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Abstract

Accurate measurement of knee alignment, quantified by the hip-knee-ankle (HKA) angle (varus-

valgus), serves as an essential biomarker in the diagnosis of various orthopaedic conditions and 

selection of appropriate therapies. Such angular deformities are assessed from standing X-ray 

panoramas. However, the limited field-of-view of traditional X-ray imaging systems necessitates 

the acquisition of several sector images to capture an individual’s standing posture, and their 

subsequent ‘stitching’ to reconstruct a panoramic image. Such panoramas are typically constructed 

manually by an X-ray imaging technician, often using various external markers attached to the 

individual’s clothing and visible in two adjacent sector images. To eliminate human error, user-

induced variability, improve consistency and reproducibility, and reduce the time associated with 

the traditional manual ‘stitching’ protocol, here we propose an automatic panorama construction 

method that only relies on anatomical features reliably detected in the images, eliminating the 

need for any external markers or manual input from the technician. The method first performs a 

rough segmentation of the femur and the tibia, then the sector images are registered by evaluating 

a distance metric between the corresponding bones along their medial edge. The identified 

translations are then used to generate the standing panorama image. The method was evaluated on 

95 patient image datasets from a database of X-ray images acquired across 10 clinical sites as part 

of the screening process for a multi-site clinical trial. The panorama reconstruction parameters 
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yielded by the proposed method were compared to those used for the manual panorama 

construction, which served as gold-standard. The horizontal translation differences were 0:43 

± 1:95 mm 0:26 ± 1:43 mm for the femur and tibia respectively, while the vertical translation 

differences were 3:76 ± 22:35 mm and 1:85 ± 6:79 mm for the femur and tibia, respectively. Our 

results showed no statistically significant differences between the HKA angles measured using the 

automated vs. the manually generated panoramas, and also led to similar decisions with regards to 

the patient inclusion/exclusion in the clinical trial. Thus, the proposed method was shown to 

provide comparable performance to manual panorama construction, with increased efficiency, 

consistency and robustness.
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Long-limb X-ray; hip-knee-ankle angle; axial deformity at the knee; panorama reconstruction; 
segmentation; image registration

1. Introduction

The presence of knee misalignment or deformity is one of the first indicators of arthritic 

conditions that require further disease management or interventional treatment. Knee 

alignment depends on the geometries of the long bone and the surfaces of the femur and 

tibia. The measurements of the alignment are used for assessing the affect of the arthritic 

condition on the knee joint. In addition, these measurements are also fundamental to various 

aspects of musculoskeletal research, as there is significant interest in frontal plane alignment 

measures to assess the pathogenesis of knee osteoarthritis (OA). However, high angular 

deformity limits the effectiveness of the therapy and/or accelerates the progression of OA 

regardless of the treatment.

The standard of care for assessing axial deformity of the knee and mechanical lower limb 

axis entails the measurement of the hip-knee-ankle (HKA) angle, which provides a measure 

of the knee varus or valgus misalignment. Moderate knee varus or valgus misalignment is 

characterised by an HKA angle ranging from 2° to 10° (Jordan et al. 2011). Significant 

angular deformity will tend to overload one compartment of the knee, either limiting the 

effectiveness of the therapy, or accelerating the progression of OA regardless of the 

treatment (Felson et al. 2013). As such, the HKA angle is used in most studies as the 

threshold – typically between ± 7° to ± 10° – for including or excluding patients in clinical 

trials. The knee deformity threshold depends on the design of the trial and the nature of the 

therapy being studied.

The orientation of the knee is best described by the mechanical axes of the bones. The 

mechanical axis of the femur (FM) is the line from the centre of the femoral head running 

distally to the mid-condylar point between the cruciate ligaments ((Yoshioka et al. 1987)). 

Similarly, the mechanical axis of the tibia (TM) is the line that joins the centre of the tibial 

plateau to the distal centre of the tibial plafond (Yoshioka et al. 1989). The angle between 

the distal extension of the FM and the TM is the HKA angle (Cooke et al. 1994; Cooke and 

Scudamore 2003).
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When the HKA angle approaches 180°, the FM and TM are collinear and coincident with 

the line of ground reaction force passing from the ankle to the hip (i.e. the load-bearing axis 

(LBA)), rendering a neutrally aligned limb, (Cooke et al. 2007) (Figure 1B). In varus cases, 

the knee centre is lateral to the LBA axis (Figure 1A), whereas in valgus the knee centre is 

medial to the LBA axis (Figure 1C). As a convention, HKA = 0° for neutral alignment, varus 

deviations are negative and valgus deviations are positive. For a helpful schematic diagram 

illustrating these various conditions of knee malalignment, we point the reader to the work 

by Derek et al.(Cooke, Sled and Scudamore 2007). Based on general observations varus 

leads to more severe knee damage, hence the association of varus angles with the negative 

convention (Cooke et al. 2007).

The HKA angle is traditionally measured on a full length weight-bearing (FLWB) X-ray of 

an individual in standing position. Since the measurements are based on the mechanical 

axes, using only a knee view X-ray increases the risk of missed deformity; therefore a 

standing X-ray panorama is required for proper axis assessment (Cooke et al. 1991). This 

observation has been recently confirmed again in (Zampogna et al. 2015), which compared 

two methods for the HKA angle measurement using standard X-ray images of the knee and 

concluded that the correlation between the gold-standard and the best of the two proposed 

methods was only moderate, further supporting the need for a FLWB X-ray image.

The major limitation to using full standing X-ray panoramas is that standard X-ray scanners 

are unable to capture images of an individual’s standing posture in a single exposure, 

primarily due to the limited size of the X-ray detector. Consequentially, FLWB panorama 

image creation typically entails manual stitching of three sector images (hip, knee and ankle) 

by aligning each of the four image pairs (i.e. two images per left and right limb). However, 

given that the images are acquired sequentially and the leg opening of the standing patient 

may vary for each sector acquisition, the stitching process is not only time consuming, but is 

also highly subjective to reader-induced error and susceptible to user variability. Once the 

FLWB panorama is available, HKA angle measurement can be carried out in a consistent 

manner using semi-automated approaches (Sled et al. 2011; Skyttä, et al. 2011). Therefore, 

here we focus on the development of an automated stitching application, after which one can 

utilise any semi-automated tools for HKA angle computation, reducing both intraand inter-

observer measurement variability.

Existing solutions for automatically creating FLWB X-ray images can be classified into 

three categories: 1) dedicated approaches that are tied to specific X-ray acquisition devices, 

2) approaches that rely on external markers specifically introduced for image stitching, and 

3) approaches that only rely on the image content without introducing dedicated markers.

Commercial X-ray devices that also provide a dedicated application for FLWB panorama 

construction are available from Carestream Inc. (Caresream 2012) and Shimadzu (Toshihiro 

Minami and Okamoto 2014). Both of these applications are tied to the manufacturer’s X-ray 

device and are therefore not applicable at clinical sites that do not use the specific 

equipment. Another, academic, method for panorama construction that requires dedicated 

hardware is the Carm-C system (Wang et al. 2004, 2010). This is a modified X-ray device 

that incorporates a video camera for tracking the location of the X-ray source via a dedicated 
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pattern placed under the patient bed. Similarly to the commercial systems, this approach to 

panorama construction is not likely to see widespread use due to the requirement for unique 

hardware.

Approaches that rely on external markers visible in all images were proposed by several 

groups (Yaniv and Joskowicz 2004; Messmer et al. 2006; Gooßen et al. 2008; 

Apivatthakakul et al. 2013; Chen et al. 2015). These either use radio-opaque rulers or 

patterns that are visible across all sector images. This simplifies the alignment process at the 

cost of requiring additional hardware. An inherent challenge associated with marker based 

alignment is that when employing a marker which is not at the same distance from the X-ray 

source as the bone, a method must explicitly account for parallax. As such, the translation 

estimated using the marker needs to be scaled to correctly align the bone. In (Yaniv and 

Joskowicz 2004), the estimation of the scaling factor required that the user manually identify 

corresponding bone contours, an approach which we prefer to avoid. Additionally, these 

approaches assume no difference in translation between left and right limbs. A related 

approach that is often used in clinical practice is to place ad-hoc external markers for manual 

alignment of the sector images. These are usually ad-hoc markers that span the expected 

overlap between sector images and are placed on the patient (e.g. paper clips). 

Unfortunately, these markers often move between image acquisitions in an independent 

manner with respect to the patient anatomy, rendering them unreliable. Consequentially, an 

approach that only relies on anatomical structures is preferable and will better fit within 

clinical practice.

Approaches that do not require dedicated markers were described in (Wang et al. 2004) and 

(Lalys et al. 2018). The former focused on aligning the visible edges of the cassettes, a 

process which requires prior planning. This method can be applied only when the sub-

images are exposed simultaneously and all the screen edges are completely visible in the 

acquired sub-images. The latter used standard image registration with a similarity metric 

combining gradient intensity and mutual information to obtain sufficiently robust results 

(81% success rate for automatic registration). This performance also required a minimal 

overlap between sector images of more than 20%.

Our goal in this work was to develop a fully automated method for panorama construction 

that does not require dedicated imaging or external markers and thus more readily adopted 

into clinical practice. Our approach relies on the detection of bone edges within the sector 

image overlap area, coupled with a one dimensional discrete search approach and a training-

free registration technique to reliably align sector images to build panoramas. Moreover, the 

proposed method is fully automatic and does not need to deal with parallax issues as it 

directly aligns the anatomy of interest. As an overview, our method focuses on the extraction 

of continuous medial and lateral edges of the tibia and femur from the overlapping region, 

followed by a distance map-based (Maurer et al. 2003) implementation for edge alignment 

instead of a traditional optimisation-based registration approach. Moreover, while any of the 

traditional edge detection techniques, including Sobel, Prewitt, Roberts or Canny edge 

detection (Canny 1986), or even a monogenic filter (local-phase based boundary detection) 

(Rajpoot et al. 2009) may be used, we employed a horizontal second derivative filter to 

segment the bone shaft and its edges and retain only the lateral and medial bones edges.
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We next describe the proposed approach in detail and its evaluation on a set of 95 highly 

variable patient X-ray image datasets acquired at 10 different clinical sites using different 

scanning protocols and energy levels. To assess the performance of our proposed technique, 

we compare the automatically generated panoramas to the ground truth panoramas manually 

generated by an expert X-ray technician. In addition, since these panoramas are used to 

measure the HKA angle and subsequently determine whether patients should be included or 

excluded in the clinical trial based on their extent of ankle deformity, we compared the HKA 

angles measured from the automated panoramas and those measured from the manual 

panoramas and used the estimated angles to establish patient eligibility for participation in 

the clinical trial. As such, we evaluate both the automated X-ray panorama generation and 

demonstrate its clinical utility vis-á-vis clinical standard of care.

2. Methodology

2.1 Imaging data

Our proposed technique was implemented and demonstrated on a population of long-limb 

X-ray datasets provided by Qmetrics Technologies, LLC, Pittsford, NY. The selected 

population features a wide variety of image resolutions, marker localisation, imaging 

artefacts, image quality and clinical conditions, hence providing a heterogeneous mix of 

scanner types and imaging parameters consistent with challenging clinical cases.

2.2 Methodology overview

In order to generate a panoramic image from multiple 2D sector images, a rigid registration 

is required to align the homologous image pairs. Since image rotation is deemed to only 

minimally affect the panoramas for patients in standing position, for the purpose of our 

application, this rotation is neglected. Therefore, only the horizontal (x-) and vertical (y-) 

translation pairs for each stitch was needed to construct the panoramic image.

Since the right and left limbs can also move as the patient slightly changes his/her leg 

opening between successive acquisitions of the image sectors, the left and right image 

stitches needed to be handled separately. Nevertheless, since the patient remains standing, 

then the left and right limb vertical translations (height) must be the same. Figure 2 

demonstrates the stitching process which will be discussed next.

Each data set includes three individual X-ray images – the hip, knee and foot. The generated 

panoramas are constructed from the left and right image alignments of the upper limb, in 

which the lower 2/3 of the hip image is the fixed image and the upper 2/3 of the knee image 

is the moving image. Correspondingly, for the lower limb, the lower 2/3 of the knee image is 

used as the fixed image and the upper 2/3 of the foot image is the moving image, as shown 

in Figure 2b.

To construct the panorama image that optimally aligns the femur and the tibia, our method 

consists of four stages: 1) edge identification and extraction from all image sectors; 2) 

approximate segmentation of the bone shaft, followed by the identification and retention of 

the lateral and medial bones edges only based on the rough segmentation and previous edge 
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extraction; 3) discrete iterative registration of bone edges via DICE maximisation; and 4) 

panorama generation and HKA angle measurement.

2.3 Stage 1: edge detection and extraction technique

2.3.1. Detection of the edges in the images—To enhance the cortical bone edges, 

we filtered the images with a second derivative filter, a kernel consisting of three 20 mm H × 

6 mm W intensity bands (−1, + 2, and −1) (Figure 3b).

As a result of the second derivative filtering, the intensity differences between dark-to-bright 

and bright-to-dark transitions were enhanced (Figure 3c). Based on the normalised 

cumulative histogram of the convolved images, we identified the threshold required to only 

maintain the bright regions of the filtered image, which include the bone edges. The optimal 

threshold was empirically chosen according to the mean intensity of the pixels within 65% – 

95% of the highest intensities. Note that small variations of ± 5% around the threshold did 

not impact the results. An alternative approach to the second derivative filtering method is to 

use the Canny edge detection technique. While this approach may lead to the detection of 

finer, yet disconnected edges, depending on the standard deviation of the filter, alternatively, 

it could also yield continuous, but less accurate edges, attached to the surrounding edges. 

The resulting binary image shows the edge masks overlaid in red (Figure 3d) and the last 

image shows the acquired medial and lateral femur edges (Figure 3e).

2.4 Stage 2: identification and retention of tibial and femural medial and lateral edges

2.4.1. Bone mask initialization—In order to enhance the cortical bone region, we 

filtered the images with a step function filter, a kernel consisting of three binary bands with 

values + 1, 0, + 1, each is 15 mm vertical and 1 mm horizontal (Figure 4b). Note that since 

the sum of the filter is not zero, it is not a derivative operation for edge detection. This filter 

rather enhances the brightness of the bright regions (Figure 4c). Similar to Stage 1, based on 

the normalised cumulative histogram of the convolved image, we identified the threshold 

required only to maintain the bright regions of the filtered image as shown in Figure 4d. 

Note that the mask might not include the bone marrow, because of its darker appearance, and 

might include flesh outside the bone, depending on the X-ray energy level and bone 

attenuation.

Partial Segmentation of the Bone Shaft Region:  To include the bone marrow, we filled 

the gap in each row – wherever that gap exists and is larger than one cm, under the 

assumption that it is bone marrow. Additionally, based on the length of the shorter side of 

the cortical bone mask, we truncated the mask as shown in Figure 4e.

The approximately linear straight shape of the shaft region, which is the region of the mask 

at minimum width, assumed to be the femur width, is used to linearly extend the mask and 

remove the outside regions (Figure 4f). For the tibia, since the minimum mask width can be 

either the tibia, fibula or both, and is therefore inconsistent, we used the largest region with 

continuous boundaries to linearly extend and truncate the sides.

Figure 5 illustrates the summary of the first two stages – the overall rough segmentation of 

the femur and the tibia shafts, the extraction of the vertical edges, and the selection and 
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retention of the lateral and medial edges – and the final edges featuring constant width 

(Figure 5g,n).

In order to retain only the medial and lateral edges of the bone, we kept only the edges that 

overlapped with the shaft segmentation, then we retained only the edges that were closest to 

the medial and lateral boundaries of the shaft segmentation, as illustrated in Figure 5d–f,k–

m. The medial edge was identified as the first edge detected when searching the image 

laterally, starting form the mid-line. The subsequent edges detected laterally to the medial 

edge were first interrogated in terms of their length and distance from the boundary of the 

segmented bone mask; as such, the lateral bone edge was identified as the longest edge 

lateral to the medial edge that was also close to the bone mask boundary. Additionally, 

where the edges were disconnected, we connected them based on the curvature direction of 

the femur and tibia in the given image. Specifically, we used the coordinates of the centre of 

each disconnected edge relative to the longest edge to connect the edge regions to match the 

generic curve on both sides of the bone and achieve a long and continuous medial and lateral 

edge masks for each bone in each of the fixed and moving images (Figure 5g,n). Similarly, 

in the lower leg, since the fibula is always lateral to the tibia, we only retained the medial 

and lateral tibia edges, which were identified as the first two continuous edges detected 

when searching the image starting from the mid-line towards the lateral direction. Lastly, 

although both the medial and lateral edges are detected, the alignment of the medial edges is 

both a necessary and sufficient condition to ensure bone alignment, and hence the alignment 

of the lateral edge in addition to the medial edge is implicit and neither necessary nor 

required to ensure overall bone alignment.

2.5 Stage 3A: registration and corresponding edge alignment

2.5.1. Identification of optimal left and right limb translation parameters—
After identifying the medial and lateral tibia edges from both the fixed and moving images, 

we slide the moving image along the fixed image by incrementally ‘sliding’ a landmark on 

the fixed image (the blue dots in Figure 5g,n) along the medial bone edge in the moving 

image.

As explained earlier, although both the medial and lateral edges are detected, the alignment 

of the medial bone edge is a sufficient condition to ensure bone alignment. In terms of 

practicality, for the femur, the medial edge is also the first long edge encountered when 

searching the image space laterally starting from the mid-line; similarly, for the tibia, the 

medial tibia edge is easier to identify than the lateral tibia edge, the latter of which might 

also be confused with the fibula edge. Therefore, the alignment of the medial edge for both 

the femur and the tibia is a sufficient condition to ensure overall bone alignment.

Using this method, each vertical (y) translation is accompanied by only one horizontal (x) 

translation of the fixed landmark along the medial edge. Therefore, the registration problem 

is defined as a one dimensional (1D) alignment of masks along the medial bone edge, as 

opposed to a 2D image registration, enabling us to solve a single rather than a two degree of 

freedom problem. Additionally, this approach enables us to avoid the use of standard 

optimisation techniques which are dependent on the selection of initial parameter values. 

Instead, we use a discrete search evaluating all possible solutions.
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We evaluated an objective function for all vertical (y) translation values, along with their 

matching horizontal (×) translations values. When re-sampling the images at 1 mm 

resolution, there are only 200–300 points along the medial bone edge at which the similarity 

metric is evaluated within the potential overlap region.

The chosen objective function is based on the Euclidean distance between the moving and 

fixed edges for a given translation pair. The employed distances were computed using the 

distance map function ((Maurer et al. 2003)), defined as follows: given a subset of metric 

space Ω ⊂ ℝ2 with metric, d, ∂Ω denotes the boundary of Ω and x ∈ ℝ2 then the distance 

function, f(x), is defined by:

f (x) = d(x, ∂Ω) if x ∈ ℝ2\ ∂Ω
0 if x ∈ ∂Ω

(1)

when d(x, ∂Ω): = inf
y ∈ ∂Ω

d(x, y),

where infy∈∂Ωd(x, y) denotes the infimum of the Euclidean distance between (x, y). Using 

distance function, we implemented an efficient computation of the distances between the 

edge points in the fixed image to the closest edge points in the moving image and vice-versa. 

The translation pairs along the medial right and left edges that yield the minimum of the 

symmetric average distances correspond to the correct alignment. The objective distance 

function computes the average distance between the fixed and moving edges per image line:

Trans f erred = T ∂ΩMoving (2)

Dist f romTrans f erred2Fix = ∑∑ f (Fix) ⊙ Trans f erred /Nr,

Dist f romFix2Trans f erred = ∑∑ f (Trans f erred) ⊙ Fix /Nr,

ED = Dist f romTrans f erred2Fix+Dist f romFix2Trans f erred,

where Nr is the number of rows, T[∂ΩMoving] is the translated moving edge image, and ⊙ 
denotes the Hadamard Product (an element-wise product of matrices).

Additionally, we also tested an alternative similarity metric that is based on the DICE 

coefficient between the moving and fixed medial edges for a given translation pair. The 

employed DICE coefficient is defined by:
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DICE = 2(A ∩ B)
A + B , (3)

where A and B are the areas of the edges in the fixed and the moving images, respectively. 

The areas used are only within the overlap region of the two sector images after applying the 

given translation pair. Using the DICE coefficient, we calculated the similarity function, 

which is the sum of the DICE coefficients calculated along the lower and upper parts of the 

overlap region. Iterative alignment is achieved by sliding the medial bone edge from the 

moving image along the medial bone edge from the fixed image. The use of the DICE 

coefficient is based on the overlap and non-overlap areas (i.e., a binary measure), whereas 

the distance metric provides a distance weight. Thus, the distance metric was more robust 

than the DICE coefficient, especially when a slight rotation causes large non-overlap areas.

2.6 Stage 3B: selection of the optimal left and right vertical translation parameter

As mentioned previously, the left and right vertical translations for the upper and lower 

registrations need to be the same when reconstructing the standing panorama, as the height 

of the patient estimated from the left or the right limb must stay constant. In the event of 

different optimal translation parameters resulting from the left and right limb registration, 

we evaluate the distance function using the right and left limbs together as one image 

(Figure 6b), while assuming that the optimal overall left and right similarity (i.e., minimum 

distance) would provide the correct alignment for both.

Nevertheless, we also tried to use the intensities around the edges by comparing the 

Normalised Mutual Information (NMI) ((Studholme et al. 1999)) around the bone edges. 

However, since there are non-homologous markers placed on the patient and appearing near 

the bone edge, the NMI measure in some cases was low even when the bones were aligned. 

Figure 6a illustrates the evaluation of the objective function for the femur registration. Here, 

the left and right minima (marked with yellow X) were very close (i.e., 121 and 122 mm 

from the top of the fixed image, respectively), and the chosen one was 122 mm vertical 

translation marked with purple *.

In order to compare the differences after applying the optimal translation pair to the moving 

edge image and to the moving original intensity image, we overlaid the translated images 

(magenta) onto their corresponding fixed images (green) with 50% transparency Figure 6b–

c, respectively. Lastly, Figure 6d shows the upper and lower sections of the fix edges 

distance map (green) together with the translated moving edges, overlaid in magenta. Note 

that the distance map values at the pixels located at the translated edges are the distances 

from the fixed edges to the closest points in the translated edges.

2.7 Stage 4: automated panorama generation and HKA angle measurement

2.7.1. Automated panorama generation—To generate the full long limb panorama, 

the four identified translation pairs are applied to the right and left femur and tibia images, 

as shown in Figure 2. As a result, the upper knee sector image of the left and right limb was 

‘stitched’ to the corresponding lower hip image, and similarly the corresponding upper foot 
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image was ‘stitched’ to the recently generated lower hip and upper knee partial panorama, in 

the end yielding a full panorama depicting both limbs in standing position

2.7.2. HKA angle measurement—Since the main purpose of reconstructing the 

panoramas is to measure the HKA angle and compare the angles estimated using the 

automated vs. manually constructed panoramas, we followed the standard procedure 

outlined in (Cooke et al. 2007) to select the required points for establishing the mechanical 

axes of the tibia and femur and calculated the axis angle as shown in Figure 7.

Following the development and implementation, we evaluated the method by comparing the 

vertical (y-) and horizontal (x-) translation parameters yielded by the automated panorama 

generation method to the translation values chosen by the expert technician during manual 

panorama construction. In addition, while this evaluation focuses on assessing the accuracy 

of the image processing technique, it does not speak to the clinical relevance or benefit 

provided by the proposed method. To this extent, we conducted an additional study in which 

we estimated the hip-knee-axis angle from all automated panoramas and compared them to 

the corresponding angles estimated from the manually generated panoramas. Lastly, we used 

the clinical trial patient eligibility criteria to compare the eligibility established according to 

both the manual and automated panoramas.

3. Results

3.1 Panorama reconstruction evaluation

We first evaluated the accuracy of the image processing pipeline by comparing the 

horizontal and vertical translation parameters yielded by our proposed panorama generation 

method to the corresponding translation parameters chosen by the expert technician during 

the manual panorama creation for each of the 95 datasets.

Table 1 summarises the mean, standard deviation and range of these horizontal (x-) and 

vertical (y-) translation differences between the manual and the automated panoramas. Note 

that the horizontal differences are much smaller than the vertical differences since the 

horizontal translations are computed in response to the unique vertical translations along the 

medial femoral and tibial edges.

Figure 8 illustrates the differences between the horizontal and vertical translation parameters 

corresponding to the manual panoramas generated by the expert technician and the 

automated panoramas across all 95 patient datasets. The Bland-Altman plots show the mean 

± 2 standard deviation of the differences between the automated and the expert manual 

translation parameters (horizontal (x), i.e. medial/lateral, and vertical (y), i.e. superior/

inferior), for the right and left femur and tibia. The patients with high differences, larger than 

2 standard deviations, were marked in red and two of them are further analysed in the 

discussion. We choose these two cases to show the causes responsible for the largest 

differences, either due to manual error of the expert or due to errors with our automated 

method associated with very low variations of the bone width in the shaft region of the 

femur.
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3.2 Hip-knee-axis angle assessment and clinical trial eligibility assessment

In addition, since the panoramas are used to assess the HKA axis, we also conducted a study 

in which we compared the axis angle estimated based on the automated and manual 

panoramas, as well as asses patient eligibility for participation in the clinical trial according 

to the inclusion/exclusion criteria quantified based on the automated and manual panoramas.

Figure 9 illustrates the distributions, using box plots, of the resulting vertical translations and 

the HKA angles estimated using the automated and the manual panoramas. For the statistical 

comparison between these distributions, we inspected the histogram shapes to verify normal 

distributions and preformed pairwise t-tests. The two-sample t-test with 5% significance 

level showed no significant difference between the automated and the manual vertical 

translations (p = 0.15 for the femoral stitch, p = 0.53 for the tibial stitch, and p = 0.38 for the 

overall femoral and tibial stitches together).

A similar statistical analysis conducted for the estimated HKA angles computed using the 

automated and manual panoramas which showed no statistically significant difference 

between the two datasets. Specifically, p = 0.99 for the right limb, p = 0.65 for the left limb, 

and p = 0.77 for the overall (right and left) HKA comparison.

Furthermore to assess intra-user variability, we repeatedly selected the points defining the 

mechanical axes 6 times, in random order on both the automated and manual panoramas of 

five patients. The maximum variance of the 4 HKA angles (estimated for the left and right 

limb using the manual and automated panoramas) of the five patients was 0.18°. In addition, 

for a single patient dataset, the left HKA angle from the automated panorama had a 

maximum variability of 1.18°.

Figure 10a shows the HKA angle differences (in degrees) across 95 patient datasets for both 

right (blue diamond) and left (orange circle) limbs and the mean ± 2 standard deviation. The 

differences are between the HKA angle calculated from the selected points on the automated 

panorama and the HKA angle calculated from the selected points on the manual panorama 

generated by the expert. As mentioned previously, studies use varus/valgus malalignment as 

the threshold for excluding patients from the clinical trial. We divided the patients according 

to the absolute value of the HKA angle – less than 7° (included), greater than 10° (excluded) 

and in between 7°–10° (possibly included). Figure 10b shows the resulting absolute HKA 

angle and the common thresholds for excluding patients from clinical trial. Moreover, it also 

shows two cases with different clinical decisions, depending on which HKA angle is used – 

the angle computed from the automated panorama image or the manual panorama image 

stitched by the expert. Note that the clinical decisions for cases 25, 52 and 56, according to 

the automated or manual HKA angles are the same, although according to the vertical 

translation differences, they are considered as outliers.

Similarly, Table 2 reports the number of included/possible/excluded patients based on the 

automated vs. the manual HKA angles. The two cases that would result in different clinical 

decisions, Case 66 and Case 71, being both excluded based on the manually calculated 

angle, are analysed in the discussion. Note that a patient with an incorrect eligibility decision 

Ben-Zikri et al. Page 11

Comput Methods Biomech Biomed Eng Imaging Vis. Author manuscript; available in PMC 2019 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



might interrupt the results of the clinical trial or cause additional expenses to the clinical 

trial, as additional patients would need to be enrolled.

Figure 11a shows for each patient the HKA angle difference (blue left y axis and blue 

diamond) and the total (femoral plus tibial) vertical translation difference (orange right y 

axis and orange circle), while Figure 11b shows the HKA angle difference (y axis) as a 

function of the total vertical translation difference (x axis). These figures show that even for 

a large translation difference of 90 mm, the HKA angle difference was only 1°. Case 66 

exhibited the maximum vertical translation difference between the automated and the 

manual panoramas of 98 mm, which, in turn, resulted in a HKA angle difference of 2.35°. 

This particular case featured the large difference between the manual and automated 

panorama translation parameters due to an error associated with the femural stitch of the 

manually reconstructed panorama, as shown in Figure 12. All other cases featured HKA 

angle differences of less than 1.25° for vertical translation parameter differences of up to 88 

mm.

The performance evaluation was conducted using non-optimised MATLAB code running on 

Windows 7 on a 64 bit PC, 3.6 GHz Intel CPU with 32 GB RAM. When the images were re-

sampled into 1 mm isotropic spacing, the average processing time for the edge extraction 

was 6 s and for the optimal translation identification was another 6 s. Lastly, the panorama 

generation required 1 s, leading to an overall automated panorama reconstruction panorama 

in less than 15 s from start to finish. Because of our reduction of the ‘stitching problem’ into 

a single degree of freedom alignment along the medial edge, we avoided the use of an 

optimisation solver and consistently reached a global minimum convergence.

4. Discussion

The task of creating an FLWB panoramic image is at its core a registration task. Our initial 

attempts at addressing this task explored the use of standard intensity based registration 

algorithms. Our first approach was described in (Miller et al. 2016). In that approach, we 

started by performing image de-noising using a Wiener filter followed by image 

enhancement with the Sobel filter. The resulting gradient magnitude images were used as 

input for rigid intensity based registration with the sum-of-squared differences as the 

similarity metric. This method performed reliably on less than 50% of the data. We then 

evaluated another intensity-based registration approach implemented via two registration 

steps, without image preprocessing, using the SimpleITK registration framework (Yaniv et 

al. 2017). The first step consisted of an initial registration by an exhaustive search of the 

maximum normalised cross correlation (NCC) on a coarse grid within the potential overlap 

region. The second step entailed the final registration using a multi-resolution pyramid, NCC 

with 20% sampling rate, and gradient descent optimizer. For both steps, we enforced the 

constraint that both the left and right limb vertical translations be equal. While this approach 

yielded acceptable results in terms of bone alignment, it performed reliably only 30% of the 

time (30/95 datasets). Based on these results, we did not pursue intensity based registration 

any further.
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In this work, we presented a pipeline that enables us to detect sufficiently reliable bone 

edges that are subsequently used as features for sector image alignment. We first detect and 

enhance all intensity transitions in the images by using a vertical second derivative filter. We 

then identify the bone edges according to the partial segmentation of the shaft region. We 

identify the optimal sector image alignment by minimising the distance between the bone 

edges. This metric was evaluated for all iterative vertical translations along the medial edge 

of the bone. This approach allowed us to avoid the use of standard optimisation techniques 

that may converge to a local minimum when minimising the similarity metric. Lastly, we 

assessed the HKA angle for both the right and left limbs using both the automated and 

manually constructed panoramas.

In our prior work ((Ben-Zikri et al. 2017)) to keep only the cortical bone edges in the fixed 

and moving images, we measured the maximum intensity (Imax) and the difference between 

the maximum and minimum (Imin) intensities within a window of each edge. The chosen 

window has the same width as the edge mask and a height of 5–10 mm and consists of the 

edges in the lower half of the fixed image and the edges in the upper half of the moving 

image. We normalised the image intensities to a 0–1 range and only retained the edges that 

satisfied the relationship 2Imax − Imin > 1:2. This selection method aimed to ensure that only 

the high intensities features corresponding to the cortical edges were featured in the window. 

The edges that satisfied this condition were overlaid on the fixed and moving images. 

However, this approach proved to not be as reliable as the shaft segmentation, since it 

depends highly on the chosen window, and hence yielded a high rate of false positives.

We summarise the results by first evaluating the accuracy of the automated panorama 

reconstruction method by comparing the yielded translation values to those selected by the 

expert technician during manual stitching. In addition, we also assessed and compared the 

HKA angle computed from both the automated and manual panoramas. Figure 9–10 show 

the distribution and the differences of the resulting translations and HKA angles between the 

manual stitching of the expert and the automated stitching.

For the femoral stitch, where the shape of the femur body is not changing width, the 

maximum vertical translation differences are higher (Table 1). Specifically, patient 66 

showcased the largest vertical translation difference of −97.75 mm. Figure 12a,b shows the 

two panorama images – automated and expert manual – side by side and illustrates an 

example where the manually constructed panorama is wrong, as the femur is shorter than the 

tibia.

We also discuss an additional case in detail – patient 71 featuring a femoral vertical 

translation difference of −61.62 mm. As illustrated in Figure 13a,b, we can see that the 

femur length is too long in the automated panorama. Figure 13c,d show good alignment for 

the automated translations and Figure 13e,f show good alignment for the expert translations. 

Since the femur width is not changing much in this region, the average distance metric for 

both the automated method and expert are very close (Figure 13).

Unlike Patient 71, for Patient 66 the distance metric values for the expert translations were 

very high and therefore different from the values from the automated translations, which 
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suggested an error associated with the manual panorama generation, while for Patient 71, it 

suggests an error in the automated panorama reconstruction.

4.1 Study limitations

The panorama reconstruction method relies on the identification of the optimal translation 

between the hip, knee and ankle image sectors based on the anatomical features associated 

with the bone in the overlap regions. Although the leg opening (i.e., distance between the 

patient’s feet) may not be similar during the acquisition of all three image sectors, our 

method does not take into account any rotations for image sector alignment. Although 

perceived that leg opening may be better captured via rotation, the currently employed 

clinical approach for panorama reconstruction relies solely on manual translation of the 

image sectors. Since our method performed as well as the current clinical method, we don’t 

believe the panorama reconstruction algorithm needs to incorporate rotation effects.

Also to account for potential changes in the leg opening in the acquisition of the subsequent 

image sectors, rather than handling the sector images simultaneously for the left and right 

limb, we split each sector in the left and right limb and essentially identified the optimal 

translational parameters for each leg independently, hence providing two ‘recipes’ for 

panorama reconstruction – one based on the left and one based on the right leg. 

Nevertheless, the overall height of the patient and hence the height of the standing panorama 

should be the same regardless of which side it is estimated. In the event of different optimal 

translation parameters resulting from the left and right limb registration, we evaluate the 

distance function using the right and left limbs together as one image, while assuming that 

the optimal overall left and right similarity (i.e., minimum distance) would provide the 

correct alignment for both.

We conducted this study and demonstrated and evaluated our method using a database of 95 

patient image datasets, each consisting of three sector images and acquired across more than 

20 clinical sites using different imaging protocols and scanners. Successful panorama 

generation typically requires a certain amount of overlap between the sector images. For 

example, the recent work cited earlier (Lalys et al. 2018) required a minimum of 20% 

overlap between the image sectors, as validated on 30 patient datasets. Similarly, most 

intensity-based registration techniques perform optimally given 40% or greater overlap. 

Nevertheless, our method does not require any specific overlap between the image sectors, 

as confirmed by the wide range of overlap features in the 95 patient datasets used for 

validation. The overlap range for the femur ranged from 3 to 43%, with a mean overlap of 

21%, and for the tibia the overlap ranged from 10 to 58% with a mean overlap of 34%. 

Moreover, more than 35% of the datasets featured less than 20% overlap between the image 

sectors, and our proposed method still performed robustly despite the very limited overlap.

Lastly, in this study, we used the manually reconstructed panoramas as ground-truth against 

which we assessed the panoramas reconstructed automatically using our method. However, 

not all manual panoramas were correctly reconstructed due to the user’s inability to 

determine the optimal overlap. As a result, for a select few of the datasets, the difference 

between the parameters associated with the automated vs. manual translation were slightly 

large, rendering our method as sub-optimal, when in fact a large error contribution is caused 

Ben-Zikri et al. Page 14

Comput Methods Biomech Biomed Eng Imaging Vis. Author manuscript; available in PMC 2019 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by the error in the ground truth. Furthermore, the manual panoramas used as ground truth in 

this study were not all reconstructed by a single technician, but rather by a single technician 

at each site. The inter-observer variability for different technicians is not known. An 

improved ground truth can potentially be obtained by having multiple technicians manually 

align the images. This would provide some knowledge with respect to the reproducibility of 

the manual panorama reconstruction techniques as it pertains to different technicians. 

Unfortunately, the manual alignment of the image sectors and panorama reconstruction by 

multiple technicians is currently not part of the clinical protocol at any of the sites – each 

manual panorama was reconstructed manually by only one technician. Thus, we can only 

say that the algorithm proposed in this work performs at a level that is close to that of a 

typical technician, but not a specific technician or the same technician, ether at one site or 

across all sites. To mitigate this limitation, a potential avenue for future work could consist 

of having multiple technicians reconstruct all manual panoramas. This approach will help 

provide a measure of the variability associated with the manual panoramas that serve as gold 

standard to assess the automated panorama reconstruction method described and validated 

here.

5. Summary and conclusion

In this paper, we developed and evaluated a fully automated longlimb X-ray image stitching 

procedure for generating panoramas utilised to quantify the HKA axis deformity. This 

method is unique as it is based only on anatomical features and bone shape and the sector 

image registration does not require optimisation. The proposed method employs the medial 

and the lateral edges of the femur and the tibia captured in both the fixed and moving images 

and aligns the right and left sectors by minimising the Euclidean distance between the 

homologous bone edges. Moreover, by focusing on the registration of the bone edges, the 

achieved alignment is independent of the position of any markers, which may aid in the 

process, or mislead the process due to changes in their position during subsequent sector 

image acquisition.

We have implemented and evaluated our method using 95 patient datasets acquired as part of 

a multi-site clinical trial for patient screening. The images posed many of the traditional 

clinical challenges as a result of different acquisition protocols and imaging scanners. 

According to our results, the horizontal and vertical translation parameters recorded from the 

manually assembled panoramas were not significantly different from the automated 

registration parameters. There were also no significant visual differences between the 

manually and automatically generated panoramas images, except for five cases where the 

femoral vertical differences between the manual and the automated were greater than 40 

mm. These cases featuring large differences are similar to the two cases in the discussion, 

with the large differences being primarily caused by the femur region featuring very small 

shaft width variations, human error, and possibly incomplete edges. Additionally, there were 

no significant differences between the HKA angles estimated from the manually and 

automatically generated panorama images or between patient eligibility for participation in 

the clinical established based on the measured HKA angles.
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Lastly, in terms of performance, the average processing time for the edge extraction was 6 s 

and for the optimal translation identification was another 6 s. Panorama generation required 

1 s, leading to an overall automated panorama reconstruction panorama in less than 15 s 

from start to finish, which is faster than the manual alignment workflow. In light of this 

study, as well as the simplicity of the method and its robustness across the highly variable 

testing dataset, our results are encouraging, rendering this method as suitable for the 

intended application.
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Figure 1. 
Illustration of the image stitching procedure: the three input images hip, knee and foot for 

one representative patient (a), the cropped regions from these images needed to construct the 

four subsequently registered image pairs (b) and the final long limb panorama image (c).

Ben-Zikri et al. Page 18

Comput Methods Biomech Biomed Eng Imaging Vis. Author manuscript; available in PMC 2019 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
a) right moving femur image (a); b) horizontal second derivative filter; c) output of image 

convolution with the aforementioned filter. The resulting image was thresholded using an 

intensity value selected according to the cumulative histogram, based on the mean intensity 

of all pixels within 65% – 95% of the highest intensity. The obtained edges are overlaid on 

the moving femur image shown in red (d). Sector image showing the retained/desired lateral 

and medial edges (e), obtained by partial segmentation of the bone shaft region, discussed in 

Stage 2.
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Figure 3. 
Illustration of the partial segmentation of the bone shaft region: a) the region of interest 

(upper 2/3 of the upper-knee sector image); b) the vertical second derivative kernel; (c) 

resulting image with enhanced bright regions; (d) resulting bone mask overlaid onto the 

original image after thresholding, based on the mean intensity of the pixels within the 65% – 

95% of the highest intensities; (e) filled-in and truncated bone mask and (f) final bone shaft 

region obtained by linearly extending the minimum width mask.
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Figure 4. 
Illustration of the overall rough segmentation of the femur and the tibia shafts, the vertical 

edges and the selection of the lateral and medial edges. Starting with the region of interest 

from the original right femur moving image (a); the outputs of processing steps are shown: 

the initial femur mask obtained by filtering and the thresholding (b); the filled-in and 

truncated bone mask (c); the linearly extended mask to exclude the non-bone regions (d); the 

edge masks obtained via the second derivative horizontal filter followed by thresholding (e); 

and the edge masks overlapping with the shaft segmentation (f). Image (g) shows the medial 

(green) and the lateral (red) edge masks of the rightand left-sided, fixed and moving femurs. 

Note that the edges feature constant widths, enabling the use of a single horizontal 

translation increment for each vertical translation increment. The selected blue marker 

located in the lower region of the medial edge in the fixed image is used as an encoder for 

the vertical translation increments. The corresponding images (h)-(n) illustrate the same 

steps as shown in (a) – (g), respectively, however applied to the tibia from the lower-knee 

and upper-foot sector images.
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Figure 5. 
Illustration of the right and left limb upper sector image registration: (a) the distance metric 

evaluation, the graphs show the average distance metric (y axis in mm) of the right (blue) 

and left (orange) limbs for each translation pair (x axis in mm), as the moving image slides 

along the medial bone edge. Note that in this example, the left and right minima (marked 

with a ‘X’) were very close (121 and 122 mm vertical translation from the top of the fixed 

image), and the chosen translation value was 122 mm, as marked with purple *). In order to 

compare the differences after the chosen translation pair is applied to the moving edge 

images and to the moving original intensity images, the fixed (green) and the translated 

(magenta) images are overlaid with 50% transparency, as shown in (b) and (c), respectively. 

Finally, the distance map (green) of the fixed edges is shown in the upper and lower sections 

of the overlap region, together with the translated moving edges in magenta (d).
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Figure 6. 
The calculated HKA angle based on the automated panorama (a) and the manual panorama 

(b).
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Figure 7. 
Bland-Altman plots showing the mean ± 2 standard deviation of the vertical (delta-y) and 

horizontal (delta-x) differences (in mm) between the automated and the manually generated 

panoramas across 95 patient datasets for both right (blue diamond) and left (orange circle) 

limbs. The first column corresponds to the lower-hip and upper-knee sector images stitched 

based on the femoral edges, while the second column corresponds to the lower-knee and 

upper-foot sector images stitched based on the tibial edges. Note that patients exhibiting 

high translation differences, specifically differences larger than two standard deviations, are 

marked in red.
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Figure 8. 
Visual representation of the vertical translation (left) and the HKA angle (right) distributions 

using box plots, showing the medial, 25th and 75th percentiles, as well as the outliers. From 

left to right, the vertical translation plots correspond to the automated femoral stitch, manual 

femoral stitch, automated tibial stitch, manual tibial stitch, automated (femoral + tibial) 

stitch, and manual (femoral and tibial) stitch. Similarly, from left to right, the HKA angle 

plots correspond to the automated right limb HKA angle, manual right limb HKA angle, 

automated left limb angle, manual left limb angle, automated (left and right limb) angle, and 

manual (left and right limb) angle.
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Figure 9. 
Left Panel: Bland-Altman plots showing the mean ± 2 standard deviation of the HKA angle 

differences (in degrees) across 95 patient datasets between the HKA angle calculated from 

automated panoramas and the expert-generated manual panoramas for the right (blue 

diamond) and left (orange circle) limbs. Right Panel: Manual vs. automated HKA angle-

based inclusion and exclusion criteria. As shown, the absolute value of the HKA angles of 

the 95 patients according to the automated and the manual panoramas. 7° (green line) is the 

upper threshold for including a patient in the clinical trial and 10° (red line) is the lower 

threshold for excluding the patient from the clinical trial.
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Figure 10. 
Left Panel: HKA Angle vs. vertical translation differences between the automated and 

manual panoramas: left y axis (blue) shows the HKA angle difference (blue diamond), while 

the right y axis (orange) shows the total (femoral plus the tibial) vertical translation 

difference (orange circle) between the automated and the manual panoramas. Right Panel: 
Each patient is marked by a data point, where the x coordinate corresponds to the total 

vertical translation difference and the y coordinate corresponds to the HKA angle difference, 

both computed between the automated and manual panoramas.
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Figure 11. 
Visualisation of patient No. 66 – automated and manual panoramas. From left to right: the 

automated long limb panorama (a); the expert manuallygenerated long limb panorama (b); 

the differences between the edges and the original X-ray images in the upper stitch after 

applying the automated translations, with 50% transparency showing the fixed (green), 

moving (magenta) and overlap (white) regions (c) and (d), respectively. Similarly, the 

differences after applying the expert manual translations are also shown in panels (e) and (f). 

The manually constructed panorama is clearly erroneous given that in this image the femur 

is shorter than the tibia.
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Figure 12. 
Visualisation of Patient No. 71 – automated and manual panoramas. From left to right: the 

automated long limb panorama (a); the expert manual long limb panorama (b); the 

differences between the edges and the original X-rays in the upper stitch after applying the 

automated translations, showing the fixed (green), moving (magenta) and overlap (white) (c) 

and (d), respectively; similarly, the differences after applying the expert translations (e) and 

(f).
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Figure 13. 
Distance metric evaluation for cases 66 (left) and case 71 (right) upper stitch; the distance 

metric graphs for the right limb (blue) and left limb (orange) for each translation pair, as the 

moving image slides along the medial bone edge of the fixed image. The minimum of the 

left and right limbs are marked here with a yellow ‘X’ and the automated chosen minimum 

is marked with a purple circle, and correspondingly the expert manual translation is marked 

with green.
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Table 2.

The number of patients eligible for inclusion (HKA angle ≤ 7°) in the clinical trial, exclusion, (HKA angle ≥ 

10°) and tentative inclusion assessed across all 95 patients based on the automated and the manual panoramas.

Include Tentative Exclude

TotalHKA ≤ 7° ≤ 7° HKA ≤ 10° HKA ≥ 10°

Automated Panorama 79 12 4 95

Manual Panorama 77 13 5 95
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