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ABSTRACT

Phase recognition plays an essential role for surgical workflow analysis in computer
assisted intervention. Transformer, originally proposed for sequential data model-
ing in natural language processing, has been successfully applied to surgical phase
recognition. Existing works based on transformer mainly focus on modeling attention
dependency, without introducing auto-regression. In this work, an Auto-Regressive
Surgical Transformer, referred as ARST, is first proposed for on-line surgical phase
recognition from laparoscopic videos, modeling the inter-phase correlation implic-
itly by conditional probability distribution. To reduce inference bias and to enhance
phase consistency, we further develop a consistency constraint inference strategy
based on auto-regression. We conduct comprehensive validations on a well-known
public dataset Cholec80. Experimental results show that our method outperforms
the state-of-the-art methods both quantitatively and qualitatively, and achieves an
inference rate of 66 frames per second (fps).

KEYWORDS

Surgical workflow analysis; surgical phase recognition; transformer;
auto-regression; laparoscopic videos

1. Introduction

Surgical workflow analysis is an essential process in computer-assisted intervention
(CAI) system, which is helpful for standardization and quality assessment of modern
surgery (Maier-Hein et al. 2017). One of the crucial and challenging tasks is auto-
matic surgical phase recognition. Accurate surgical phase recognition helps provide
timely feedback and assistance for the surgeons during surgery, alert when abnormal
cases occur, effectively improving the safety and intelligence level of modern operating
room (Garrow et al. 2021). In addition, analyzing surgical videos of skilled surgeons
provides valuable training scheme for novice surgeons to develop their surgical skills
(Zisimopoulos et al. 2018).

Corresponding author: Prof. Dr. Guoyan Zheng, email: guoyan.zheng@sjtu.edu.cn

http://arxiv.org/abs/2209.01148v1


Early works for surgical phase recognition are mainly based on the multi-
dimensional state signals recorded under different operations (Padoy et al. 2012;
Ahmadi et al. 2006). Compared with state signals, surgical videos are abundant and
easier to acquire. However, recognizing surgical phases directly from surgical videos is
a difficult task. For one thing, frames at different phases are highly similar in visual
perception and the inter-phase correlation is quite challenging to model. For another,
there always exist various of hard frames in surgery videos, caused by fast camera
motion, produced gas, and camera out of surgical scene (Jin et al. 2017).

With the development of deep learning, it has become the preferred technique
for surgical phase recognition. Twinanda et al. first adopted convolutional neu-
ral network (CNN) to realize phase recognition purely based on visual frames
(Twinanda et al. 2016). In order to model the temporal dependency, EndoLSTM
(Twinanda 2017) additionally utilized a long short-term memory (LSTM) network
(Hochreiter and Schmidhuber 1997). Jin et al. proposed an end-to-end network to in-
tegrate deep ResNet (He et al. 2016) and LSTM networks (Jin et al. 2017), and related
multi-scale temporal information using non-local blocks (Jin et al. 2021). Czempiel et
al. proposed TeCNO (Czempiel et al. 2020), which was a multi-stage causal tempo-
ral convolutional network (TCN) (Lea et al. 2016; Farha and Gall 2019), for temporal
modeling based on ResNet features. Besides, post-processing methods such as prior
knowledge inference (Jin et al. 2017) and scheme for hard frame detection and map-
ping (Yi and Jiang 2019) were developed.

Nowadays, transformer has demonstrated powerful capabilities for sequential data
modeling in natural language processing (Vaswani et al. 2017), and has been success-
fully applied to surgical workflow analysis. Czempiel et al. presented an attention-
regularized transformer model based on self-attention (Czempiel et al. 2021). Gao et
al. designed a transformer to aggregate the spatial and temporal embeddings for better
recognition performance (Gao et al. 2021). Kondo realized surgical tool detection using
transformer architecture (Kondo 2021). Nwoye et al. introduced new forms of spatial
attention and semantic attention to recognize surgical action triplets (Nwoye et al.
2022). However, to the best of our knowledge, existing methods mostly focus on mod-
eling the attention dependency, without exploiting the auto-regression characteristic
of transformers.

In this work, we propose an Auto-Regressive Surgical Transformer, referred as
ARST, to accurately recognize surgical phases from laparoscopic videos. Our contri-
butions can be summarized as following:

• We propose a novel transformer-based auto-regressive framework used for on-
line surgical phase recognition. Phase prediction for each frame is conditionally
dependent on predictions of previous frames, which can implicitly capture the
inter-phase correlation.

• At inference stage, we propose a consistency constraint inference strategy, re-
ducing inference bias while enhancing the consistency and reliability of auto-
regressive phase predictions efficiently, independent of surgery-specific a priori

information or post-processing methods.
• Comprehensive experiments are conducted to evaluate our method on the chal-

lenging Cholec80 dataset for surgical phase recognition. Our method shows supe-
rior capability for phase recognition, outperforming the state-of-the-art methods
quantitatively and qualitatively.
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Figure 1. (a) A schematic overview of our proposed auto-regressive surgical transformer built on encoder-
decoder architecture for on-line surgical phase recognition, (b) the masked multi-head attention with banded
causal mask in detail, (c) illustration of the banded causal mask. PE: Positional Encoding.

2. Methodology

A schematic overview of our auto-regressive surgical transformer is presented in Fig-
ure 1. The network consists of a frame-level feature extractor and a transformer-based
encoder-decoder architecture for auto-regressive phase recognition.

2.1. Feature Extractor

Feature extractor is pre-trained to extract frame-level features from the video as the
encoder’s input embeddings. In our method, both spatial and temporal frame features
are considered. Denote FS as the feature extractor. Our spatial features are extracted
by a deep residual CNN, the ResNet-50 (He et al. 2016), denoted as R. Based on the
spatial features, temporal features are extracted by a two-stage causal TCN, called
TeCNO (Czempiel et al. 2020), denoted as T . Assuming video length is T , for each
video frame xt (t ∈ [1, T ]), a frame feature Ft ∈ R

512 is extracted as presented below.
We first train a ResNet-50 is to extract spatial features, where each video frame

is regarded as an independent image and frame-wise classification is conducted. Let
c denotes the number of phase classes. The network’s input is the video frame xt ∈
R
H×W×C and the output is a probability vector pt ∈ R

c. Specifically, following the
global average pooling layer, the 2048-dimensional feature is first projected to a 512-
dimensional feature, which is finally processed with a fully connected layer and a
softmax layer to generate the probability vector. After training, for each input frame
xt, the 512-dimensional feature Zt, would serve as the spatial embeddings. It is used
for further temporal feature extraction.
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Based on the extracted spatial features, TeCNO (Czempiel et al. 2020) is employed
for efficient temporal modeling to extract temporal features at frame-level. Two-stage
causal TCNs are cascaded. Each causal TCN contains 8 dilated causal convolutional
layers, which can enlarge the receptive field and prevent the leakage of future infor-
mation. Each convolutional layer has 512-dimensional feature maps. After training,
for each input frame, the 512-dimensional feature Ft, extracted at the second causal
TCN, is used as the input to our auto-regressive surgical transformer.

2.2. Auto-Regressive Surgical Transformer

Our auto-regressive surgical transformer, as shown in Figure 1, is built on a lightweight
one-layer encoder-decoder transformer (Vaswani et al. 2017). The encoder consists two
sub-layers, a masked multi-head attention layer and a fully connected feed-forward
layer. Layer normalization (Ba et al. 2016) and residual connection (He et al. 2016)
are employed for each sub-layer. The decoder is designed similarly to the encoder,
but has an additional masked multi-head attention layer to model the cross attention
dependency between the encoder and decoder. For t sequential frames starting from
the first frame, frame features F1:t serve as input to the encoder, while the shifted
outputs ŷ0:t−1 serve as input to the decoder. The final output probability is denoted
as p1:t, while the corresponding phase ground truth is denoted as y1:t. Cross-entropy
loss is calculated for model training.

Specific details of the masked multi-head attention layer with banded causal mask
are also illustrated in Figure 1. Three linear layers are employed for the projection of
query (Q), key (K) and value (V) vectors with 8 heads. The embedding dimension of
our model is 512 and the Q, K, V vectors of each head are in 64 dimensions (d). Scaled
dot-product attention with a banded causal mask is computed for each head. Multiple
heads enable the model to learn the attention dependencies from different aspects
simultaneously. The outputs of all heads are concatenated together and projected to
hidden dimension using a linear layer.

Similar to human’s mode of recognition, we believe that when predictions of previous
frames are available, surgical phases can be recognized effectively within a limited
range of visual frames. Long-term past information can be confusing and noisy for the
decision making of current frame. In this regard, different from the usually adopted
upper triangular mask (Vaswani et al. 2017), we introduce a banded causal mask Mbc

in our work to limit the dependency range between frames while ensuring that future
information is masked, thus supporting on-line phase recognition. Let W denotes the
width of banded causal mask. With element-wise multiplication, the region out of the
W -width band is set as −∞, resulting in null value for the softmax funtion. It means
that only the previous W frames before current frame are considered in modeling the
attention dependency:

Attention(Q,K, V ) = Softmax(Mbc ◦
QKT

√
d

)V (1)

It’s noteworthy that our phase inference is conducted sequentially in an auto-
regressive fashion. When the phase of t-th frame is to be recognized, in addition to the
frame features, all the predicted phases of previous frames ŷ0:t−1 would serve as the
input to transformer decoder, which can be regarded as conditional information. This
can be expressed in terms of a conditional probability distribution p(ŷt|ŷ0:t−1,F1:t). As
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the final prediction is determined by p(ŷ1:T |F1:T ), we can factorize it as a continued
product of the conditional probability distribution according to Bayes’ theorem. In
this way, we can perform the auto-regressive prediction frame by frame to complete
phase recognition of a whole video.

p(ŷ1:T |F1:T ) =

T∏

t=1

p(ŷt|ŷ0:t−1,F1:t) (2)

At training stage, in order to speed up the training process and force the out-
put as close as possible to the ground truth, we exploit the teacher forcing strategy
(Williams and Zipser 1989) to parallelize the training process of our model. Instead of
feeding shifted predicted outputs ŷ0:t−1 each time for sequential phase generation, the
whole shifted ground truth y0:T−1 is used as the decoder’s input to predict ŷ1:T for par-
allel training. During training, the inter-phase correlation can be implicitly captured
by modeling the conditional probability distribution using attention layers, enabling
the model to learn the pattern of phase transition actively.

One key component of designing our auto-regressive framework is to embed pre-
dicted phases as the input to the transformer decoder. Specifically, shifted outputs
ŷ0:t−1 need to be encoded as 512-dimensional phase embeddings E0:t−1. Similar to
one-hot encoding, we first divide a 512-dimensional phase embedding vector into c

segments S1:c evenly according to the number of phase classes. We then assign binary
value 1 to the i-th segment Si and keep other segments as 0 to obtain the encoding
for the i-th phase (i ∈ [1, c]). This encoding strategy increases the distance between
different phases in feature space compared with ordinary one-hot encoding.

E =
0, 0, ..., 0
︸ ︷︷ ︸

S1

, ......, 1, 1, ..., 1
︸ ︷︷ ︸

, ......,

Si

0, 0, ..., 0
︸ ︷︷ ︸

Sc

, ŷ = i ∈ [1, c] (3)

However, without order information, identical phase embeddings at different po-
sitions in the video sequence can not be distinguished. In this regard, after phase
embedding, positional encoding (PE) is added to describe the frame position in video
of each phase through sine and cosine hybrid functions (Vaswani et al. 2017). The
dimension index is denoted as i.

PE(t, 2i) = sin(
t

100002i/512
) (4)

PE(t, 2i + 1) = cos(
t

100002i/512
) (5)

2.3. Consistency Constrained Inference

Frequently jumped prediction is a serious problem in surgical phase recognition, which
may have limited impact on the recognition performance, but lead to poor result in
terms of consistency and reliability. Generally, jumped predictions are caused by low-
quality frame features extracted from hard video frames, resulting in misrecognized
phase transitions during on-line inference. Due to the nature of auto-regression, feed-
ing incorrect predictions to the decoder will result in certain bias of the conditional
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probability distribution. The bias can be accumulated and thus has an negative im-
pact on predictions of future frames. To minimize the impact, our model should care-
fully consider whether the recognized phase transitions are actually present. In this
regard, consistency constraint inference (CCI) strategy is proposed to optimize our
auto-regressive inference, which is explained below.

Assume that phase transition occurs from time t−1 to time t (i.e., Pt 6= Pt−1) during
inference. Rather than directly feeding the newly predicted phase Pt to the decoder
for further inference, we continue predicting the next n frames between [t + 1, t + n]
by keeping feeding phase Pt−1 to decoder. Only if all of the predicted phases for the
next n frames are identical to phase Pt, we believe that an actual phase transition
occurs. Otherwise, we consider the predicted phase transition is unreliable, which may
be caused by noise or hard frames. In such a situation, prediction at t-th frame should
be modified to phase Pt−1 for further inference. In this work, n is empirically set as
10. It is worth to note that our CCI strategy is integrated with our auto-reggression
framework, as shown in Algorithm 1. Advantages of our newly proposed CCI strategy
over previously introduced post-processing methods such as prior knowledge inference
(PKI) (Jin et al. 2017) include: 1) our CCI strategy is part of our on-line inference
procedure and thus is not a post-processing method; and 2) it does not use any surgery-
specific a priori knowledge as in PKI (Jin et al. 2017) and thus can be extended to
other types of workflow analysis tasks.

Algorithm 1 Consistency Constraint Inference

INFERENCE (F)
for t ← 1 to T do

pt ← ARST (F1:t, ŷ0:t−1)
Pt ← argmax(pt)
if Pt 6= Pt−1 then

for j ← 1 to n do

ỹ0:t+j−1 ← ŷ0:t−1 + [ŷt−1]×j

p̃t+j ← ARST (F1:t+j , ỹ0:t+j−1)

P̃t+j ← argmax(p̃t+j)

if P̃t+j 6= Pt then

Pt ← Pt−1

Break

3. Experiments

3.1. Data Description

Our method is evaluated on a publicly available dataset Cholec80 (Twinanda et al.
2016), which is a challenging laparoscopic video dataset of cholecystectomy surgery.
The dataset contains 80 videos recorded at 25 frames per second (fps) with resolutions
of either 1920×1080 or 854×480. Seven defined phases as shown in Table 1 are anno-
tated manually at 25 fps, together with seven tool presence labels provided at 1 fps.
Note that only the phase labels are used in our work. All the videos are sub-sampled to
1 fps for processing and training. We divide the dataset as 40 videos for training and
the remaining 40 videos for testing. 8 videos in the training set are used for validation
and hyper-parameters tuning.
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Table 1. Ids and descriptions of
seven phases used in Cholec80.

ID Phase descriptions

P1 Preparation
P2 Calot triangle dissection
P3 Clipping and cutting
P4 Gallbladder dissection
P5 Gallbladder packaging
P6 Cleaning and coagulation
P7 Gallbladder retraction

Table 2. Ablative testing results for the banded causal mask with different
width (W ). Average values (%) and standard deviations (±) are reported.

W Accuracy Precision Recall Jaccard

0 84.83 ± 6.85 80.71 ± 8.93 79.92 ± 6.21 66.70 ± 9.61
2 87.00 ± 6.87 83.64 ± 8.11 83.41 ± 5.79 71.28 ± 9.75
5 87.62 ± 6.44 84.05 ± 6.67 84.04 ± 5.34 71.70 ± 8.97

10 87.13 ± 6.71 82.66 ± 6.75 83.45 ± 5.86 70.51 ± 8.47
20 86.10 ± 7.46 79.92 ± 9.02 80.93 ± 7.75 67.14 ± 10.48
40 83.57 ± 7.80 74.52 ± 9.40 77.39 ± 9.76 62.50 ± 10.01
60 82.03 ± 8.26 72.99 ± 8.83 78.40 ± 10.31 61.71 ± 9.85

3.2. Evaluation Metrics

To evaluate the performance of the proposed ARST quantitatively, four commonly
used metrics are adopted, including accuracy, precision, recall and Jaccard index.
For each video, the accuracy is evaluated by calculating the percentage of correctly
recognized phases at video-level. Meanwhile, the precision, recall and Jaccard are first
evaluated for each phase, and then averaged over all existing phases. We report the
average value and standard deviation of each evaluation metric on the 40 testing cases.

3.3. Training Protocol

Our feature extractor and ARST are implemented with PyTorch and trained on an
NVIDIA TITAN RTX GPU. Spatial feature extractor ResNet-50 is initialized from
a model pre-trained on ImageNet (Deng et al. 2009) and then trained for another
50 epochs using an SGD optimizer with 1e-4 learning rate. The resolution of input
video frames is resized to 250×250. Random 224×224 cropping, flipping, rotating and
color jittering are applied for data augmentation. For temporal modeling, we employ
an Adam optimizer with 1e-4 learning rate to train the temporal feature extractor
TeCNO for 50 epochs. After training, we fix feature extractors. We then train our
ARST with Adam optimizer for 20 epochs. The learning rate is set as 1e-5. Each
iteration uses frame features of a complete video, with batch size identical to the
video’s length.

3.4. Ablation Studies

The width W of the banded causal mask determines the range of previous frames
considered in the attention dependency. We first evaluate the effect of the band width
W on the performance of our method. The ablation study results are reported in
Table 2, the case with W = 0 can be regarded as a degenerated attention. Our exper-
imental results show that an appropriate W is of great importance to achieve better
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Table 3. Ablative testing results for auto-regression (AR) and consistency constrained
inference (CCI) strategy. Average metrics (%) and the standard deviations (±) are reported.
Two types of feature extractor FS , ResNet-50 (R) and TeCNO (T ), are considered.

FS AR CCI Accuracy Precision Recall Jaccard

R - - 86.96 ± 7,47 84.24 ± 8.15 80.26 ± 7.88 68.81 ± 10.88
R X - 87.62 ± 6.44 84.05 ± 6.67 84.04 ± 5.34 71.70 ± 8.97
R X X 88.46 ± 6.81 84.93 ± 7.83 85.05 ± 7.24 73.16 ± 10.17

T - - 88.19 ± 8.07 86.09 ± 7.19 83.31 ± 7.93 72.65 ± 10.93
T X - 88.23 ± 7.45 85.27 ± 7.50 84.94 ± 6.55 73.00 ± 10.25
T X X 89.27 ± 7.27 87.08 ± 7.25 86.82 ± 5.99 76.10 ± 9.62

Ground Truth

Baseline

AR ! = "

AR + CCI

Baseline

AR ! = #

AR + CCI

P1 P2 P3 P4 P5 P6 P7

Figure 2. Qualitative illustration of the ablative testing results for auto-regression (AR) and consistency
constrained inference (CCI) strategy. Two types of feature extractor FS , ResNet-50 (R) and TeCNO (T ), are
considered.

performance. Larger W allows to generate smoother predictions benefiting from rich
temporal information, but phase transition will become more susceptible to noise or
poor frame features. On the contrary, smaller W allows limited temporal information,
leading to frequently jumped phase predictions. From this table, one can see that
setting W = 5 achieves the best result.

Table 3 reports the quantitative evaluation of the ablative studies for auto-regression
and the CCI strategy when either spatial features or temporal features are used as
the input to our ARST encoder. Without auto-regression, we use phase predictions
from ResNet-50 (He et al. 2016) or TeCNO (Czempiel et al. 2020) as the input (after
embedding) to our ARST decoder. No matter what types of features are used, the
worst results are achieved when both auto-regression and the CCI strategy are not
used. Adding auto-regression leads to better results. The improvement is substantial
when either type of features are used, indicating that auto-regression is capable for
temporal modeling and refinement. When both auto-regression and the CCI strategy
are used, a performance boost of 4.4% (when spatial features are used) or of 3.6%
(when temporal features are used) in terms of Jaccard is observed, demonstrating the
superior performance of the proposed method for phase recognition.

Moreover, visual comparisons (Figure 2) are provided to show the improvements
qualitatively. Baseline is the case without using auto-regression and the CCI strategy.
We can see that the predictions obtained when auto-regression is used are smoother
than the baseline method, indicating that the model learns the pattern of phase tran-
sition well. Additionally, by incorporating our CCI strategy, the jumped predictions
observed in the results obtained when auto-regression is used nearly disappear.
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Table 4. Quantitative comparison with baseline and state-of-the-art methods. Average values (%) and
standard deviations (±) are reported. Two types of feature extractor FS , ResNet-50 (R) and TeCNO (T ),
are considered.

Methods Accuracy Precision Recall Jaccard

ResNet-50 (He et al. 2016) 81.54 ± 7.90 74.68 ± 8.87 75.29 ± 6.95 59.70 ± 9.58
SV-RCNet (Jin et al. 2017) 85.03 ± 6.81 79.70 ± 8.05 79.18 ± 6.26 65.46 ± 9.48
TeCNO (Czempiel et al. 2020) 87.18 ± 7.72 82.66 ± 8.97 82.80 ± 6.46 69.62 ± 10.90
Ours (FS = R) 88.46 ± 6.81 84.93 ± 7.83 85.05 ± 7.24 73.16 ± 10.17

Trans-SVNet* (Gao et al. 2021) 88.23 ± 7.97 84.98 ± 7.59 86.16 ± 6.40 73.83 ± 10.66
Ours (FS = T )* 89.27 ± 7.27 87.08 ± 7.25 86.82 ± 5.99 76.10 ± 9.62

* It denotes that a state-of-the-art temporal modeling method is involved, e.g. TeCNO.

ResNet

SV-RCNet

TeCNO

Trans-SVNet

Ground Truth

Ours ( ! = ")

Ours ( ! = #)

P1 P2 P3 P4 P5 P6 P7

Figure 3. Qualitative comparison with baseline and state-of-the-art methods. Two types of feature extractor
FS , ResNet-50 (R) and TeCNO (T ), are considered.

3.5. Comparison with the State-of-the-arts

We compare our method with several state-of-the-art methods. All the methods are
trained without using any tool presence information. ResNet-50 is our backbone for
spatial features extraction (He et al. 2016). SV-RCNet realizes end-to-end temporal
modeling by seamlessly integrating ResNet and LSTM (Jin et al. 2017). TeCNO is
our backbone for temporal embeddings extraction, utilizing a two-stage causal TCN
for temporal modeling (Czempiel et al. 2020). Trans-SVNet achieves superior recogni-
tion performance by aggregating spatial and temporal embeddings from ResNet and
TeCNO (Gao et al. 2021).

In fairness, our method is compared with ResNet-50, SV-RCNet and TeCNO when
spatial features are used. In addition, when temporal features are used, our method is
only compared with Trans-SVNet, since both methods use temporal features extracted
by TeCNO (Czempiel et al. 2020). All methods involved in the comparison are trained
with same data augmentation and dataset partition setup.

Table 4 presents the quantitative evaluation results of the comparison. Please note
that the results that we report here are based on the publicly available implementation
of (Jin et al. 2017; Czempiel et al. 2020; Gao et al. 2021) but evaluated on our own
data split. From this table, one can see that, when spatial features are used, our method
outperforms TeCNO by 1.3%-3.5% in all metrics and achieves a performance that is
comparable to Trans-SVNet. Meanwhile, when temporal features are used, our method
outperforms Trans-SVNet by 1%-2.3% in all metrics and achieves the best result among
all compared methods. We additionally show a qualitative comparison in Figure 3.
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No matter what types of features are used, the proposed method achieves smoother
and more reliable predictions than other methods. Trans-SVNet achieves the second-
best quantitative results but still produces frequently jumped predictions. In contrast,
with the proposed method nearly no jumped prediction can be found. Benefiting from
the limited band width W of Mbc and light-weighted network architecture, it takes
on average 15.15 milliseconds for our method to process one frame, including the
computing time for both feature extractors (spatial and temporal) and ARST. The
proposed method can achieve an inference rate of 66 fps.

4. Conclusion

In this paper, we propose an auto-regressive surgical transformer, ARST, for accurate
on-line phase recognition from laparoscopic videos. Phase prediction for each frame is
conditionally dependent on predictions of previous frames, which can implicitly cap-
ture the inter-phase correlation. Besides, our novel consistency constraint inference
strategy helps to reduce inference bias while enhancing the consistency and relia-
bility of phase recognition. Our method outperforms state-of-the-art methods when
evaluated on the public Cholec80 dataset, which may hold the potential to develop
context-aware computer assisted interventional systems.
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