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Abstract

Automatic sequences such as the Thue-Morse sequence and the

Rudin-Shapiro sequence are highly predictable and thus not suitable

in cryptography. In particular, they have small expansion complexity.

However, they still have a large maximum order complexity.

Certain subsequences of automatic sequences are not automatic

anymore and may be attractive candidates for applications in cryp-

tography. In this paper we show that subsequences along the squares

of certain pattern sequences including the Thue-Morse sequence and

the Rudin-Shapiro sequence have also large maximum order complex-

ity but do not suffer a small expansion complexity anymore.
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1 Introduction

For a positive integer N and a sequence S = (si)
∞
i=0 over the finite field F2 of

two elements with (s0, . . . , sN−2) 6= (a, . . . , a), a ∈ {0, 1}, the N th maximum
order complexity M(S, N) (or N th nonlinear complexity) is the smallest posi-
tive integer M such that there is a polynomial f(x1, . . . , xM ) ∈ F2[x1, . . . , xM ]
with

si+M = f(si, si+1, . . . , si+M−1), 0 ≤ i ≤ N −M − 1,

see [8, 9]. If si = a for i = 0, . . . , N − 2, we define M(S, N) = 0 if sN−1 = a

and M(S, N) = N − 1 if sN−1 6= a. A sequence with small Nth maximum
order complexity (for sufficiently large N) is predictable and thus unsuitable
in cryptography. However, there are predictable sequences with large Nth
maximum order complexity and further quality measures for cryptographic
sequences have to be studied.

Diem [4] introduced the expansion complexity of the sequence S as fol-
lows. We define the generating function G(x) of S by

G(x) =

∞
∑

i=0

six
i,

viewed as a formal power series over F2. (Note the change by the factor x

compared to the definition in [4].) For a positive integerN , theN th expansion
complexity E(S, N) is 0 if s0 = . . . = sN−1 = 0 and otherwise the least total
degree of any nonzero polynomial h(x, y) ∈ F2[x, y] with

h(x,G(x)) ≡ 0 mod xN .

A sequence with small Nth expansion complexity is predictable.
Automatic sequences such as the Thue-Morse sequence and the Rudin-

Shapiro sequence have a large Nth maximum order complexity of order of
magnitude N , see [14]. However, by Christol’s theorem [3] they are charac-
terized by

sup
N≥1

E(S, N) < ∞,

see also [1, Theorem 12.2.5].
For example, the Thue-Morse sequence T = (ti)

∞
i=0 over F2 is defined by

ti =

{

ti/2 if i is even,
t(i−1)/2 + 1 if i is odd,

i = 1, 2, . . .
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with initial value t0 = 0. An explicit formula for M(T , N) is given in [14,
Theorem 1]. In particular, it satisfies

M(T , N) ≥ N

5
+ 1, N ≥ 4.

However, taking

h(x, y) = (x+ 1)3y2 + (x+ 1)2y + x,

its generating function G(x) satisfies h(x,G(x)) = 0 and thus

E(T , N) ≤ 5, N = 1, 2, . . .

Hence, despite of a large Nth maximum order complexity, the Thue-Morse
sequence is highly predictable. Other indicators for its predictability are a
linear subword complexity, see [1, Exercise 10.11.10] or [2, 10], and a large
correlation measure of order 2 [11].

Subsequences of automatic sequences may be not automatic anymore and
can look much more random. For example, the subsequence of the Thue-
Morse sequence along squares T ′ = (ti2)

∞
i=0 is not automatic by [1, Theorem

6.10.1], that is,
sup
N≥1

E(T ′, N) = ∞,

it has the largest possible subword complexity [12] and is even normal [5]. In
Section 2 we prove a lower bound on M(T ′, N) of order of magnitude N1/2,
which indicates that T ′ is rather unpredictable.

More generally, for a positive integer k we study subsequences along the
squares of the pattern sequences Pk = (pn)

∞
n=0 over F2 defined by

pn ≡ sk(n) mod 2,

where Pk = 11 . . . 1 ∈ F
k
2 is the all 1 pattern of length k and sk(n) is the

number of occurrences of Pk in the binary representation of n. For k = 1 we
get the Thue-Morse sequence and for k = 2 the Rudin-Shapiro sequence. In
Section 3 for k ≥ 2 we prove a lower bound on the maximum order complexity
of P ′

k of order of magnitude N1/2. Note that the proof is slightly different
than for k = 1.

We finish this paper with a list of open problems in Section 4.
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2 The Thue-Morse sequence along squares

Theorem 1. Let T ′

= (ti2)
∞
i=0 be the subsequence of the Thue-Morse sequence

along squares. Then the N th maximum order complexity of T ′ satisfies

M(T ′

, N) ≥
√

2N

5
, N ≥ 21.

Proof. Let ℓ ≥ 2 be the integer defined by

5 · 2ℓ < N ≤ 5 · 2ℓ+1 (1)

and note that the Thue-Morse sequence satisfies

tn ≡ s1(n) mod 2, n = 0, 1, . . . ,

where s1(n) denotes the number of ni = 1 in the binary expansion of n, that
is,

n =
∞
∑

i=0

ni2
i with ni ∈ {0, 1}.

(Note that only finitely many ni are nonzero.)

For i = 0, 1, . . . ,
⌊√

2ℓ+2 − 1
⌋

we have (since ℓ ≥ 2)

t(i+2ℓ+1)2 ≡ s1(i
2 + i2ℓ+2 + 22ℓ+2) ≡ s1(i

2) + s1(i) + 1 mod 2

and
t(i+2ℓ+2)2 ≡ s1(i

2 + i2ℓ+3 + 22ℓ+4) ≡ s1(i
2) + s1(i) + 1 mod 2

and thus
t(i+2ℓ+1)2 = t(i+2ℓ+2)2 , i = 0, 1, . . . ,

⌊

√

2ℓ+2 − 1
⌋

. (2)

Moreover, we have

s1((2
ℓ + 2ℓ+1)2) = s1(2

2ℓ + 22ℓ+3) = 2

but
s1((2

ℓ + 2ℓ+2)2) = s1(2
2ℓ + 22ℓ+3 + 22ℓ+4) = 3.

Hence,
t(2ℓ+2ℓ+1)2 6= t(2ℓ+2ℓ+2)2 . (3)
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Now assume
M = M(T ′, N) ≤

⌊

√

2ℓ+2 − 1
⌋

+ 1,

that is, there is a polynomial f(x1, . . . , xM) in M variables with

t(j+M)2 = f(tj2, . . . , t(j+M−1)2), j = 0, 1, . . . , N −M − 1. (4)

Note that for 0 ≤ k ≤ N −M − 1 the values of t(k+M)2 , t(k+M+1)2 , . . . , t(N−1)2

are uniquely determined by the values of tk2, . . . , t(k+M−1)2 and by applying
successively the recurrence (4) for j = k, . . . , N −M − 1. In particular, if

(tk2
1
, . . . , t(k1+M−1)2) = (tk2

2
, . . . , t(k2+M−1)2)

for some k1 and k2 with 0 ≤ k1 < k2 ≤ N −M − 1, we get also

(t(k1+M)2 , . . . , t(k1+N−k2−1)2) = (t(k2+M)2 , . . . , t(N−1)2).

Taking k1 = 2ℓ+1 and k2 = 2ℓ+2 we get from (2):

(t(2ℓ+1+M)2 , . . . , t(N−2ℓ+1−1)2) = (t(2ℓ+2+M)2 , . . . , t(N−1)2).

Since N−1 ≥ 2ℓ+2ℓ+2 (by the lower bound in (1)) and M ≤ 2ℓ this includes

t(2ℓ+2ℓ+1)2 = t(2ℓ+2ℓ+2)2

which contradicts (3) and we get (using the upper bound in (1))

M(T ′, N) ≥
⌊

√

2ℓ+2 − 1
⌋

+ 2 ≥
√

2N

5
,

which completes the proof.

Remarks.

1. Since the Nth linear complexity is lower bounded by the Nth maximum
order complexity, this result shows that an attack via the Berlekamp-
Massey algorithm fails for sufficiently large N .

2. Our experimental results support the conjecture that Theorem 1 is
(up to the constant) best possible, that is, M(T ′, N) is of order of
magnitude

√
N .
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3. Our lower bound is strong enough to guarantee that T ′ is not vulner-
able under any known algorithm that calculates a shortest recurrence
relation. This is even true if we consider the simpler problem of find-
ing a shortest linear recurrence, see Remark 1. However, it does not
guarantee that there is no other efficient way to attack our sequence
although we are not aware of any such possible attack. Hence it is
still important to study further features of this sequence such as its
expansion complexity or its correlation measure of order k. For further
discussions about predictability and measures of pseudorandomness we
refer to the surveys [7, 13].

4. Further experiments indicate that also the Nth expansion complexity
of T ′ is quite large, that is, we believe that its order of magnitude is
close to the best possible order N1/2. (We have E(S, N) ≤

√
2N for

any sequence S by [6, Theorem 1].)

3 Pattern sequences along squares for k ≥ 2

Theorem 2. For k ≥ 2 let P ′

k = (pi2)
∞
i=0 be the subsequence of the pattern

sequence Pk along the squares. Then the N th maximum order complexity
of P ′

k satisfies

M(P ′

k, N) ≥
(

N

8

)1/2

, N ≥ 22k+2.

Proof. Let ℓ be the positive integer defined by

22k+ℓ+1 ≤ N < 22k+ℓ+2. (5)

For 0 ≤ i ≤
⌊√

2ℓ+2k−1 − 1
⌋

we have

sk((i+ 2ℓ+2k−1)2) = sk(i
2 + i2ℓ+2k + 22ℓ+4k−2) = sk(i

2) + sk(i)

as well as
sk((i+ 2ℓ+2k)2) = sk(i

2) + sk(i).

Thus
p(i+2ℓ+2k−1)2 = p(i+2ℓ+2k)2 , i = 0, 1, . . . ,

⌊

√

2ℓ+2k−1 − 1
⌋

. (6)
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For k = 2 we have

s2((2
ℓ+2 + 2ℓ+3)2) = s2(1 + 23) = 0

but
s2((2

ℓ+2 + 2ℓ+4)2) = s2(1 + 23 + 24) = 1

and thus
p(2ℓ+2+2ℓ+3)2 6= p(2ℓ+2+2ℓ+4)2 . (7)

For even k > 2 we have

sk(((2
k − 1)2ℓ + 22k−1+ℓ)2) = sk(1 + 23k − 2k+1 + 24k−2) = k ≡ 0 mod 2

but

sk(((2
k − 1)2ℓ + 22k+ℓ)2) = sk(1 + (22k − 2k+1) + (23k+1 − 22k+1) + 24k) = 1

and thus
p((2k−1)2ℓ+22k−1+ℓ)2 6= p((2k−1)2ℓ+22k+ℓ)2 . (8)

For k = 3 we have

s3((7 · 2ℓ+3 + 2ℓ+5)2) = s3(1 + 27 − 23) = 2 ≡ 0 mod 2

but
s3((7 · 2ℓ+3 + 2ℓ+6)2) = s3(1 + 28 − 25) = 1

and thus
p(7·2ℓ+3+2ℓ+5)2 6= p(7·2ℓ+3+2ℓ+6)2 . (9)

For odd k > 3 we have

sk(((2
k−1−1)2ℓ+2+22k−1+ℓ)2) = sk(1+(23k−3−2k)+24k−6) = k−2 ≡ 1 mod 2

but

sk(((2
k−1 − 1)2ℓ+2 + 22k+ℓ)2)

= sk(1 + (22k−2 − 2k) + (23k−2 − 22k−1) + 24k−4)

= 0
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and thus
p((2k−1−1)2ℓ+2+22k−1+ℓ)2 6= p((2k−1−1)2ℓ+2+22k+ℓ)2 . (10)

Now the result follows the same way as Theorem 1 as follows.

Assume M = M(P ′
k, N) ≤

⌊√
2ℓ+2k−1 − 1

⌋

+ 1 and thus there is a recur-

rence of order M which successively continues (6) to get

p(i+2ℓ+2k−1)2 = p(i+2ℓ+2k)2 , i = 0, 1, . . . , N − 2ℓ+2k − 1.

Choosing

i =















2ℓ+2, k = 2,
(2k − 1)2ℓ, k > 2 and k even,
7 · 2ℓ+3, k = 3,
((2k−1 − 1)2ℓ+2, k > 3 and k odd,

we get a contradiction to (7), (8), (9) or (10), respectively. Hence,

M ≥
⌊

√

2ℓ+2k−1 − 1
⌋

+ 2 ≥
(

N

8

)1/2

by (5).

4 Open problems

Problem 1. [5, Conjecture 1] Show that the subsequences of the Thue-Morse
sequence (pattern sequence) along any polynomial of degree d ≥ 2 are normal.

This problem may be out of reach and we state some weaker problems.
It is known that the subword complexity is maximal if d = 2 [12]. For d ≥ 3
a lower bound on the subword complexity is given in [12], as well.

Problem 2. [12, Open Question 4] Show that the subword complexity of
the subsequence of the Thue-Morse sequence along any polynomial of degree
d ≥ 3 is maximal.

Problem 3. [5, above Conjecture 1] Determine the frequency of 0 and 1 in
the subsequence of the Thue-Morse sequence along any polynomial of degree
d ≥ 3.
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Problem 4. Extend Theorems 1 and 2 to any polynomial of degree d ≥ 2.

Problem 5. Prove upper bounds on the correlation measure of order k for
subsequences of the Thue-Morse sequence along squares (polynomials).

Problem 6. Prove lower bounds on the expansion complexity of the Thue-
Morse sequence along squares (polynomials).
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