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A Closer Look at the Tropical Cryptography

Steve Isaac and Delaram Kahrobaei

Abstract

We examine two public key exchange protocols proposed recently which

use tropical algebra. We introduce a fast attack on the first protocol, and

we show that the second protocol cannot be implemented as described.

1 Introduction

In this paper we analyse the two novel key exchange protocols proposed in
[3], which are both based on tropical matrix algebra. These protocols utilise
the semidirect products of semigroups [4], in an attempt to avoid exploitable
patterns, which were exhibited by previous protocols based on tropical matrix
algebra [7]. It has already been shown that a private parameter of these novel
protocols can be recovered in about 15 minutes using a binary search [9]. We
will describe a significantly faster method of attack on the first protocol, which
recovers the same private parameter. We will also show that the second protocol
cannot be implemented as described, due to its reliance on the associativity of
an operation that is not associative.

2 Preliminaries

2.1 Tropical Matrix Algebra

The tropical algebra, R, is given by equipping the extended set of real numbers,
R ∪ {∞}, with the addition operation, ⊕, and the multiplication operation, ⊗,
defined by:

x⊕ y = min(x, y) (1)

x⊗ y = x+ y (2)

R satisfies all the axioms of a semiring. On top of satisfying the semiring
axioms, R is idempotent under addition (and therefore an idempotent semiring)
and commutative under multiplication.

A tropical matrix algebra, T can be defined by equipping the set of square
matrices of order ω, that contains elements from R, with the addition operation,
⊕, and the multiplication operation, ⊗. The elements of the matrixX , produced
by the matrix addition Y ⊕ Z, are defined by:

Xij = Yij ⊕ Zij (3)
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The elements of the matrix X , produced by the matrix multiplication Y ⊗ Z,
are defined by:

Xij =

ω
⊕

k=1

Yik ⊗ Zkj (4)

Like R, T is an idempotent semiring, however T is not commutative under
multiplication.

Note that R is also known as min-plus algebra. For further reading on
tropical algebra see [1] and [2].

2.2 Almost Linear Periodicity

Nachtigall et al. define a sequence of matrices, Hn, n ∈ N, as almost linear
periodic [8] if there exists a period ρ, a linear factor ξ, and some defect d, such
that for all n > d and all indices i, j the following equation holds:

H
n+ρ
ij = ξ +Hn

ij (5)

This property is exhibited by the first protocol, and exploited to create our
attack.

3 Overview of the first protocol

NB Throughout this paper we will use Mn and Hn to represent the results of
(M,H)n: that is to say (M,H)n = (Mn, Hn).

The protocol is based on a semigroup given by equipping the set of pairs, con-
taining entries from T , with the operation defined by:

(X,G)(Y,H) = ((X ◦H)⊕ Y,G ◦H) (6)

where X ◦H is defined by:

X ◦H = X ⊕H ⊕ (X ⊗H) (7)

1. Alice and Bob agree upon public matrices M and H , with elements in Z.

2. Alice generates a private positive integer a, while Bob generates a private
positive integer b.

3. Alice calculates (M,H)a = (Ma, Ha), and shares Ma with Bob, keeping
Ha private.

4. Bob calculates (M,H)b = (Mb, Hb), and shares Mb with Alice, keeping
Hb private.

5. Alice calculates K = (Mb ◦Ha)⊕Ma to get the secret key.

6. Bob calculates K = (Ma ◦Hb)⊕Mb to get the same key as Alice.



When implementing the protocol Grigoriev and Shpilrain state that (M,H)a

should be calculated using the square-and-multiply method. The associativity
of the semigroup operation makes this possible.

4 Attack on the first protocol

The sequence of matrix powers over T is shown to be almost linear periodic in
[1]. We observed that the sequence Hn also behaves in an almost linear periodic
manner. Since Ha is a private matrix, this behaviour does not compromise the
protocol in an obvious manner. However, we also observed the sequence Mn

exhibit almost linear periodic behaviour. As Ma is public, assuming that the
d and ρ for Mn are sufficiently small such that Md+ρ can be enumerated in
polynomial time, it is possible to use this behaviour to derive a. d and ρ were
sufficiently small in all combinations of M and H that we tested, as shown in
Table 1.

Below we describe an attack on the protocol that utilises the almost linear
periodicity of Mn. The attack uses the public matrices M , H and Ma to derive
the private exponent a. Once a is obtained, it is trivial to use M , H , Mb, and
a with the procedures described in the protocol to obtain the secret key. The
attack is split into two parts; first, finding d and ρ for Mn, and second, finding
a using d and ρ.

4.1 Finding d and ρ

The sequence Mn is defined by:

M1 = M

Mn = (Mn−1 ◦H)⊕M , for n > 1
(8)

M and H are public allowing for the enumeration of this sequence. Assuming
Mn is almost linear periodic, all terms after the defect that are a period apart
differ by the linear factor. It follows that, after the defect, consecutive terms will
change in a pattern that repeats every period. This implies that the sequence
containing the differences between successive elements of Mn will be periodic
in nature after the defect. We will refer to this sequence of differences between
successive elements of Mn as Dn:

Dn = Mn+1 −Mn, for n ≥ 1 (9)

To find d and ρ, we enumerate the terms of Dn (by enumerating the terms ofMn

and calculating Dn) and compare the current term to previously enumerated
terms. If a previously enumerated term is equal to the current term, it is possible
that the previously enumerated term marks the beginning of periodicity, and its
index is d+1. The difference in indexes of the previously enumerated term and
the current term would, therefore, be equal to ρ. It is possible that terms could
repeat before the defect, resulting in false values for d and ρ. This is covered in
more detail in 4.3.



4.2 Finding a

1. From the definition of Dn:

Dn = Mn+1 −Mn, for n ≥ 1 (10)

it follows that:

Mn = M1 +
n−1
∑

i=1

Di (11)

2. Let Y = Ma −Md+1. It follows that:

Y = Ma −Md+1

= (M1 +

a−1
∑

i=1

Di)− (M1 +

d
∑

i=1

Di)

=

a−1
∑

i=d+1

Di

(12)

3. Due to the periodic nature of Di, for i > d, this sum can be decomposed
into two parts: the sum of the differences within the period, ρ, multiplied
x times, and the sum of the differences within the period in which Ma is
located up until Da−1:

Y = x

d+ρ
∑

i=d+1

Di +

a−1
∑

i=a−k

Di (13)

where x is some positive integer, 1 ≤ k ≤ ρ and d+ xρ+ k = a.

The periodic nature ofDi after the defect implies that any sum of a number
of consecutive elements in Di, where the first term occurs after the defect,
is equal to the sum of the same number of consecutive elements that occur
any multiple of the period further along the sequence. Therefore the above
can be rewritten as:

Y = x

d+ρ
∑

i=d+1

Di +

d+k
∑

i=d+1

Di (14)

4. k can be found by testing all possible values from 1 to ρ. For a value to
be k the following must hold, for all indices u, v:

(Yuv −

d+k
∑

i=d+1

Diuv) mod

d+ρ
∑

i=d+1

Diuv = 0 (15)

5. Once k has been obtained, x can be found through the equation:

Yuv −
∑d+k

i=d+1

D iuv

d+ρ
∑

i=d

Diuv = x (16)

6. Now that we have d, x, and k, we can solve d+ xρ+ k = a to find a.



4.3 Special cases

There may be repeated elements in Dn, where n ≤ d, leading to false values for
d and ρ. This will often be detected when searching for k, as no values for k

will satisfy the equation:

(Yuv −
a−1
∑

i=a−k

Diuv) mod

d+ρ
∑

i=d

Diuv = 0 (17)

There is a small chance that a value could satisfy the equation, resulting in an
incorrect derivation of a. This can be handled by checking that the derived a

satisfies the equation:
(M,H)derived a = (Ma, Z) (18)

where the variable Z can be ignored, because if the first term is correct, it
follows that the second term is correct. If an incorrect a is detected, the search
for d and ρ can be resumed.

A second special case which should be accounted for in the attack, is when
Dn becomes the zero matrix for n > d. This results in a division by zero when
finding k and x. This special case is simple to account for, as it implies that
for all Mn, such that n > d, Mn = Md+1. Therefore, although it is impossible
to find a, this has no bearing on the success of the attack, as d + 1 can be
substituted for a.

4.4 Experimental Results

Maximum d 2151
Median d 26
Mean d 40.9
Maximal ρ 15
Median ρ 2
Mean ρ 2.8
Maximum attack time (s) 200.9
Median attack time (s) 3.5
Mean attack time (s) 3.9
Success Rate 100%

Table 1: Results of attack on the first protocol

The success of the attack against 10000 instances of the protocol, with the
parameters suggested by Grigoriev and Shpilrain, is detailed in Table 1. d is the
number of elements of the sequence Mn that were enumerated before periodic
behaviour was observed. p is the period. The attack times give the time taken
to find the private parameter a. The protocol and attack were implemented in
Python and can be found in [5]. All tests were performed on a single core of an
i7 CPU at 2.9GHz, with 8GB of RAM, running Windows 10, and interpreted
using Python 3.7.6.



5 Overview of the second protocol

The protocol is based on a supposed semigroup (which we will show is not a
semigroup in the next section) given by equipping the set of pairs, containing
entries from T , with the operation defined by:

(M,G)(S,H) = ((H ⊗MT )⊕ (MT ⊗H)⊕ S,G⊗H) (19)

1. Alice and Bob agree upon public matrices M and H , with elements in Z.

2. Alice generates a private positive integer a, while Bob generates a private
positive integer b.

3. Alice calculates (M,H)a = (Ma, Ha), and shares Ma with Bob, keeping
Ha private.

4. Bob calculates (M,H)b = (Mb, Hb), and shares Mb with Alice, keeping
Hb private.

5. Alice calculates K = (Mb ⊗Ha)⊕Ma to get the secret key.

6. Bob calculates K = (Ma ⊗Hb)⊕Mb to get the same key as Alice.

As with the first protocol, Grigoriev and Shpilrain state that (M,H)a should
be calculated using the square-and-multiply method.

6 Proof that the second protocol cannot be im-

plemented

This protocol cannot be implemented as the operation that the protocol is based
upon is not associative. Consider the example below:

Let A =

(

0 −1
0 0

)

, B =

(

0 −2
0 0

)

, (20)

(A,B)2 =

((

−3 −2
−1 −3

)

,

(

−2 −2
0 −2

))

(21)

(A,B)(A,B)2 =

((

−3 −2
−3 −3

)

,

(

−2 −4
−2 −2

))

(22)

(A,B)2(A,B) =

((

−4 −5
−3 −4

)

,

(

−2 −4
−2 −2

))

(23)

(A,B)(A,B)2 6= (A,B)2(A,B) (24)

It follows, from the operation’s lack of associativity, that it is not possible to
calculate (M,H)a by utilising the square-and-multiply method. Consequently,
the protocol cannot be successfully implemented.



7 Conclusion

The first protocol we analysed is insecure when using the proposed parameters
for key generation. It is unclear how to modify the protocol such that it resists
the attack we describe. Our attack is significantly faster than the binary search
attack given in [9], requiring about 0.5% of the time to find a when using
proposed protocol parameters. The longest the attack took to break the protocol
was 200 seconds, which was still considerably faster than the binary search.

It is not possible to implement the second protocol we analysed, since the
operation it relies upon is not associative. This prevents the use of the square-
and-multiply method for exponentiation, which is a fundamental aspect of the
general protocol on which these protocols are based [6].

We encourage interested readers to examine our implementation of tropical
matrix algebra, the protocols, and the attack, and perform their own experi-
ments using it [5].
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