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ABSTRACT
Osteoporosis is a common bone disease that increases the risk of bone fracture.
Hip-fracture risk screening methods based on finite element analysis depend on seg-
mented computed tomography (CT) images; however, current femur segmentation
methods require manual delineations of large data sets. Here we propose a deep
neural network for fully automated, accurate, and fast segmentation of the proximal
femur from CT. Evaluation on a set of 1147 proximal femurs with ground truth
segmentations demonstrates that our method is apt for hip-fracture risk screening,
bringing us one step closer to a clinically viable option for screening at-risk patients
for hip-fracture susceptibility.

KEYWORDS
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1. Introduction

According to the United Nations, more than 40% of the population of some devel-
oped countries will be above the age of 60 by the year 2050 (UN 2015). This raises
concerns about the burden placed on health care systems, since aging societies are
associated with a higher prevalence of chronic diseases. Policy-makers are thus forced
to reconsider the status quo of health care systems, moving away from face-to-face
consultation-based care towards a decentralized community or home-based care, as
well as transitioning from focusing on treatment to focusing on prevention.

One of the prevalent chronic diseases suffered by elderly populations is osteoporosis
- a bone disease characterized by low bone mass and structural deterioration of bone
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tissue, leading to bone fragility and an increased risk of fracture. There is sufficient
evidence that the majority of hip fractures are the result of a low trauma fall (Hayes
et al. 1996; Parkkari et al. 1999). The fracture risk increases with age and, compared
to other fracture types, hip fractures are associated with the most dire socioeconomic
consequences. The most abysmal, and perhaps surprising, statistic is that 11-23% of
individuals will be deceased six months after incurring the fracture, increasing to 22-
29% after one year has passed since the incident (Haleem et al. 2008).

1.1. Current Standard in Screening for Hip Fracture Risk

The present clinical “gold standard” to diagnose osteoporosis is the areal bone mineral
density (aBMD) derived from dual-energy X-ray absorptiometry (DXA). However, a
shortcoming of this method is that even though low aBMD scores are associated with
population-based fracture risk, between 36-72% of incident fractures are sustained
by individuals who do not have osteoporosis (Stone et al. 2003; Schuit et al. 2004;
Wainwright et al. 2005). Moreover, the aBMD lacks specificity when stratifying risk
considering the fact that the majority of subjects with osteoporosis do not incur hip
fractures in their lifetime.

1.2. Finite Element Analysis

In order to improve both the specificity and sensitivity of hip fracture screening, X-ray
computed tomography (CT) image-based, subject-specific finite element (FE) models
of the proximal femur have garnered significant attention and shown promise as a
means to overcome the limitations of assessing hip fracture risk using aBMD. The
motivation for this application is to incorporate it into a clinical screening tool that
uses FE analysis for hip fracture risk prediction. The widespread use of such tools has
the potential to dramatically reduce the economic toll of hip fractures on our health-
care systems, as well as mitigate the potentially devastating consequences for patients.
Thus far, several hindrances have impeded clinical translation of FE analysis for hip
fracture risk screening: the cost of hiring trained engineers to carry out simulations
instead of the clinical staff, the ambiguous accuracy of these methods for fracture
prediction, and the health risk of X-ray exposure caused by the CT scanner. In order
to bring clinical applications to fruition, a robust and automated workflow for con-
structing the FE model and subsequent analysis is imperative. Fleps et al. (Fleps et al.
2021) demonstrated that femoral strength based on finite element analysis (FEA) can
improve hip fracture risk assessment and we employed the same FE pipeline in this
work. The workflow pipeline entails the segmentation of the CT image data, generat-
ing an FE mesh, applying heterogeneous gray level based material properties to the
FEs, applying boundary conditions, solving FE equations and processing the results
(Pauchard et al. 2016). The aim of this work is to develop a fully automated seg-
mentation of the proximal femur from a CT image, without the need for any manual
intervention during postprocessing.
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1.3. Related Work

Bone segmentation of CT images is an elusive problem for several reasons. Firstly,
there is an overlap of the Hounsfield units (HU)1 of the bones and surrounding tissue,
rendering it impossible to segment solely based on intensity value. Moreover, bones
themselves do not have uniform densities, nor do certain bone diseases affect all parts
of the bone in the same manner. Adjacent bones pose an additional problem when the
joint space approaches the resolution of clinical CT data, which is often the case for
elderly subjects, and can result in poor segmentations. Hence, a method is needed to
detect and connect thin and diffusive bone structure boundaries to obtain acceptable
segmentations. Figure 1 displays an example of a hip joint from the data set at hand,
which can prove challenging to segment if the boundary between the femoral head and
acetabulum is unclear.

Figure 1.: An axial CT image slice showing the distinction that our model has to make
in order to correctly segment the femoral head.

Promising methods for segmenting the proximal femur from CT images that have
gained traction as of late are statistical shape models (SSM) (Chang et al. 2019; Younes
et al. 2019), multi-atlas segmentation (Wang and Yushkevich 2013; Chengwen et al.
2015) and graph-cut segmentation (Pauchard et al. 2016). The two former methods,
however, require a database of gold standard segmentations, while the latter method
does not necessitate such prior knowledge. Lastly, the implementation of 3-dimensional
(3D) convolutional neural networks (CNNs) to address the problem of femur segmen-
tation is one of the most recent developments (Chen et al. 2019; Zhao et al. 2020) and
has become the method of choice in biomedical image analysis.

One of the most successful previous methods for segmenting the proximal femur
is the aforementioned graph-cut method, carried out by Pauchard et al. (Pauchard
et al. 2016). In short, this method separates the background class from the target

1The Hounsfield unit is a relative quantitative measurement of radio density used by radiologists in the

interpretation of CT images.
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object by finding the global minimum of a cost function. If differences in intensity are
large (i.e., at object boundaries) with respect to σ2 (variance of homogenous regions
in the image), then the cost of cutting an edge is low. On the other hand, if differences
are small in comparison to σ2, then the cost is high. They reported a mean Dice
Similarity Coefficient (DSC) (Dice 1945) of 0.973 ± 0.005, while the mean Hausdorff
distance (HD) between manual segmentations and interactive graph-cut segmentations
was 3.75± 1.26mm. This method, however, suffers from its only partially autonomous
nature: when producing the segmentation predictions, manual input is required by the
user to initiate the graph-cut segmentation process, which is a key limitation of this
method.

Zhao et al. (Zhao et al. 2020) proposed an automated, patch-based 3D v-net ar-
chitecture (Milletari et al. 2016) (employing the Dice loss function) on a cohort that
comprised 397 quantitative computed tomography (QCT) scans, of which only 10%
was used to evaluate the model. This reliance on such a large training/validation set,
which is not always available, is a key limitation of this model. The method strug-
gled to segment the femur around the most dynamic sections (i.e., the femoral head),
resulting in some unacceptable segmentations. Nevertheless, the authors reported a
mean DSC of 0.9815 ± 0.0009 and, for a subject with 60 QCT slices, a segmentation
time of 15s.

Another automated 3D CNN method conducted by Chen et al. (Chen et al. 2019) is
based on the u-net architecture (Ronneberger et al. 2015) and employs both the Dice
loss and the Jaccard loss functions to segment the entire femur. An edge detection
task was embedded into a fully convolutional network (FCN) to address the problems
of diffusive joint spaces and weak femur boundaries. The method, however, shares the
same limiting factor as the previously discussed method (Zhao et al. 2020) in that it
requires a large training set (120 samples) which, for many biomedical segmentation
tasks, is not a viable option. The authors of this study reported a mean DSC of
0.9688± 0.0095 on an evaluation set of 30 CT images. Table 1 compares the methods
mentioned in this section.

The key limitation to previous deep learning methods has been the reliance on a vast
training set, which requires an equally large set of ground truth segmentations. The
proposed method necessitates far fewer ground truth segmentations than these meth-
ods. A preliminary version of our model was reported in conference form (Bjornsson
et al. 2021); here the method has been validated on a significantly larger test set and
compared with a state-of-the-art segmentation method. Moreover, we demonstrate its
use in our patient-specific screening method, where the FEA-derived femoral strength
based on our method was compared to that based on ground truth segmentations,
further validating the method on the end-product.

1.4. Rationale for Deep Learning Approach

Current femur segmentation methods mostly require a “user-in-the-loop” paradigm
in order to manually correct segmentations and produce acceptable masks for FE
modeling. This lack of robustness is costly in terms of time and the need for highly
trained specialists to manually correct the segmentation predictions. Consequently,
these methods cannot process larger cohorts to the same degree as a fully automated
one, rendering them impractical for clinical application. The justification for using
a DNN is almost entirely a byproduct of the u-net. Since large data sets containing
CT images from a particular scanner are hard to come by, neural networks were not
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Table 1.: A comparison between different femur segmentation methods. Here, σ denotes standard de-
viation. The time required to segment a femur volume should be interpreted with caution considering
the varying workstations, resolution, and number of slices per scan.

Authors Model Training
set
(CNNs
only)

Test
set

Slice thick-
ness [mm]

DSC± σDSC± σDSC± σ Time p. fe-
mur (s)

Pauchard et al.
Pauchard et al.
(2016)

Graph-cut N/A 48 CT 1 0.973± 0.005 120-300

Chu et al.
Chengwen
et al. (2015)

Multi-atlas N/A 30 CT 1 0.979± 0.029 275

Younes et al.
Younes et al.
(2019)

SSM N/A 8 CT - 0.89± 0.01 180

Chang et al.
Chang et al.
(2019)

Conditional
random field

N/A 60 CT 0.45-1.2 0.973±0.0095 -

Chen et al.
Chen et al.
(2019)

3D CNN 150 CT 30 CT 1.32-1.85 0.9688 ±
0.0095

56

Zhao et al.
Zhao et al.
(2020)

3D CNN 357 QCT 40
QCT

3 0.9815 ±
0.0009

15

viewed as a particularly attractive alternative for application in biomedical imaging.
However, the u-net architecture proposed by Ronneberger et al. (Ronneberger et al.
2015) demonstrated fast and precise segmentation without the need for a large data
set. DNNs have, as a result, become the state-of-the-art method for segmentation in
biomedical image classification (Shao et al. 2019; Huo et al. 2019). Instead of requiring
minutes to generate a segmentation prediction, CNNs can produce an output in the
matter of seconds.

1.5. Contributions of our Work

In this paper, we propose a robust, fully automated, and fast segmentation of the
proximal femur from CT images. The most salient contributions of our work to the
field of biomedical image segmentation of the proximal femur are the following: First,
our method takes a human-out-of-the-loop approach rendering the arduous and time-
consuming task of making ad hoc corrections unnecessary; second, the model is highly
robust, and hence, opens up the possibility of e.g. low-cost opportunistic screening
for hip fracture risk based on existing CT data; and third, the processing time (in a
matter of seconds) is well within reasonable bounds for clinical implementation.
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2. Materials and Methods

2.1. The AGES-RS Cohort

The Icelandic Heart Association (IHA) provided us with CT scans from the Age,
Gene/Environment Susceptibility-Reykjavik Study (AGES-RS) (Harris et al. 2007): a
cohort that consists of both men and women born between 1907 and 1935, monitored
in Iceland by the IHA since 1967. This unique database of high-quality CT images
contains roughly 4800 density calibrated CT scans of the proximal femur at baseline
and 3300 scans of the same individuals acquired at a five-year follow-up. The resolution
of each scan is 512× 512 voxels with 0.977× 0.977× 1 mm3 voxel size and the number
of slices ranges from 88 to 178. Our model was evaluated using two subsets of the
AGES data set. The first subset (Sample I2) comprises 48 “gold standard” manually
delineated proximal femur segmentations from 24 CT images. The second subset within
the AGES data set (Sample II3) consists of 1207 manually delineated segmentations,
generated with a semi-automated delineation protocol, that served as ground truth
annotations. The proposed segmentation model was trained w.r.t. 60 of these ground
truth segmentations and evaluated on the remaining 1147.

2.2. Validation and Loss Function

Since the femur only makes up a small part of each slice, there is a class imbalance
problem that must be addressed to avoid the more prevalent class from dominating.
The learning process tends to get trapped in a local minima of the loss function
and yields a network whose segmentation predictions are heavily biased towards the
background class. To combat this problem, the DSC (Dice 1945), which effectively
renders the relative spatial areas of each class irrelevant, was implemented. The DSC
measures spatial overlap between segmentations and is given by the following equation:

DSC =
2
∑N

i pigi∑N
i p2

i +
∑N

i g2
i

. (1)

In this equation, N is the number of voxels of the predicted binary segmentation
volume pi ∈ P and the ground truth binary volume gi ∈ G (Milletari et al. 2016). The
values of the DSC are restricted to the range [0, 1], where DSC = 0 indicates total
misclassification and DSC = 1 indicates perfect classification. In order to formulate a
loss function, the Dice loss function is defined as 1−DSC.

2.3. The Proposed Segmentation Pipeline

The implemented fully automated proximal femur segmentation pipeline is illustrated
in Figure 2 and consists of the following components:

• A training/validation set of 30 3D CT images (i.e., 60 proximal femurs) from
Sample II of the AGES cohort (Harris et al. 2007)
• Normalization
• On-the-fly data augmentation

2This sample set was used by Pauchard et al. (Pauchard et al. 2016) to evaluate their model.
3This sub-cohort from AGES-RS, including all fracture cases, was used by Enns-Bray et al. (Enns-Bray et al.

2019).
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Figure 2.: A flowchart showing the workflow of our proposed method.

• Patch-based 3D u-net
• Training using the Dice loss function for a pre-defined number of epochs
• Prediction on data from the validation set to gauge the performance on unseen

data and to aid in hyperparameter tuning

When the model is applied to evaluation data, a postprocessing step concatenates
black (background class) voxels to the output masks so that their dimensions agree
with the original CT scans.

2.4. Preprocessing

Each of the 30 CT images was cut in half, splitting the left and right proximal femurs
into separate images. The resulting CT scans that included the left proximal femur
were then mirrored to the right side. The training/validation set effectively became
60 images of the right side hip/upper leg with in-plane resolution 512 × 256 voxels
and 98-148 slices. The CT images were normalized such that all intensity values were
linearly shifted and scaled from HU to the range [0, 1]. Min-max normalization has the
advantage over z-score normalization of preserving the scale of the data. Models using
both normalization methods were implemented, however, there was no discernible
difference between the two.

2.5. Data Augmentation and Regularization

Since obtaining manually segmented images is laborious and slow, the use of data
augmentation is crucial for maximizing the efficiency of the training set. Data aug-
mentation is used to teach the neural network invariance and robustness properties
when a limited data set is available, thus artificially expanding the initial training set to
avoid overfitting. These deformations can be simulated efficiently and aid the model in
learning invariance between samples (Ronneberger et al. 2015). Here we applied both
linear-spatial and intensity transformations (i.e., scaling, rotation and brightness) as
well as elastic deformation (Figure 3) to simulate the variability between patients’
scans using the Batchgenerators package (Isensee et al. 2020) within the Medical Im-
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Table 2.: The data augmentation parameter ranges for the proposed model. Here,
α denotes the scaling factor (controls the deformation intensity) and σ denotes the
smoothing factor (controls the displacement field smoothing) for the elastic deforma-
tion.

Brightness Rotation
(X,Y,Z)

Scaling Elastic deformation

Parameter
range

(0.75, 1.25) (−3◦, 3◦) (0.95, 1.05)
α = (0, 100)
σ = (9, 13)

(a) Original (b) Deformed

Figure 3.: The effect of elastic deformation on a 2D CT image and its mask.

age Segmentation with Convolutional Neural Networks (MIScnn) framework4. The
exact parameter ranges implemented for our proposed model are given in Table 2.

Data augmentation, with random transformation parameters from the pre-defined
ranges was performed on-the-fly for each image before it was forwarded into the neural
network. Each of the data augmentation transformations had a 35% likelihood of being
applied to the image at hand, allowing the model to encounter a diverse set of images,
thereby decreasing redundancy. For the proposed method, on-the-fly5 data augmenta-
tion, in concert with parameter sharing (LeCun et al. 1990) and batch normalization
(BN) (Ioffe and Szegedy 2015), rendered the use of explicit regularization techniques
unnecessary and even counterproductive.

2.6. Model Architecture

DNNs have prevailed as the state-of-the-art learning models for biomedical image seg-
mentation, most notably the renowned u-net (Ronneberger et al. 2015). This impact-
ful and elegant network architecture, based on the FCN, addresses two main issues:
namely, the ability to train a model from a very small data set and the ability to
produce precise segmentations despite the former. A schematic of the proposed archi-
tecture is shown in Figure 4. The u-net derives its name from the u-shape of the model

4MIScnn is an open-source Python library and intuitive API for medical image segmentation pipelines (Müller
and Kramer 2019).
5On-the-fly data augmentation eliminates the need for excessive storage of augmented images by performing

the augmentation prior to each optimization iteration.
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Figure 4.: A schematic of our proposed 3D u-net. The bold numbers at the corners
represent the number of feature maps (channels) per layer. Here, convolution is ab-
breviated as conv and rectified linear unit as ReLU.

architecture, consisting of a contracting (downsampling) path and an expanding (up-
sampling) path. The contracting path is the encoder and captures the context in the
CT image by way of stacked convolutional and max pooling layers. The expanding
path, on the other hand, is the decoder and allows for precise localization with the use
of transposed convolutions. In the final layer of the network, a 1× 1× 1 convolution is
used to map the feature map to the number of classes. These outputs are of the same
dimensions as the input volume and are converted to probabilistic segmentations of
the foreground and background regions by applying a softmax layer voxel-wise. The
voxels with a probability > 0.5 belong to the foreground class (proximal femur) and
the rest to the background class. The proposed neural network model architecture
was implemented using the flexible MIScnn framework (Müller and Kramer 2019) in
Python.

2.7. Hyperparameter Selection

A patch-based model, as opposed to analysis of the full image, was adopted in consid-
eration of memory constraints and to exploit random cropping of patch volumes from
the full images, further regularizing the model architecture. For the proposed u-net
model, a patch volume of 128×128×128 voxels with an overlap of 64×64×64 voxels
was forwarded to the network. This patch size is large enough to capture the entire
femoral head, which is the most dynamic section of the proximal femur. Additionally,
since the number 128 is readily divisible by two, we are left with integer values for
patch dimensions after each use of max pooling.

A batch size of two, randomly cropped volumes of size 128× 128× 128 appeared to
be the optimal combination w.r.t. memory constraints. This combination consistently
outperformed stochastic models with the same size patch volumes or larger, as well
as outperforming models with larger batch sizes, which necessitated smaller patch
volumes to avoid memory overload. When implementing a model with a batch size of
one, the loss function fluctuates heavily since it is only considering one sample at a
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Table 3.: Model parameters for the proposed neural network.

Model parameter Proposed value
Batch size 2
Patch size 128× 128× 128
Layers 4
Feature map (highest resolution) 32
Initial learning rate 1 · 10−4

Epochs 300
Iterations 80
Training duration (hrs.) 12
Adam optimizer (Kingma and Ba 2014) β1 = 0.9 and β2 = 0.999

time. When the batch size was increased to four and a smaller patch size of 64×64×64
was used, the model performance slightly decreased because of the limited context in
each patch. A variety of combinations were tested to arrive at these conclusions. Our
proposed model was tuned to the parameter values displayed in Table 3.

2.8. Training

Our model was trained using a single Nvidia GeForce GTX 1080 Ti GPU for 300
epochs, which took roughly 12 hours. We randomly selected 30 CT images for train-
ing with corresponding manual segmentations of the left and right femur. Of these 60
proximal femurs, 54 were used for training and 6 were set aside to validate the perfor-
mance of the model on unseen data. The number of slices was in the range of 98 to
148 slices. The ground truth annotations that comprised the training and validation
sets are binary images identifying the voxels of the femur.

2.9. Postprocessing of Image Data

The postprocessing step of the masks was twofold: Firstly, each mask was padded with
black voxels that were cropped out during preprocessing. The segmentation predic-
tions were hence restored to the original resolution of the ground truth segmentations
(512 × 512 voxels in-plane) and the same offset in the coordinate system. Secondly,
the largest connected component had to be extracted to filter out noise in some of the
segmentations outputted by our model.

3. Experiments and Results

To evaluate our segmentation method we conducted three experiments: a comparison
with a state-of-the art femur segmentation approach using Sample I, an evaluation on
Sample II, and an FE analysis to assess the viability of using our model as part of our
hip fracture screening tool.
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Table 4.: A comparison between the graph-cut method (Pauchard et al. 2016) and
our method w.r.t. the DSC and HD95 validation metrics. Let σ denote the standard
deviation. We note that the results of the GC method were manually corrected for
47/48 proximal femurs.

Method Mean DSC ±σ Mean HD95 ±σ [mm] Time [s]

Graph-cut method 0.973± 0.005 1.06± 0.16 120-300

Proposed method 0.975± 0.006 1.04± 0.33 9

3.1. Evaluation Criteria

We used two evaluation metrics to evaluate the accuracy and robustness of our segmen-
tation predictions, the DSC, (as discussed in Section 2.2 above) and the HD. While
models seldom attempt to directly minimize the HD, this metric provides valuable
insight into the performance of our model. This method quantifies the largest segmen-
tation error by outputting the greatest distance from a point on the surface of the
predicted segmentation mask to the closest point on the other surface of the ground
truth segmentation mask. If X and Y are two non-empty subsets, the one-sided HD
from X to Y is defined by the following equation:

δ̃H(X,Y ) = max
x∈X

min
y∈Y
‖x− y‖2 . (2)

Similarly, going from Y to X yields

δ̃H(Y,X) = max
y∈Y

min
x∈X
‖x− y‖2 . (3)

The bidirectional HD between these two sets is defined as:

δH = max(δ̃H(X,Y ), δ̃H(Y,X)). (4)

The function δ̃H(X,Y ) finds the nearest point in Y to each point in X, and selects the
largest distance. The bi-directional HD measures the degree of mismatch between the
two subsets by taking the the maximum value between the one-sided HDs, as shown in
(4). It is common practice in biomedical image segmentation to use the 95th percentile
Hausdorff distance (HD95) in order to eliminate the influence of a small subset of
outliers.

3.2. Comparison with the Graph-Cut Method

A direct comparison was carried out between the proposed method and the graph-cut
method by (Pauchard et al. 2016) to demonstrate the effectiveness of our method on 24
unseen CT scans (Sample I). We computed the DSC and HD95 to quantitatively assess
the accuracy of the two methods compared with ground truth manual segmentations
(the current gold standard). As shown in Figures 5(a), 5(b), and Table 4, our method
achieved a higher mean DSC score of 0.975±0.006 and a lower HD95 of 1.04±0.33mm
than that of the graph-cut method (0.973 ± 0.005 and 1.06 ± 0.16mm, respectively).
As displayed in the figures, there is one outlier in the CNN prediction.
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(a) DSC (b) HD95

Figure 5.: A comparison between our method (CNN) and the graph-cut method (GC)
on the same 24 CT image set (48 proximal femurs) of the left and right femurs (Sample
I) validated on manual ground truth segmentations. Box plots (a) and (b) show the
DSC and HD95, respectively, for the two methods.

The outlier in Figure 5(a) around DSC = 0.951 corresponds with the outlier in
Figure 5(b) around HD95 = 3.25mm. Further investigation of the nature of the original
CT scan revealed a possible cyst or the aftermath of intramedullary nailing to the
femoral shaft (see Figure 6(a)). Since our method attempted to segment the structure
inside of the bone, the DSC and HD95 metrics suffered moderately. This inadvertent
labeling within the bone is, in part, a consequence of an absence of similar cases
within the training set of the neural network. Data augmentation cannot be expected
to simulate this type of variation if data of this kind are excluded from the training set.
Figure 6(b) shows the results on a subject in which both methods performed well. We
note that this comparison is not completely fair in the sense that a manual operator
has corrected all but one (47/48) of the proximal femur segmentations outputted by
the graph-cut algorithm. Nevertheless, it shows that similar results are achieved in a
small fraction of the time (only 11s on average for the proposed CNN as opposed to
2-5 minutes for the graph-cut method) and in a completely automated manner.

3.3. Performance on Sample II of AGES

We demonstrate the performance of our model on the aforementioned Sample II sub-
set by evaluating it on 1147 previously unseen proximal femurs that have been seg-
mented semi-automatically. The box plots for both the DSC and HD95 scores are
displayed in Figure 7. The mean DSC score was 0.990 ± 0.008 and the mean HD95
was 0.999± 0.331mm. Only two data points had a DSC < 0.97 and a HD95 > 2.4mm
(corresponding to the same two proximal femurs). The high average DSC, low HD95
value, and only two erroneous outliers out of a total of 1147 proximal femurs clearly
reveal both the high accuracy and robustness of the proposed method. The time for
each segmentation prediction averaged 11 seconds, which to our best knowledge is sig-
nificantly faster than any current method, rendering our method viable for application
to both large studies and clinical settings.

One of the segmentation predictions from our model that received a slightly lower
DSC score and higher HD95 score (DSC = 0.930 and HD95 = 5.94mm) on the right

12



(a) (b)

Figure 6.: A comparison between the original CT scan, the graph-cut method (GC),
our method (CNN), and the manual ground truth segmentations (MAN) on five axial
slices from two different patients in Sample I. Our method attempts to segment an
artifact within the femoral shaft over the span of 16 slices (five shown) for a single
case (a), however, it performs very well in all other cases, an example is shown in (b).

femur is shown in Figure 8. The region around the head of the proximal femur was
heavily over-segmented, as shown in the 3D rendering of Figure 8 (right side). This
comes as no surprise considering how unclear the separation is between the femoral
head and the acetabulum in the axial view of the CT image (Figure 8, left). This is
perhaps an indication of a birth defect or the result of a fractured bone that has since
healed, however, any appraisal of the pathology without supplementary information
on the subject is purely speculative. The other case that generated subpar results
(DSC = 0.755 and HD95 = 10.6mm) is shown in Figure 9. The left femur appears
to be tilted in the sagittal plane, causing our model to output a poor, and even
fragmented segmentation for some axial slices. The tilt could be the result of femoral
anteversion (in-toeing), a lenient adherence to imaging protocol, or a multitude of
other reasons. The implementation of bone registration preprocessing step to enforce
spatial normalization could be a requisite tool in achieving acceptable segmentations
for this phenomenon.

3.4. FE Pipeline Results

In our last experiment we wanted to assess if our automated femur segmentation
method could replace the manual segmentation approach currently being used in our
FE pipeline for hip fracture predictions, giving way to a fully automated, end-to-
end hip fracture screening process. The FE models were based on the automated
femur segmentations from the proposed method using an automated pipeline based
on in-house Python scripts and a commercial preprocessor (Ansa 20.0.0; Beta CAE
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(a) DSC (b) HD95

Figure 7.: The distribution of DSC and HD95 scores on Sample II.

Figure 8.: Three axial slices are displayed on the left hand side. The shorthand “DI-
COM” refers to the original CT scan, “CNN” refers to our method’s segmentation,
and “MAN” refers to the manually delineated ground truth segmentation. On the
right, a 3D rendering of the erroneous segmentation prediction from our model (red)
is overlaid with the ground truth segmentation (white).

Systems, Switzerland). Models were solved using LS-Dyna (LS-Dyna v11.0, LS-Dyna,
Livermore, CA, USA) and results postprocessed in Python. A detailed description of
the modeling strategy was published in (Fleps et al. 2021) but is briefly described here
for clarity and context. The proximal femurs were meshed with 10-node tetrahedral
elements with an average mesh size of 3 mm. Heterogeneous literature-based non-linear
material properties were assigned to the mesh based on CT gray scale values following
a validated material mapping procedure (Enns-Bray et al. 2017; Fleps et al. 2019). A
femur loading alignment and boundary conditions representative of an unprotected fall
to the side (10 adduction and 0 degrees internal rotation) were modeled. A schematic
of the FE model of the proximal human femur is shown in Figure 10. This femur
modeling has shown improved hip fracture classification performance compared to
aBMD in the AGES RS cohort (Fleps et al. 2021). Femurs were loaded until peak
force was exceeded. Femoral strength was evaluated by recording the maximum force
that the femur was able to withstand. The FEA-derived femoral strength, based on
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Figure 9.: A single axial slice is displayed in the upper-left corner where the plane
cuts the figure on the right. The left and right proximal femurs are shown on the
bottom-left to illustrate the slant in the sagittal (YZ) plane. On the right, the erro-
neous segmentation prediction from our model (red) is overlaid with the ground truth
segmentation (white).

the semi-automated (manual segmentations from the graph-cut method (Pauchard
et al. 2016)) and automated (our proposed method) approaches, was compared using
the coefficient of determination (R2), root mean square error (RMSE), mean absolute
difference (MAE), and the maximum difference (Table 5). The data used were the
predicted segmentations and ground truths from Sample II.

Figure 10.: An FE Model of the proximal human femur (Image reprinted from Fleps
et al. 2020, with permission).

Of the 611 subjects we segmented for the left femur, 593 simulation models were
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Table 5.: The R2, RMSE, MAE, and maximum difference for the FEA-derived femoral
strength values between the automated and manual methods (left femurs and right
femurs).

Proposed
Method

R2 RMSE [N] MAE [%] Max Difference[%]

Left femur 0.986 212.2 −2.14 25.3

Right femur 0.988 177.0 −1.86 30.1

solved while 18 were exempted due to modeling errors (e.g., femurs that were not
part of the cohort, data processing errors on the FE side, self-intersecting meshes, or
the presence of extraneous volumes). Of these 593 models, 583 corresponding models
based on the semi-automated segmentation were available to us. The predicted femoral
strength values derived from the two segmentation methods were highly correlated
(Figure 11). Of the 576 subjects we segmented for the right femur, 562 simulation
models were solved while 14 models were exempted due to modeling errors. Of these
562 models, 553 corresponding models based on the semi-automated segmentation
were readily available (see Table 6). As displayed in Table 5, similar results were
achieved for both the left and right femurs, showing a very strong linear relationship
between FEA-derived femoral strength from our fully automatic segmentations and
from the semi-automatic segmentations. These results demonstrate that our method’s
segmentations are suitable for the FE pipeline and can be channeled through it in a
robust manner.

Figure 11.: FEA-derived femoral strength based on the proposed femur segmentation
method compared to femoral strength based on manual femur segmentations for left
(left figure) and right (right figure) femurs.
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Table 6.: The number of segmented femurs, simulations run, and the number of femurs
used to compare the automated method to the semi-automated method.

Femur set Left femur Right femur
Segmented femurs 613 591
Evaluated by pipeline 593 562
Used for the comparison to manual segmentation 583 553

Excluded femurs
Corresponding left femur missing - 12
Excluded due to FEA errors 2 2
Excluded due to segmentation or meshing errors 16 13
Not part of cohort 2 2

4. Discussion

The aim of this work was to develop a fully automated neural network for proximal
femur segmentation from CT images for application to an existing FE pipeline for
hip fracture risk prediction. We demonstrated that our model’s performance in terms
of the DSC and HD95 is comparable to that of one of the previous best methods
(Pauchard et al. 2016), yet significantly faster and without a human interaction. We
subsequently presented our model’s evaluation performance on 1147 unseen proximal
femurs from the AGES-RS Sample II cohort (Harris et al. 2007), achieving a mean
DSC of 0.990±0.008 and a mean HD95 of 0.999±0.331mm. Lastly, we demonstrated a
R2 value of approximately 0.987 between FEA-derived femoral strength values based
on our method’s segmentations and based on manual segmentations.

The comparison with the graph-cut method (Pauchard et al. 2016) demonstrates
our model’s superior nature in terms of accuracy and robustness, despite not having a
trained human operator to correct unacceptable segmentations ad libitum. Not only
does our method output segmentation predictions an order of magnitude faster than
the graph-cut method, but additionally relieves our future end-users (e.g., health care
practitioners) from the monetary cost of hiring a trained specialist to perform the
corrections. This is one of the significant hurdles that prior methods have struggled to
surmount.

The results from Sample II demonstrate our model’s undeniable accuracy and ro-
bustness, allowing us to process even larger cohorts in the near future. With regard
to the very few problematic cases encountered in Sample II, we speculate which mea-
sures are justifiable to take in order to further increase the robustness of our model.
For the CT scans in which the proximal femur appears to slant, as in Figure 9, we
can argue that the use of registration to a common coordinate system would improve
our model’s prediction. Registration will eliminate the need to capture the variabil-
ity within the data set for some of the most extreme cases with data augmentation.
The use of such aggressive augmentation parameters is a futile pursuit that severely
hampers the overall performance of the model, considering its sensitivity to radical
transformations. By spatially transforming a source image to align with a target im-
age, representing the mean shape constructed from a statistical atlas of healthy patient
CT images, we enforce spatial normalization to the source image. We must, however,
ask ourselves whether these preprocessing measures are worth the added effort consid-
ering how infrequently we encounter such anomalies. It is reasonable to assume that
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in clinical practice, physicians would immediately flag any patient scans that deviate
significantly from the mean and would not be good candidates for our hip fracture
screening tool. If our evaluation set is any indicator of the prevalence of anomalies in
the general population, then this would amount to a negligible number of patients who
could not be screened with our method. We note that in order to apply our model to
CT images from a different scanner, the model would likely have to be trained on a
set of images from that CT scanner.

In the last part of the Results section, we fed our model’s segmentation predictions
to the FE pipeline. The strong R2 values between FEA-derived femoral strength val-
ues based on our model’s segmentations and manual ones, demonstrate our method’s
ability to reliably produce segmentations that can be processed by the FE pipeline
with very similar predicted femoral strength.

The primary limitations of this research are twofold: firstly, we have yet to demon-
strate our solution’s ability to perform well on cross-cultural data, that is, on CT
images beyond the Icelandic elderly as well as its performance on scans from different
scanner manufacturers. If the performance of our model turns out to be unsatisfactory
on other cohorts, then a possible solution would be to re-train the model with either a
mix of scans from multiple populations or exclusively train on images from the cohort
at hand. However, the desired outcome would be a segmentation tool that can be ap-
plied to all proximal femur scans independent of population and scanner manufacturer.
The second limitation of our model is its performance on heavily deformed proximal
femurs. There is an inherit trade-off between general segmentation performance and
variability within the training set. That is, if we bias the training set with too many
deformed bones, we will compromise the general performance on the validation set.
As a result, we justify the exclusion of acutely deformed bones in the training set in
order to improve performance on bones that do not deviate drastically from the mean.

In summary, our method has addressed the most pressing hindrances that have im-
peded prior methods; our method does not require a trained operator to make ad hoc
corrections to unsatisfactory segmentations, the robustness of the model would justify
the radiation exposure to the patient, and the processing time of each segmentation
is well within reasonable bounds for clinical viability. More importantly, this demon-
strates that with the proposed segmentation method, the hip fracture risk assessment
can now be performed in a fully automated manner. The next step in the ongoing
development of the hip fracture screening tool is applying the model to a much larger
cohort of the AGES-RS.

5. Conclusion

Here we introduced a fully automated, accurate, robust, and fast segmentation method
for segmenting the proximal femur from CT images. The mean DSC was 0.990±0.008
and mean HD95 was 0.999 ± 0.331mm when evaluated on 1147 manually segmented
femurs. The proposed method is superior to preceding methods in terms of previously
reported numbers of DSC and HD95 metrics and, most importantly, does not require
any manual interaction. In addition, each segmentation prediction can be generated,
on average, in 11 seconds instead of the many minutes it takes some other approaches.
We will conduct a more extensive evaluation on a larger cohort and, in turn, integrate
the method into our existing FE pipeline, bringing it one step closer to becoming a
clinically viable option for screening at-risk patients for hip fracture susceptibility.
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