
ar
X

iv
:1

81
1.

04
55

2v
2

 [c
s.

C
G

]
2

M
ar

 2
01

9 Approximate Curve-Restricted Simplification of

Polygonal Curves

Ali Gholami Rudi
∗

Abstract

The goal in the min-# curve simplification problem is to reduce
the number of the vertices of a polygonal curve without changing its
shape significantly. We study curve-restricted min-# simplification of
polygonal curves, in which the vertices of the simplified curve can be
placed on any point of the input curve, provided that they respect
the order along that curve. For local directed Hausdorff distance from
the input to the simplified curve in R

2, we present an approximation
algorithm that computes a curve whose number of links is at most
twice the minimum possible.

Keywords: Curve simplification, geometric algorithms, computational ge-
ometry.

2010 Mathematics subject classification: 68U05.

1 Introduction

The goal of the classical curve simplification problem is to reduce the num-
ber of the vertices of a polygonal curve, without changing its shape signif-
icantly. There are several applications in which curve simplification plays
an important role. In trajectory analysis, for instance, there are two impor-
tant reasons for this reduction. First, it reduces the storage and bandwidth
requirements for storing and transferring huge and growing collections of
trajectory data. Second, and probably more importantly, the complexity of
most trajectory analysis algorithms depends on the number of the vertices

∗Department of Electrical and Computer Engineering, Bobol Noshirvani University of

Technology, Babol, Iran. Email: gholamirudi@nit.ac.ir.

1

http://arxiv.org/abs/1811.04552v2

of the input curves, and simplifying trajectories can reduce the running time
of these algorithms.

Let P = 〈p1, p2, ..., pn〉 be a polygonal curve on the plane. The curve
P ′ = 〈p′1, p

′
2, ..., p

′
m〉 is a simplification of P , if p′1 = p1, p

′
m = pn, m ≤ n, and

the distance between P and P ′ is at most ǫ (the definition of the distance
between these curves and the value of ǫ is described below). The simplified
curve may be vertex-restricted, curve-restricted, or unrestricted. In vertex-
restricted simplification, the vertices of P ′ coincide with the vertices of the
input curve, i.e. for each i where 1 ≤ i ≤ m, p′i = pj for some index j,
where 1 ≤ j ≤ n. In curve-restricted simplification, the vertices of P ′ can
be placed on any point of the input curve, and in unrestricted simplification
there is no limitation on the placement of the internal vertices of P ′. In
the first two cases, which is the focus of the present paper, the vertices of
the simplified curve should appear in order on the input curve, and thus
split P into sub-curves. For each edge of the simplification p′ip

′
i+1, in which

1 ≤ i ≤ m− 1, let Pp′
i
p′
i+1

denote the sub-curve of P from p′i to p′i+1.
The distance between two curves is computed using measures such as

Fréchet or Hausdorff [1] (other measures too are sometimes used such as
[2]). Let D(C,C ′) denote the function that computes the distance between
two curves using any such measure. The distance between the original and
simplified curves is either global and computed for the curves as a whole,
or is local and computed as the maximum distance of the corresponding
sub-curves, i.e. max1≤i≤m−1 D(p′ip

′
i+1, Pp′

i
p′
i+1

).

Curve simplification is usually studied in two settings [3]. In the min-ǫ
setting the maximum value of m (the number of the vertices of the simplified
curve) is specified and ǫ (the amount of distance between the original and
simplified curves) is minimised, and in the min-# setting ǫ is given while
m is minimised. There are numerous results on vertex-restricted curve sim-
plification in the min-# setting, only some of which provide a guarantee on
the number of the vertices of the simplification. In the rest of this paper we
focus on the min-# problem, and assume that ǫ is specified as an input.

The well-known algorithm presented by Douglas and Peucker [4] does
not minimise the number of the vertices of the simplified curve, but is both
simple and effective. It assumes local directed Hausdorff distance from the
input curve to the simplified curve. For simplifying P with the maximum
distance ǫ, it finds the most distant vertex pk from segment p1pn; if their
distance is at most ǫ, this segment is a link of the simplification. Other-
wise, the algorithm recursively simplifies 〈p1, ..., pk〉 and 〈pk, ..., pn〉. The
worst-case time complexity of this algorithm is O(n2). Hershberger and

2

Snoeyink [5, 6] improved the running time of this algorithm to O(n log n)
and later to O(n log∗ n).

Among algorithms that compute an optimal simplification, i.e. a sim-
plification with the minimum number of links, the one presented by Imai
and Iri [7] is probably the most popular for local Hausdorff distance. It
creates a shortcut graph, the vertices of which represent the vertices of the
input curve. An edge pipj shows that the distance between link pipj and
sub-curve 〈pi, pi+1, ..., pj〉 is at most ǫ. A shortest path algorithm on this
graph, finds the simplification with the minimum number of vertices. The
time complexity of this algorithm is O(n2 log n). Chan and Chin [8], and
also Melkman and O’Rourke [9] improved the running time of this algorithm
to O(n2), and Chen and Daescu [10] reduced its space complexity to O(n).

There are many other results on vertex-restricted simplification that con-
sider the Fréchet distance or compute the distance of the curves globally.
For instance, van Kreveld at al. [11] studied the performance of the Douglas
and Peucker [4] and Imai and Iri [7] algorithms, described above, under the
global Hausdorff or Fréchet distance measures. They showed that comput-
ing an optimal vertex-restricted simplification using the global undirected
Hausdorff distance or global directed Hausdorff distance from the simplified
to the optimal curve is NP-hard, and presented an output-sensitive dynamic
programming algorithm with the time complexity O(mn5) for computing an
optimal simplification under the global Fréchet distance. A faster dynamic
programming algorithm for the same variation of the problem was presented
by van de Kerkhof et al. [12] with the time complexity O(n4).

Some results on vertex-restricted simplification do not obtain an optimal
simplification but provide a guarantee on the number of the links of the
resulting simplifications using approximation algorithms. Agarwal et al. [1]
for instance, presented a near-linear time approximation algorithm for local
Hausdorff distance using the uniform distance metric, in which the distance
between a point and a curve is defined as their vertical distance. They also
presented an approximation algorithm for local Fréchet distance under Lp

metric. Both of these algorithms are simple and greedy in nature. Among
these results, there are also vertex-restricted simplification algorithms that
assume streaming input or online setting [13, 14, 15, 16], in which a limited
storage is available or the curve should be simplified in one pass. It is
beyond the scope of this paper to review the literature on curve simplification
extensively; even many heuristic algorithms, such as [17, 18], have been
presented for curve simplification (Zhang et al. [19] surveyed many of them
for trajectory simplification).

Despite the number of results on vertex-restricted curve simplification,

3

2ε

Figure 1: An example showing that curve-restricted simplifications can have
far fewer vertices compared to vertex-restricted simplifications; the dashed
links are a curve-restricted simplification of the curve with solid edges.

curve-restricted simplification, which has attracted less attention, can yield
a curve with much fewer vertices, as in Figure 1, in which a curve-restricted
simplification with only four vertices is demonstrated for a curve whose
vertex-restricted simplification is the same as the input curve. For global
directed Hausdorff distance, van de Kerkhof et al. [12] showed that curve-
restricted simplification is NP-hard and provided an O(n) algorithm for
global Fréchet distance in R

1.
In this paper, we study the min-# curve-restricted simplification prob-

lem with maximum local Hausdorff distance ǫ from the input curve to the
simplified curve. We present a dynamic programming algorithm that com-
putes a simplified curve, the number of the links of which is at most twice
the minimum possible. This paper is organized as follows: In Section 2 we
introduce the notation used in this paper. In Section 3, we show how to
compute a simplification link between two edges of the input curve and in
Section 4, we present our main algorithm. We conclude this paper Section 5.

2 Preliminaries and Notation

A two-dimensional polygonal curve is represented as a sequence of vertices
on the plane, with line segments as edges between contiguous vertices. The
directed Hausdorff distance between curves C and C ′, denoted as H(C,C ′),
is defined as the maximum of the distance between any point of C to the
curve C ′, i.e. H(C,C ′) = maxp∈C dist(p,C ′), in which dist(p,C ′) is the
Euclidean distance between point p and curve C ′.

Let P ′ = 〈p′1, p
′
2, ..., p

′
m〉 be a curve-restricted simplification of P . We

have p′1 = p1, p
′
m = pn, m ≤ n, and the distance between P and P ′ is at

most ǫ. Also, the vertices of P ′ should appear in order along P . Given a
parameter ǫ, the goal in the min-# simplification is to find a simplified curve
with the minimum number of vertices, such that the distance between the
original and simplified curves is at most ǫ. In what follows, we use the term
link to refer to the edges of the simplified curve, to distinguish them from
the edges of the input curve.

4

s

N(s)

ε

Figure 2: The ǫ neighbourhood of a segment

For a link ℓ of P ′, suppose x and y on P are points corresponding to the
start and end points of ℓ and suppose x is on edge pipi+1 and y is on pjpj+1.
Then, ℓ covers all edges pkpk+1 for i ≤ k ≤ j. Let Pℓ be the sub-curve of
P corresponding to link ℓ, i.e. the sub-curve of P from point x to y. The
local Hausdorff distance from P to P ′ is the maximum of H(Pℓ, ℓ) over all
links ℓ of P ′. In this paper we assume local Hausdorff distance to measure
the distance between the input and simplified curves.

The ǫ-neighbourhood of a vertex of P or a segment which is defined as
follows.

Definition 2.1. The ǫ-neighbourhood of a point p, denoted as N(p) is a disk
of radius ǫ and with centre is at p. Clearly, the set of points inside N(p) are
all points at distance at most ǫ from p. Similarly, the ǫ-neighbourhood of a
segment s, denoted as N(s), is the set of points at distance at most ǫ from
any point of the segment s.

The ǫ-neighbourhood of a segment s is demonstrated in Figure 2.

3 Identifying Simplification Links

Lemma 3.1. For the curve P = 〈p1, p2, ..., pn〉, a segment s from point x
on edge pipi+1 to point y on edge pjpj+1 can be a link of a (not necessarily
optimal) curve-restricted simplification if and only if it intersects N(pk) for
every index k, where i < k ≤ j.

Proof. Let C be the sub-curve P from x to y. If s is a link of a simplification
of P , H(C, s) is at most ǫ. This implies that the distance of every point of
C to s is at most ǫ. For each vertex p of C this means that s should include
at least one point from N(p).

For the converse, suppose s intersects pipi+1 at x and pjpj+1 at y, as well
as N(p) for every vertex of C, the sub-curve of P from x to y. It is enough
to show that H(C, s) ≤ ǫ. For each edge, since the distance between its end

5

points and s is at most ǫ, the distance of other points of the edge cannot be
greater. This holds for every internal edge of C and implies H(C, s) ≤ ǫ as
required.

Lemma 3.1 corresponds to a similar statement for vertex-restricted sim-
plifications. We use this lemma later to compute the links of a simplification.

Corollary 3.2. For the curve P = 〈p1, p2, ..., pn〉, a segment s from point
x on edge pipi+1 to point y on edge pjpj+1 is a link of a (not necessarily
optimal) curve-restricted simplification if and only if N(s) contains pk for
every index k, where i < k ≤ j.

Corollary 3.2 holds because if a segment s intersects the ǫ-neighbourhood
of a vertex vk, the distance of vk to s is at most ǫ and it should be inside
N(s). We use Corollary 3.2 later to improve the time complexity of detecting
simplification links.

Lemma 3.3. Suppose ℓ is a link of a curve-restricted simplification of curve
P = 〈p1, p2, ..., pn〉, such that ℓ starts from point x on edge pipi+1 and ends
at point y on edge pjpj+1. There exists another link ℓ′ covering the same set
of edges such that the line that results from extending ℓ′ has the following
property for at least two values of k where i < k ≤ j: either i) it is a tangent
to N(pk), or ii) it passes through one of the end points of pipi+1 or pjpj+1,
or their intersection with N(pk).

Proof. Let L be the line resulting from extending the segment ℓ. If none
of the mentioned properties hold for any value of k, we move L down-
wards until one of them holds for some value k, i.e. it becomes tangent
to the ǫ-neighbourhood of pk or passes through the intersection of the ǫ-
neighbourhood of pk and the last or the first edge covered by the s. We
then rotate L around pk for case i, or the intersection of case ii, until one
of the conditions holds for another index. Let s be the segment on line L

with end points on pipi+1 and pjpj+1; such a segment surely exist, since the
movement or rotation stops at the end points of these edges.

Clearly L cannot leave N(pk) for any possible index k for both the down-
ward movement and the rotation; just before leaving N(pk), L becomes its
tangent. The only problem may be that although N(pk), for some k where
i < k ≤ j, is intersected by both ℓ and L, s may be too short to inter-
sect N(pk); this is demonstrated in Figure 3. However, since the rotation
stops at the intersection the first or the last edge and N(pk), this case never
happens.

6

A B

C D

E

L

s

Figure 3: Rotating line L around N(D) counterclockwise; s no longer inter-
sects N(C).

Lemma 3.4. A link of a curve-restricted simplification of P = 〈p1, p2, ..., pn〉,
from a point on edge pipi+1 to a point on edge pjpj+1 can be found with the
time complexity O(m3) where m = j − i+ 1, provided such a link exists.

Proof. We find a line for which the condition mentioned in Lemma 3.3 holds.
To do so, we find three parallel lines at distance ǫ on the plane, L1, L2,
and L3, such that a link can be found on line L2. We consider possible
placements of these lines according to Lemma 3.3 and check for which of
them the condition of Lemma 3.1 holds for a segment on L2. If L2 is a
tangent to N(pk) for some value of k where i < k ≤ j, then either L1 or
L3 should pass through pk. We therefore try different placements of these
three lines such that the following property holds for two values of k for
i < k ≤ j: either i) L1 or L3 passes through pk, or ii) L2 passes through
the intersection N(pk) and one of pi−1pi or pjpj+1 or the end points of these
edges. Since there are O(m) choices for the first and the second conditions,
the number of total cases to consider is O(m2).

For each of O(n2) possible placements of these lines, we have to verify if
there exists a segment s on L2 such that H(C, s) is at most ǫ. Let x be the
intersection of L2 and pipi+1 and let y be the intersection of L2 and pjpj+1;
if x or y do not exist, L2 cannot contain a link. Based on Lemma 3.1, if the
segment xy intersects N(pk) for every i < k ≤ j, it is a valid link. This can
be checked with the time complexity O(m).

Corollary 3.5. To force the link to start from pi, instead of any point on
edge pipi+1 in Lemma 3.4, we can fix this point on L2 and try the condition
mentioned in the proof of Lemma 3.4 for only one value of k.

Algorithms based on the construction of the shortcut graph of Imai and

7

s

N(s)

u

v
a

b

c

d

Figure 4: Symbols used for N(s) in Lemma 3.6

Iri [7] perform steps similar to Lemma 3.4: for each i and j, where 1 ≤ i <

j ≤ n, it should be verified if the segment pipj intersects the ǫ-neighbourhood
of every vertex pk for i < k < j. This task can be optimised by computing
the set of lines that pass through pi and intersect the ǫ-neighbourhood of the
vertices that appear after it (the intersection of double cones; see [10], for
instance). Unfortunately, for curve-restricted simplification that does not
seem possible, since the end points of each link may not be a vertex and are
chosen from a much larger set (see Lemma 3.3). Therefore, to improve the
time complexity of Lemma 3.4, we should use an alternative strategy.

Lemma 3.6. Let S be a set of n points on the plane and let δ be a constant,
where 0 < δ < 1. There exists a data structure with O(n1+δ) preprocessing
time and space, which, for any segment s, can verify if all points in S are
inside the ǫ-neighbourhood of s in O(21/δ log n) time.

Proof. We first compute the convex hull H of the points in S. The most
distant point of S from s is a vertex of H. Let ℓ(x, y) be the line that results
from extending the segment from point x to point y, and let h(x, y) be the
halfplane on the left side of ℓ(x, y). All members of S are in N(s), if and
only if there is no point in the following four regions (we use the symbols
defined in Figure 4):

1. h(a, c),

2. h(d, b),

3. h(b, a) \N(u), and

4. h(c, d) \N(u).

Since, the intersections of a convex polygon and a line can be computed
in logarithmic time, the first two regions can be checked in O(log n). The

8

p′
1

p′
2

p′
3

p′
4

Figure 5: A DLC 〈p′1p
′
2, p

′
3p

′
4〉 of a curve with six links (Definition 4.1)

other two regions can be checked using halfplane proximity queries: given a
directed line ℓ and a point q, report the point farthest from q among those to
the left of ℓ. Aronov et al. [20] presented a data structure that uses O(n1+δ)
preprocessing time and space, to answer such queries in O(21/δ log n) time,
for any δ (0 < δ < 1). Therefore, to check the third region, we perform a
halfplane proximity query for line ℓ(b, a) and point u; only if the distance
of the farthest point to u in h(b, a) is at most ǫ, the third region is empty.
Similarly, to check the fourth region, we perform a halfplane proximity query,
specifying line ℓ(c, d) and point v as inputs.

Lemma 3.7. Let δ be a constant, where 0 < δ < 1. With O(n3+δ) pre-
processing time and space, a link of a curve-restricted simplification of a
polygonal curve P = 〈p1, p2, ..., pn〉, from any edge pipi+1 to any other edge
pjpj+1 can be found with the time complexity O(n2 log n), provided that such
a link exists.

Proof. For every pair of indices x and y, where 1 < x ≤ y < n, we initialize
the data structure mentioned in Lemma 3.6 Dxy for points {px, px+1, ..., py}.
This can be done with the time complexity O(n3+δ). In Lemma 3.4, to check
if a segment from pipi+1 to pjpj+1 is a link, we test to see if it intersects
N(pk) for every index k, where i < k ≤ j. We improve the time complexity
of this task to O(log n) by using Dxy.

4 Simplification Algorithm

Definition 4.1. A sequence of segments D =
〈

p′1p
′
2, p

′
3p

′
4, ..., p

′
2k−1

p′
2k

〉

is a
disjoint link chain (DLC) for curve P = 〈p1, p2, ..., pn〉, if i) p′1 is on p1p2
and p′

2k is on pn−1pn, ii) for each index i, where 1 ≤ i ≤ k, p′
2i−1

p′
2i is a

valid simplification link, and iii) for each index i, where 1 ≤ i < k, p′
2i and

p′
2i+1

are on the same edge of P , and iv) the vertices of D appear in order
on P (i.e. first p′1 appears on P , then p′2, then p′3, and so forth).

Figure 5 demonstrates a DLC of a curve with six links.

9

p1

p2

pm

pm−1

FLP1(C)

Figure 6: FLP1(〈p1, p2, ..., pm〉) of a curve with six links (Definition 4.3)

Proposition 4.2. Given a DLC D =
〈

p′1p
′
2, p

′
3p

′
4, ..., p

′
2k−1

p′
2k

〉

for curve
P = 〈p1, p2, ..., pn〉, such that p′1 = p1, a curve-restricted simplification of P
with 2k links can be obtained from D by connecting the end of each link of
D to the start of its next link and connecting the end of the last one to pn.

Definition 4.3. For a polygonal curve C = 〈p1, p2, ..., pm〉, the first link
point with k links, denoted as FLPk(C), is the first point x on pm−1pm,
such that there exists a disjoint link chain D =

〈

p′1p
′
2, p

′
3p

′
4, ..., p

′
2k−1

p′
2k

〉

of
C, in which p′

2k = x.

Figure 6 demonstrates FLP1 of a curve with four edges. Since the line
containing a link can be moved or rotated to obtain a new link, unless
the conditions mentioned in Lemma 3.3 holds for it, Lemma 3.7 yields the
following corollary.

Corollary 4.4. For a sub-curve Q = 〈q1, q2, ..., qm〉 of a polygonal curve
P = 〈p1, p2, ..., pn〉, FLP1(Q) and its corresponding link can be computed
with the time complexity O(n2 log n), after some preprocessing with the time
complexity O(n3+δ), for some constant δ (0 < δ < 1).

In Theorem 4.5 we present an algorithm for computing a minimum-sized
DLC.

Theorem 4.5. A DLC of minimum size for curve P = 〈p1, p2, ..., pn〉 can
be computed in O(n5 log n).

Proof. We use dynamic programming to fill a two-dimensional table F .
F [i, j], for 1 ≤ i ≤ n and 1 ≤ j ≤ n, denotes FLPj(〈p1, p2, ..., pi〉). Parallel
to table F , we can store the last link of F [i, j] in another two-dimensional
table L to reconstruct the chain. For points u and v on P , u < v holds if u
appears before v on P . We fill the tables as follows.

10

1. F [i][1] is initialized as FLP1(〈p1, p2, ..., pi〉), forcing the first vertex of
the resulting link to be on p1 (Corollary 3.5). L[i][1] is initialised as
the link corresponding to FLP1(〈p1, p2, ..., pi〉). If there is no such link,
F [i][1] and L[i][1] are not filled.

2. For d from 2 to n, F [i][d] and L[i][d] for 1 ≤ i ≤ n are filled as follows:
The value F [i][d] is the minimum value of FLT1(〈F [j][d − 1], pj+1, pj+2, ..., pi〉),
over all indices of j, where j < i and F [j][d− 1] is filled. The value of
L[i][d] should indicate the link corresponding to of FLT1(〈F [j][d − 1], pj+1, pj+2, ..., pi〉).

Based on Corollary 4.4, filling these tables can be done with the time com-
plexity O(n5 log n).

Let m be the lowest index, such that F [n][m] is filled. By following
the links backwards using dynamic programming tables, we obtain a DLC
D =

〈

p′1p
′
2, p

′
3p

′
4, ..., p

′
2k−1

p′
2k

〉

. We prove that the size of D is the mini-
mum possible. To do so, we use induction on d to show that F [i][d] for
1 ≤ i ≤ n is filled if and only if there is a DLC for 〈p1, p2, ..., pi〉 with d links.
For d = 1, the statement is trivial and follows from the definition of FLT1

and its computation (Corollary 3.5). For d > 1, suppose there is a DLC
〈

q′1q
′
2, q

′
3q

′
4, ..., q

′
2d−1

q′
2d

〉

for 〈p1, p2, ..., pi〉. Let q′
2d−2

be on pjpj+1. Obvi-
ously,

〈

q′1q
′
2, q

′
3q

′
4, ..., q

′
2d−3

q′
2d−2

〉

is a DLC of 〈p1, p2, ..., pj+1〉. By induction
hypothesis, F [j][d−1] is filled with a point on or before q′

2d−d. Since q
′
2d−1

q′
2d

is a valid link, where q′
2d−1

appears after q′
2d−2

on P , there is a valid link
from q′

2d−2
pj+1 to pi−1pi, and P [i][d] is filled in the dynamic programming

algorithm.

Theorem 4.6. A curve-restricted simplification of a polygonal curve P =
〈p1, p2, ..., pn〉 can be computed in O(n5 log n), such that its number of links
is at most twice the number of the links of an optimal simplification.

Proof. Let D be the DLC of P with k links computed using Theorem 4.5.
We can obtain a curve-restricted simplification P ′ from D with m = 2k links
(Proposition 4.2). Let O be a curve-restricted simplification of P with the
minimum number of links x. Based on Definition 4.1, O is also a DLC of P .
Since D is a DLC with the minimum number of links, x ≥ k. This implies
2x ≥ 2k = m.

5 Concluding Remarks

Although, the min-# curve-restricted simplification of polygonal curves can
reduce the number of the vertices of the curves much better than vertex-
restricted simplification, the time complexity of the algorithm presented

11

in this paper is not very appealing for real-world applications. A faster
approximate or exact algorithm may fill this gap.

References

[1] P. K. Agarwal, S. Har-Peled, N. H. Mustafa, and Y. Wang. Near-linear
time approximation algorithms for curve simplification. Algorithmica,
42(3–4):203–219, 2005.

[2] L. Buzer. Optimal simplification of polygonal chain for rendering. In
Symposium on Computational Geometry, pages 168–174, 2007.

[3] H. Imai and M. Iri. Computational-geometric methods for polygonal
approximations of a curve. Computer Vision, Graphics, and Image
Processing, 36(1):31–41, 1986.

[4] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature.
Cartographica, 10(2):112–122, 1973.

[5] J. Hershberger and J. Snoeyink. An O(n log n) implementation of the
Douglas-Peucker algorithm for line simplification. In Annual ACM
Symposium on Computational Geometry, pages 383–384. ACM, 1994.

[6] J. Hershberger and J. Snoeyink. Cartographic line simplification and
polygon CSG formulae and in O(n log∗ n) time. In International Work-
shop on Algorithms and Data Structures, pages 93–103. Springer, 1997.

[7] H. Imai and M. Iri. Polygonal approximations of a curve - formulations
and algorithms. In G. T. Toussaint, editor, Computational Morphology:
A computational Geometric Approach to the Analysis of Form, pages
71–86. North-Holland, 1988.

[8] W. S. Chan and F. Chin. Approximation of polygonal curves with
minimum number of line segments or minimum error. International
Journal of Computational Geometry & Applications, 6(1):59–77, 1996.

[9] A. Melkman and J. O’Rourke. On polygonal chain approximation.
In G. T. Toussaint, editor, Computational Morphology: A Compu-
tational Geometric Approach to the Analysis of Form, pages 87–95.
North-Holland, 1988.

12

[10] D. Z. Chen and O. Daescu. Space-efficient algorithms for approximating
polygonal curves in two-dimensional space. International Journal of
Computational Geometry & Applications, 13(2):95–111, 2003.

[11] M. J. van Kreveld, M. Löffler, and L. Wiratma. On optimal polyline
simplification using the Hausdorff and Fréchet distance. In Symposium
on Computational Geometry, pages 56:1–56:14, 2018.

[12] M. van de Kerkhof, I. Kostitsyna, M. Löffler, M. Mirzanezhad, and
C. Wenk. On optimal min-# curve simplification problem. CoRR,
abs/1809.10269, 2018.

[13] M. A. Abam, M. de Berg, P. Hachenberger, and A. Zarei. Streaming
algorithms for line simplification. Discrete & Computational Geometry,
43(3):497–515, 2010.

[14] X. Lin, S. Ma, H. Zhang, T. Wo, and J. Huai. One-pass error bounded
trajectory simplification. PVLDB, 10(7):841–852, 2017.

[15] W. Cao and Y. Li. Dots - an online and near-optimal trajectory simpli-
fication algorithm. Journal of Systems and Software, 126:34–44, 2017.

[16] J. Muckell, P. W. Olsen, J.-H. Hwang, C. T. Lawson, and S. S. Ravi.
Compression of trajectory data - a comprehensive evaluation and new
approach. GeoInformatica, 18(3):435–460, 2017.

[17] M. Chen, M. Xu, and P. Fränti. A fast o(n) multiresolution polygo-
nal approximation algorithm for gps trajectory simplification. IEEE
Transactions on Image Processing, 21(5):2770–2785, 2012.

[18] H. V. Jagadish C. Long, R. C.-W. Wong. Direction-preserving trajec-
tory simplification. PVLDB, 6(10):949–960, 2013.

[19] D. Zhang, M. Ding, D. Yang, Y. Liu, J. Fan, and H. T. Shen. Trajectory
simplification - an experimental study and quality analysis. Proceedings
of the VLDB Endowment, 11(9):934–946, 2018.

[20] B. Aronov, P. Bose, E. D. Demaine, J. Gudmundsson, J. Iacono,
S. Langerman, and M. H. M. Smid. Data structures for halfplane
proximity queries and incremental voronoi diagrams. Algorithmica,
80(11):3316–3334, 2018.

13

	1 Introduction
	2 Preliminaries and Notation
	3 Identifying Simplification Links
	4 Simplification Algorithm
	5 Concluding Remarks

