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Abstract. Recovering the 3D shape of the surgical site is crucial for
multiple computer assisted interventions. Stereo endoscopes can be used
to compute 3D depth but computational stereo is a challenging, non-
convex and inherently discontinuous optimization problem. In this paper,
we propose a deep learning architecture which avoids the explicit con-
struction of a cost volume of similarity which is one of the most computa-
tionally costly blocks of stereo algorithms. This makes training our net-
work significantly more efficient and avoids the needs for large memory
allocation. Our method performs well, especially around regions compris-
ing multiple discontinuities around surgical instrumentation or around
complex small structures and instruments. The method compares well
to the state-of-the-art techniques while taking a different methodological
angle to computational stereo problem in surgical video.

1 Introduction

Robot-assisted interventions rely on stereo endoscopes and this presents an op-
portunity to recover of the underlying 3D structure of the operating field in
vivo using computational stereo. 3D information is essential for registering pre-
operative data to the surgical field-of-view using augmented reality [1], enabling
dynamic active constraints or motion compensation using robot control [2, 3].
However, computational stereo in intra-operative endoscopic images remains
very challenging due to reflective surfaces, large instrument-tissue discontinu-
ities and regions where the texture of organ surfaces is homogeneous [2, 3].
Recent efforts have shown convolutional neural networks (CNNs) can be used
for surgical scene reconstruction by using a standard encoder-decoder network
and relying on feature extraction, a feature correlation metric and maximizing
a spatial consistency[1]. Notable performance boosts can be achieved designing
architectures that avoid such explicit steps [4, 5]. Siamese networks can create
a high level representation of the data where deep features are aggregated and
used for disparity computation [6-8]. End-to-end architectures can efficiently
perform cost volume regularization by using 3D convolutions [6]. The quality
of the features extracted to build the cost volume can also be enhanced [9],
however, both manual alignment of deep features and 3D convolutions are both
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Fig. 1. [llustration of our Hierarchically aggregated pyramid network (HAPNet) archi-
tecture and building blocks. The legend on the right clarifies the function of different
layer blocks after the input images which can be viewed in two phases, one focusing on
individual image information and the second combining the stereo pair.

computationally and memory demanding operations, and correlation layers col-
lapse the feature dimension, limiting the contextual information used in disparity
regularization.

In this paper, we avoid the use of 3D convolution and explicit feature align-
ment operations to create a fast, memory efficient CNN, capable of accurate and
real-time computational stereo. Our approach is fast and efficient yet it is able
to produce comparable results to the state-of-the-art. We sequentially aggregate
feature representations of the stereo pair from lower to higher resolutions, al-
lowing point correspondences to be encoded by the network without the need of
slow nested loop operations or feature replication. To use small encoder-decoder
blocks to encode point correspondence at different scales, achieving an effec-
tive receptive field big enough for most disparities without requiring a massive
amount of complexity. The main contributions of our work are:

— To sequentially aggregate feature representations of the stereo pair from the
lower to the higher resolutions, allowing point correspondences to be encoded
by the network without the need of slow nested loop operations or feature
replication.

— To use small encode-decoder blocks to encode point correspondence at dif-
ferent scales, achieving an effective receptive field big enough for most dis-
parities without requiring a massive amount of complexity.

2 Methods

We focus on creating an accurate, fast and memory efficient model for stereo
matching. One of the fastest ways to create a cost volume is to simply concate-
nate the feature representation of both stereo images. In this case, if we solely



HAPNet for real-time stereo matching 3

focus on the problem of finding spatial displacements between corresponding
points, the network would need an effective receptive field equal or larger than
the biggest disparity considered. Due to computational complexity restrictions,
the most common way to increase a network receptive field is the use of downsam-
pling operations, which in turn, can cause some loss of detail during pixel-level
matching. A similar argument for the feature extraction step has been made by
Brandao et al. [10], showing that the best accuracy is achieved with a compro-
mise between the size of the receptive field and the loss of fine detail. Our fast
and memory efficient approach avoids the use of correlation layers or manually
built cost volumes. Our hierarchically aggregated pyramid network (HAPNet),
illustrated in Figure 1, allows a theoretical receptive field big enough to infer
big disparities without losing information about fine details important for small
objects. The detailed parameters of the proposed HAPNet are detailed in Table
1.

2.1 Multi-resolution feature extraction

The first part of the HAPNet model is responsible for extracting deep feature
descriptors of the stereo image pair. High dimensional representations are more
robust to appearance ambiguities and can incorporate local context [6].

Our feature extractor is a Siamese network built by stacking three sequential
pairs of convolution layers. Each pair starts with a 2-strided convolution, halving
the spatial resolution and doubling the feature dimensionality. This allows to
extract a deep feature representation downsampled by three different factors:
8, 4 and 2. The weights of both branches are shared to more effectively learn
corresponding features. A detailed description of this architecture is presented
in Table 1 and the accompanying Figure 1.

2.2 Hierarchical feature aggregation

If the ability to find point correspondences and compute their distance can be
encoded by a fixed number of stacked convolution layers then, in theory, this
ability is only limited by the effective receptive field of those stacked layers.
Considering the range of disparities expected in most real cases, the required
receptive field can only be achieved by using several downsample operations
through the network. As mentioned before, high level features tend to lose more
detail, so most approaches choose to handle the receptive field requirement by
using a correlation layer or by manually aligning features [8].

We avoid the use of correlation layers or manually built cost volumes by
performing a coarse to fine concatenation of the feature representations of the
stereo pair. Our pyramid network encodes point correspondences at multiple
resolutions, progressing from coarse to finer prediction. This allow us to have a
receptive field big enough to encode large displacements in the lower resolutions
and to encode finer correspondences in the higher ones. The full architecture
is illustrated in Figure 1 with a more detailed description of the parameters in
Table 1.
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Table 1. Summary of the proposed HAPNet. Each convolutional layer represents a
block of convolution, batch normalization and ReLU nonlinearity except for the scoring
layers
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2.3 2D hourglass Network

While computationally efficient, simple feature concatenation does not implicitly
encode spatial correspondences like a correlation layer or a manually built cost
volume. Because of this, we introduce small encoder-decoder networks to encode
stereo matches.

Our 2D hourglass network consists of single 3 x 3 convolution layers, with
two levels of downsampling, followed by two deconvolution layers with residual
connections [9]. One important aspect is that the network maintains the same
feature dimensionality and resolution as the input. The full description of the
2D hourglass block is presented in Table 1.

2.4 Scale-aware disparity regression

In pixel-wise problems, such as semantic segmentation, it is common to add
loss functions at different levels of the network. However, the stereo matching
problem has another particularity given that the distance (in pixels) between two
points varies when we rescale the stereo pair. For example, two corresponding
points will be two times closer when the feature space is down-sampled by a
factor of two. Because of this, for the output of the network for each pixel, d,,
we use a absolute difference loss where the labels, y,,, are scaled by the pyramid’s
level downsample factor, s.
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Table 2. Evaluation with different settings on the scene flow test set. We computed the
percentage of three-pixel-error, >3px, of five-pixel-error, >5px, and the mean average
error (MAE). Results are comparative to metrics reported in [5,7,6,8,7]

HAPNet settings Scene Flow test set time (s)
2D Stacked Hourglass|Scale-aware loss|Negative mining|>3 px (%)|>5 px (%) MAE (px)
10.65 717 2.92 0.05
v 9.16 6.19 1.89
v v 7.69 5.09 1.69
v v v 6.62 4.24 1.40

(b) ()

Fig. 2. Scene Flow test set qualitative results. (a) left stereo input image; (b) disparity
prediction; (c) ground truth.

d, —
S
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Apart from deriving a more accurate representation of the matching problem,
scaling the labels by the downsample factor of the network’s level also implicitly
minimizes the importance of small displacements in the lower resolution levels.

3 Experimental setup

We train and quantitatively evaluate our method using a popular stereo dataset:
Scene flow [5]. The Scene Flow dataset created from synthesized environments,
containing 35,454 training image pairs and 4,370 testing image pairs. We use the
Scene Flow dataset to investigate the effect of different aspects of our method.
Evaluation is done in natural and medical environments. When public datasets
are used, the recommended evaluation protocol and metrics where implemented.

3.1 Experimental details

All parameters are randomly initialized with a normalized Gaussian distribution
and input images are color normalized to have zero mean and unit standard
deviation. All models were end-to-end trained with Adam optimizer [11] and
a batch size of 4. During training, we randomly sample smaller patches of size
320 x 640 to allow more diverse training batches while being memory efficient.
The maximum disparity was set to 192.
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Table 3. Comparative results on the Scene Flow testing set for other stereo CNNs.
Four different metrics are presented: three-pixel-error,>3px, of five-pixel-error, >5px,
the mean average error, MAE and total running time in seconds

Model >3 px|>5px|MAE|Time (s)
DispnetC [5,7]| 9,67 | - |[1.84| 0.06
GC-Net [6] | 9.34 | 7.22 | 2.51| 0.95
iResNet-i3 [8] | 4.57 | 3.32 | 2.45| 0.148
CRL[7] | 620 - |132| 047
HAPNet (ours)| 6.62 |4.24|1.40| 0.05

We train our models from scratch using the scene flow dataset with a initial
learning rate of 1 x 10~2 for 300K iterations. We also perform negative mining by
training the model an additional 5K iterations with images that have a predicted
3-pixel error bigger than 10%.

All models were developed using Tensorflow [12] and trained on a single
Nvidia Titan Xp GPU.

3.2 Scene flow

We use the scene flow dataset to evaluate the importance of key ideas in this
paper. Scene flow is the only stereo dataset big enough to train deep networks
without over-fitting and to provide dense ground truth without any discrepancies
due to erroneous labels. Table 2 lists comparative results of the different variants
of the proposed HAPNet.

We first evaluate the effect of the 2D stacked hourglass encoders. By re-
placing this block with the same number of convolution layers but without the
encoder-decoder structure. We verified that the hourglass block results in big
improvements for large disparity matches, resulting in a considerable decrease of
the mean average error. This indicates that the bigger receptive field of the 2D
stacked hourglass block is essential for the network to be able to encode large
distance correspondences. The proposed scaled loss also results in an incremen-
tal improvement in all evaluation metrics. Finally, the negative mined images
were mostly stereo pairs with large disparity objects, which also significantly
improved large displacement predictions. Figure 2 shows qualitative results of
our best model.

When comparing our work with other methods (Table 3), IResNet-i3 [7]
achieves a slightly lower 3 and 5 pixel error but with a relatively high MAE.
The CRL network [7] performs with a lower mean average error but requires
much more computational power. Our performance comes slightly under CRL’s,
even beating the very deep and regularized GC-Net [6], but HAPNet is 10 times
faster. The only network comparable in speed is the DispnetC [5, 7], which under-
performs our model in every metric. Our results show that by simply adapting
the architecture to the particularities of the stereo matching problem, significant
improvements can be achieved. Because we avoid computational demanding op-
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Fig. 3. Colon phantom, partial nephrectomy and prostatectomy qualitative results.
(a) left stereo input image; (b) disparity prediction without spatial consistency [10];
(c) disparity prediction with the proposed method.Images re-sized to 192x384 and
processed in 0.014s.

erations, such as building a manual cost volume, our model can run in real time
with much smaller memory requirements.

3.3 Qualitative medical data

We qualitatively evaluate our method in several different medical environments.
Figure 3 presents disparity estimations from a PVA-C colon phantom manufac-
tured from a 3D model of a human colon, a partial nephrectomy and a prosta-
tectomy procedures. Stereo data was acquired using a stereo camera from a da
Vinci Surgical System.

The low amount of detail and repetitive patterns in the colon phantom makes
it a particularly hard to find accurate stereo matches. Even when using deep
features [10], pixel level matching tends to be noisy and unreliable. On the other
hand, HAPNet produces visibly smother and more accurate disparity maps by
guarantying the spatial consistency of the environment. Because the features
are aggregated at different levels of the network, HAPNet is still able to handle
sharp depth transitions. A similar analysis can be done in Figure 3, where the
HAPNet tries to maintain depth consistency for the different tissue areas and
tools of the image. Because the resolution of this images is substantially lower
that the ones in the training data, some of the tools edges in the disparity maps
are not as sharp as the ones in the scene flow dataset.

3.4 Quantitative medical data

We also quantitatively evaluate out method on a public surgical stereo dataset
[13] depicting different real organs(liver, kidney, heart) captured from different
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Table 4. 3D error statistics as reported in [13]

Method Mean| SD |RMS|Median|Lower quartile|Upper quartile|Min| Max
MADNet [14] |13.32{14.02|19.34| 5.76 2.80 21.68 0.87(50.32
DeepPruner [15](22.83]18.41{29.33| 13.58 7.01 38.28 1.50{62.06
DispNet [5,7] | 7.47 | 8.68 |11.45| 4.98 2.90 7.62 1.43|49.36
HAPNet (ours) | 2.46 | 1.39 | 2.82 | 2.17 1.48 2.95 0.54| 6.34

angles and distances. Each sample contains two stereo image pairs(distorted
and stereo-rectified), a stereo calibration file, ground truth 3D reconstruction
and validation masks to limit the evaluation of the outputs in a specified region.
The 3D geometry of the tissue was captured using CT scans and the registration
between the stereo images and the reconstructed scene was done using markers
visible both in the CT scan and the images.

We compare our method with three other publicly available models trained
on Scene Flow dataset [5]: DispNet [5,7], MADNet [14] and DeepPruner [15].
Predictions from networks are used to create 3D point clouds and the resulting
reconstructions are used to calculate all the error statistics metrics. The results
are presented in Table 4.

The proposed method outperforms all the other models in every single metric
without sacrificing computational efficiency. Table 4 shows that other models
struggle to accurately reconstruct challenging surgical environments. On the
other hand, even though it was trained with the same data, HAPNet is able to
better generalize achieving a mean error of 2.46 mms.

4 Conclusion

In this paper, we have proposed a novel, fast and memory efficient end-to-end
architecture for stereo vision and 3D surgical site reconstruction. We show that
our architecture is able to learn to regress disparity without any additional post-
processing or regularization which is appealing for a number of practical reasons
and can cope with some of the challenges commonly faced in surgical video data.
Experimentally, in the paper we have demonstrated that significant improve-
ments in 3D reconstruction are possible by small, problem specific adaptations
that simplify the learning problem.

Our approach achieves competitive performance on existing large vision datasets
for non-surgical applications, like Scene Flow, while being substantially faster
than all other architectures we compared against. For robotic surgery video, we
show that our model encapsulates a wider receptive field which has a significant
impact on dealing with high disparity discontinuities due to verged cameras. Our
method also seems to perform better regularization and presents significantly
more compelling quantitative and qualitative results than previously reported
work.

Interesting directions for future work would be to combine our architecture
with monocular depth estimation models [16] to potentially enable 3D estimation
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not only with stereo systems. It would also be compelling to link camera motion
either through vision or through the robot kinematics into the system to allow
wider field-of-view reconstructions and surgical site mapping [17, 18].
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