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Real-time needle guidance for venipuncture
based on optical coherence tomography

Rida T. Farouki and Jack R. Swett
Department of Mechanical and Aerospace Engineering,

University of California, Davis, CA 95616, USA.

Rachel Ward Rohlen and David B. Smith
WestFace Medical, Redwood City, CA 94063, USA.

Abstract

An algorithm for real–time venipuncture needle guidance is described,
using an optical coherence tomography (OCT) probe that emits light
pulses at fixed angular intervals along a cone, giving accurate distance
measurements to points on the blood vessel. Using this data, a method
is developed to visually display the blood vessel for needle guidance. A
least–squares fit to a general quadric surface, specified by a symmetric
matrix, is performed. For a cylindrical blood vessel, this provides an
estimate for its orientation, from which its location and radius can be
determined. The algorithm is compatible, in efficiency and robustness,
with real–time implementation.
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1 Introduction1

Although collection of blood samples by venipuncture is a commonplace and2

indispensable procedure, it has an imperfect initial success rate even among3

experienced medical personnel. To address this, the SingleStickTM device4

under development by WestFace Medical incorporates an optical coherence5

tomography (OCT) probe to provide real–time visual interactive guidance of6

a needle toward the blood vessel. A basic requirement in this technology is7

the real–time translation of discrete distance measurements from the probe to8

the blood vessel, at specific inclinations to the needle axis, into quantitative9

information concerning the position, orientation, and size of the blood vessel,10

so as to provide real–time visual guidance to the user.11

Since its development in the early 1990s, optical coherence tomography12

has been extensively adopted in the context of non–invasive retinal imaging13

[1, 6, 7] and is being increasingly employed in other biomedical applications.14

A brief review of OCT is presented in Section 2 — more complete details on15

its historical development and applications be found in [4, 5, 10].16

The SingleStickTM OCT probe emits a sequence of light pulses along17

a conical surface with a beam angle φ = 60◦ relative to the needle axis and18

equidistant azimuthal spacing δθ = 0.5◦ about the axis, which yield accurate19

distance measurements to points on the blood vessel. Several scans may be20

made, at successive extensions δz of the probe from the needle tip.21

The blood vessel is nominally modeled as a cylindrical surface, and since22

the discrete point data determined by the OCT probe are of finite accuracy, a23

least–squares approach to identifying the cylinder is desirable to suppress the24

influence of measurement noise. A cylinder is uniquely identified by its axis,25

radius, and a point on the axis. However, the implicit equation f(x, y, z) = 026

expressed in terms of these intuitive parameters has a non–linear dependence27

on them, necessitating the use of an iterative solution procedure which may28

be incompatible with real–time computation, or fail to converge when reliable29

starting approximations cannot be determined a priori.30

To circumvent these problems, the approach adopted herein is to perform31

a least–squares fit of the data points to a general quadric surface, resulting in32

a linear system of equations for the unknown coefficients. These coefficients33

may be regarded as the elements of a symmetric 4×4 matrix, and an analysis34

of the eigenvalues and eigenvectors of this matrix allows the “best” cylinder35

fit to be identified in a consistently efficient and robust manner.36

The remainder of this paper is organized as follows. Section 2 reviews the37
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basic principles of optical coherence tomography and their application to the38

real–time needle guidance problem. The representations of quadric surfaces39

in terms of 4×4 real symmetric matrices is then introduced in Section 3, and40

cylinders are identified in terms of invariants and the matrix eigenvalues. In41

Section 4 we discuss the relative merits of equations that describe cylinders42

explicitly in terms of their geometrical parameters or as general quadrics in43

the least–squares surface fit problem, and the need for multiple OCT scans to44

ensure unambiguous cylinder identifications. The formulation and solution of45

the least–squares fitting procedure, based upon the general quadric equation,46

is treated in Section 5, and in Section 6 we describe the determination of the47

cylinder axis and radius from the computed quadric surface coefficients. In48

Section 7 we assess the accuracy of the cylinder identification, in view of the49

limited precision of the OCT distance measurements. Section 8 then presents50

some computed examples to illustrate the performance of the algorithm, and51

Section 9 discusses the feasibility of its real–time implementation. Finally, in52

Section 10 we summarize the main results of this study, and identify aspects53

that deserve further investigation.54

2 Optical coherence tomography55

Optical coherence tomography (OCT) is an imaging modality, analogous to56

ultrasound, that uses low–coherence interferometry to obtain high–resolution57

3D images of biological tissue at depths of a few mm [8]. A broad–spectrum58

light source in the near infrared or infrared band is used to optimize depth59

of penetration, with the light being transmitted from the end of a fiber optic60

line. Although most of the light is lost by absorption or multiple scattering,61

a small fraction (10−6–10−9) will be scattered by a single tissue feature, and62

travels back along the fiber to an interferometer that uses coherent detection63

(constructive/destructive interference of transmitted and returned signals)64

to obtain image resolution < 10µm over depths of 1–2 mm.65

Since the light signal round–trip time–of–flight is too short to accurately66

measure, the data are transformed into the distance or the frequency domain.67

The original OCT implementation, known as Time Domain (TD) OCT, was68

based on inteference of signals from the sample and a reference arm mirror.69

However, the need for rapid, accurate, and repeatable mirror movemement70

limits the resolution achievable through TD OCT. Swept Source (SS) OCT71

is a contemporary Fourier Domain (FD) technology that provides substantial72
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improvements in signal acquisition rates and signal–to–noise ratios. SS OCT73

employs a chirped (i.e., rapid wavelength swept) laser light source and Fast74

Fourier Transform (FFT) analysis to transform the data from amplitude vs.75

frequency to intensity vs. depth. Spectral Domain (SD) OCT is another FD76

OCT variant that provides substantial improvements in both sampling rates77

and signal–to–noise ratio over TD OCT.78

Regardless of method, the OCT system returns a 1–dimensional array of79

tissue reflectivity as a function of incremental depth. This array is referred to80

as an “A–line.” Multiple A–lines can be aggregated as a “B-scan” defining a81

raster scan in either Cartesian (x, y) or polar (r, θ) coordinates. A–lines can82

also be assembled left–to–right as a function of time, yielding a “waterfall”83

diagram that represents reflectivity along a particular vector in the tissue as84

a function of both depth and time (this format is useful in studying temporal85

variations). In our implementation, the OCT probe is rotated as a function of86

time, and angle data is reconstructed from time stamps. The B–scan indices87

are then interpreted as polar coordinates to create a “radar” plot.88

Various signal processing methods can be applied to the A–lines or B–89

scans to generate tissue images or extract information useful for diagnostic or90

procedural purposes. In the context of the SingleStickTM needle guidance91

problem, the goal is to identify the instantaneous position and orientation of92

a blood vessel relative to the needle tip, via a surface reconstruction problem93

in B–Scan space. A distinctive feature of the SingleStickTM technology is94

the real–time collection and interpretation of OCT data for navigation and95

therapeutic purposes, based on a proprietary method for steering the needle96

to the blood vessel (contemporary OCT is most frequently used in a post–97

processing workflow — i.e., the imaging data is collected and then analyzed98

off–line for presentation in a diagnostic context).99

Although the blood vessel identification algorithm described herein was100

motivated by a particular OCT application, it is not restricted to OCT. Any101

imaging modality that can reconstruct a list of surface detection events may102

— assuming sufficient resolution — benefit from the algorithm.103

3 General quadric surfaces104

The data generated by the OCT probe correspond to a discrete sampling of105

points on the intersection curve of an indeterminate cylinder with a known106

cone. The problem is to determine the position, orientation, and radius of the107
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cylinder from these data points. Cylinders and cones1 are special instances108

of the entire family of algebraic surfaces of degree 2, the quadric surfaces.109

The characterization of quadric surfaces is a fundamental topic in classical110

algebraic geometry [2, 11, 12]. The implicit equation of a general quadric may111

be specified in terms of a symmetric 4× 4 matrix through the expression112

q(x, y, z) = [ x y z 1 ]


a f h l
f b g m
h g c n
l m n d



x
y
z
1

 = 0 .

Expanding the matrix product gives113

ax2 + by2 + cz2 + 2fxy + 2gyz + 2hzx+ 2lx+ 2my + 2nz + d = 0 . (1)

The eigenvectors of the upper–left 3× 3 sub–matrix114  a f h
f b g
h g c

 (2)

determine the principal axes of the quadric surface. The eigenvalues are the115

roots ξ of the characteristic equation116

ξ3 − β ξ2 + γ ξ − δ = 0 , (3)

with coefficients117

β := a+ b+ c , γ := ab+ bc+ ca− f 2 − g2 − h2 , (4)
118

δ := abc+ 2fgh− ag2 − bh2 − cf 2 . (5)

Since the matrix (2) is symmetric, its eigenvalues are all real. The quantities119

β, γ, δ — together with the determinant120

∆ :=

∣∣∣∣∣∣∣∣
a f h l
f b g m
h g c n
l m n d

∣∣∣∣∣∣∣∣
1Henceforth, “cylinder” and “cone” refer exclusively to right circular cylinders and

cones, whose sections by any plane orthogonal to their axes is a circle.
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of the 4×4 matrix — are invariants [11] of the quadric surface: they remain121

unchanged under a motion (translation/rotation) of the surface.122

The cones and cylinders are ruled quadric surfaces, generated by a one–123

parameter family of lines. For a cone, these lines pass through a fixed point124

(the vertex ), and maintain a constant angle with a fixed line (the axis). For a125

cylinder, the lines are parallel to and equidistant from a fixed line (the axis).126

The cylinder may be regarded as a special instance of the cone, with a point127

at infinity as the vertex, and we refer to the set of all cones and cylinders as128

generalized cones. The generalized cones are singular quadrics, distinguished129

by the condition ∆ = 0. In terms of the other invariants, a cone is identified130

by the condition δ 6= 0, and a cylinder is identified by δ = 0, γ 6= 0. These131

conditions identify all (not just right circular) cones and cylinders.132

With δ = 0 6= γ equation (3) reduces, on factoring out the root ξ = 0, to133

ξ2 − β ξ + γ = 0 ,

and a right circular cylinder is identified by the condition, β2− 4 γ = 0, that134

this quadratic equation should have a double root — namely, ξ = 1
2
β.135

4 Cylinders as quadric surfaces136

A cylinder of general position and orientation may be specified by its radius r,137

a point p∗ = (x∗, y∗, z∗) on its axis, and a unit vector a = (λ, µ, ν) satisfying138

λ2 + µ2 + ν2 = 1 , (6)

that defines the axis orientation. The implicit equation of the cylinder may139

be written explicitly in terms of these geometrical parameters as follows.140

The position of a general point p = (x, y, z) relative to p∗ can be resolved141

into components parallel and perpendicular to the axis a as142

p− p∗ = [ (p− p∗) · a ] a + a× [ (p− p∗)× a ] .

The equation of the cylinder is then determined from the condition that the143

perpendicular distance of p from the axis is r, and this reduces to144

| a× (p− p∗) |2 = r2 . (7)
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Expressing this in terms of the coordinates of p, and making use of (6), we145

obtain the implicit equation146

f(x, y, z) = (1− λ2)(x− x∗)2 − 2λµ (x− x∗)(y − y∗)
+ (1− µ2)(y − y∗)2 − 2µν (y − y∗)(z − z∗)
+ (1− ν2)(z − z∗)2 − 2 νλ (z − z∗)(x− x∗)− r2 = 0 . (8)

Note that this equation is invariant upon replacing (x∗, y∗, z∗) by (x∗, y∗, z∗)+147

α (λ, µ, ν) for any α — i.e., it does not depend on the choice of the point p∗148

on the cylinder axis. In the present context, we may assume that z∗ = 0 (this149

is valid if ν 6= 0, i.e., the cylinder axis is not parallel to the (x, y) plane).150

The form (8) corresponds to coefficients in the general quadric equation151

(1) specified by152

(a, b, c) = (1− λ2, 1− µ2, 1− ν2) , (f, g, h) = (−λµ,−µν,− νλ) , (9)
153

(l,m, n) = (− a x∗−f y∗−h z∗,−f x∗− b y∗−g z∗,−hx∗−g y∗− c z∗) , (10)
154

d = a x2
∗ + b y2

∗ + c z2
∗ + 2 f x∗y∗ + 2 g y∗z∗ + 2h z∗x∗ − r2 , (11)

where it is understood that the constraint (6) also holds.155

In principle, a quadric surface can be uniquely determined from 9 points156

lying in “general position” on it, since equation (1) depends on 10 coefficients,157

and the surface is unchanged upon dividing (1) by any non–zero coefficient.158

However, since the 9 points must be exactly specified, and verifying that they159

are in “general position” is non–trivial, this approach is impractical.160

Given N data points pi = (xi, yi, zi), i = 1, . . . , N on the intersection of161

a known cone and a cylinder, we wish to determine the cylinder. Since the162

data will be subject to measurement noise, a least–squares fitting scheme is163

desirable to suppress the influence of the noise. The least–squares fit may be164

based on either the general quadric surface equation (1), or the equation (8)165

expressed in terms of the cylinder geometrical parameters.166

Equation (8) explicitly determines a cylinder in terms of the geometrical167

parameters p∗, a, r. However, the dependence upon these parameters is not168

linear, and the least–squares fit will incur a constrained system of non–linear169

equations. A computationally–intensive iterative method is required to solve170

this system, and without a reliable scheme for choosing “good” starting values171

it will not be sufficiently robust for real–time implementation.172
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Equation (1), on the other hand, is linear in the coefficients a, b, c, . . . and173

the least–squares fit incurs a system of linear equations for these unknowns,174

that has a unique solution (if the matrix defined by equations (13)–(15) below175

is non–singular). Since the general quadric equation (1) does not explicitly176

determine the least–squares fit surface as a cylinder, the geometry parameters177

p∗, a, r of the “nearest” true cylinder must be extracted from the computed178

coefficients a, b, c, . . ., as described in Section 6.179

In view of the above considerations, equation (1) will be employed in the180

least–squares surface fit. As observed above, the OCT scan identifies points181

on the intersection curve of a known cone with the unknown cylinder. This182

amounts to a one–dimensional sampling of a two–dimensional surface that is,183

in general, insufficient to uniquely identify the surface. Two or more scans,184

at different extensions δz of the probe along the needle axis, are required.185

This may be seen as follows. The intersection of two quadric surfaces186

q0(x, y, z) = 0 and q1(x, y, z) = 0 is, in general, an irreducible quartic space187

curve2 [11]. There are infinitely–many pairs of quadric surfaces that possess188

the same intersection curve C as q0(x, y, z) = 0 and q1(x, y, z) = 0. Any two189

members of the pencil of quadrics defined by190

qτ (x, y, z) = (1− τ) q0(x, y, z) + τ q1(x, y, z) = 0 , −∞ < τ < +∞

corresponding to distinct τ values possess the same intersection curve C as191

q0(x, y, z) = 0 and q1(x, y, z) = 0. Thus, given one of two quadrics, it is not192

possible to uniquely identify the other from their intersection curve.193

In the present context, one quadric is a known cone, and we can exploit194

the additional information that the unknown quadric is a cylinder. Suppose195

Q0 and Q1 are symmetric 4×4 matrices with elements a0, b0, . . . and a1, b1, . . .,196

specifying two quadric surfaces. Then the determinantal equation197

p(τ) = | (1− τ) Q0 + τ Q1 | = 0

is of degree 4, and its (real) roots identify the generalized cones of the pencil198

defined by Q0 and Q1. The quartic polynomial p(τ) is called the discriminant199

[11] of the pencil of quadrics. In the generic case, in which the roots of p(τ)200

are distinct, the intersection C is a non–singular quartic space curve [3].201

To verify that a cylinder Q1 constructed from a known intersection curve202

C with a known cone Q0 is unique, we must determine the real roots of the203

2It may degenerate into a collection of simpler curves (lines, conics, and cubics) whose
degrees sum to 4.
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discriminant p(τ) of the pencil defined by Q0 and Q1, and check that none204

of the quadrics corresponding to these roots (other than τ = 1) is a cylinder.205

Ferrari’s method [13] provides a closed–form solution for all the roots of p(τ).206

This uniqueness test can only be performed a posteriori — i.e., after Q1 has207

been constructed. However, using multiple scans at successive extensions δz208

of the OCT probe eliminates the need to perform this test.209

5 Least-squares fit procedure210

Equation (1) may be divided by any non–zero coefficient without influencing211

the quadric surface it defines. In the present context, we may divide through212

by d, which corresponds to the choice d = 1 in (1). This is permissible if the213

surface q(x, y, z) = 0 does not pass through the origin, which is true since the214

origin is defined to be the apex of the cone (i.e., the position of the sensor)215

and the sensor does not encroach on the cylinder.216

We adopt a coordinate system in which the needle axis is identified with217

the z–axis, and for zero extension the OCT probe is located at z = 0. The218

known parameters and available data are the cone beam angle φ about the219

z–axis, the measured distances ρi from the probe to the blood vessel surface,220

and the associated azimuthal angles θi on the cone and probe extensions δzi221

for each measured point, i = 1, . . . , N . For the least–squares fit, the data are222

converted to Cartesian coordinates according to223

xi = ρi sinφ sin θi , yi = ρi sinφ cos θi , zi = ρi cosφ+ δzi . (12)

With d = 1, the remaining unknown 9 coefficients a, b, c, f, g, h, l,m, n in224

(1) are determined by minimizing the expression225

E =
N∑
i=1

q2(xi, yi, zi) .

Setting the partial derivatives of E with respect to these coefficients equal to226

zero results in a linear system of equations of the form227

M v = r , (13)

where v = [ a b c f g h l m n ]T and, on introducing the basis functions228

φ1(x, y, z) = x2 , φ2(x, y, z) = y2 , φ3(x, y, z) = z2 ,
φ4(x, y, z) = 2xy , φ5(x, y, z) = 2 yz , φ6(x, y, z) = 2 zx ,
φ7(x, y, z) = 2x , φ8(x, y, z) = 2 y , φ9(x, y, z) = 2 z ,

(14)
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the elements of the matrix M and right–hand side vector r can be expressed229

in terms of the data points (xi, yi, zi) as230

Mjk =
N∑
i=1

φj(xi, yi, zi)φk(xi, yi, zi) , 1 ≤ j, k ≤ 9 , (15)

231

rj = −
N∑
i=1

φj(xi, yi, zi) , 1 ≤ j ≤ 9 . (16)

The linear system (13) has a unique solution when M is non–singular, which232

can be efficiently computed by Gaussian elimination.233

6 Cylinder geometry parameters234

Once the vales a, b, c, f, g, h, l,m, n have been computed, we must obtain the235

cylinder geometrical parameters p∗, a, r from them. The principal axes of236

the quadric surface are identified by the eigenvectors (vx, vy, vz) of the 3× 3237

matrix (2) — i.e., by the solutions of the equation238  a− ξ f h
f b− ξ g
h g c− ξ

 vx
vy
vz

 =

 0
0
0

 , (17)

where the eigenvalues ξ are the roots of the characteristic equation (3) with239

the coefficients (4)–(5). As observed in Section 3, for an exact right circular240

cylinder ξ = 0 is one eigenvalue (with no valid associated eigenvector), and241

ξ = 1
2
β is a double eigenvalue, with which we may associate two linearly–242

independent eigenvectors. The latter eigenvectors span a diametral plane of243

the cylinder, orthogonal to its axis. Hence, the three row vectors of the 3× 3244

matrix in (17) must be parallel (or anti–parallel) to the cylinder axis.245

If the coefficients a, b, c, f, g, h are determined from a least–squares fit to246

noisy data, they will not exactly define a right circular cylinder, and the row247

vectors of the 3×3 matrix in (17) will not be precisely parallel or antiparallel.248

To estimate the cylinder axis, we form the three unit vectors249

u1 =
(a− ξ, f, h)

| (a− ξ, f, h) |
, u2 =

(f, b− ξ, g)

| (f, b− ξ, g) |
, u3 =

(h, g, c− ξ)
| (h, g, c− ξ) |
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and, taking u1 as a reference, we reverse u2 if u1 ·u2 < 0 and u3 if u1 ·u3 < 0.250

The cylinder axis a is then estimated as the centroid of these unit vectors,251

namely252

a =
u1 + u2 + u3

|u1 + u2 + u3 |
. (18)

Consider next the determination of the point p∗ = (x∗, y∗, z∗) on the axis.253

As previously noted, we may assume that z∗ = 0 if the cylinder axis is not254

parallel to the (x, y) plane. With d = 1, the restriction of (1) to the plane255

z = 0 identifies a conic curve specified by the equation256

ax2 + by2 + 2fxy + 2lx+ 2my + 1 = 0 . (19)

Provided that ab−f 2 6= 0, this defines a central conic, and its center identifies257

the intersection of the cylinder axis with the (x, y) plane. The center can be258

determined by identifying the shift (x, y)→ (x+x∗, y+y∗) of the origin that259

will eliminate the terms of (19) linear in x and y. One can easily verify that260

(x∗, y∗) =

(
fm− lb
ab− f 2

,
f l −ma
ab− f 2

)
. (20)

The final parameter to be determined is the cylinder radius r. Knowing261

the cylinder axis a and a point p∗ on it, a robust approach is to compute r262

as the root–mean–square distance of the N data points pi = (xi, yi, zi) from263

the cylinder axis. Thus, based on equation (7), the radius is estimated as264

r =

[
1

N

N∑
i=1

| (pi − p∗)× a |2
]1/2

. (21)

For a quadric surface defined by equation (1) that is a true right circular265

cylinder, and exact data points p1, . . . ,pN , the above procedure can precisely266

identify its geometry parameters. First, with the eigenvalue ξ = 1
2
(a+ b+ c),267

the rows of the of the 3×3 matrix in (17) will be precisely linearly dependent,268

and unitizing any of them will exactly determine the axis vector a. Moreover,269

the point p∗ = (x∗, y∗, z∗) on the axis with z∗ = 0 is precisely identified by270

(20). Finally, any exact point pi on the cylinder will suffice to determine the271

radius as r = | (pi − p∗)× a |.272
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7 Analysis of solution reliability273

For the vector norm ‖v‖p = (|v1|p + · · ·+ |vn|p)1/p, the subordinate norm of274

the 9× 9 matrix M in (13) is specified [9] as275

‖M‖p = max
v 6=0

‖Mv‖p
‖v‖p

,

and the p–norm condition number Cp(M) of M is defined by276

Cp(M) = ‖M‖p ‖M−1‖p .

If a perturbation δr is imposed on the right–hand–side vector r in (13), that277

incurs a corresponding perturbation δv in the solution vector v, the relative278

errors εv = ‖δv‖p/‖v‖p and εr = ‖δr‖p/‖r‖p satisfy279

εv ≤ Cp(M) εr . (22)

The bound (22) is sharp, i.e., it holds with equality for some perturbation δr.280

In the cases p = 1 and ∞, ‖M‖p is the greatest of the column and row sums281

of absolute values of the matrix elements, respectively [9]. Since M and M−1
282

are symmetric, ‖M‖1 = ‖M‖∞, ‖M−1‖1 = ‖M−1‖∞, so C1(M) = C∞(M),283

and we may simply write C(M). The condition number gives a (worst–case)284

indication of the influence of round–off error amplification when the system285

(13) is solved using floating–point arithmetic.286

In the present context, a different source of inaccuracy may be dominant287

when solving (13). Namely, the elements (15) and (16) of both the matrix M288

and right–hand side vector r are not known exactly, since they are computed289

from the basis functions (14) evaluated at the data points (xi, yi, zi), whose290

precision is limited by the accuracy of the OCT distance measurements ρi.291

To assess the influence of the finite accuracy of the distances ρi, they are292

assumed to have Gaussian (normal) distributions [14] of the form293

f(ρi) =
1√
2π σ

exp

[
− (ρi − ρ̄i)2

2σ2

]
, (23)

where it is assumed that the nominal distance measurements are reasonable294

estimates of their individual means ρ̄i, and the same standard deviation σ =295

0.0005 mm holds for each measurement — this corresponds to ∼ 68% of the296

measured distances ρi being within ±0.0005 mm of ρ̄i. We then perform a297
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Monte Carlo experiment, in which each individual ρi is randomly perturbed298

to a new value ρ̃i in accordance with the probability distribution (23). New299

point coordinates (x̃i, ỹi, z̃i) are then computed from the ρ̃i values using (12),300

and the corresponding matrix elements M̃jk and right–hand–side values r̃j301

are obtained from (15) and (16). Solving the resulting linear system M̃ ṽ = r̃,302

for the resulting perturbed coefficients ṽ = [ ã b̃ c̃ f̃ g̃ h̃ l̃ m̃ ñ ]T , we define303

their relative error as304

εv =
‖ṽ − v‖2
‖v‖2

.

The Monte Carlo experiment is repeated several times, with different random305

samplings of the distributions (23), to assess the overall consistency and range306

of variation in the εv values obtained. The examples presented below indicate307

that this approach offers a more realistic assessment of the accuracy of the308

computed quadric surface coefficients.309

8 Computed examples310

The following examples describe results obtained from an implementation of311

the methodology in the C programming language on representative test data312

sets (all dimensions are in mm). In the conversion (12) of the “raw” OCT313

probe data to Cartesian coordinates, the cone beam angle is φ = 60◦ and the314

scans are made at azimuthal angle increments δθ = 0.5◦ for each fixed probe315

extension δz.316

8.1 Example 1317

In this example, the cylinder has radius r = 0.75, and the axis is specified by318

the point p∗ = (x∗, y∗, z∗) = (1.0, 4.0, 0.0) and the unit vector a = (λ, µ, ν) =319

(−0.17364818,−0.33682409, 0.92541658). Scans are made at three successive320

extensions δz, the distances ρ to the cylinder being detected at the angular321

increment δθ beginning at θ0, for a total of n points per scan as follows:322

• δz = 0.0, θ0 = −2.0◦, n = 52;323

• δz = 1.0, θ0 = −5.0◦, n = 57;324

• δz = 2.0, θ0 = −9.0◦, n = 65.325
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The total number of points is N = 174. Table 1 compares the exact cylinder326

coefficients, computed from (9)–(11) and divided by d, with the least–squares327

fit values. From (18) we obtain a = (−0.17503840,−0.33666708, 0.92521178)328

as the estimated cylinder axis, which makes an angle 0.081015◦ with the exact329

axis (−0.17364818,−0.33682409, 0.92541658). The axis point p∗, determined330

from (20) has coordinates (x∗, y∗) = (1.00064338, 4.00260039) — as compared331

to the exact point (1.0, 4.0). Finally, the cylinder radius computed from (21)332

is r = 0.746531, whereas the exact value is r = 0.750000. From the computed333

coefficients we have values γ = 0.00499410, δ = 0.00000022 of the invariants334

(4), in fair agreement with the conditions γ 6= 0 = δ identifying a cylinder.335

Figure 1 compares the computed cylinder with the exact cylinder.336

exact least–squares

a 0.06866544 0.06847202
b 0.06276800 0.06266601
c 0.01016722 0.01015567
f −0.00414103 −0.00413862
g 0.02206865 0.02197726
h 0.01137739 0.01133276
l −0.05210131 −0.05195083
m −0.24693097 −0.24668571
n −0.09965198 −0.09946885
d 1.00000000 1.00000000

Table 1: Comparison of exact and least–squares fit coefficients for Example 1.

The condition number of the matrix M in this example is C(M) = 1.81×337

106. The Monte Carlo accuracy assessment (described in Section 7) was run338

100 times with different random numbers satisfying the Gaussian distribution339

(23), resulting in values of the fractional error εv in the computed coefficients340

ranging between 0.000096 and 0.001095, with a mean value 0.000508.341

Overall, the least–squares fitting procedure (Section 5) and the parameter342

estimation scheme (Section 6) provide a remarkably accurate estimation of343

the cylinder geometry, despite the relatively low precision of the measurement344

data. To demonstrate that the accuracy of the data is the only factor limiting345

the precision with which the cylinder can be identified, the computation was346

repeated with ρ values computed in double–precision arithmetic, in lieu of the347

values with 3 decimal place accuracy used above. This resulted in an angular348
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deviation between the estimated and exact axes of only 0.0000008538◦, and349

(x∗, y∗) = (1.000000000029, 4.000000000119) , r = 0.749999999795

for the coordinates of the axis point p∗ and the cylinder radius r.350

8.2 Example 2351

The cylinder geometry parameters in Example 2 are identical to those used352

in Example 3, except that the radius was increased to r = 1.5. Three scans353

were made, corresponding to the values354

• δz = 0.0, θ0 = −15.5◦, n = 106;355

• δz = 1.0, θ0 = −20.5◦, n = 119;356

• δz = 2.0, θ0 = −26.5◦, n = 134.357

The total number of points is N = 359. Table 2 compares the exact cylinder358

coefficients, computed from (9)–(11) and divided by d, with the least–squares359

fit values. From (18) we obtain a = (−0.18374332,−0.32542690, 0.92754284)360

as the estimated cylinder axis, which makes an angle 0.880816◦ with the exact361

axis (−0.17364818,−0.33682409, 0.92541658). The axis point p∗, determined362

from (20) has coordinates (x∗, y∗) = (0.99717264, 3.98746160) — as compared363

to the exact point (1.0, 4.0). Finally, the cylinder radius computed from (21)364

is r = 1.522544, whereas the exact value is r = 1.500000. From the computed365

coefficients we have values γ = 0.00641154, δ = 0.00000007 of the invariants366

(4), as compared to the exact conditions γ 6= 0 = δ defining a cylinder.367

Figure 1 compares the computed cylinder with the exact cylinder.368

The condition number of the least–squares matrix in this case is C(M) =369

1.65 × 105. The Monte Carlo accuracy assessment was run 100 times with370

different random numbers satisfying the Gaussian distribution (23), yielding371

values of the fractional error εv in the computed coefficients between 0.000068372

and 0.000738, with a mean value 0.000303.373

When the computation is repeated with double–precision ρ values, in lieu374

of the values with 3 decimal place accuracy used above, we obtain an angular375

deviation between the estimated and exact axes of 0.0000000000◦, and376

(x∗, y∗) = (0.999999999997, 3.999999999988) , r = 1.500000000018

for the coordinates of the axis point p∗ and the cylinder radius r.377
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exact least–squares

a 0.07798243 0.07709279
b 0.07128479 0.07145285
c 0.01154678 0.01159307
f −0.00470292 −0.00441349
g 0.02506307 0.02517422
h 0.01292116 0.01287786
l −0.05917077 −0.05927620
m −0.28043625 −0.28051450
n −0.11317344 −0.11327718
d 1.00000000 1.00000000

Table 2: Comparison of exact and least–squares fit coefficients for Example 2.

8.3 Example 3378

In this example the cylinder geometry parameters are (x∗, y∗) = (1.0, 4.0),379

a = (−0.64278761,−0.26200263, 0.71984631), and r = 0.5. Three scans were380

made, corresponding to the values381

• δz = 0.0, θ0 = −24.5◦, n = 48;382

• δz = 1.0, θ0 = −42.0◦, n = 53;383

• δz = 2.0, θ0 = −59.0◦, n = 52.384

The total number of points is N = 153. Table 3 compares the exact cylinder385

coefficients, computed from (9)–(11) and divided by d, with the least–squares386

fit values. From (18) we obtain a = (−0.64386222,−0.25900228, 0.71997171)387

as the estimated cylinder axis, which makes an angle 0.182742◦ with the exact388

axis (−0.64278761,−0.26200263, 0.71984631). The axis point p∗, determined389

from (20) has coordinates (x∗, y∗) = (1.00228517, 4.00163039) — as compared390

to the exact point (1.0, 4.0). Finally, the cylinder radius computed from (21)391

is r = 0.507851, whereas the exact value is r = 0.500000. From the computed392

coefficients we have values γ = 0.00514512, δ = −0.00000002 of the invariants393

(4), in fair agreement with the conditions γ 6= 0 = δ characterizing a cylinder.394

The condition number of the least–squares matrix M in this example is395

C(M) = 1.20× 107. Using 100 runs of the Monte Carlo accuracy assessment396

with different random numbers that satisfy the Gaussian distribution (23),397
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exact least–squares

a 0.04224430 0.04195657
b 0.06704637 0.06700938
c 0.03468536 0.03449726
f −0.01212365 −0.01213370
g 0.01357706 0.01356661
h 0.03330945 0.03307726
l 0.00625029 0.00650214
m −0.25606182 −0.25598535
n −0.08761768 −0.08742876
d 1.00000000 1.00000000

Table 3: Comparison of exact and least–squares fit coefficients for Example 3.

values of the fractional error εv in the computed coefficients between 0.000110398

and 0.001457 were obtained, with a mean value 0.000557. As in the preceding399

examples, essentially exact cylinder geometry parameters were obtained when400

the computation was repeated with double–precision ρ values.401

9 Real-time implementation402

Using a modest 1.1 GHz processor, the execution times for identification of403

the cylinder from the point coordinate data in Examples 1, 2, and 3 were 0.27,404

0.53, and 0.24 ms. Since these examples used N = 174, 359, and 153 points,405

the times are consistent with a linear dependence on N , and constitute only406

a modest fraction of the overall effort required for real–time implementation.407

The OCT probe tip emits light pulses of 40 µ s duration every 50 µ s, inclined408

at 60◦ to the probe axis. Within the viewing range, reflection intensity data409

is acquired along each pulse, up to a few mm from the probe tip. The probe410

rotates along its axis at a 10 Hz rate, and its tip also executes a reciprocating411

motion along the probe axis at a speed ∼ 1–5 mm/s. These motions result412

in a helical scanning pattern on the target surface.413

For a signal of width ∼ 30◦ the probe requires just under 10 ms to trace414

the scan curve, with sequential scans at 100 ms apart. Further computations415

are needed to convert the raw OCT data into point coordinates, and a target416

computation time of 100–200 ms per image frame is anticipated. A “rolling”417

solution to frame updating may also be used, in which overlapping sequences418
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of scans are used to provide a higher image refresh frequency.419

10 Closure420

A methodology for real–time identification of the position, orientation, and421

size of blood vessels, based on discrete distance measurements from an optical422

coherence tomography (OCT) probe, has been developed and verifed through423

implementation. The method is sufficiently fast and robust to provide needle424

guidance for venipuncture procedures through a visual display.425

Modelling the blood vessel as a right circular cylinder, the procedure first426

performs a least–squares fit to the OCT data, in terms of a general quadric427

surface represented by a symmetric 4×4 matrix. An analysis of the structure428

of this matrix then allows the right circular cylinder “closest” to the general429

quadric to be identified. This avoids the need for iterative non–linear surface430

fitting, which can be computationally demanding, and lacks robustness when431

methods to identify good starting approximations are not available.432

The computed examples show that the cylinder identification procedure433

is fast, with a computing time that grows only linearly with the total number434

N of data points, and the cylinder geometry parameters are identified with a435

high degree of robustness. The method should be adaptable to identification436

of other simple morphologies, e.g., general quadrics or toroidal surfaces.437
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Figures485

Figure 1: Cylinders identified from the OCT probe data (red) using 3 scans
with a total number of 174 points in Example 1 (left), 359 points in Example 2
(center), and 153 points in Example 3 (right). The exact cylinder is shown
in blue, and the computed cylinder is shown in green.
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