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Abstract

Deep brain stimulation (DBS) is an established therapy for treating patients with movement 

disorders such as Parkinson’s disease. Patient-specific computational modelling and visualisation 

have been shown to play a key role in surgical and therapeutic decisions for DBS. The 

computational models use brain imaging, such as magnetic resonance (MR) and computed 

tomography (CT), to determine the DBS electrode positions within the patient’s head. The finite 

resolution of brain imaging, however, introduces uncertainty in electrode positions. The DBS 

stimulation settings for optimal patient response are sensitive to the relative positioning of DBS 

electrodes to a specific neural substrate (white/grey matter). In our contribution, we study 

positional uncertainty in the DBS electrodes for imaging with finite resolution. In a three-step 

approach, we first derive a closed-form mathematical model characterising the geometry of the 

DBS electrodes. Second, we devise a statistical framework for quantifying the uncertainty in the 

positional attributes of the DBS electrodes, namely the direction of longitudinal axis and the 

contact-centre positions at subvoxel levels. The statistical framework leverages the analytical 

model derived in step one and a Bayesian probabilistic model for uncertainty quantification. 

Finally, the uncertainty in contact-centre positions is interactively visualised through volume 

rendering and isosurfacing techniques. We demonstrate the efficacy of our contribution through 

experiments on synthetic and real datasets. We show that the spatial variations in true electrode 

positions are significant for finite resolution imaging, and interactive visualisation can be 

instrumental in exploring probabilistic positional variations in the DBS lead.
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1 Introduction

Biomedical imaging has become an integral part of clinical applications for analysing 

patient-specific anatomical structures. Imaging is processed through complex visualisation 
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models for making data more comprehensible. The quality of input images has a direct 

impact on the final visualisation, and hence, clinical decisions. In the domain of deep brain 

stimulation (DBS), Saleh et al. (2016) studied several imaging modalities, such as 

ultrasound imaging, intra-operative X-ray, intra-operative 3D X-ray, Medtronic O-arm, intra-

operative MRI, and CT. In their work, computed tomography (CT) has been shown to be the 

safest and most accurate imaging technique to date in post-operative DBS.

Uncertainty is inherent to magnetic resonance (MR) and CT images because of the 

resolution limits that are dictated by the scanner, the length of time that the patient can 

remain still in the scanner (for MR), and the allowable radiation dose (for CT). Hence, most 

clinical imaging is a trade-off between acquisition time and resolution. Finite-resolution 

imaging can result in uncertainty in DBS electrode positions, but the uncertainty has never 

been quantified in a rigorous way. In our work, we address the issue of quantification and 

visualisation of uncertainty in DBS electrode positions arising from finite image resolution 

in Parkinsonian subjects.

DBS is a neuromodulation therapy that has shown promise in treating patients with 

intractable Parkinson’s disease (PD). An electric field is applied to neural structures by 

implanting the DBS lead in the patient’s brain. The neural response to the stimulation is 

highly sensitive to the electrode location and the stimulation settings (voltage, pulse width, 

and frequency) for the electrode contacts (Butson et al. 2007). Figure 2(a) depicts a 

schematic for the Medtronic 3387 human DBS lead with the four electrodes/contacts, as 

shown in Chaturvedi et al. (2010); Schmidt et al. (2012). The spatial extent of neural 

activation, otherwise known as the volume of tissue activated (VTA) (Butson et al. 2007), 

depends on the position of the contacts, the stimulation protocol, and the surrounding tissue 

structure. VTA influences the patient response to DBS.

DBS computational models of varying complexities play a key role in real-time estimation 

of VTA, and hence, the exploration of DBS stimulation effects (Chaturvedi et al. Gunalan et 

al. (2018) compared the state-of-the-art computational models for studying DBS stimulation 

effects. Specifically, the comparisons included the field-cable (FC), driving force (DF), and 

VTA models. The FC and DF models were shown to have lower computational errors but 

higher computational complexity than the VTA models. Clinical decision-making is so far 

not only dependent on modelling approaches but also can be enhanced, especially with the 

introduction of directional electrodes. Directional electrodes facilitate more control over 

VTA through novel electrode designs, such as segmented and multi-contact electrodes 

(Steigerwald et al. 2016). Reinacher et al. (2017) advocated 3D rotational fluoroscopy for 

determining the directions of electrode segments in implanted DBS leads.

Figure 1 depicts the patient-specific DBS modelling pipeline (Butson et al. 2007). Brain 

imaging for PD patients plays a vital role in pre-surgical and post-surgical decisions for DBS 

modelling. Initially, pre-operative MRI volumes are used for surgical planning prior to 

implantation of the DBS lead. The surgical plan specifies an entry point, trajectory, and 

depth of the lead for each individual patient. However, several factors during electrode 

implantation introduce uncertainty in frame-based stereotactic coordinates of the position of 

the DBS electrode relative to pre-operative imaging (Halpern et al. 2008; Khan et al. 2008). 
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The actual electrode positions are usually studied through acquisition of a post-operative CT 

scan. The post-operative CT/MR image is registered with a pre-operative MR image to study 

the positions of the DBS electrodes with respect to brain nuclei. Furthermore, the registered 

CT and MR images can be instrumental in quantifying differences between the planned and 

the actual electrode trajectory. The positions of the DBS lead contacts, the surrounding 

tissue structure, the proximity of neural nuclei, and the application of electric field are key to 

accurate quantification of stimulation effects using FC/DF/VTA models.

Post-operative imaging with finite resolution, however, limits our ability to identify exact 

electrode coordinates. The limited information about electrode coordinates often defeats the 

purpose of post-operative imaging since post-operative acquisitions are used to quantify the 

deviation of actual electrode positions from the planned positions in pre-operative imaging 

space. Moreover, the uncertainty in electrode positions diminishes our knowledge regarding 

nearby tissue structures. The material properties of the brain tissue surrounding the DBS 

electrodes play a critical role in estimating the spatial extent of neuron activation. Butson et 

al. (2006) showed that the electrode impedance has a substantial effect on the VTA, in which 

the electrode impedance is determined by several parameters, such as conductivity of the 

brain tissue and the encapsulation layer around the electrode contact. Schmidt et al. (2012) 

studied probabilistic variations in VTA caused by uncertainty in conductivity and 

permittivity of the brain tissue surrounding DBS electrodes. Thus, the lack of knowledge 

about nearby structures expands the DBS stimulation settings search space for getting 

optimal patient response, thereby making exploration of optimal stimulation settings time 

consuming.

In this paper, we propose a statistical model for characterising uncertainties in DBS 

electrode positions based on imaging resolution. The model takes into account electrode 

trajectory and inter-slice distance for a post-operative CT scan to compute the probabilistic 

spread of DBS electrodes. The visualisation of probabilistic variations in electrode positions 

gives insight into contact spread in physical space (millimetres) at different confidence 

levels. Additionally, the visualisation with respect to neural structures can be helpful in 

understanding the probabilistic overlap of the DBS electrodes with neural structures.

The problem of accurate DBS electrode localisation from post-operative DBS CT imaging is 

an active research field because of its significance in clinical decisions. Using correlated tri-

planar displays for axial, sagittal, and coronal views is a standard way for gaining insight 

into DBS electrode positions. Hemm, Coste and Gabrillargues et al. (2009) deduced DBS 

electrode positions from the limits of lateral black artefacts in post-operative CT, the size of 

contacts and the inter-contact distance. Horn and Kuhn (2015) proposed a linear DBS 

electrode reconstruction model (TRAC) for reconstruction of an electrode trajectory. TRAC 
performs online processing of centroids of contact artefacts on axial slices in synergy with a 

linear regression model. In the contact reconstruction tool (CORE), a post-operative DBS 

CT scan is resampled parallel and orthogonal to the estimated lead trajectory for 

reconstructing the lead contact positions. For a linear electrode assumption, we propose a 

strategy for quantifying positional uncertainty in electrode reconstruction in contrast to 

approaches for a single electrode reconstruction (Sections 3.2 and 3.3). Husch et al. (2017) 

recently expanded linear DBS electrode models to take into account more realistic curved 
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models by employing curve-fitting algorithms. In the DBS surgery, the electrocorticography 

(ECoG) electrodes offer an opportunity to record cortical activity. Randazzo et al. (2016) 

proposed an ECoG electrode localisation strategy to recover missing depth information 

regarding electrodes in their fluoroscopic imaging.

The visualisation of DBS electrode reconstruction gives insight into the most probable 

electrode position, but keeps the end user oblivious to information about positional 

variations in the reconstructed DBS position. In our work, we address the challenge of 

visualisation of positional uncertainty in the DBS electrode. Confidence in positional error 

in the DBS electrode target resulting from the stereotactic process is crucial to 

neurosurgeons (Maciunas et al. 1994). Broadly speaking, the quantification and visualisation 

of uncertainty has become an important research challenge across all disciplines (Johnson 

and Sanderson 2003; Johnson 2004; Spiegelhalter et al. 2011). The uncertainties in a 

visualisation are attributed to algorithmic or hardware limitations as data is churned through 

several stages of the visualisation pipeline, such as the finite number of quantisation levels 

for data acquisition, the amplitude of data noise, the choice of computational model, and the 

rendering method (Pang et al. 1997; Brodlie et al. 2012). We study positional errors in DBS 

electrodes arising from a finite number of quantisation levels in the data acquisition phase.

Empirical evidence and statistical models are fundamental to quantifying algorithmic and 

data uncertainty. Maciunas et al. (1994) empirically derived the error in the electrode target 

arising from uncertain parameters relevant to the mechanics of the stereotactic process to be 

2.28 mm with 99.9% confidence. In the context of visualisation, noise in data is often 

characterised by parametric and nonparametric statistical models to understand positional 

variations in level sets and direct volume rendering (Pöthkow et al. 2011; Athawale and 

Entezari, 2013; Pöthkow and Hege 2013; Athawale et al. 2015; Sakhaee and Entezari 2016; 

Hazarika et al. 2017; Athawale and Johnson 2019). In our work, we propose a statistical 

framework for predicting uncertainty in the parameters of DBS electrode reconstruction, 

specifically electrode trajectory and contact-centre positions. We apply a Bayesian statistical 

model to estimate the parameter distribution and integrate parameter uncertainty into 

visualisation.

Bayesian statistics plays an important role in decision support systems for medical diagnosis 

(Zuk 2008). A decision support system relies on observational evidence. The complex 

parameter space can lead to several possibilities and therefore reduce the cognitive 

transparency of an optimal decision. Visualisation of a posteriori probability can allow 

physicians to make quick and effective decisions. Vanlier et al. (2012) visualised the a 

posteriori probability of parameters of biochemical networks by combining colour maps 

with distribution plots. In the context of image processing, the inverse problem of image 

restoration from noisy or incomplete data is generally ill posed. The Bayesian paradigm 

plays a key role in the restoration of noisy and low-resolution images (Liu 2011). We 

quantify positional variations in DBS lead contacts by applying a Bayesian statistical model 

to a post-operative DBS CT scan. The uncertainties in electrode positions are visualised for 

efficient interpretation of the derived statistics.
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A considerable body of literature addresses the challenge of visualising uncertainty in data 

(Pang et al. 1997; Bonneau et al. 2014). Colour mapping (Rhodes et al. 2003), point 

displacement (Grigoryan and Rheingans 2002, 2004), contour boxplots (Whitaker et al. 

2013) and surface boxplots (Genton et al. 2014) are a few of the techniques for exploring 

uncertainty in complex datasets. In the point displacement technique, points on an isosurface 

are moved in a normal direction to indicate spatial variations in an isosurface. The contour 

boxplots and surface boxplots techniques identify representative isosurfaces for uncertain 

data by taking advantage of the concept of functional data depth (Löpez-Pintado and Romo 

2009). For example, the median isosurface has the highest functional data depth, and 

therefore, denotes the most likely isosurface for uncertain data. Quartiles of the data depth 

denote uncertainty in the median isosurface. In the context of DBS electrode reconstruction, 

Husch et al. (2017) visualised positional variations in DBS electrode reconstruction with 

boxplots. In the presented work, we interactively visualise positional uncertainty in DBS 

contacts through volume rendering and isosurfacing a probability density volume that 

characterises spatial variations in the DBS lead. The volume of spatial probability 

distribution is derived through a Bayesian statistical model.

2 Problem description

The finite resolution of post-operative CT imaging limits our understanding of true DBS 

electrode positions. Figure 2 illustrates the problem of positional uncertainty in DBS 

electrodes for CT imaging with finite resolution. In Figure 2(b), the red isosurface is 

reconstructed from a micro-CT scan of a Medtronic DBS electrode 3387 (Figure 2(a)) with 

the imaging resolution 0.033 × 0.033 × 0.033 mm3. The high-resolution micro-CT volume is 

considered the gold standard. The horizontal slices superimposed on top of the red 

isosurface illustrate slices of a CT scan of DBS electrodes along the Z direction with an in-

plane resolution of 0.5×0.5 mm2 and an inter-slice distance of 1mm.

We characterise the electrode positions with two parameters, the direction of the longitudinal 

axis for electrodes L and the centres of cylindrical contacts c = {c0, c1, c2, c3}, as shown in 

Figure 2(b). The proposed work assumes a linear DBS electrode model (Horn and Kuhn 

2015), i.e. all contacts are assumed to be collinear. The CT image illustrated in Figure 2 (b) 

captures data on slices in the range 2–10 along the Z direction. For the illustration in Figure 

2(b), the image of a single electrode is captured in voxels of at most two slices, thus missing 

substantial details about the underlying electrode positions. For example, the contact c0 is 

captured on slices two and three. Thus, the accurate predictions regarding the trajectory and 

the position of the contact are difficult to make based on information acquired in only two 

slices. Moreover, data captured on slices is often blurred and noisy due to the partial volume 

effect (Kessler et al. 1984). Mathematically, the partial volume effect is a result of a low-pass 

filter, a point-spread function for scanner, and reconstruction noise (Marta and Szirmay-

Kalos 2012). Maciunas et al. (1994) discuss the importance of fiducial geometry or the 

target being larger than the inter-voxel distance to avoid inaccuracies that might arise from 

subvoxel levels. In our work, we propose a framework for quantifying uncertainty in 

positional parameters, i.e. the direction of the longitudinal axis (L) and the centre positions 

for contacts c at subvoxel levels given sparse imaging data. Mathematically, we propose a 

framework for quantifying Pr(c, L|l), where l denotes a postoperative DBS CT scan.
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3 Methods

In this section, we present a three-step semi-automatic approach for quantifying positional 

uncertainty in DBS electrodes. First, we derive an analytical model for computing the 

physical limits of DBS electrodes given an electrode trajectory L and an electrode geometry, 

e.g. contact length and intercontact distance (Section 3.1). Second, we propose an approach 

that leverages the analytical model derived in step one to quantify a solid angle representing 

directional uncertainty in longitudinal axis L (Section 3.2). Last, we characterise positional 

uncertainties in the contact centres at subvoxel levels for the mean of the solid angle derived 

in step two (Section 3.3) and visualise uncertainties (Section 4).

3.1 Analytical model for computation of contact limits

In this section, we derive a mathematical model for computing the physical limits of 

Medtronic 3387 DBS lead contacts in the principal directions for basis B = {X, Y, Z}. The 

schematic of the Medtronic 3387 DBS electrode geometry, which is similar to the ones 

presented in (Chaturvedi et al. 2010; Schmidt et al. 2012), is depicted in Figure 2(a), and the 

basis B = {X, Y, Z} is shown in Figure 3. The proposed model takes advantage of the 

electrode geometry and electrode direction to compute the physical limits of a contact. In 

Figure 3(a), the tilted cylinder represents contact c0. The centre of the contact c0 is at the 

origin O (not shown in Figure 3 to avoid clutter). We derive a new set of basis N = {L, A1, 

A2} along the electrode trajectory. The computation of basis N facilitates computation of the 

physical limits of lead contacts in basis B. The basis N is depicted in Figure 3(a). L denotes 

the longitudinal axis of a cylindrical contact, A1 denotes the polar axis of a cylindrical 

contact, and A2 is orthogonal to L and A1.

Given L points in a positive octant, we explain the construction of the polar axis A1 and a 

vector A2. A similar construction mechanism is employed for electrode directions in other 

octants. In Figure 3(a), we derive spherical coordinates (a; b; c) for the principal vectors of 

basis N, where the quantities a, b, and c denote magnitude in millimetres, azimuth in 

degrees, and elevation in degrees, respectively. The spherical coordinates of L are (1.5/2; θ; 

ϕ), as depicted in Figure 3(a) and (b).The magnitude is set to the contact length along the 

electrode direction. We construct the polar axis A1 orthogonal to L, where spherical 

coordinates for A1 are (1.27
2 ; θ + 180; 90 − ϕ). The cross product of L and A1 is evaluated to 

obtain A2.The magnitudes of A1 and A2 are set to the length of the radius of cylinder, i.e. 
1.27

2 mm.

The physical limits of the DBS electrode contacts in the principal directions for basis B = 

{X, Y, Z} can be computed by marching along the principal directions for basis N = {L, A1, 

A2}. For simplicity of discussion, we elaborate on a method for computing contact limits in 

the Y direction. A similar approach is employed for computing contact limits in the other 

directions. Consider contact c0 shown in Figure 3(a). Let A represent a linear combination of 

A1 and A2, which has a maximum physical stretch along the Y direction. Let a1Y and a2Y 
denote Y-components of vectors A1 and A2, respectively. Let
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A = t1 ∗ A1 + t2 ∗ A2, (1)

where t1 and t2 represent coefficients of mixing (t1 + t2 = 1). The Y-component of the vector 

A, aY, can be rewritten as t1 * a1Y + t2 * a2Y. We search for the coefficient values t1 and t2 

that maximise the absolute value of the Y-component of A, i.e. aY. |aY| attains the maximum 

value by choosing the coefficient values of 1 and 0 for max(|a1 Y|, |a2Y|) and min(|a1Y|, |

a2Y|), respectively.

Depending upon the sign of a1Y and a2Y, the limits of contact c0 in the Y direction can be 

computed by marching along the principal directions for basis N. For example, if |a1Y| > |

a2Y|, we find two new vectors, aylow and ayhigh:

If a1Y > a2Y,

aylow = O − L − A1 (2)

ayhigh = O + L + A1 (3)

If a1Y < a2Y,

aylow = O − L + A1 (4)

ayhigh = O + L − A1 (5)

The Y-component of aylow represents the lowest point physical stretch, whereas the Y-

component of ayhigh represents the highest point of physical stretch along the Y direction for 

contact c0. A similar analysis is applied to find the physical limits of contact c0 in the X and 

Z directions. The spatial limits of the remaining three contacts can be computed by adding 

multiples of 2 * L to the physical limits for contact c0 since the inter-contact distance is 2 * 

L along the electrode trajectory, and contacts are assumed to be collinear.

3.2 Quantification of longitudinal uncertainty

We devise a technique for estimating a solid angle that represents longitudinal uncertainty in 

the DBS lead for post-operative imaging. The method exploits an analytical formulation 

proposed in Section 3.1 for quantifying longitudinal uncertainty. We describe our approach 

through an experiment on a synthetic dataset. First, we elaborate on parameters for 

generating synthetic datasets.
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3.2.1 Parameter settings for creating synthetic datasets—A random vector 

corresponding to the longitudinal axis (L) direction is sampled with elevation θ ∈ [0, 45] 

and azimuth θ ∈ [0, 360]. A high-resolution micro-CT scan of vertically oriented DBS 

electrodes is rotated along the sampled direction. The red isosurface shown in Figure 4 

represents an isosurface reconstruction from a rotated micro-CT and is treated as the 

reference isosurface for direction L.

A rotated high-resolution micro-CT image is clipped to create a bounding box around the 

reference isosurface. The bounding box is padded with zeros along each dimension on both 

sides with a user’s choice of thickness [a * Dx, b * Dy, c * Dz] mm, where a, b, c are positive 

integers and [Dx, Dy, Dz] denote the subsampling rate in millimetres. The resulting volume 

is down-sampled with an offset [Ox, Oy, Oz], the sub-sampling rate [Dx, Dy, Dz], and a 

Gaussian filter with a user’s choice of support to create a test image. The Gaussian filter 

simulates the partial volume effect and a reconstruction noise in CT scans. The positions of 

the four contacts can be computed analytically in the high-resolution image space. For 

example, if cy represents the physical stretch of a contact computed analytically (Section 

3.1), the centre of contact c0 is located at a distance of b ∗ Dy +
cy
2  mm from the far left.

We illustrate our approach for creating a synthetic dataset in Figure 4, in which the bounding 

box around the isosurface is shown by the inner rectangle. The bounding box is padded with 

Dy and Dz millimetres along directions Y and Z. The padding is represented by the outer 

rectangle. The first dotted line from the left depicts the first slice taken along the Y direction 

at an offset Oy mm. The intensity value at the offset Oy is computed by centring a kernel of 

support Dy and performing a weighted average. The same process is repeated for computing 

the intensity values for successive slices. In Figure 4, the centre of the contact c0 is located at 

a distance of Dy +
cy
2  from the far left along the Y direction.

3.2.2. An algorithm for quantifying longitudinal uncertainty—Algorithm 1 
Trajectory Estimation

1: functionMOSTPROBABLEDIRECTION([Bx, By, Bz])

2: O an octant for direction of the electrode
3: n numberofMonteCarlosamples
4: o[1..n] uniformlysamplendirectionsfromtheoctantO
5: for i = 1 tondo
6: [Ax, Ay, Az] physical stretch of the four contacts computed analytically (Section 3.1)

7: dist i = [Ax, Ay, Az] – [Bx, By, Bz]

8: endfor
9: L o[getindex(min(dist))]
10: returnL
11 end function

Having created a synthetic dataset, we propose a technique for estimating angular 

uncertainty in longitudinal axis L. First, we quantify the approximate physical stretch of the 
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four contacts from a synthetic image through observation. This is a manual step. For 

estimating an approximate physical stretch of the electrode, an isosurface is reconstructed 

from a synthetic dataset that represents the four blobs corresponding to the four contacts, as 

shown in Figure 5(a). We handpick two isovalues that represent the fattest isosurface and the 

thinnest isosurface for the four contacts. These isosurfaces allow us to estimate uncertainty 

in the physical boundaries for the four contacts in the X, Y, and Z directions by choosing two 

sets of imaging planes that contain these isosurfaces. For example, the red and the blue 

boundaries in Figure 5(a) denote inner and outer sets of imaging planes, respectively. The 

approximate physical stretch for isosurfaces is estimated though a number of imaging planes 

falling between boundary imaging planes and the inter-slice distance. For example, if nx is 

the number of imaging planes in the X direction within boundary imaging planes (red 

boundary in Figure 5(a)), then B1x = (nx − 1)*Dx, where Dx is the inter-slice distance. 

Assuming that the minimum and maximum spatial spreads of the four contacts are [B1x, 

B1y, B1z] and [B2x, B2y, B2z], respectively, there are eight combinations of bounding 

boundaries representing uncertainty in the physical spread of the four contacts.

Next, we match the physical stretch of the four contacts, computed analytically (Section 

3.1), with each of the eight bounding boundaries estimated from the image. Note that, in 

Section 3.1, we show a proof for computing the physical limits of a single contact. The same 

approach can be expanded to compute the physical limits of the four contacts in a given 

direction. Let [B2x, B1y, B1z] represent one of the eight bounding boundaries estimated 

from the image. The DBS lead trajectory for the electrodes is estimated by applying 

algorithm 5 to a bounding box [B2x, B1y, B1z]. In the proposed algorithm, an octant 

containing the electrode trajectory is initially identified by applying a line fitting algorithm 

to centroids of the contact artefacts along the Z direction. This approach is similar to the 

TRAC tool proposed by Horn and Kuhn for trajectory reconstruction (Horn and Kühn 2015).

The electrode trajectories are uniformly sampled from an octant in which the electrode 

resides. For each sampled direction, the physical stretch of the four contacts is computed 

analytically, and the analytical bounds are denoted by [Ax, Ay, Az]. The direction with the 

minimum value of ||[Ax, Ay, Az] − [B2x, B1y, B1z]|| is chosen as the most likely direction for 

the lead when the physical stretch of contacts is assumed to be [B2x, B1y, B1z]. We get eight 

most likely direction estimates corresponding to eight sets of bounding image planes 

representing uncertainty in the physical stretch. For each direction, the spherical coordinates 

are computed. The grey patches shown in Figure 5(b) represent a solid angle evaluated by 

choosing minimum and maximum values of the azimuth and elevation among eight 

estimated directions. In Figure 5(b), the green line denotes the true DBS lead trajectory for 

the synthetic dataset, and it lies within the solid angle representing the longitudinal 

uncertainty in our experiments.

We validate our approach for uncertainty quantification in longitudinal axis L on 10 

synthetic datasets. A synthetic dataset is generated for a trajectory randomly sampled from 

elevation ϕ ∈ [0, 45]degrees and azimuth 𝜃 ∈ [0, 360]degrees following the method 

described in Section 2.2.1. For each synthetic dataset, the offsets are sampled randomly, the 

subsampling rate is 0.45×0.45×1 mm3, and a smoothing kernel is Gaussian with support 

1×1×1 mm3. The approximate physical limits are estimated for each dataset through 
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isosurfacing and estimating inner and outer bounding imaging planes representing 

uncertainty in the physical boundaries of the four electrodes. The variation is about one or 

two image planes on physical boundaries along each dimension in all datasets for the 

specified subsampling rate. Algorithm 5 is then run on each of the eight possible boundaries 

to estimate eight directions that carve a solid angle representing longitudinal uncertainty. In 

all 10 datasets, the true trajectory is contained within the solid angle, and the mean of 

uncertain directions lies within the angle of seven degrees from the true trajectories for the 

synthetic datasets. The mean trajectory is considered as the expected direction for DBS 

electrodes and is used for studying positional uncertainties at subvoxel levels in Section 3.3.

3.3 Quantification of positional uncertainties at subvoxel levels

Having computed longitudinal uncertainty, we characterise positional uncertainties in DBS 

electrodes at subvoxel levels and visualise them. Let G(c, L) represent the gold standard 

(high-resolution) image with contact-centre positions and contact direction specified by 

parameters c and L, respectively. According to Bayesian statistics, the posterior probability 

distribution is directly proportional to the product of the prior distribution (π) and the 

parameter likelihood (ψ). Mathematically,

Pr(c, L I)απ(c, L) ⋅ ψ(I; f (G(c, L)))

We define the likelihood function ψ to be a comparison measure between the observed DBS 

imaging data (/) and a blurred version of the groundtruth image f(G(c, L)). In the 

groundtruth image, G(c, L), the contact positions are computed in closed form using the 

model described in Section 2.1. The blurring function f represents the subsampled version of 

the gold standard image G(c, L). The blurring function simulates the partial volume effect 

and reconstruction noise in real-world CT scans. The closer the blurred version of the 

groundtruth image G(c, L) to an observed image /, the higher is the likelihood associated 

with analytically computed parameters c and L for the groundtruth image.

Figure 6 summarises our approach for computing uncertainty in contact-centre positions at 

subvoxel levels. We now elaborate on each step shown in Figure 6. Let L denote the mean of 

a solid angle representing longitudinal uncertainty (3.2.2). Initially, a micro-CT of DBS lead 

is oriented along the direction L and is treated as the groundtruth image, G(c, L). The 

likelihood values at subvoxel levels are estimated by Monte Carlo sampling the blurring 

function f and evaluating ψ(I; f (G(c, L)). A Monte Carlo sample of the blurring function f is 

drawn by following the same process for creating synthetic datasets (Section 3.2.1). For 

example, Figure 4 illustrates a Monte Carlo sample at an offset Oy along the Y direction. In 

Figure 4, the first slice is taken at Oy mm, and all successive slices are taken at a multiple of 

subsampling rate Dy mm. Let cy represent the physical stretch of contact along the Y 
direction computed analytically using the closed-form model described in 2.1. The centre of 

contact c0 is located at distance Dy +
cy
2 − Oy from the first slice. Thus, we model subvoxel 

positions by sampling offsets [Ox, Oy, Oz] at a resolution higher than the subsampling rate 

[Dx, Dy, Dz] for each Monte Carlo sample.
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The Monte Carlo sample is compared with observed imaging data to estimate the likelihood 

ψ(I; f (G(c, L))), and the likelihood value is assigned to a closed-form contact-centre position 

associated with a Monte Carlo sample. In our work, we utilise an image-gradient based 

approach to compute the likelihood function ψ(I; f (G(c, L))). Specifically, for a CT scan of 

DBS electrode contacts, the image gradient is relatively high close to centres of cylindrical 

contacts, and the gradient recedes as we move away from contact centres along radial 

directions in the imaging space. The likelihood function ψ(I; f (G(c, L))) is evaluated by 

computing the structural similarity index SSIM (Wang et al. 2004) between the gradient 

fields for images I and f (G(c, L):

ψ(I; f (G(c, L)) = SSIM(∇I, ∇ f (G(c, L)), (6)

In the proposed framework, we do not assume any prior knowledge about contact-centre 

positions at subvoxel levels. Therefore, we model the prior density π(c, L) with a uniform 

distribution. We, therefore, interpret the normalised likelihood function as a posterior 

probability distribution Pr(c, L | I).

4 Results and discussion

We demonstrate the effectiveness of the presented methods through experiments on 2D and 

3D synthetic datasets and the real dataset. All code for this project is implemented in 

MATLAB. The resulting images are visualised in ParaView (Ahrens et al. 2005). In the first 

experiment, the statistical framework for quantifying subvoxel level uncertainties (Section 

3.3) is validated through results on a synthetically generated 2D Gaussian dataset. The 

results are visualised in Figure 7. The gradient for the Gaussian function is relatively high 

near its mean but falls off as we move away from the mean towards the boundaries. The 

groundtruth image for the experiment is created by sampling a 2D Gaussian field on a high-

resolution grid with the mean [0, 0], the variance of 5 mm2 along each dimension, and the 

covariance of 0.3 mm2, as depicted in Figure 7(a) with the grey map. The groundtruth image 

is subsampled by following an approach for generating synthetic datasets (Section 3.2.1). 

The subsampling is performed starting at an offset position [Ox, Oy] = [−10, −10] mm and 

the subsampling rate [0.5, 1] mm. The resulting image is visualised in Figure 7(b) and is 

treated as the test image. The width of the test image is half its height because of the 

subsampling rate. Having created the test image, we derive uncertainties at subvoxel 

positions for the test image using the statistical framework proposed in Section 3.3.

In the first step, Monte Carlo samples are drawn from the groundtruth image. Each Monte 

Carlo sample represents a subsampled version of the groundtruth image. As a pre-processing 

step for subsampling, the grondtruth image is padded with zeros along the X and Y 
directions for the length of [10 * Dx, 10 * Dy] mm on both sides. The padded image is 

shown in Figure 7(c). The Monte Carlo samples are drawn by sampling offset values [Ox, 
Oy] in the range [−10 − 3 * Dx, −10 + 3 * Dx] mm and [−10 − 3 * Dy, −10 + 3 * Dy] mm at a 

finer resolution of [0.1, 0.1] mm in the padded groundtruth image space (Figure 7(c)). The 

results for the specified offset ranges are visualised in Figure 7(d, e, and f).
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Each Monte Carlo sample is compared with the test image (Figure 7(b)) using Equation (6), 

and the likelihood estimate is assigned to the offset position associated with the sample. The 

SSIM index is anticipated to be relatively high for samples with the offset positions closer to 

[Ox, Oy] = [−10, −10]mm. The results visualised in Figure 7(d, e, and f)) confirm what we 

had anticipated. The SSIM index is relatively high when offset [Ox,Oy] is close to [−10, 

−10]mm for all three images. The range of the sampled offsets for the results shown in 

Figure 7 (e) and in Figure 7(f) are are the same as for the offset range shown in Figure 7(d). 

The drop in the SSIM values is sharp when contrast and structural similarity parameter 

values associated with the SSIM index are large.

We design the second experiment on a 3D synthetic dataset for visualisation of uncertainty 

in DBS electrode positions, as shown in Figure 8. First, a test dataset is generated for a 

random electrode trajectory, fixed offset values, the subsampling rate of 0.45×0.45×1 mm3, 

and a Gaussian kernel of width 1×1×1 mm3. The subsampling method described in Section 

is applied to a high-resolution micro-CT scan of DBS electrodes oriented along a sampled 

trajectory for creating the test image. Having created a test image, we quantify and visualise 

positional uncertainties in the DBS electrodes. First, a solid angle indicating longitudinal 

uncertainty in DBS electrodes is derived by applying the algorithm proposed in Section 

3.2.2 to the synthetic dataset. The solid angle is represented in Figure 5(b). The mean of the 

solid angle is considered as the expected direction of the electrodes.

The positional uncertainties at subvoxel positions are derived for the test image (Section 3.3) 

assuming that the DBS electrodes are oriented along the mean of uncertain trajectories. First, 

a micro-CT of DBS electrodes is rotated along the mean of uncertain trajectories. The image 

is padded with a fixed number of zero planes on both sides. Monte Carlo samples 

representing uncertainty in the offsets are drawn by sampling the offsets at the subvoxel 

sampling rate of 0.2×0.2×0.2 mm3 and a Gaussian kernel of width 1×1×1 mm3. The SSIM 
index values are derived through image comparison between Monte Carlo samples and the 

test image using Equation (6). The SSIM values are assigned to analytically computed 

contact-centre positions associated with each Monte Carlo sample. Higher index values 

imply a higher likelihood for contact-centre positions and vice versa. We also record the true 

contact-centre positions for the test image.

The SSIM values for Monte Carlo samples representing subvoxel positions are visualised in 

Figure 8, in which the left column visualises volume rendering of relative SSIM values. In 

the transfer function for volume rendering, higher opacities are mapped to higher probability 

regions and vice versa. The spheres in all sub-images indicate the true contact-centre 

positions for the test image. In the middle and the right columns, isosurfaces are rendered for 

the relative likelihood values 0.9 and 0.95, respectively. The grey lines in the isosurface 

images depict the expected direction of electrodes. The volume and isosurface visualisations 

enable us to gain insight into the probabilistic spread of contact-centre positions.

Through interactive 3D visualisation, we verify that the true contact-centre positions reside 

close to those with relatively high probability. The interactive visualisation is presented 

through multiple views in Figure 8. Each row shows volume rendering and isosurfaces for a 

fixed view point and zoom-in levels. In all three viewpoints, spherical glyphs representing 

Athawale et al. Page 12

Comput Methods Biomech Biomed Eng Imaging Vis. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



true contact centres are close to regions of relatively highcontact-centre likelihood/SSIM 
index, which proves the correctness of the approach for deriving positional uncertainties. 

The probability distribution over contact-centre positions allows us to compute the expected 

position and standard deviation from the expected position. The standard deviations for the 

isosurfaces with relative likelihood values 0.9 and 0.95 are 0.38mm and 0.28mm, 

respectively.

In the last experiment, Figure 9 visualises a result for the real dataset similar to one for the 

3D synthetic dataset. We acquired access to the real dataset from the International 

Neuromodulation Registry at the University of Utah. The positional uncertainties in DBS 

electrode centres are studied for a post-operative CT scan of a bilaterally implanted DBS PD 

subject with an imaging resolution of 0.45×0.45×1 mm3. Figure 9 visualises uncertainty in 

contact-centre positions at subvoxel levels for the same subject. Monte Carlo samples 

representing subvoxel positions are drawn by down-sampling a micro-CT rotated along the 

expected direction (3.2.2) with a subsampling rate 0.45×0.45×1 mm3 and offset sampling of 

0.2×0.2×0.2 mm3. The groundtruth is smoothed with the Gaussian kernel of width 3×3×3 

mm3 before subsampling. The likelihood values are estimated by comparing Monte Carlo 

samples with observed data using Equation (6) and visualised in Figure 9. The empirically 

computed spatial standard deviations of isosurfaces for the relative likelihood values 0.9 and 

0.95 from the mean centre position are 0.71 mm and 0.48 mm, respectively.

The proposed approach for computing spatial distribution of contact centres is sensitive to 

the choice of kernel, the kernel width, and the parameters of SSIM index, specifically, the 

exponent values for contrast and structure parameters. The choice of a kernel width smaller 

than the true kernel width can result in visualisation artefacts showing discontinuities in the 

probability distribution. For example, consider the result shown in Figure 10 demonstrating 

the sensitivity of spatial density estimates to the kernel width. The results are shown for the 

real dataset experiment in Figure 9. As the kernel support is increased from 2×2×2 mm3 to 

3×3×3 mm3, the visualisation result gets smoother. Intuitively, the positional distribution for 

contact centres should be smoother and gradually decreasing as we move away from the 

most probable contact-centre positions. We observe relatively smooth behaviour in density 

estimates when the kernel width is 3×3×3 mm3. In all sub-images of Figure 10, however, the 

regions of contact centres with relatively high probabilities are consistently recovered 

throughout.

Regarding the choice of contrast and structure parameters of the SSIM index, very high 

values of indices can result in overfitting of the probability estimation to local imaging 

details. However, small values of contrast and structure parameters can result in the 

overestimation of probabilities at spatial positions where contact centres have a low 

probability of existence. These two cases are evident from the results shown on a 2D 

synthetic dataset in Figure 7(d and f). Therefore, for all experiments, we choose contrast and 

structure parameter values as 5 and 5, respectively. A sample result for 2D synthetic dataset 

is shown in Figure 7(e).
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5 Conclusion and future work

We study the problem of positional uncertainty in the DBS electrodes for post-operative CT 

imaging with finite resolution. We propose a framework for quantifying longitudinal and 

subvoxel level variations in DBS lead contacts by taking advantage of analytical 

characterisation of DBS lead geometry. The statistics representing positional variations can 

be efficiently interpreted through interactive visualisation techniques, such as volume 

rendering and isosurfaces. We show that the uncertainty in electrode positions is significant 

for finite-resolution imaging and should be incorporated into DBS computational models for 

accurate predictions of DBS effects.

In the future, we plan to propagate positional uncertainties in DBS electrodes into electric 

field simulation for studying variations in the VTA (Butson et al. 2007). We plan to 

incorporate quantification of lead positional uncertainty with the analysis of electrode 

impedance for estimating the extent of neuron activation (Butson et al. 2006; Schmidt et al. 

2012), and hence, improving predictions of the effects of DBS in individual subjects. We 

also plan to derive positional uncertainties for curved electrode models (Husch et al. 2017).
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Figure 1. 
The DBS modelling pipeline: (a) The DBS lead position in the patient brain is planned based 

on the tissue structures studied from pre-operative imaging. For example, the planned lead 

trajectory is depicted with a line coloured in cyan. (b) The DBS lead is implanted along the 

planned trajectory using a stereotactic frame. (c) The actual lead trajectory and the electrode 

positions in the patient brain are captured through post-operative imaging and are illustrated 

using a black line and four orange dots, respectively. (d) Co-registration of the post-operative 

imaging with the pre-operative imaging is instrumental in understanding differences in the 

planned and the actual electrode positions. (e) Several neural structures in the proximity of 

electrodes are illustrated with green, blue, and red boundaries. The sub-thalamic nucleus 

(STN), indicated by a red boundary, is the most common neural target for DBS (Follett et al. 

2010). (f) The electrical field depicted with white arcs is modulated depending upon the 

proximity of neural structures of interest for predicting the optimal patient response.
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Figure 2. 
Positional uncertainty in DBS electrodes for finite-resolution imaging: (a) A schematic for 

Medtronic 3387 DBS lead. The orange regions indicate the four cylindrical electrodes/

contacts. The stimulation settings (voltage, frequency, pulse width) as well as the activation 

state for each of the contacts can be configured independently. For example, the contact c1 is 

active and is depicted in dark orange. The contact diameter is 1.27 mm, the contact length is 

1.5 mm and the inter-contact distance is 1.5 mm. (b) The red isosurface represents an 

isosurface reconstructed from a high-resolution image (0.033×0.033×0.033 mm3) of the 

Medtronic DBS electrode 3387 oriented along direction L. The 11 horizontal slices depict 

slices of a CT scan (a real-world scenario) of DBS electrodes with resolution 0.5×0.5×1 

mm3. The CT scan captures electrode positions on slices in the range 2–10. In this 

illustration, the image of a single electrode is captured in voxels of at most two slices, e.g. 

the contact c0 is captured on slices two and three. The sparse data on slices of CT scan 

introduces uncertainty in the direction of the longitudinal axis L and in the positions of 

contact centres c = [c0, c1;c2, c3] at subvoxel levels.
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Figure 3. 
The reference frames characterising DBS electrode orientation: (a) The inclined cylinder 

represents a DBS lead contact in two reference frames, B = {X, Y, Z} and N = {L, A1;A2}. 

The principal vectors of basis N are specified in spherical coordinates with respect to basis 

B. For example, the elevation of the longitudinal axis L is denoted by 0, The polar axis A1, 

inscribes 90 − ϕ degrees with the positive Z axis. The polar axis A2 is along the cross 

product of vectors L and A1. A is a linear combination of vectors A1 and A2. (b) The 

azimuth of L is θ and is depicted in the top view of the contact orientation shown in 

subfigure a. A2 is perpendicular to a plane containing L, A1, and the positive Z axis.
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Figure 4. 
The visualisation of an approach for creating a low-resolution test image from a high-

resolution image of DBS electrodes: The parameters of a test image are determined by 

longitudinal axis (L), slice thickness (Dy), offset (Oy), and an averaging kernel. The red 

isosurface represents the groundtruth isosurface reconstructed from a high-resolution image 

aligned along L. The first sample of the down-sampled version is taken at the offset Oy mm 

in a high-resolution image. The kernel of width Dy mm is centred at an offset Oy, and a 

weighted average is computed on a high-resolution image to get sample intensities in the 

down-sampled version. The next sample of the down-sampled image is taken at Oy + Dy 

mm, and the same averaging process is repeated. The centre of the contact c0 is located at 

Dy +
cy
2  mm from the far left, where cy denotes a closed-form computation of the physical 

stretch of a contact (Section 3.1).
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Figure 5. 
The quantification of longitudinal uncertainty: (a) An isosurface is reconstructed from a 

synthetic dataset. The approximate spread of the four contacts along the X and Y directions 

is visually determined for the isosurface. The red and blue boxes denote imaging planes of 

an underlying synthetic volume that represent uncertainty in the physical boundaries of the 

four contacts [c0, c1, c2, c3]. (b) The longitudinal uncertainty is quantified by matching the 

bounds derived from the isosurface, as shown in subfigure (a), and the bounds computed 

analytically, as described in Section 3.1. Grey patches denote a solid angle representing 

directional uncertainty, and a green line represents the true trajectory for the synthetic 

dataset.
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Figure 6. 
A schematic depicting a method for estimating uncertainty in contact-centre positions at 

subvoxel levels.
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Figure 7. 
The visualisation of uncertainty at subvoxel positions for a 2D synthetic image: (a) A 

Gaussian function with the mean [0,0] mm, the variance 5mm2, and the covariance 0.3mm2. 

(b) A test image is generated by starting at the offset position [Ox,Oy] = [−10, −10]mm in 

the groundtruth image and a subsampling rate [Dx, Dy] = [0.5,1]mm. (c) The groundtruth 

image is padded with [10 * Dx, 10 * Dy] mm on both sides along the X and Y directions. 

Monte Carlo samples are drawn from the padded image by sampling offsets in the range 

[−10 − 3 * Dx, −10 + 3 * Dx]mm and [−10 − 3 * Dy, −10 + 3 * Dy] mm along the X and Y 
directions, respectively, at the intervals of [0.1,0.1] mm. For each sample, the subsampling 

rate is [Dx, Dy] = [0.5,1] mm. All samples in the specified offset ranges are compared with 

the test image using the SSIM index. The subfigures (d), (e) and (f) visualise a grey map of 

SSIM index values. The true value of the offset for the test image, i.e. [−10, −10]mm, is 
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recovered sufficiently well in all three cases. The first, second, and last parameters of the 

SSIM index indicate intensity, contrast, and structural similarity weights, respectively.
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Figure 8. 
The visualisation of positional uncertainties at subvoxel levels for the synthetic dataset: The 

left column shows the volume rendering of relative likelihood values for contact-centre 

positions. The middle and the right columns visualise isosurfaces for relative likelihood 

values 0.9 and 0.95, respectively. Each row corresponds to a fixed viewpoint and zoom-in 

level. Relative likelihood values are estimated for contact centres c along the mean of 

uncertain trajectories estimated in Section 3.2.2. In the middle and right columns, the mean 

trajectory is depicted by a solid grey line. The spherical glyphs depict the true contact-centre 

positions for the test dataset. In the left column, volume visualisations represent the 

positional distribution of contact centres in which each voxel is assigned the relative 

likelihood value computed using the SSIM index. In the transfer function for volume 

rendering, higher opacity is mapped to higher likelihood ranges and vice versa. The 

empirically computed standard deviations from the mean contact-centre positions for 

isosurfaces with relative likelihood values of 0.9 and 0.95 are 0.38 mm and 0.28 mm, 

respectively. The interactivity of the visualisation enables us to explore the overall shape of 

the likelihood volume as well as the positions of true contact centres with respect to the 

likelihood volume.
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Figure 9. 
The visualisation of positional uncertainties at subvoxel levels for the real dataset: The left 

column shows volume visualisation and the right column shows isosurface visualisations of 

spatial distributions estimated for contact centres c along the mean of uncertain trajectories 

estimated in Section 3.2.2. In the right column, the mean trajectory is represented by a grey 

line. In the left image, the volume visualisation represents the positional distribution of 

contact centres, where each voxel in the volume represents the relative likelihood value 

computed using the SSIM index. In the transfer function for volume rendering, higher 

opacity is mapped to higher likelihood ranges and vice versa. The top right image shows an 

isosurface containing contact centres with a relative likelihood of 0.9 or higher. The bottom 

right image shows a similar visualisation for the relative likelihood of 0.95. The empirically 

computed standard deviations from the mean contact-centre positions for isosurfaces with 

relative likelihood values of 0.9 and 0.95 are 0.71 mm and 0.48 mm, respectively.
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Figure 10. 
The sensitivity of positional uncertainty quantification to the choice of kernel width: All 

images visualise positional uncertainties in contact centres for the real dataset and are 

rendered with the same transfer function. The distribution is discontinuous, giving rise to the 

visualisation artefacts when the choice of kernel width is relatively low. As the kernel width 

is increased from 2×2×2 mm3 to 3×3×3 mm3, the probability density visualisations for 

contact-centre positions get smoother and more compact. The visualisations can assist in 

gaining insight into the parameter values associated with kernels for simulating CT-specific 

partial volume effects. The regions of relatively high positional probabilities, however, are 

consistently recovered for all kernel widths.
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