
Onlne Supplement for “Demand-Side Energy
Management under Time-Varying Prices” by Liang,

Deng, and Shen

Yong Liang
Department of Management Science and Engineering, School of Economics and Management, Tsinghua University, Beijing,

China 100084, liangyong@sem.tsinghua.edu.cn

Tianhu Deng
Department of Industrial Engineering, Tsinghua University, Beijing, China 100084, deng13@mail.tsinghua.edu.cn

Zuo-Jun Max Shen
Department of Industrial Engineering and Operations Research and Department of Civil and Environmental Engineering,

University of California, Berkeley, CA 94720, maxshen@berkeley.edu

1

ec1

E-Companion

EC.1. The Greedy Algorithm for CVBKP and a VBKP example for
which the Greedy Heuristic Fails

We first present the greedy algorithm that solves for optimal solutions of the CVBKP, which is

the linear relaxation of VBKP. The only condition for this algorithm to work is that Gt(z) is lower

semi-continuous and increasing in z. Define the efficiency ratio of an item as the ratio of its value

over weight. The greedy algorithm picks items in the order of decreasing efficiency ratios, and it

stops packing if G′t−(z̃), the negative directional derivative at z̃, satisfies G′t−(z̃)≤ wt(z̃)

qt(z̃)
, where z̃

represents the current total weights of the packed items. wt(z̃)

qt(z̃)
is named the efficiency ratio of the

item being packed.

The heuristic for VBKP stems from the above greedy algorithm for CVBKP. The heuristic also

picks items in the order of decreasing efficiency ratios. After picking each item, the algorithm

calculates the current total wight z0, and stops picking If G′t−(z̃) is greater than the efficiency ratio

of the next unpicked item, where z̃ represents the current total weights of the packed items. For

example, suppose Gt(z) is linear in z with slope p0, then we can simply select all items whose

efficiency ratios are no less than p0.

Nonetheless, the heuristic may fail for the VBKP even when Gt(z) is convex increasing. As

a counterexample, consider the case in which we have two items, with v1 = 11, u1 = 1 and v2 =

21.5, u2 = 2. Function Gt(z) is defined as:

Gt(z) =

10z if z ≤ 2

11.5z if z > 2

By ranking the efficiency ratios we pick item one first. Because picking item two does not change

the objective value, we can either pick it or leave it, and the objective function values are 1 in

both cases. However, the optimal solution is to pick item two only and the corresponding objective

function value is 1.5. This example illustrates that the greedy algorithm that solves the CVBKP

fails to work for problems with piecewise linear cost structures and mixed integer or integer decision

variables.

ec2

EC.2. Proofs

We first provide the following Lemma before proving Proposition 1:

Lemma EC.1. Point-wise maximization (resp. minimization) or taking supremum (resp. infi-

mum) preserves monotonicity.

Proof of Lemma EC.1 Suppose f : Ru ×Rv→ R satisfies that f(x, y)≥ f(z, y), ∀x≤ z,∀y. We

can show that function g :Ru→R defined as g(x) = sup
y
f(x, y) is decreasing by contradiction.

Suppose g is not decreasing in x, that is, ∃ g(x)< g(z) for some x≤ z, then:

g(x) = f(x, ỹ) = sup
y
f(x, y)< g(z) = sup

y
f(z, y) = f(z, ŷ)≤ f(x, ŷ)

where the second inequality follows from the property of function f(·). However, f(x, ỹ)< f(x, ŷ)

contradicts with ỹ being the minimizer of supy f(x, y) = g(x). Therefore, point-wise maximization

(or taking supremum) over decreasing functions preserves monotonicity.

Similarly, suppose f : Ru × Rv → R satisfies f(x, y) ≤ f(z, y), ∀x ≤ z,∀y. We can show that

function g :Ru→R defined as g(x) = supy f(x, y) is increasing by contradiction.

Suppose g is not increasing, that is, ∃ g(x)> g(z) for some x≤ z, then:

f(z, ŷ)≥ f(x, ŷ) = sup
y
f(x, y) = g(x)> g(z)

contradicts with g(z) = sup
y
f(z, y)≥ f(z, ŷ). Therefore, point-wise maximization (or taking supre-

mum) over increasing functions preserves monotonicity.

The proof for point-wise minimization or taking infimum preserves monotonicity is similar, thus

is omitted here. �

Based on Lemma EC.1, we can prove Proposition 1, which states the monotonicity of the value-

to-go function, as follows:

Proof of Remark 1

(Part (a) & (b)) Firstly, we show part (a) and (b) by mathematical induction. To simplify the

ec3

notation, assume we are in period 1, so the last period in the planning horizon is period T .

When we are in period T , recall the boundary condition: J∗T+1 (ST+1) ≡ 0 for all ST+1, thus,

V ∗T+1(ST ,XT)≡ 0 = Ṽ ∗T+1(S
X
T ,XT)≡ 0 for all (ST ,XT) and for all (SXT ,Xt), thus we can say that

V ∗T+1 is increasing in qT and qXT . As a result, the optimal total cost in period T , given the state in

period T being ST is:

J∗T (ST) = min
XT

[
CT (ST ,XT) + 〈qXT ,πT 〉+EdT

[
〈(ΛIqXT +dT −uc)∨0,ρT 〉|ST ,XT

]]
s.t. (1)− (4)

Note that for any feasible XT , the electricity cost term CT (ST ,XT) is increasing in xGt ,

which is in turn increasing in qT . Because the second term is linear in qXT , and πT � 0,

and qXT is increasing in qT , the second term is increasing in qT as well. At last, because

EdT
[〈(qXT +dT −uc)∨0,ρT 〉|ST ,XT] is increasing in qXT , the last term is increasing in qT . Then

it follows from Lemma EC.1 that J∗T (ST) is increasing in qT . It also follows from the fact of qT

being increasing in qXT−1 that J∗T (ST) is increasing in qXT−1.

Then, suppose J∗t+1 (St+1) is increasing in qt+1. In order to calculate J∗t (St), we need to first

calculate the value-to-go function:

Ṽ ∗t+1(S
X
t ,Xt) =EWt

[
J∗t+1 (St+1) |St,Xt

]
=EWt

[
J∗t+1

(
qt+1,bt+1,Ht+1

)
|St,Xt

]
=EWt

[
J∗t+1

((
(ΛIqXt +dt)∧uc, (bXt + ΘJ(lt;b

X
t ,r

u,rc))∧ rc
)
,Ht+1

)
|Ht,Xt

]
We first note that qt+1 is increasing in qXt . Because qXt is increasing in qt, and taking the expectation

of J∗t+1(·) over Wt is essentially taking a convex combination of increasing functions of qXt (and qt),

which preserves monotonicity, Ṽ ∗t+1(S
X
t ,Xt) is increasing in qXt (and qt),that is, Part (b) holds.

Following from previous proof, Ct(St,Xt) is increasing in qt, while 〈qXt ,πt〉 as well as

Edt [〈(ΛIqXt +dt−uc)∨0,ρt〉|St,Xt] are increasing in qXt (and qt). Therefore, the sum of the

terms in the objective function are increasing in qt. Then, applying Lemma EC.1, we obtain that

ec4

J∗t (St) is increasing in qt, that is, Part (a) holds.

(Part (c) & (d)) Let St = (qt,bt), S
′
t = (qt,bt + ε). In order to prove part (c), we need to show

J∗t (St)≥ J∗t (S′t) for ε> 0. It can be verified that:

J∗t (S′t)≤ J∗t (St)−〈1,ε〉pt(−〈1,ε〉)≤ J∗t (St)

where the first inequality comes from the fact that selling the difference in storage is feasible, but

not necessarily optimal. Note that 〈1,ε〉pt(−〈1,ε〉) is the upper bound on the profit from selling

the difference. The second inequality follows from the fact that −〈1,ε〉pt(−〈1,ε〉)≤ 0. Therefore,

Part (c) holds.

Part (d) can be verified via the following equation:

Ṽ ∗t+1(S
X
t ,Xt) =EWt

[
J∗t+1

((
(ΛIqXt +dt)∧uc, (bXt + ΘJ(lt;b

X
t ,r

u,rc))∧ rc
)
,Ht+1

)
|Ht,Xt

]
.

Since J∗t+1(St+1) is decreasing in bt+1, which is increasing in bXt , which is in turn increasing in bt,

part (d) holds. �

Proof of Proposition 1

Firstly, we argue that the complexity can be further reduced through a reduction in the dimension

of the decision space. To start with, we first show that there is no incentive to reshape the storage

levels of storage devices. In other words, when operating under normal conditions, the EMS chooses

to charge (discharge) one storage device if and only if it decides not to discharge (charge) any other

storage device. The incentive of reshaping the storage level profile only exists under the following

condition: we expect to have massive charging (discharging) in the future that requires higher

charging (discharging) rate, but those storage devices with high charging (discharging) rate are

near full capacity (empty), hence we want to reshape the storage levels so that the near full capacity

(empty) ones will have sufficient capacity remaining (energy available) to be charged (discharged).

However, it is never optimal to reshape the storage level profile, simply because charging and

ec5

discharging will cause loss of energy due to charging/discharging efficiency. For example, if the

current solution is to charge device 1 with δ1 (δ1 < 0 representing charging) and discharge storage 2

with δ2 (δ2 > 0 representing discharging), then charge both with a total of |δ1 +δ2| when δ1 +δ2 < 0

(or discharge both with a total of δ1 + δ2 when δ1 + δ2 > 0) is a strictly dominant solution.

In fact, the above discussed condition, under which reshaping is desired, can be avoided. Following

from the same reasoning as presented in subsection 3.4, we can first determine the total amount

of charge or discharge, then solve for the allocation problem in alignment with the operating goals

of the storage devices. In other words, we can peel the allocation of the total charge or discharge

among storage devices off the optimization problem, and the allocation is chosen by either a pre-

determined function or a separated optimization module. For the ease of exposition, we perform

change of variables by defining yt = 〈1,xJt 〉, and ψt = 1
yt
〈xJ∗t ,ζt〉, where xJ

∗
t is the optimal allocation

given the total is yt. Furthermore, it is not hard to check against Proposition 1 that ψt ≤ 0.

We prove the first half of Proposition 1 by contradiction. Suppose 〈ιI ,xIt 〉1 < 〈ιI ,xIt 〉2, and

Gt(〈ιI ,xIt 〉1) > Gt(〈ιI ,xIt 〉2). Denote the optimal discharging decisions for Gt(〈ιI ,xIt 〉1) and

Gt(〈ιI ,xIt 〉2) as (xJ∗t1 , x
N∗
t1) and (xJ∗t2 , x

N∗
t2), respectively. Next, construct a feasible solution (xJt1, x

N
t1)

for input 〈ιI ,xIt 〉1 as follows:
xJt1 = xJ∗t2

xNt1 = xN∗t2 −〈ιI ,xIt 〉2 + 〈ιI ,xIt 〉1

then clearly:

Gt(〈ιI ,xIt 〉1) ≤ xNt1pt
(
xNt1
)

+ 〈ζt,bt−xJt1〉

≤ xN∗t2 pt
(
xN∗t2

)
+ 〈ζt,bt−xJ∗t2 〉

= Gt(〈ιI ,xIt 〉2)

< Gt(〈ιI ,xIt 〉1) (contradiction)

where the first inequality holds because (xJt1, x
N
t1) is feasible but not necessarily optimal, and the

second inequality holds because pt is increasing and xNt1 <x
N∗
t2 . The result conflicts with the assump-

tion, hence Gt must be increasing when pt is increasing.

ec6

Next, we proceed to prove that Gt(〈ιI ,xIt 〉) is convex increasing in 〈ιI ,xIt 〉 under the two condi-

tions described in Proposition 1:

[Part (a)]: If pt(·) is an increasing stepwise function, then there exists some j ∈ {1,2, . . . , l}, such

that pj−1t ≤−ψt < pjt . Then:

(1) if 〈ιI ,xIt 〉 − yt < bj, then there exists 0< δy ≤ bjt + yt − 〈ιI ,xIt 〉, such that lowering yt by δy

(equivalently, charging more or discharging less) reduces the objective of (7) by:

ψtδy +
(
〈ιI ,xIt 〉− yt + δy

)
pt
(
〈ιI ,xIt 〉− yt + δy

)
−
(
〈ιI ,xIt 〉− yt

)
pt
(
〈ιI ,xIt 〉− yt

)
≤ψtδy + δyp

j−1
t ≤ 0 ,

where the first inequality results from pt(〈ιI ,xIt 〉 − yt) ≤ p
j−1
t , and the second inequality follows

from pj−1t ≤−ψt. Thus, reducing yt whenever 〈ιI ,xIt 〉− yt < bj decreases (7);

(2) if 〈ιI ,xIt 〉 − yt ≥ bj, then there exists 0< δy ≤ (〈ιI ,xIt 〉 − b
j
t − yt), such that increasing yt by

δy > 0 (equivalently, discharging more or charging less) decreases the objective of (7) by:

−ψtδy +
(
〈ιI ,xIt 〉− yt− δy

)
pt
(
〈ιI ,xIt 〉− yt− δy

)
−
(
〈ιI ,xIt 〉− yt

)
pt
(
〈ιI ,xIt 〉− yt

)
≤−ψtδy − δypjt < 0

where the first inequality holds because pt(〈ιI ,xIt 〉−yt)≥ p
j
t , and the second inequality comes from

−ψt ≤ pjt . Thus, increasing yt whenever 〈ιI ,xIt 〉− yt ≥ bj decreases (7).

Therefore, setting yt so as to let 〈ιI ,xIt 〉−yt be as close to bjt as possible minimizes the objective

of (7). Note that it may not be possible to have 〈ιI ,xIt 〉− yt equals to bjt .

In addition, increasing 〈ιI ,xIt 〉 increases Gt(〈ιI ,xIt 〉). Plugging in the above results, the one-

dimensional directional derivative of Gt(〈ιI ,xIt 〉) satisfies:

lim
ε→0

Gt(〈ιI ,xIt 〉+ ε)−Gt(〈ιI ,xIt 〉)
ε

=

pkt , if 〈ιI ,xIt 〉−min
y∈Yt

y < bjt , for k such that bkt ≤ 〈ιI ,xIt 〉−min
y∈Yt

y≤ bk+1
t

−ψt, if 〈ιI ,xIt 〉−max
y∈Yt

y≤ bjt ≤ 〈ιI ,xIt 〉−min
y∈Yt

y

pkt , if 〈ιI ,xIt 〉−max
y∈Yt

y > bjt , for k such that bkt ≤ 〈ιI ,xIt 〉−max
y∈Yt

y≤ bk+1
t

ec7

where it can be verified that the directional derivative is increasing. Since Gt(〈ιI ,xIt 〉) is

continuous and is a real function, it is convex in 〈ιI ,xIt 〉. Moreover, since pt(·) is increasing,

Gt(〈ιI ,xIt 〉) is increasing in 〈ιI ,xIt 〉.

[Part (b)]: if pt(·) is a twice-differentiable convex increasing function, and p′′t (x
G
t) = 0 for all xGt < 0,

then first of all:

d2

dy2t

(
pt
(
〈ιI ,xIt 〉− yt

)
·
(
〈ιI ,xIt 〉− yt

))
= 2p′t

(
〈ιI ,xIt 〉− yt

)
+
(
〈ιI ,xIt 〉− yt

)
p′′t
(
〈ιI ,xIt 〉− yt

)
Then the objective of (7) is convex, because pt(x

G
t) is increasing convex, and p′′t (x

G
t) = 0 when

xGt < 0. From the KKT conditions, we can verify that the optimal solution y∗t , which we denote by

y∗t (x
I
t), satisfies:

y∗t (x
I
t) =

min
y∈Yt

y if min
y∈Yt

y > y0t
(
〈ιI ,xIt 〉

)
y0t
(
〈ιI ,xIt 〉

)
if min

y∈Yt
y≤ y0t

(
〈ιI ,xIt 〉

)
≤max

y∈Yt
y

max
y∈Yt

y if max
y∈Yt

y < y0t
(
〈ιI ,xIt 〉

)
,

where y0t (〈ιI ,xIt 〉) is the solution of equation

(
y−〈ιI ,xIt 〉

)
p′t
(
〈ιI ,xIt 〉− y

)
− pt

(
〈ιI ,xIt 〉− y

)
=ψt.

Denote min
y∈Yt

y as y and max
y∈Yt

y as y, Then, applying the Envelope theorem, we can calculate the

derivative of Gt(〈ιI ,xIt 〉) over 〈ιI ,xIt 〉 as follows:

∂

∂〈ιI ,xIt 〉
Gt(〈ιI ,xIt 〉)

=

(〈ιI ,xIt 〉− y)p′t(〈ιI ,xIt 〉− y) + pt(〈ιI ,xIt 〉− y) if y > y0t (〈ιI ,xIt 〉)

−ψt if y≤ y0t (〈ιI ,xIt 〉)≤ y

(〈ιI ,xIt 〉− y)p′t(〈ιI ,xIt 〉− y) + pt(〈ιI ,xIt 〉− y) if y < y0t (〈ιI ,xIt 〉)

Since in all cases the derivative is non-negative, Gt(〈ιI ,xIt 〉) is increasing in 〈ιI ,xIt 〉. Furthermore,

based on this result, one can verify that the second derivative is non-negative. Therefore, since

ec8

Gt(〈ιI ,xIt 〉) is a real function, it is convex, given pt(·) is a twice-differentiable convex increasing

function with p′′t (x) = 0 for all x≤ 0.

It is worth noting that, increasing condition of pt(x
G
t) alone does not suffice to provide convex

Gt(〈ιI ,xIt 〉). For example, assuming that pt(x
G
t) is twice-differentiable, and let y∗ be the optimal

solution to (7), then by the Envelope theorem, the second derivative of Gt(〈ιI ,xIt 〉) can be written

as:

∂2

∂〈ιI ,xIt 〉2
Gt(〈ιI ,xIt 〉) = 2p′t(〈ιI ,xIt 〉− y∗) + (〈ιI ,xIt 〉− y∗)p′′t (〈ιI ,xIt 〉− y∗),

which implies that the convexity of Gt(〈ιI ,xIt 〉) depends strongly on the shape of pt(x
G
t). As a

final remark, it is noteworthy that part (b) cannot be readily obtained using the preservation

result of convexity under minimization as pt(x
G
t)xGt is not necessarily convex. �

Proof of Corollary 1

Let p−1t : R→ 2R denote the inverse mapping of the average-price function pt(·). Since pt(·) is

continuously increasing, p−1t (p) is closed and convex, that is, p−1t (p) defines a closed interval on R

for any given average price. Without loss of generality, let p−1t (−ζt) = [h,h], and let the discharging

decision be x.

If 〈ιI ,xIt 〉−x< h, lowering x by 0< δx ≤ (h+x−〈ιI ,xIt 〉) changes the objective function (7) by:

ζtδx + (〈ιI ,xIt 〉−x+ δx)pt(〈ιI ,xIt 〉−x+ δx)− (〈ιI ,xIt 〉−x)pt(〈ιI ,xIt 〉−x+ δx)

≤ ζtδx + (−ζt)δx = 0

Similarly, if 〈ιI ,xIt 〉 − x > h, then increasing x by 0 < δx ≤ 〈ιI ,xIt 〉 − x− h changes the objective

function (7) by:

− ζtδx + (〈ιI ,xIt 〉−x− δx)pt(〈ιI ,xIt 〉−x− δx)− (〈ιI ,xIt 〉−x)pt(〈ιI ,xIt 〉−x+ δx)

≤−ζtδx− ζt(−δx) = 0

At last, when (〈ιI ,xIt 〉 − x) ∈ [h,h], x obviously minimizes the objective function (7), and that

completes the proof. �

ec9

Proof of Remark 2

We first show that the decision problem of the variable budget knapsack problem is NP-complete

by proving that it is in the class of NP, and by showing that the knapsack problem (KP) reduces

to variable budget knapsack problems in polynomial time.

a) We first show that the problem is in the class of NP. Consider the decision version of the

problem: whether a certain payoff, defined as the total value of picked items subtracting the cost

of budget, can be achieve while satisfying budget constraint.

Under the certificate-based (or verifier-based) definition of NP, because the certificate consists

of a realization of the decision on picking the items xI and a realization of the budget decision z,

which less than the sum of weights of all items, the certificate is polynomial in the size of input,

which is determined by the items and their weights. Since (1) the certificate checking algorithm

that verifies the sum of electricity demands of task is with xIi,t = 1 being less than or equal to the

budget takes O(|I|) operations, and (2) the algorithm that calculates the sum of the valuations of

these items (which takes O(|I|)) subtracting the cost of the budget takes polynomial time because

the cost of budget can also be evaluated in polynomial time, the whole verification takes polynomial

time, hence the problem is in the class of NP.

b) To show the decision form of VBKP is NP-complete, we show that the KP reduces to the

VBKP in polynomial time. Consider an arbitrary KP:

(P1) : max
I∑
i=1

wixi

s.t.
I∑
i=1

qixi ≤Z

xi ∈ {0,1}, ∀i∈ I

where I is the set of candidate items. {w}i∈I and {q}i∈I are the values and weights of the items,

respectively. Z is the capacity of the “knapsack”. We construct a corresponding instance of the

VBKP as follows. Let the convex cost function G(z) take the ensuing form:

G(z) =

0 if z ≤Z

∞ if z >Z

ec10

Next, setting the weights and benefits of the items to be the same in this problem as in KP, we

have the following VBKP:

(P2) : max
I∑
i=1

wixi−G(z)

s.t.
I∑
i=1

qixi ≤ z

xi ∈ {0,1}, ∀i∈ I

z ≥ 0

It remains to show that problem (P2) is equivalent to problem (P1). In (P2), the budget z never

exceeds Z, because if z > Z, and whenever the budget constraint
∑I

i=1 qixi ≤ Z of problem (P1)

is violated, the objective of (P2) goes negative infinity. When the budget is less than or equal to

Z, G(z) equals to zero, hence the objective functions of problem (P2) and problem (P1) are the

same. Therefore, it follows that the optimal solution of problem (P2) solves problem (P1).

Lastly, since the construction of problem (P2) takes O(|I|) time, we conclude that the KP reduces

in polynomial time to VBKP. As a result, the decision problem of the VBKP is NP-complete.

Then, since it is obvious that the VBKP is reducible to VBPCKP, the VBPCKP is NP-hard,

and that completes the proof. �

Proof of Proposition 2

The proof of the first half of Proposition 2 follows directly from the Principle of Optimality, while

the proof of the complexity of the algorithm being pseudo polynomial when weights can be scaled

into integers is rooted in the proof of the pseudopolynomial time algorithm for knapsack problems.

Due to its straightforwardness, the detailed proof is omitted. �

Proof of Proposition 3

According to the definition of policies µ∗ and µ, decisions Xµ∗

t (St) and Xµ
t (St) are the one-step

ec11

optimal solutions to problem (P) and the approximate problem (P′) when we are at state St.

Moreover, we have:

Et
(
St,X

µ
t (St)

)
+ Γt+1

(
St,X

µ
t (St)

)
≤Et

(
St,X

µ∗

t (St)
)

+ Γt+1

(
St,X

µ∗

t (St)
)
, (EC.1)

because policy µ is optimal for the approximate problem (P′). And similarly:

Et
(
St,X

µ
t (St)

)
+ Γt+1

(
St,X

µ
t (St)

)
≥Et

(
St,X

µ∗

t (St)
)

+ Γt+1

(
St,X

µ∗

t (St)
)
. (EC.2)

Re-organizing inequalities (EC.1) and add to both sides the term Γt+1

(
St,X

µ
t (St)

)
−

Γt+1

(
St,X

µ∗

t (St)
)
, we obtain:

Et
(
St,X

µ
t (St)

)
+ Γt+1

(
St,X

µ
t (St)

)
−
(
Et
(
St,X

µ∗

t (St)
)

+ Γt+1

(
St,X

µ∗

t (St)
))

= Jµ
(
St
)
−Jµ

∗

t

(
St
)

≤ Γt+1

(
St,X

µ∗

t (St)
)
−Γt+1

(
St,X

µ∗

t (St)
)
−Γt+1

(
St,X

µ
t (St)

)
+ Γt+1

(
St,X

µ
t (St)

)
≤ 2‖Γt+1

(
St,Xt

)
−Γt+1

(
St,Xt

)
‖∞

(EC.3)

Similarly, subtracting inequality (EC.1) from (EC.2) and reorganizing the terms yields the following

inequality:

Γt+1

(
St,X

µ∗

t (St)
)
−Γt+1

(
St,X

µ
t (St)

)
≥ Γt+1

(
St,X

µ∗

t (St)
)
−Γt+1

(
St,X

µ
t (St)

)
(EC.4)

Then, we can tighten the bounds obtained from inequality (EC.3) based on the signs of both sides

of inequality (EC.4):

- if Γt+1

(
St,X

µ∗

t (St)
)
− Γt+1

(
St,X

µ
t (St)

)
≥ 0, then the upper bound of Jµ

(
St
)
− Jµ

∗

t

(
St
)

can be

tightened by the following inequality:

Jµ
(
St
)
−Jµ

∗

t

(
St
)
≤ ‖Γt+1

(
St,X

µ∗

t (St)
)
−Γt+1

(
St,X

µ
t (St)

)
‖∞ ;

- if Γt+1

(
St,X

µ∗

t (St)
)
− Γt+1

(
St,X

µ
t (St)

)
≤ 0, then the upper bound of Jµ

(
St
)
− Jµ

∗

t

(
St
)

can be

tightened by the following inequality:

Jµ
(
St
)
−Jµ

∗

t

(
St
)
≤ ‖Γt+1

(
St,X

µ∗

t (St)
)
−Γt+1

(
St,X

µ
t (St)

))
‖∞ ;

- otherwise, the upper bound of Jµ
(
St
)
−Jµ

∗

t

(
St
)

can be rewritten as:

Jµ
(
St
)
−Jµ

∗

t

(
St
)
≤ ‖Γt+1

(
St,X

µ∗

t (St)
)
−Γt+1

(
St,X

µ
t (St)

))
‖∞

+ ‖Γt+1

(
St,X

µ∗

t (St)
)
−Γt+1

(
St,X

µ
t (St)

)
‖∞ .�

ec12

EC.3. Updating Rule and Exploration Rule

In this section we illustrate the updating rule used in the proposed solution approach. Suppose

we are in iteration m and period τ with t < τ ≤ t+ T − 1. The latest coefficient tuple associated

with the value-to-go approximation is then Θ
(m)
t . We need to first solve problem (P′) with Θ(m)

τ .

Next, we update the coefficient tuple, denoted by Θ
(m+1)
τ−1 . At last, we proceed to the next period

according to a sample path indexed by m, W
(m)

τ . We first discuss the coefficients updating rule.

Essentially, the sample-path-based approach for estimating coefficients Θ
(m)
t associated with the

approximate problem is rooted in stochastic approximation theory (Robbins and Monro 1951). The

theoretical foundation is later enriched by Kiefer and Wolfowitz (1952), Blum (1954), Dvoretzky

(1956). In this paper, the coefficient updating procedure follows standard stochastic gradient lit-

erature, see for example Kushner and Yin (1997). Recall that Θ
(m)
t

def
= (θ(m)

t ,ζ(m)
t , η

(m)
t). Define the

loss function L(Θ
(m)
t) as follows:

L(Θ
(m)
t)

def
=

1

2
E
[
Γt+1(S

X
t ;Θ

(m)
t)− Γ̂t+1

]2
,

where Γt+1(S
X
t ;Θ

(m)
t) is the sum of the approximate discomfort from lost arrivals Lt(q

X
t ;θ′′t , η

′′
t)

and the value-to-go approximation V t+1(q
X
t ,b

X
t ;θ′t,ζt, η

′
t), while Γ̂t+1 is the sum of the realized

discomfort from lost arrival L̂t and the realized value-to-go V̂t+1 that result from X
(m)
t following a

sample path. The goal of updating the coefficients is to minimize L(Θ
(m)
t), and we rely on stochastic

gradient methods.

There exists a relatively strong temporal correlation in the context of demand-side energy man-

agement. To propagate more efficiently the effect of taking a specific decision at later periods back

to the value of being at a particular post decision state, we apply Temporal Difference learning

(Sutton and Barto 1998, Powell 2007). Specifically, for all t∈ T :

θ(m+1)
t = max

{
0,θ(m)

t − γm
∑

{τ≥t: τ∈T }

λτ−tDτq
X
t

}
ζ(m+1)
t = min

{
0,ζ(m)

t − γm
∑

{τ≥t: τ∈T }

λτ−tDτb
X
t

}
η
(m+1)
t = η

(m)
t − γm

∑
{τ≥t: τ∈T }

λτ−tDτ

, (EC.5)

ec13

Run Price ($) Generation (kWh) Arrival Rates Storage (kWh) Discomfort ($/kWh)

p̄avg p̄spd ḡavg ḡspd davg dspd rc rd(=ru) π′ ρ π′′

1 0.3 0.25 0 0 0.55 0.45 4 2 0.05 0.15 50

2 0.3 0.25 0 0 0.55 0.45 4 2 0.05 0.15 0.75

3 0.3 0.25 0 0 0.55 0.45 4 2 0.05 0.4 0.75

4 0.3 0.25 0 0 0.55 0.45 4 2 0.25 0.5 0.75

5 0.3 0.25 0.75 0.5 0.55 0.45 4 2 0.05 0.4 0.75

6 0.3 0.25 1.5 0.5 0.55 0.45 4 2 0.05 0.4 0.75

7 0.3 0.25 0 0 0.55 0.15 4 2 0.05 0.4 0.75

8 0.3 0.25 0 0 0.3 0.15 4 2 0.05 0.4 0.75

9 0.3 0.25 0 0 0.55 0.45 8 4 0.05 0.4 0.75

Table EC.1 Summary of the Settings of the Representative Runs

where Dτ is the typical temporal difference term, defined as follows:

Dτ ≡ Γτ (S
X
τ ;Θ(m)

τ)− [L̂τ−1 +Cτ (Sτ ,Xτ) +Uτ (Sτ ,Xτ)−Lτ (qXτ ;θ′′(m)
τ , η′′(m)

τ) + Γτ+1(S
X
τ+1;Θ

(m)
τ+1)].

We use the Harmonic stepsize rule, γm = γ/(γ + m − 1). Appropriate γ is chosen to ensure

convergence. λ∈ (0,1) is an artificial factor that discounts temporal differences further along sample

paths. The stepsize satisfies the basic conditions for convergence of the stochastic gradient method

(Kushner and Yin 1997). Moreover, a modified mixed exploration strategy is applied. The rate of

exploration is a piece-wise linear function ρ(m), where m is the iteration index. We set ρ(m) in a

way such that the algorithm explores more states at early iterations, then exploits the collected

information at later iterations.

EC.4. Numerical Study Settings and Results: Tables and Figures

Table EC.1 summarizes some representative parameter settings, while Table EC.2 summarizes the

estimated total costs of the four policies on the these runs. Figure EC.1 provides the mean absolute

percentage error of ADP, MYO and TRD against EXDP.

References

Blum, Julius R. 1954. Multidimensional stochastic approximation methods. Annals of Mathematical Statis-

tics. 737–744.

ec14

Run EXDP ADP MYO TRD

Cost Discomfort Total Cost Discomfort Total Cost Discomfort Total Cost Total

1 -0.6 5.0 4.3 0.3 4.1 4.4 0.2 4.8 5.0 13.3 13.3

2 1.1 3.4 4.6 1.3 3.3 4.6 0.8 4.5 5.3 13.2 13.2

3 1.8 6.2 8.0 2.3 5.9 8.1 1.6 7.7 9.3 12.9 12.9

4 9.3 2.2 11.5 10.0 1.7 11.6 5.0 10.0 15.0 13.0 13.0

5 0.2 6.4 6.6 1.1 6.0 7.1 -0.2 7.9 7.7 11.4 11.4

6 -2.2 6.6 4.4 -0.9 6.0 5.0 -2.7 8.0 5.4 9.0 9.0

7 2.0 6.2 8.2 3.1 5.3 8.4 1.1 8.0 9.2 12.4 12.4

8 1.6 3.2 4.8 3.6 1.8 5.5 0.9 5.2 6.1 7.7 7.7

9 0.8 6.3 7.2 1.5 5.8 7.3 2.0 7.7 9.6 13.1 13.1

Table EC.2 Summary of Results of the Representative Runs (Units: $)

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

1 2 3 4 5 6 7 8 9

M
AP

E

Runs
ADP (MAPE) MYO (MAPE) TRD (MAPE)

Figure EC.1 Mean Absolute Percentage Error (MAPE) of ADP, MYO and TRD

Dvoretzky, Aryeh. 1956. On stochastic approximation. I . Berkeley and Los Angeles: University of California.

39–55.

Kiefer, J., J. Wolfowitz. 1952. Stochastic estimation of the maximum of a regression function. Annals of

Mathematical Statistics 23(3) 462–466.

Kushner, Harold J., G. George Yin. 1997. Stochastic approximation and recursive algorithm and applications.

Springer.

ec15

Powell, Warren B. 2007. Approximate Dynamic Programming: Solving the curses of dimensionality , vol. 703.

John Wiley & Sons.

Robbins, Herbert, Sutton Monro. 1951. A stochastic approximation method. The annals of mathematical

statistics 400–407.

Sutton, Richard S, Andrew G Barto. 1998. Reinforcement learning: An introduction, vol. 1. MIT press

Cambridge.

