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RESTRAINED ITALIAN DOMINATION IN TREES

KIJUNG KIM

Abstract. Let G = (V, E) be a graph. A subset D of V is a restrained

dominating set if every vertex in V \ D is adjacent to a vertex in D and to
a vertex in V \ D. The restrained domination number, denoted by γr(G),
is the smallest cardinality of a restrained dominating set of G. A function
f : V → {0, 1, 2} is a restrained Italian dominating function on G if (i) for
each vertex v ∈ V for which f(v) = 0, it holds that

∑
u∈NG(v) f(u) ≥ 2, (ii)

the subgraph induced by {v ∈ V | f(v) = 0} has no isolated vertices. The
restrained Italian domination number, denoted by γrI(G), is the minimum
weight taken over all restrained Italian dominating functions of G. It is known
that γr(G) ≤ γrI(G) ≤ 2γr(G) for any graph G. In this paper, we characterize
the trees T for which γr(T ) = γrI(T ), and we also characterize the trees T for
which γrI(T ) = 2γr(T ).
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1. Introduction and Terminology

Let G = (V,E) be a finite simple graph with vertex set V = V (G) and edge
set E = E(G). The open neighborhood of v ∈ V (G) is the set NG(v) = {u ∈
V (G) | uv ∈ E(G)} and the closed neighborhood of v ∈ V (G) is the set NG[v] :=
NG(v) ∪ {v}. A subset D of V (G) is a dominating set if every vertex in V (G) \D
is adjacent to a vertex in D. The domination number of G, denoted by γ(G), is
the minimum cardinality of a dominating set in G. A dominating set with the
cardinality γ(G) is called a γ(G)-set.

In [3], Domke et al. gave the formal definition of restrained domination. A subset
S of V (G) is a restrained dominating set (RDS) if every vertex in V (G)\S is adjacent
to a vertex in S and another vertex in V (G)\S. The restrained domination number

of G, denoted by γr(G), is the minimum cardinality of a restrained dominating set
in G. A restrained dominating set with the cardinality γr(G) is called a γr(G)-set.
As explained in [3], there is one possible application of the concept of restrained
domination. Each vertex in a RDS S represents a guard and each vertex in V (G)\S
represents a prisoner. Each prisoner must be observed by at least one guard and
every prisoner must be seen by at least one other prisoner to protect the rights of
prisoners. To be cost effective, it is desirable to place as few guards as possible.

A function f : V (G) → {0, 1, 2} is an Italian dominating function on G if for
each vertex v ∈ V (G) for which f(v) = 0, it holds that

∑
u∈NG(v) f(u) ≥ 2. In [6],

Samadi et al. introduced the concept of restrained Italian domination as a variant
of Italian dominating function. An Italian dominating function f : V → {0, 1, 2}
is a restrained Italian dominating function (RIDF) on G if the subgraph induced
by {v ∈ V | f(v) = 0} has no isolated vertices. A RIDF f gives an ordered

partition (V0, V1, V2) (or (V f
0 , V

f
1 , V

f
2 ) to refer to f) of V (G), where Vi := {v ∈

V (G) | f(v) = i}. The weight of a RIDF f is ω(f) :=
∑

v∈V f(v). The restrained
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Italian domination number, denoted by γrI(G), is the minimum weight taken over
all restrained Italian dominating functions of G. A γrI(G)-function is a RIDF on
G with weight γrI(G).

As noted in [6, Proposition 3.3], it holds that γr(G) ≤ γrI(G) ≤ 2γr(G) for
any graph G. We define a tree T to be a (γr, γrI)-tree if γr(T ) = γrI(T ). We
define a tree T to be a restrained Italian tree if γrI(T ) = 2γr(T ). In this paper, we
characterize (γr, γrI)-trees and restrained Italian trees.

The rest of this section, we present some necessary terminology and notation.
For terminology and notation on graph theory not given here, the reader is referred
to [1, 7]. The degree of v ∈ V (G) is defined as the cardinality of NG(v), denoted by
degG(v). A diametral path of G is a path with the length which equals the diameter
of G. A subset S of V (G) is a packing in G if the vertices of S are pairwise at
distance at least three apart in G. The packing number of G, denoted by ρ(G), is
the maximum cardinality of a packing in G. A packing with the cardinality ρ(G)
is called a ρ(G)-set.

Let T be a (rooted) tree. A leaf of T is a vertex of degree one. A stem (or support
vertex ) is a vertex adjacent to a leaf. A weak stem is a stem that is adjacent to
exactly one leaf. For a vertex v in a rooted tree, we let C(v) and D(v) denote the set
of children and descendants, respectively, of v. The subtree induced by D(v) ∪ {v}
is denoted by Tv. We write K1,n−1 for the star of order n ≥ 3. The double star

DSp,q, where p, q ≥ 1, is the graph obtained by joining the centers of two stars
K1,p and K1,q. A healthy spider St,t is the graph from a star K1,t by subdividing
each edges of K1,t. For two graph G and H , if G is isomorphic to H , we denote it
by G ∼= H . For a graph G and its subgraph S, G − S denotes the subgraph of G
induced by V (G) \ V (S).

2. (γr, γrI)-trees

In this section, we characterize the trees for which γrI(T ) = γr(T ). First, we
introduce a family H of trees that can be obtained from a sequence T1, T2, . . . , Tm

(m ≥ 1) of trees such that T1 is a double star DSl,n (l, n ≥ 2), and if m ≥ 2,
Ti+1 can be obtained recursively from Ti by one of the following operations for
1 ≤ i ≤ m− 1.

Define

LV (Ti) = {v ∈ V (Ti) | v is a leaf of Tj for some j ≤ i}

and

SV (Ti) = {v ∈ V (Ti) | v is a stem of Tj for some j ≤ i}.

Note that V (Ti) = LV (Ti) ∪ SV (Ti).

Operation O1. If x ∈ LV (Ti), then O1 adds a double star DSr,s with a center
u and joins u to x to produce Ti+1, where s ≥ 2 and u has r leaves.

Operation O2. If x ∈ SV (Ti), then O2 adds a star K1,t with the center u and
joins u to x to produce Ti+1.

The following is obtained by the induction.

Observation 2.1. With the previous notation, the following holds.

(i) LV (Ti) is a unique minimum RDS of Ti.

(ii) The subgraph induced by SV (Ti) is a forest and each component has at

least two vertices.

Lemma 2.2. If γr(Ti) = γrI(Ti) and Ti+1 is obtained from Ti by operation O1,

then γr(Ti+1) = γrI(Ti+1).
2



Proof. It follows from Observation 2.1 that γr(Ti+1) = γr(Ti) + r + s. Since every
γrI(Ti)-function can be extended to a RIDF of Ti+1, we have γrI(Ti+1) ≤ γrI(Ti)+
r + s.

We verify γrI(Ti+1) = γrI(Ti)+r+s. Let g be a γrI(Ti+1)-function. If g(x) = 0,
then g(y) = 1 for each y ∈ NTi+1

(x). This implies that γrI(Ti+1) ≥ γrI(Ti)+r+s+2,
a contradiction. Thus, we have g(x) = 1. It is easy to see that g|V (Ti) is a RIDF.
So, we have γrI(Ti) ≤ γrI(Ti+1)− r − s.

Thus, it follows from γr(Ti) = γrI(Ti) that γr(Ti+1) = γrI(Ti+1). �

Lemma 2.3. If γr(Ti) = γrI(Ti) and Ti+1 is obtained from Ti by operation O2,

then γr(Ti+1) = γrI(Ti+1).

Proof. It follows from Observation 2.1 that γr(Ti+1) = γr(Ti) + t. Since every
γrI(Ti)-function can be extended to a RIDF of Ti+1, we have γrI(Ti+1) ≤ γrI(Ti)+t.

We verify γrI(Ti+1) = γrI(Ti) + t. Let g be a γrI(Ti+1)-function. If g(x) = 1,
then g(u) = 1. This implies that γrI(Ti+1) ≥ γrI(Ti) + t + 1, a contradiction.
Thus, we have g(x) = 0. It is easy to see that g|V (Ti) is a RIDF. So, we have
γrI(Ti) ≤ γrI(Ti+1)− t.

Thus, it follows from γr(Ti) = γrI(Ti) that γr(Ti+1) = γrI(Ti+1). �

Now we are ready to prove our main theorem.

Theorem 2.4. A tree T of order n ≥ 3 is a (γr, γrI)-tree if and only if T ∈
H ∪ {K1,t | t ≥ 2}.

Proof. First, we prove that if T ∈ H ∪ {K1,t | t ≥ 2}, then γrI(T ) = γr(T ).
Clearly, γrI(K1,t) = γr(K1,t). Assume that T ∈ H. Then there exist a sequence
T1, T2, . . . , Tm = T (m ≥ 1) such that T1 is a double star DSr,s, and if m ≥ 2, Ti+1

can be obtained recursively from Ti by an operation O1 or O2 for 1 ≤ i ≤ m − 1.
We use induction on m. Clearly, γrI(T1) = γr(T1). Suppose that the statement
is true for any tree constructed by m − 1 operations. Let T ′ = Tm−1. By the
induction hypothesis, γrI(T

′) = γr(T
′). It follows from Lemma 2.2 or 2.3 that

γrI(T ) = γr(T ).
Next, we prove that if γrI(T ) = γr(T ), then T ∈ H ∪ {K1,t | t ≥ 2}. We

proceed by induction on the order n of T satisfying γrI(T ) = γr(T ). Suppose that
diam(T ) = 2. Then T is a star and clearly γrI(T ) = γr(T ) Thus, T ∈ {K1,t | t ≥ 2}.
Suppose that diam(T ) = 3. Then T ∼= DSr,s for r, s ≥ 2. In this case, T can be
obtained from K1,r by operation O2. Hence, we may assume that diam(T ) ≥ 4.

Among all of diametrical paths in T , we choose x0x1 . . . xd so that it maximizes
the degree of xd−1. Root T at x0. Let g = (V g

0 , V
g
1 , V

g
2 ) be a γrI(T )-function.

Claim 1. V
g
2 = ∅ and V

g
1 is a RDS of T .

Since V
g
1 ∪ V

g
2 is a RDS of T , we have

γr(T ) ≤ |V g
1 ∪ V

g
2 | = |V g

1 |+ |V g
2 | ≤ |V g

1 |+ 2|V g
2 | = γrI(T ).

Since γrI(T ) = γr(T ), we must have the equality throughout the above inequality
chain. Thus, V g

2 = ∅ and V
g
1 is a RDS of T .

Claim 2. degT (xd−1) ≥ 3.
Suppose to the contrary that degT (xd−1) = 2. Suppose that degT (xd−2) = 2.

In this case, g(xd−1) = 1 for otherwise g(xd−2) must be assigned the weight 1 but
this contradicts the fact that V

g
1 is a RDS of T . By the same argument, we have

g(xd−2) = 1. If g(xd−3) = 1, then V
g
1 \ {xd−2, xd−1} is a RDS with the cardinality

less than γr(T ), a contradiction. Thus, g(xd−3) = 0 and
∑

x∈NT (xd−3)
g(x) ≥ 2.

This implies that V g
1 \ {xd−2} is a RDS of T . This is a contradiction.

Suppose that degT (xd−2) ≥ 3. Then each x ∈ NT (xd−2) \ {xd−3} is either a
leaf or a weak stem by degT (xd−1) = 2 and the hypothesis about degT (xd−1). If
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g(xd−2) = 1, then every vertex of Txd−2
has the weight 1. Let M be the subset of

V
g
1 obtained by removing xd−2 and weak stems in Txd−2

. Now we have g(xd−3) = 0
for otherwise M is a RDS of T , a contradiction. Since

∑
x∈NT (xd−3)

g(x) ≥ 2, M is

a RDS of T , a contradiction. This completes the proof of claim.

Claim 3. degT (xd−2) ≥ 3.
Suppose to the contrary that degT (xd−2) = 2. Suppose that g(xd−2) = 0. Then

g(xd−3) = g(xd−1) = 1, since
∑

x∈NT (xd−2)
g(x) ≥ 2. This is a contradiction by

Claim 1.
Suppose that g(xd−2) = 1. Then g(xd−1) = 1. Let N be the subset of V

g
1

obtained by removing xd−2 and xd−1. If g(xd−3) = 1, then N is a RDS of T ,
a contradiction. Thus, we have g(xd−3) = 0. But, since

∑
x∈NT (xd−3)

g(x) ≥ 2,

N ∪ {xd−2} is a RDS of T , a contradiction. This completes the proof of claim.

We divide our consideration into two cases.
Case 1. xd−3 ∈ V

g
1 . Then xd−2, xd−1 ∈ V

g
0 for otherwise the subset of V

g
1

obtained by removing xd−2 and stems in Txd−2
is a RDS of T , a contradiction.

Subcase 1.1. xd−2 has stems except for xd−1. Consider Txd−1
∼= K1,t and let

T ′ = T − Txd−1
. Since every γr(T

′)-set (resp., γrI(T
′)-function) can be extended

to a RDS (resp., RIDF) of T , γr(T ) ≤ γr(T
′) + t and γrI(T ) ≤ γrI(T

′) + t. Since
V

g
1 \C(xd−1) (resp., g|V (T ′)) is a RDS (resp., RIDF) of T ′, γr(T

′) ≤ γr(T )− t and
γrI(T

′) ≤ γrI(T )− t. Thus, it follows from γrI(T ) = γr(T ) that γr(T
′) = γrI(T

′).
Applying the inductive hypothesis to T ′, T ′ ∈ H. By operation O2, we have T ∈ H.

Subcase 1.2. xd−2 has no stem except for xd−1. Consider Txd−2

∼= DSr,s and let
T ′ = T − Txd−2

. Since every γr(T
′)-set (resp., γrI(T

′)-function) can be extended
to a RDS (resp., RIDF) of T , we have γr(T ) ≤ γr(T

′) + r + s and γrI(T ) ≤
γrI(T

′) + r + s. Since V
g
1 \ D(xd−2) (resp., g|V (T ′)) is a RDS (resp., RIDF) of

T ′, γr(T
′) ≤ γr(T ) − r − s and γrI(T

′) ≤ γrI(T ) − r − s. Thus, it follows from
γrI(T ) = γr(T ) that γr(T

′) = γrI(T
′). Applying the inductive hypothesis to T ′,

T ′ ∈ H. By operation O1, we have T ∈ H.

Case 2. xd−3 ∈ V
g
0 . Then xd−2, xd−1 ∈ V

g
0 for otherwise every vertex in Txd−2

belongs to V
g
1 . Since xd−3 is adjacent to at least one vertex not in Txd−2

, the subset
of V g

1 obtained by removing xd−2 and stems in Txd−2
is a RDS of T , a contradiction.

Consider Txd−1
∼= K1,t and let T ′ = T − Txd−1

. Since every γr(T
′)-set (resp.,

γrI(T
′)-function) can be extended to a RDS (resp., RIDF) of T , γr(T ) ≤ γr(T

′)+ t

and γrI(T ) ≤ γrI(T
′) + t. Since V

g
1 \ C(xd−1) (resp., g|V (T ′)) is a RDS (resp.,

RIDF) of T ′, γr(T
′) ≤ γr(T ) − t and γrI(T

′) ≤ γrI(T ) − t. Thus, it follows from
γrI(T ) = γr(T ) that γr(T

′) = γrI(T
′). Applying the inductive hypothesis to T ′,

T ′ ∈ H. By operation O2, we have T ∈ H. �

3. Restrained Italian trees

In this section, we characterize the trees for which γrI(T ) = 2γr(T ). First, we
introduce a family F of trees that can be obtained from a sequence T1, T2, . . . , Tm

(m ≥ 1) of trees such that T1 is a path P4, and if m ≥ 2, Ti+1 can be obtained
recursively from Ti by one of the following operations for 1 ≤ i ≤ m− 1.

Define

LV (Ti) = {v ∈ V (Ti) | v is a leaf of Tj for some j ≤ i}.

Operation O1. If x ∈ LV (Ti), then O1 adds a path P3 with a leaf u and joins
u to x to produce Ti+1.
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Operation O2. If x ∈ LV (Ti), then O2 adds a healthy spider St,t with the
center u and joins u to x to produce Ti+1.

Since the family F is a subclass of T given in [2, Lemma 3], we can get the
following result.

Lemma 3.1. With the previous notation, the following properties hold.

(i) LV (Ti) is a packing.

(ii) Every v ∈ V (Ti)\LV (Ti) is adjacent to at least one vertex in V (Ti)\LV (Ti)
and to exactly one vertex in LV (Ti).

(iii) LV (Ti) is a γ(Ti)-set.
(iv) LV (Ti) is the unique γr(Ti)-set.
(v) LV (Ti) is the unique ρ(Ti)-set.

Lemma 3.2. With the previous notation, (V (Ti)\LV (Ti), ∅, LV (Ti)) is a γrI(Ti)-
function.

Proof. We show that every RIDF has weight at least 2|LV (Ti)|. Let f be a RIDF
of Ti and P (Ti) := {NTi

[v] | v ∈ LV (Ti)}. It follows from Lemma 3.1 that P (Ti) is
a partition of V (Ti).

We claim that f(U) ≥ 2 for each U ∈ P (Ti). For a leaf v ∈ V (Ti), clearly
f(NTi

[v]) = 2. Suppose to the contrary that f(NTi
[u]) = 1 for some u ∈ LV (Ti−1).

For w ∈ NTi
(u), if f(w) = 1, then u is not dominated, a contradiction. Assume that

f(u) = 1. From the construction of Ti, there exist at least one vertex z ∈ NTi
(u)

such that degTi
(z) = 2. To dominate z, there must be one vertex with weight at

least one. This is not restrained, a contradiction. Thus, γrI(Ti) ≥ 2|LV (Ti)| =
2γr(Ti) and clearly (V (Ti) \ LV (Ti), ∅, LV (Ti)) is a γrI(Ti)-function. �

Now we are ready to prove our main theorem.

Theorem 3.3. A tree T of order n ≥ 4 is a restrained Italian tree if and only if

T ∈ F .

Proof. The sufficiency follows from Lemmas 3.1 and 3.2. To prove the necessity,
we proceed by induction on the order n of T satisfying γrI(T ) = 2γr(T ). It suffices
to consider trees with diameter at least three. Suppose that diam(T ) = 3. Then
T ∼= DSr,s. Since γr(T ) = γrI(T ) = r + s for r, s ≥ 2, we have DS1,1

∼= P4 ∈ F .
Hence, we assume that diam(T ) ≥ 4 and n ≥ 5.

Among all of diametrical paths in T , we choose x0x1 . . . xd so that it maximizes
the degree of xd−1. Root T at x0. Let D be a γr(T )-set and g be a γrI(T )-function
defined by g(v) = 2 for v ∈ D and g(u) = 0 for u ∈ V (T ) \D.

Claim 1. xd−1 6∈ D.
Suppose to the contrary that xd−1 ∈ D. Since xd ∈ D and γrI(T ) = 2γr(T ), we

can define a function f : V (T ) → {0, 1, 2} by f(xd) = 1 and f(x) = g(x) otherwise.
Then f is a RIDF of T with weight less than ω(g), a contradiction.

Claim 2. degT (xd−1) = 2.
Suppose to the contrary that degT (xd−1) ≥ 3. Then there exists at least one

leaf u ∈ NT (xd−1) \ {xd}. Since u, xd ∈ D and γrI(T ) = 2γr(T ), we can define
f : V (T ) → {0, 1, 2} by f(u) = f(xd) = 1 and f(x) = g(x) otherwise. Then f is a
RIDF of T with weight less than ω(g), a contradiction.

We divide our consideration into two cases.
Case 1. degT (xd−2) ≥ 3. By Claim 2, each x ∈ NT (xd−2) \ {xd−3} is either a

leaf or a weak stem. Now we show that xd−2 has no leaf. Suppose to the contrary
that there exists a leaf u ∈ NT (xd−2). Then u ∈ D. Note that xd−1, xd−2 6∈ D. If
xd−3 ∈ D, then define f : V (T ) → {0, 1, 2} by f(u) = 1 and f(x) = g(x) otherwise.

5



Clearly f is a RIDF of T with weight less than ω(g), a contradiction. Suppose that
xd−3 6∈ D. Define h :→ {0, 1, 2} by h(u) = h(xd−1) = h(xd) = 1 and h(x) = g(x)
otherwise. Clearly h is a RIDF of T with weight less than ω(g), a contradiction.
Thus, xd−2 has no leaf and so Txd−2

is a healthy spider.
Since xd−2 and its children do not belong to the γr(T )-set D, xd−3 belongs to D.

Consider the tree T ′ := T − Txd−2
. It is easy to see that V (T ′) ∩D is a γr(T

′)-set
and γrI(T

′) = 2γr(T
′). Applying the inductive hypothesis to T ′, we have T ′ ∈ F .

Since xd−3 is a leaf in T ′, the tree T can be obtained from the tree T ′ by applying
operation O2. Thus, T ∈ F .

Case 2. degT (xd−2) = 2. Then xd−3 ∈ D. Consider the tree T ′ := T − Txd−2
It

is easy to see that V (T ′) ∩D is a γr(T
′)-set and γrI(T

′) = 2γr(T
′). Applying the

inductive hypothesis to T ′, we have T ′ ∈ F . Since xd−3 is a leaf in T ′, the tree T

can be obtained from the tree T ′ by applying operation O1. Thus, T ∈ F . �

4. Open problems

In this section, we discuss few open problems related to our results. For any graph
theoretical parameters σ and δ, we define a tree T to be (σ, δ)-tree if σ(T ) = δ(T ).
In general, it holds γI(G) ≤ γrI(G) for any graph G. We suggest the following
problem.

Problem 4.1. Characterize (γI , γrI)-trees.

In [5], D. Ma et al. gave the concept of total restrained domination. Combining
the properties of Italian dominating function and total restrained dominating set,
we give the concept of total restrained Italian dominating function, namely a RIDF
is a total restrained Italian dominating function on G if the subgraph induced by
{v ∈ V | f(v) ≥ 1} has no isolated vertices. We denote the total restrained Italian
domination number by γt

rI(G). The total Italian domination number and total
restrained domination number are denoted by γt

I(G) and γt
r(G), respectively (see

[4, 5] for definitions). We suggest the following problems.

Problem 4.2. Characterize (γt
I , γ

t
rI)-trees.

Problem 4.3. Characterize (γrI , γ
t
rI)-trees.

Problem 4.4. Characterize (γt
r, γ

t
rI)-trees.
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