we have pre-

sented a two stage algorithm for automatic annotation of prostate cancer
from WM images. The multi-resolution technique presented here is a new

approach for WM cancer annotation. The incorporation of the gland spe-
cific features with that of the regional features achieved the highest accuracy

among the existing techniques for automated cancer annotation from WM
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images.

5.2 Future Work
The proposed research has a number promising research directions in the field of

computational pathology. Future work on this topic may include:

1. The features proposed here can be utilized in future to automatically grade
the prostate cancers. The Gleason grading scheme is based on the tissue ar-

chitecture of the prostate. Since the proposed features captures the architec-

ture and morphology of the tissue, those features can be useful in developing
a computational grading scheme.

2. The proposed individual gland classification technique often include gland

from other prostate anomalies such as atrophy and prostatic intraepithelial
neoplasia. Further improvement of the technique can be achieved to exclude

non-malignant units. One possible improvement can be to identify the basal
layer associated with each benign glands. Since malignant gland units do not

posses a basal layer this criteria can be very effective to detect the malignant
glands. This basal layer identification can be a post processing step after the

proposed individual gland classification algorithm. The detected glands by
the proposed technique can be further classified to detect malignant glands

based on the presence of the basal layer.

3. Another exciting future research on this topic can be to investigate the cor-
relation of the tissue features with the long term disease progression. Recur-

rence of cancer in prostatectomy patients often does not correlate with their
gleason score. Therefore a better indicator is required to predict the patient

outcome. Study of the histology features of prostate might be very useful in

this area.

4. The proposed cancer annotation from whole mount images can also be used
to find correlation of cancer in other imaging modalities, such as multipara-

metric ultrasound and multiparametric MRI.
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