Online Supplement for “Production and Technology Choice under
Emissions Regulation: Centralized vs Decentralized Supply
Chains” by Jen-Yen Lin, Sean X. Zhou, Fei Gao

In this supplement file, Appendix A provides the supplementary results and their proofs while
Appendix B provides the proofs of the results in the paper. For ease of reference, we use (P-Equation

Number) to refer to the equations in the paper, e.g., (P-1) is Equation (1) in the paper.

Appendix A: Supplementary Results and Their Proofs

Lemma Al. 7(q,q;,q]") is concave in (q,q;,q7").

Proof. Note that
min{D,q} = q— (¢— D)*

is concave in g. Moreover, as p > v, the combination of the last two terms is concave (g, ¢, q7").

The other terms in 7°(q, ¢, ¢7*) are linear. So 7°(q,¢5, ¢}") is concave. |
Lemma A2. 7™ (q,q") is concave in (q,q}").

Proof. Since p > v, the combination of the last two terms is concave. The other terms in 7™ (q, ¢]"*)

are all linear. So 7 (g, ¢{") is concave in (g, ¢i"). |

Proposition Al. The optimal production quantities (q¢(w), qi"(w)) of the manufacturer are given

as follows.

(i) If v < p < C™, then ¢i"(w) =0 and

F='w+cf' +p&f") if w+cf < Fgr) — péf,
q(w) =14 & if Fgr) — p€" <w+ ' < Fge) — vey', (1)

Fl w+cg' + ) if w+ g > F(gr) — vég.



(i1) If C™ < v < p, then ¢{"(w) = q(w) and
FMw+ '+ p&") if w+ ' < F(ge) — pf",
qw) =1 & if Fgr) = pe" < w+ e < Fgr) — vgf", 2)
F Y w+ P +0€M) ifw+ P > F(%) — v€T".

(i17) If v < C™ < p, then

q(w) _ qm(w) . F—l(w + +Pf{n) if w +c' < F(%) — pem, (3)
1 ar if F(gm) =" = p€* <w < Fgm) — 5 — C™€x;

if P(gr) — C™eg < w+ o < F(gr) — Cmeg,

. P F N w4  + OMER) — ™

g(w) = F~ Y (w+ 5" + C™&"), ¢i (w) = T ; (4)
2 1
and
(g-9) if FE2) — CMep < w4 & < F(22) — ey,
m — 52 52 éh2
(alw), g (w) { (B w+ g +08).0) ifw+ g > F(gn) — e ®)

Proof. The manufacturer’s profit function 7™ (g, q]"*) can be regarded as a special case of the
integrated supply chain’s profit function 7¢(q,qf,¢") with " = ¢§* = 0, " = &' = 0 and
¢}, c5 substituted by ¢* + w and ¢§* + w respectively. For case (i), (ii), (iii) in this theorem, the
manufacturer’s problem can be solved similarly to case (i) (ii) in Theorem 2 and (ii) in Theorem 3

respectively. Rewrite the condition in the solution expressions as ranges specified by the wholesale

price w, we can get , and . |

Before characterizing the detailed optimal solution of the supplier, we further divide the sup-
plier’s problem into several cases based on Proposition Al because the corresponding w(q) is dif-

ferent.

Define

J(q,4}) = F(q)q — ciqf — e5(q — i) — plt*(q, qf) — €] +v[e® — t°(q, ¢])] " (6)

For case (i) in Proposition A1, the corresponding w(q) is either F(q) — ci* — p&5* or F(q) — ' —

v€Y", depending on ¢ < e™ /&5 or g > €™ /€5, Hence, the supplier aims to solve the following:

max 7°(q,q]) = max{ max Fi(q), max Fa(q) ¢, (7)
0<¢5<q 0<q< S >
2 2

where F1(q) = maxo<gs <{J (¢, ¢7) — (5" +v&3")q} and Fa(q) = maxo<qg; <a{ T (q,¢7) — (5" +pE5")q}-
Let qr, = argmax F;(q), i = 1,2. As Fi(q) > Fa(q), the optimal g could be either ¢z, gr,, or

em/&3"



Similarly, for case (ii) in Proposition A1, the supplier aims to solve the following:

max 7°(q,¢7) = max ¢ max Gi(q), max Ga(q) ¢, (8)
0<¢i<q 0<g< em q>% 5m

where G1(q) = maxo<g;<g{J (¢, 47) — (" + v€")q}, G2(q) = maxo<gs<o{T(q,41) = (" + p&1")a}
and let qg, = argmaxG;(q), i = 1, 2.

And for case (iii) in Proposition Al, the supplier aims to solve the following:

max 7°(q,q7) = maxq max Hi(g), max Ha(q), max Hs(q) o, 9)
0=qi=q 0<g< Em e rr <q< £ g'm 0>
2 1
where H1(q) = maxo<q:<o{ T (¢, q7) — (5" + 05" )q}, Ha(q) = maxo<qs<o{ T (¢, ¢7) — (5 +C™EF)q},
H3(q) = maxo<qi<q{T (¢, q7) — (" + p&T")q}; and gy, = argmax H;(q), i = 1,2,3.

The problems @, and @ involve two layers of optimization. We need to first solve the
optimization problems within the brackets and after that, we compare the resulting maximum
values to determine the maximizer for 7%(q, ¢j). Based on the assumption that demand has IGFR,

we have the following properties that facilitate the characterization of the equilibrium solutions.

Proposition A2. F;(q), Gi(q) (i = 1,2) and Hi(q) (i = 1,2,3) are quasi-concave in q, and
9Fy 2 4F2s 961 2 4Gs> WMy = QHa = GHs-
Proof. In the proof, we only show case (i) because cases (ii) and (iii) can be proved analogously.

We focus on solving the optimal ¢ in different scenarios to derive the resulting F;(¢). For simplicity,
let My = ' +v&3" and Mo = ¢y + p&y*.

First consider the situation when v < C* < p. If ¢ and ¢j satisfy 5¢5 + &£5(q — ¢f) — e® > 0,
Jnax J (¢, q7) — Miq
= max F(q)q — (M; + c5 + p&3)a + [p(&5 — &) — (¢ — ¢3)]ai + pe?,

sit., 0<¢1 <q, &q1 +&(q—qi) —e® >0,

= max_ F(q)g — (M; +ci + p&i)q + pe’,
g>e* /&

where the equality is because that p > C? implies ¢} = q.

If &¢5 + &5(q — ¢5) — e® = 0, which implies ¢ = (§5q — €®) /(&5 — &F), the problem becomes

max F(q)q — (M; + c5 + C%¢5)q + C*%¢®,
e (9)g — (M + 3 £3)

in which the constraint e®/&5 < ¢ < e®/&5 is to ensure that ¢f = (&5 — €®) /(&5 — &) € [0, q].



If €5¢5 4+ &5(q — ¢5) — e® < 0, the problem is

max F(q)q — (M; + 5 +v&3)q + [v(&5 — &) — (] — &3)]af + pe’,
st, 0<¢1 <q, §q7 +&(q—qi) — e’ <O,

= max F(q)q— (M; + ¢ + v&)q + ve®,
q<es /&5

where the equality is due to v < C®, which results in ¢f = 0. In summary,

F(q)g — (Mi +c§ + p&)g + pes, g >e°/&f,
Fila) = Fla)g— (Mi+c3+C°¢)qg+C%e, e/ < q<e’/, (10)
Fq)qg — (M; +c3 +v€3)q +ves, g <e’/Es.

When g > e°/£5, take derivative of F;(q),

Fila) = F(@l —g(@)] — (M; +cf + p3).

Let G satisfy that g(§) = 1, then for ¢ < G, as g(q) is increasing, 1 —g(q) > 0 and F(q) is decreasing,
then ]-';(q) is decreasing, and so F;(q) is concave for ¢ < ¢. For ¢ > ¢, as 1 — g(q) < 0 and M; > 0,
then .7-"1/ (¢) < 0 and so F;(q) is decreasing for ¢ > ¢. As a result, F;(q) is quasi-concave in ¢ when
g > e*/&;. It can also be shown that F;(g) is quasi-concave in the other two regions specified in
(10). Moreover, as p > C* > v and ¢§ > ¢, it can be shown that F/(q) is smallest for ¢ > e®/¢;,
followed by region e®/&5 < q < e°/&5, and largest for region ¢ < e®/&5. Therefore, once F/(q)
becomes negative, it will always be negative. Thus, by definition, F;(q) is quasi-concave in the

whole region.

Next consider the case v < p < C®. Note that, in this case, ¢ = 0 at optimum, and it can be

easily derived that

Filq) =

. 11
F(q)qg— (M; + 5 +v&5)q+ve® if g < &. (11)

o m(lﬁ\?’;‘ mfl:

{ F(q)q — (M + ¢35 + p&s)q + pe® if ¢ >

Finally, for the case of C* < v < p, ¢i = ¢ at optimum, and

E = . E
@ F(q)g— (M; + ¢ +v&j)qg+ve® ifg< &

{ F(q)q — (M; + ¢§ + p&})g + pe® if g >§ 12)
[&

For these two cases, it can be similarly proved that F;(g) is quasi-concave .

Note F;(q) and (F;(q))" are decreasing in i because M; is increasing in 7. Also by quasi-concavity

of Fi(q) and the definition of ¢, it is clear that ¢z, is decreasing in i, i = 1, 2. [



Definitions for Propositions A3 and A4

Define

Filq) = F(q)g — (¢ + ™ +v€)q,

Falq) = Fq)qg — (¢* + ™ + p€)q.

Recall K(z) = F(z)(1 — g(x)). Based on the first order condition, the maximizer qz, of Fi(q),

i=1,21s
47, = K=Yc® + ™ + v€) > az, = K=Hc® 4 ™ + pé).
In addition, define

Gi(q) = F(q)g — (¢* + (¢ +¢) + v(€ = 8))a,
G2(q) = F(q)qg — (¢ + (™ +¢) + p(§ = 9))q,

of which the maximizers are

g, =K1+ (€™ +¢) +v(€ = 0)) > qg, = K" + (¢ +¢) + p(€ = 9)).

Finally, define

H(q) = Fq)g — (¢* + ™+ c£/6)q,

and its maximizer g, satisfies

4z, = 4 =K~ + ™+ c€/0) > g4,

Note that £ in the definitions above shall be replaced by £° in Proposition A3 and &™ in

Proposition A4.

Proposition A3. For the decentralized chain, when only the supplier is requlated, the optimal

production quantities (q%, ) are given as

(i) if v < p < ¢/, then ¢ =0 and

_d . €
¢" = min { max qﬁ?’? A7, (o

. e
gt = qtlis = mln{maX{qg'Q, 55_5} aq]i-l}

(iii) if v < c/d < p, let Go = K71(c® + ™+ c£5/5), then

(ii) if ¢/6 < v < p, then

qd = q?s = maX{QgQ, ESL—(S} Zfé < (fs - 6)qa,
S L if (€5 = 8)Ga < € < £,

q_d:min{qﬁl’g%}7q_il8 :0 lfé>§56a.

(13)

(14)



The optimal wholesale price w* = F(q?) — c™.

Proof. The supplier’s problem is maxo<gs<4 7°(q,qf) with the objective given in (P-15). The
optimal ¢ is characterized the same as (P-14). Therefore maxo<qs<q 7°(¢, ¢) = maxo<q F(q), in
which is given in (1)), and for F(q) v < p < C*% C* <v < pandv < C® < p, respectively,
with M; = ¢™. F(q) is quasi-concave (Proposition A2), then the optimal production g® can be

characterized as given in Proposition A3. |

Proposition A4. For the decentralized chain, when only the manufacturer is requlated, the optimal

production quantities (Qd,(jfm) are given as follows.

(i) If v < p<c/d, then ¢i™ =0 and

a7, if /€™ < qz, and Fa(qz,) > Filgr)
el o if e/§" < qz, and Fr(qr,) < Fi(gw)
) € . _
min § gz, fm} if 4z, < e/£m7
(ii) if ¢/5 < v < p, then ¢i™ = ¢ and
ag, if e/€™ < qg, and Gi(e/(§™ ~ ) < Galgg,),
i’ =14 e/(Em—9) if e/(&™ —0) < qg, and G1(e/(§™ = 6)) > Galgg,),
min{ag /(€™ — )} if /(€™ —8) > g4,
(i1i) if v < ¢/ < p, then
%, if ¢/(€™ — 0) < qg, and Ga(qs,) > max{F1(e/€™), H(e/ (™ — 0))},
/(e — 9) /(€7 — 8) < ag, and H(e/(€™ —8)) > max{F1(e/€™). Galag,).
P /(€ =8) < ag, and Fi(e/€”) > max{H(E/ "~ 0).Galag)}. o
min{g,.2/(6" — 6)) if /€ < 4.2/ (€" — 6) > qg,, Fa(e/€™) < Flmin{az. /(€ - 5))).
e/sm ife/&™ < qy,e/(§" = 0) = qg,, Fi(e/§™) > H(min{gy, e/(£™ — 0)}),
and
0 if ¢t <efem,
mad >
i =3 CLE e <t <elen o), (17)
q if ¢ >e/(€™ =),
Proof. The result can be obtained from Proposition Al. |



Appendix B: Proofs
Proof of Proposition 1.

Note that .
(g, 47, q1") _ { —cf +c5 —v(&] — &), ift(g,qf,q") <e
BQT —C‘i + Cg - p(gf - 55)7 if t(q7 Qi‘;v qin) > €

and if £(q, ¢7,q]") = €, then

{ E—tq, ¢t +e,q")=—(&—€)e>0, ife>0
t(‘]aqf—i_evq’{n)_é:(ff_£5)5>0, ife <O

and

( S

—C
(¢, ¢ +e.q7") — (¢, 41, ¢1") = { (_c%

)

Fe)e —u(€ —€)e, ife>0
+c3)

5
e—p&f —&)e, ife<0 -’

Similarly,

N { —c' + gt —o(E" - &), i i(g,qf,q") <

e
8(]{” —Cin + Cgl - p(g?[n - é:gl)ﬂ if t(Qa Qiga qin) >e

and if £(q, ¢7,q]") = €, then

{e—t(q,qf,q’ln—i-a):—(§T—§’2”)5>0, if e >0
t(¢, ¢}, ¢ +e)—e= (" —&Me >0, ife<0

and
c s m _ C s m\ __ (—CT’ + 05”)6 — ’U(ﬁ{n — fgn)g, if >0
me e ) = { (=l +cf)e = pl(&" = €5")e, if e <0

(i) If p < C¥, then the values of
—ci+c5—v(€ —&) < —cf + ¢ —p(§] — &) 0.
Hence ¢{* = 0. The case of p < C™ can be similarly proved.
(ii) If C*¥ < v, then the values of
0<—cf+c5—v(] —&) < =i+ —p(§ — &)
Hence ¢* = ¢°. The case C" < v can be similarly proved.
(iii) If v < C® < p, then
—ci 5 —v(€ —&) <0, —cf + 5 — p(&f — &) > 0.
Hence, if (g%, ¢f*, ¢{™) < €, then

or°(q, 47, q1")

b = el vl ) <0



and ¢f® = 0; if £(¢%, ¢°, ¢f™) = €, then

o= EHENC T G —Gam e (G e
! &—& &g-¢

if t(¢%, qf°, ™) > €, then

87‘(6 9 87 T
Oma ahaf) _ s s per—g5) > 0

dq;
and ¢° = ¢°. Therefore,
0, if t(¢% g7, qi™) < e
@ = (& Z;;_n)gg — é, if t(¢% 1%, i) = €
¢, if t(q°, q1%, ™) > €

Therefore, the supplier may use both technologies simultaneously. The case of v < C™ < p

can be similarly argued. |

Lemma B1. Let
fla)=(1—-A)q—p[Bg—é" +v[é—Bg* —Elg— D]

We can characterize the results as follows.

‘ € = é
(i) IfE < F7Y(A+ Bv), then Og;z;x% flg)=f (B)
(ii) IfE > F~ YA+ Bv), then max f(q) = f (F'_l(A—i—Bv))
B 0<g< 5
(i) 1f 5 < F~'(A+ Bp), then max [(q) = f (F~(A+ By))
=B
(iv.) If% > F7Y(A+ Bp), then zr;agf(q) =f (g)
(v.) [f% < FY(A+ Bv), then

)

o3| ™

max f(q) = f (max {F—l(A + Bp),

0<q

(vi) If% > F~Y(A + Bv), then

max f(q) = f (F~'(A+ Bv))



Proof. Firstly, the derivative of (1-A)g—Elg—D]"is1—-A —~F(q) = F(q) — A. Secondly, if
0<qg< %, then the derivative of f(q) is F'(¢) — A — Bv. If ¢ > %, then the derivative of f(q) is
F(q) — A — Bp. Therefore, we can obtain the result (i)-(vi). [

Lemma B2. Suppose C* < C™. Then we have the following equalities

i+ +CM(E + &) — [+ "+ C°(6 + &) = (61 + &) (C™ - C7) (18)
A+e +pEl+&") —la+a’+ (& +6N)] = (G + 6" - ) (19)
i+l + (] &) — e + &'+ O™ (& + &) = (6 + &) (p - C™) (20)

Proof. This can be easily proved by some algebra and the definition of C*® and C™. Thus we
omit the details. [ |

Proof of Theorem 2.

(i) By Proposition 1, if v < p < C* < C™, then ¢f™ = 0 and ¢{* = 0. Hence the integrated

supply chain problem can be reduced as follows:

max {(1 = ¢; = f)g = pl(& + &) — el +vle - (& +&")a)* ~Ela— D'}

Following (v) and (vi) of Lemma ??, we can obtain the optimal solution.

(ii) By Proposition 1, if C* < C™ < v < p, then ¢f™ = ¢° and ¢{* = ¢°. Hence the integrated

supply chain problem can be reduced as follows:

l}qﬂgg{[l —cf —c'lg = pl(& + Mg — &t +ole— (& + &gt —Elg — DI}

Following (v) and (vi) of Lemma 7?7, we can obtain the optimal solution.

(iii) By Proposition 1, if C* < v < p < C™, then ¢f™ = 0 and ¢* = ¢°. Hence the integrated

supply chain problem can be reduced as follows:

meax {A—cf =g —pl(&§ + 5" g—e]" +vle— (6] +&")gl" —Elg— D]} .

Again the optimal solution can be obtained following (v) and (vi) of Lemma ?7.



Proof of Theorem 3.

(i) By Proposition 1, if v < C* < p < C™, then the optimal solution (¢, ¢{*,¢{™) satisfies

™ — (0 and
0, if t(¢% qf*, ™) < €
(&5 +&3" ) —e . _
¢ = , if (g%, ¢85, ¢"™) =¢€ .
1 55 _ é.f . 1 1
q, if t(q°% qf°, qi™) > €

Hence, the integrated supply chain’s problem can be reduced as follows.

qg{lﬁx {1 =3 =g — (] —3)gi — pl(& + &) — (65 — &1)gt — ™
+ole — (& + &g+ (& — &)ai]" —Elg - D]*}. (21)
Moreover,

— if t(q¢% 5%, ¢f™) < e(ie. (& +&5")q° — (&5 — &7)gqf® — € < 0), then we have ¢f* = 0 and
the problem can be further simplified to

max {[1 — ¢5 — &' —v(& + &")lg — Elg — D] +ve}

= max {[l-c¢—c —v(&+&")g— Elg— D" +ve},
0<4<ggiep

The unconstrained maximizer is gg(v,v) = F~1(c§ + ¢§ + v(& + &5")) by applying the
first-order condition.

S m C =
—e
— if t(q, qf*, ¢§™) = €, then we have ¢f* = (& + &) and the problem can be further

& — &

simplifed to

max {[l_cg_672%_CS(E;-F&E”)]Q—E[C]—D]J'_—I—CSE},
SOSgrrer

SRy
The unconstrained maximizer is gg(C*,C*%) = F~1(c§ + " + C*(&5 + £5)) by applying
the first-order condition.
— if t(q%, ¢ ™) > e(ie. (&5 + &) — (& — &1)ai® — € > 0), then we have ¢f* = ¢° and
the problem can be further simplified to

max {[1 — ¢] — &' — p(&§ + &5"))q — Elg — D]* + pe}
st.,q>0,(& +&")g—e>0.

= max {[l—¢ —c—p&+&"))q—Elg— D] +pe},
GERUN

The unconstrained maximizer is g,(p, p) = F~1(c§ + ' + p(& + £5*)) by applying the

first-order condition.

10



By combining these three cases, under the condition C*® < v < C™ < p, the problem becomes

€ ___
RN

S R S
g+ey g+

S+ m —é
max max  7°(q,0,0), max ¢ <q, W,O) , max “(q,4,0)
0<g< <g< & —& §s+§m <q

Since g¢,(p, p)) < qp(C*,C*) < q3(v,v), we consider the following cases:

— a1er <t(p:p)

— 0,(p,p) < g < 45(C°,C7)
— g1 < (C°.C%) < &fer
- qp(C*,C%) < % < qs(v,v)
— q8(v,v) < i

which can be used to specify the optimal solution of the following functions

Wc(q? q7 O), lf q > §s+§m
7¢(q,0,0) if g < 755&?

For example, if ¢q3(C*,C?) € {ﬁ, ﬁ), then

— 7m%(q,0,0) is increasing on (0

’$+@>
— ¢ (q, W, 0) is increasing on [52 T gm,qB(CS7 CS)>;

,n.C q, s 587 0 1S decreasm on q CS) CS ) m )
< 52 é1 i B( ) ff 52

— 7°(q,q,0) is decreasing on [

e
— 0 ].
&+ &7 )
Hence the optimal solution of the integrated supply chain is gg(C*, C*).

Other cases can be proved using similar arguments. For brevity, we omit the details. The complete

proof is available from the authors upon request. |
Proof of Lemma 1.
We only need to prove that

}

—p{[t°(q,q5) — 1" + [t™(q,q7") — €™} + v {[e* — t°(q,¢})]" + [e™ — t™(q, fi”)}
>

+
—{—p[t*(q. ¢}) + t™(q, ¢") — " — ™" +vled +em —t5(q,q) — t"(q. ¢7)] T} =0

11



Because the triangular inequality of [z]* holds and [z]* — [—]" is linear, we can obtain

—p{[t°(¢,q}) — 1" + [t™(q,q7") — ™"} + v {lef —t°(q, )] + [e™ — t™(q, q1")] "}
= (v—p){[t*(q.q}) — €]" + [t™(q, ¢") — ™"}

+o {[t*(q.q5) — e 1" + [t™(q, ¢") — ™" — [t°(q, ¢5) — €] — [t™(q, q") — ™"
< (v=p) {[t°(q q}) +t™(q, @) — € — ™"

+o {[t*(q,q8) — e 1" + [t™(q, ") — ™" = [t°(q, ¢5) — €] — [t (g, q") — ™"
= —p{[t°(q, @) +t"(q,q7") — e — ™"} + v {[t°(q, qf) + t™ (g, q1") — e — ™|}

So the result follows. [ |

Proof of Theorem 4.

(1) By Proposition 1, if v < p < C% < C™, then ¢{" = 0 and ¢j** = 0. Assume & 5 < % < Z—; <

6’"' Hence the integrated supply chain problem can be reduced as follows:

max {(1 — ¢ = ¢")g = ple3q — " — pl€s"q — €™ + vle” — Eq]" +ole™ —&5'q]" ~Elg - DI}

ivi i | o e fe e fen e
We divide the domain [0, 00) into three parts: [0, 55), [ T @), [Eé" , oo). Ifq € [O, @), then

the objective function can be simplified to
(1—c3—c5')qg+v(e” — &a) +v(e™ — &"q) — Elg — D]

and the corresponding stationary point is gg(v,v) = F~1(c§ + 5" + v(&5 + &5)). Also, if
q € [ o gm} then the objective function can be simplified to

(1—c5 =g+ p(e’ — &q) +v(e™ —€5'q) — Elg — DIT

and the corresponding stationary points are gg(p,v) = F~1(c§ + ¢ + p&5 + v€JY). If q €
(%, oo), then the objective function can be simplified to

(1—c5—c3")qg+ple’ —&q) + p(e™ — &5'q) — Elg — DJ*

and the corresponding stationary point is gg(p, p) = F~L(c§ + ' + p(€5 + £7Y)).
Z S

e

&5
max{gs,(w(p, )}, if gz(p,v) > %, then ¢%¢ = max{gm,qg(p p)} Thus, we can obtain
the optimal solution.

If gs(v,v) = g—i, then ¢*¢ = qg(v,v); if gg(v,v) and ¢g(p,v) £ %, then ¢*¢ =

N ®

(ii) By Proposition 1, if C* < C™ < v < p, then ¢{™ = ¢*¢ and ¢;*° = ¢*°. Hence the integrated

supply chain problem can be reduced as follows:

max {[1 — ¢ — ¢'lg = plétq — ¢]" = ple"q — ™" +v[e” — &ig] " + o[e™ — &) — Elg — D]}

12



We divide the domain [0, 00) into three parts: [O, gé), [%, E—Z), {2—:, oo). Ifq € [O, z—:), then
1 1 1 1 1

the objective function can be simplified to

(1—¢f =g +v(e’ —&q) +v(e™ —€'q) — Elg — DI*

and the corresponding stationary point is g, (v,v) = F~1(c§ + ¢ + v(& + €M)). Also, if
q € [ o E’”} then the objective function can be simplified to

(L—¢f =g+ p(e’ — &q) +v(e™ — £'q) — Elg — DIT

and the corresponding stationary points are q,(p,v) = F~1(c] + " + p&§ + v&€P). If q €
(%, oo), then the objective function can be simplified to

(L—¢f =g+ ple’ —&q) + p(e™ — €7'q) — Elg — DI*

e and ga(p,v) S %, then ¢%¢ =

€

and the corresponding stationary point is go(p, p) = F~1(c5 + " + p(&5 + &7)).
If go(v,v) $ 5—2, then ¢%¢ = qa(v v); if go(v,v) >

=

max{gs,qa(p, )}, if go(p,v) > gm’ then ¢%¢ = max{gm,qa(p,p)}. Thus, we can obtain
the optimal solution.

(iii) By Proposition 1, if C* < v < p < C™, then ¢{"* = 0 and ¢{* = ¢°.

max {[1—cf —f'lg = plétq — €]" = ple'q — "7 +vle® — &l +vle™ — &) Bl — DI},

We divide the domain [0, 00) into three parts: [0, g), [%, %), {%, oo). Ifge [0, %), then
the objective function can be simplified to

(1—¢f —g)g+uv(e’ —E&q) +v(e™ — &'q) — Elg — D]*

and the corresponding stationary point ¢, (v,v) = F~1(c§ + 5" + v(& + &5Y)). Also, if g €
[es ﬁm} then the objective function can be simplified to
(1—¢f —c5)q+ple” —&ia) +v(e™ — &"q) — Elg — D]
and the corresponding stationary point ¢,(p,v) = F~1(c§ + ' + p&5 +v€f). If g € (gm , oo),
then the objective function can be simplified to
(1—¢f —c5)q+ple” —&ia) + ple™ — &q) — Elg — D]
F=H e + e + (€] +€57))-
If ¢y(v,v) 5 2—;, then ¢*¢ = qv(v v); if ¢y(v,v) > %f and ¢,(p,v) = 2?, then ¢*¢ =
m

max{fs,qy(p, )}, if ¢y(p,v) > 5m7 then ¢*¢ = max {%,qv(p, p)} Thus, we can obtain
the optimal solution.

and the corresponding stationary point ¢ (p, p) =

13



Proof of Theorem 5.

(i) By Proposition 1, if v < C* < p < C™, then the optimal solution (¢*¢, ¢7*, ¢i"") satisfies

;" =0 and
if t°(¢°¢, ¢i*°) < e®

gs sc

qfcs — if ts(q qiecs) — e
&-& §1

qsc’ if ts( ’qiscs) > e8

Hence, the integrated supply chain problem can be reduced as follows.

Dax m(g,q1,0) = {(1—c3—c3)g— (c] — 3)ai — plésa — (& — &)ay — " — pléy'q — e™]"
=41 =

+ole® — &q+ (& — &g +vle™ — &gt —Elg— D]} (22)

Since we assume that ES 52 < 6 < gm we will discuss the following four subproblems in

order to obtain the optimal solutlons of problem :

_ S, _ .8
max { max_7°(¢,0,0), max 7 (q, &9-¢ 0), max 7 (q,ngeO) max 7°“ (¢, ¢,0)

0<g<& Es & S <g< &Z &—& ar o <g< 52 & > <q

This is because

— ift%(q,¢7) < e®,ie. &5q—(&5—E&7)qi—e® < 0, then we have ¢i*® = 0 (because the resulting
objective function is decreasing in ¢7), and £5¢°¢ — e¢® < 0. Meanwhile, £5'¢* — ™ < 0.
Hence the first considered subproblem is

max_ 7(q,0,0) = {[1 — c§ — &' — (& + &")]g — Elg — DI + v(e” + ™)},
0<g< < és

whose unconstrained maximizer gg(v,v) = F~(c§ + 5" + v(&5 + £5)) by applying the

first-order condition.

gs sC _ o8 es em
— if t%(q,¢;) = €® and &5'q — €™ < 0, then we have ¢{*° = ,and — < ¢%¢ < —
&—& 5 &
Hence the second considered subproblem is
 max 7 < bq =€ ) ={[1-c— 5" — C°¢ —v&y")]q — E[g — D]t + C%¢® + ve™} |
55 <q<£m 52

whose unconstrained maximizer qz(C%,v) = F~1(c§ + c§* + C5&5 +v€X") by applying the

first-order condition.
é‘g sC __ S em eS

— if t%(q,q¢f) = €® and J'q — €™ > 0, then we have ¢;*° = = m < ¢ <
2 = &1 1

Hence the third considered subproblem is

—6
w7 (0. 222 0) = ({1 -~ = €6 — o~ Bla - DI+ € e}

e™m es
qrsig Sh

14



whose unconstrained maximizer qz(C*%, p) = F~1(c§ + c§* + C5&5 + p€4*) by applying the
first-order condition.
— if t°(q, q5) > €°, i.e. £5q — (&5 —&5)qf — €® > 0, then we have ¢j* = ¢°¢, ¢ — e > 0;
and the fourth considered subproblem is
max ¢ (¢,¢,0) = {[1 — ¢§ — 5" — p&f + p€y")lq — Elg — DT + pe® + pe™ }
g

whose unconstrained maximizer g, (p, p) = F~1(c§ + ¢§ + p&§ + p&S) by applying the

first-order condition.

Now, if gz(v,v) < %, then because gg(v,v) > qg(C*,v) > qg(C? p) > ¢y(p,p), the optimal
solution ¢*¢ = ¢g(v,v). Similarly, if gg(v,v) > % and ¢3(C*,v) < %, then
65
¢*¢ = max {s,qg(C'S,v)} .
&
If gg(C%,v) > % and ¢3(C*, p) < g, then
em
¢°¢ = max {m,%(C’s,p)} .
2
If 3(C*, p) > ¢ . then
1 65
q°° = max {s,qy(p, p)} :
1
Cases (ii) and (iii) can be similarly proven and so we omit the details. [

Lemma 1. The inverse function w(q) can be specified as follows.

(i) Ifv<p<C™

wig | PO - =t Fa<gr
D=\ Flo) - —pep ifq> &

(i) if C"™ <v<p

Flg)— e &y ifa <.
v = { Plq)—cp = p& ifa> . (24)

(iii) if v < C™ < p

(0) = —vef'  ifqg< g,
(@) —cg" = O f gm <a < gn, (25)

(@) =" =p&i"  fa> g

g

S

I
eSS TS
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Proof. In the proof, we only show case (iii) because cases (i) and (ii) can be proved analogously.

(iii) v < C™ < p: The function ¢(w) in Proposition A1 is decreasing on the intervals (0, F(%) — - pﬂ”),
(F(ET:) - — C’mfg‘,ﬁ'(%) -y — Cmgy), and (F(%) — g — e, oo). Hence ¢(w) has the
inverse w(q) on these three intervals. Then we can obtain the result except at % and %
Moreover, since

e

{w ‘q<w> - } _ (F@) e ) o - omsan)

and

a(w) = ggn} _ (F(egn -~ - omep R - f - v£§”> ,

the supplier will choose the highest possible wholesale price for a given ordering ¢, we can get the
whole result of . |

Proof of Theorem 7.

From Proposition A1l and Corollary |1| we can derive the expression of qu. From the proof of
Proposition Al, it can be shown that the expression of qilm is valid to characterize q{ls. We illustrate

how to solve ¢¢ using the most complicated case (iii). Note that the optimal ¢? is the solution of

max ¢ max Hi(q), max Ha(q), max Hs(q) ¢,

qig% 2%<q§% > gm
2 2 1 1

where H;(q) is defined in (9) and H1(q) > Ha(q) > H3(q), qr, > qrs > @3- 1 €™ /€5 > gy, , then

max_ Hi(q) = Hi(qu,) > Hi(e™/&5) > Ha(e™/E5") >

max
glem /ey em /e <q<lem /€

max  Hi(q) = Hi(qn,) > Hi(e™/&5") > Ha(e™/€3") > max  Hs(q).
g<lem /€5 g>em/ET

If g, < €™ /€5 < qu,, then

Ha(q)-

max Hi(q) = Hi(e"/&3") > Ha(e™ /&) > max Ha(q)-

glem /e T em/Em<q<em /ET
max Hi(q) = Hi(e™/E3") > Ha(e™/&5") > max  Hs(q).
q<em /£ g>em /T

If €™ /&5 < qy, < €™ /&7, then there are two cases. If Hq(e™/&5") > Ha(qn,), then

q<em™ /& g>e™ /&

And finally, if H1(e™/&5") < Ha(qp,), then

max Hi(q) = Hi(e"/E3") > Halqn,) > Hs(e™/&") > max  Hs(q).

max 7‘[1((]) = ”H1(6m/§§"’) < /HZ(Q'Hz)'

q<le™/&F
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max 7‘[3((]) < 'HS(em/fin) < H2(QH2)'

g>e™ /ET

If gyy < €™/E7" < qp,, there are also two cases. If Hq(e™/E5") > Ha(e™/ET"), then

max Hi(q) = Hi(e™/€5") > Ha(e™ /&) = Ha(e™ /") = max  Hs(q).

qSem/gén q>em/5{n

And finally, if H1(e™/&5") < Ha(e™ /&), then

max  Hi(q) = Hi(e™ /&) < Ha(e™/ET).

q<em /&y
max Hz(q) < Hs(e™/&") < Ha(e™/ET").
g>em /€
If e™ /€7 < quy, maxgeemem Hi(q) = Hi(e™/6), maxem jep <q<em em Halq) = Ha(e™/E]"), and
maxgsem/em H3(q) = Hs(qu,). So Theorem 7 follows. [ |

Proof of Proposition 8.

When ¢ and ¢f are fixed, 7°(q, ¢}) is increasing with e®. Hence 7*(q?, ¢¢*) is increasing with e.

When ¢ and ¢f are fixed, the wholesale price w(q) is increasing with ™. The profit 7°(q, ¢f) is

increasing with €™, so 7°(q?, ¢#*) is.

When ¢ and ¢} are fixed, the wholesale price w(q) and —p [t™(q, ¢]*) — e™] T +v [e™ — t™(q, q’ln)]+

increase with e™. The optimal profit 7 (¢, qilm) may be increasing or decreasing with €', since the

optimal quantity ¢¢ balances the influence on —w(q)q and —p [t™(q, ¢7*) — ™| +v [e™ — t™(q, ¢7")] "

We now prove that optimal 7™ is increasing in e®. Note that with (¢, ¢"), 7™ is decreasing in
w. So if we can show that w(q) is decreasing in e®, then the result is proved. Note that w(q) is
decreasing in ¢ and independent of e*. So it suffices to show that ¢? is increasing in e*. Consider

three cases.
Case 1 C*® > p. Then at optimum, ¢j = 0. Hence, the supplier’s problem becomes
w(q)q — ciq — c3q — pl&3q — €] + vle® — E3q]"
which is supermodular in (¢, e®) and so the optimal ¢¢ is increasing in €.
Case 2 C® <wv. Then at optimum ¢j = ¢. Hence, the supplier’s problem becomes
w(q)q — g — pléiq — " +vle® — Efq] "
which is again supermodular in (¢, e®) and so the optimal ¢¢ is increasing in e.
Case 3 v < C® < p. Then at optimum, ¢j = min{%, q}. Note that
&ai +&(q—ai) — ¢

17



S, _ 58\*+
— (- gmin =D

= &q—e® —min{(&q— ), (& — &g}
= —(&g—¢) +[(&qg—e)" — (& — Dl
= —(&q—e€)” +[Eq—eT.

,q} +&3q — €’

Hence, the supplier’s problem becomes

S, _ 8\t S, _ 8\ +
w(q)q — cf min{(gzé_zf), q} — (g — min{%_g, q})
—p[—(&q —€*)” + (&g — €T +u[— (&g —€”) " + [Elg — 7]
= (w(q) ~ ¢3)q — f j ; (€30 — &) — (€q — )]

—p[—(&5q — €))7 + (&g — 17T + [ (&g — €)™ + [Elg — €]

which can be shown supermodular because its partial derivative with respect to ¢ is increasing in
e’, ie.,

(w(q) - )l - 5 jg E51(650 > ¢*) — E1(Eq > )

—pEiL(&1g > €7) —v§31(839 <€)

is increasing in e® as v < C* < p.

Therefore, ¢? is increasing in e, then w(q?) is decreasing in e®, and the optimal profit of the

manufacturer is increasing in e®. |

Proof of Proposition 9.

Parts (a) and (b) are proved simultaneously. We first show that for any number y € [0,1], K~1(y) <
F~(y). To prove this, denote K~1(y) = 21 and F~!(y) = 22, then F(21)(1 — g(21)) = F(z2).
Because F(-) is decreasing and g(-) > 0, 21 < z9.

(i) If v < p < ¢/d, based on Theorem 2 (i) and Proposition A3 (i) with & = £° — 4, & = &°,
ci=c+c ci=c’ ' =cf =" " =0 and ' = 0, we consider the following cases.

o &< &qp: ¢° = max{qs(p,0),e/¢°} > max{qz ,e/&} = q°.

o £z < &< Eq5(v,0): 7 = max{gs(p,0),6/6} > £/6 > gz = 7.

o &> &%qp(v,0): ¢° = qp(v,0) > gz, = 7"

18



a®=q"=0,0%= 03¢ = 0. The total emissions of the integrated system is £5g¢ which is no less

than €3¢ of the decentralized system.

(ii) If ¢/0 < v < p, based on Theorem 2 (ii) and Proposition A3 (ii) with & = &* — 9, & = &%,
cf=c+c, ci=c =7 =cm & =0 and & = 0, the proof of ¢° > ¢¢ is the same as that
in (i) with ¢* and & substituted by (c® + ¢) and (£° — ) respectively. ¢ = ¢¢ and ¢¥* = ¢¢ thus
@ > @ and 0 = 65? = 1. The total emissions of the integrated system is (£° — )¢ which is no

less than (£° — 6)@® of the decentralized system.

(iii) For brevity, we define g5, by ¢, = ¢g(c/6,0). If v < ¢/d < p, based on Theorem 3 (i) and
Proposition A3 (iii) with £§ = €* -0, & =¢&°, cf = +c, 5 =, ' = =™, " =0 and

&yt = 0, we have that

¢ &< (&= 0)ga: ¢° = G = max{g,(p,0),/(&* = 8)} > ¢* = qf* = max{Gs,e/(&* - 9)}.
6° = 0% = 1. The quantity of total emissions of the integrated system is (£° — §)g° which is
no less than (¢° — )@ of the decentralized system.

o (£ —0)q5 <&
— (€= 0da < € < (€ -0)G ¢ = a° = max{g,(p,0),6/(§* = )} > Go = " as
Go < &/(€°—0). And gf* = EB=F < g, <e/(€° —6) < gf*. 0 = 1> g% = £/

— (€ =05 <E< &G T =05 > T = o, 77" = TB= > g, g0 = El > Sl
ois.

— 800 << &G T =5 > ¢ = min{ga, /) since &/6° < 5. 3 = %= > gi* = 0.

And it is clear that 6 > @4 = (.
o (&5 —0)q5 > &%4a

— (67 =0)Ga < € < EGa: T = §5° = max{gy(p,0),8/(§* =)} > ¢% = o as o < &/(£° —9).
And gfs = £9=¢ < g, <€/(£&—0) < G 0 =1 > g%,

— £%Ga < €< (5 —0)35: ¢ = qF° = max{F1((¢* +¢) + ™ + p(&° - 6)),e/(&5 — 6)} >
7% = min{gn, e/} as /(&5 —6) > &/¢5. And ¥ =0 < @&°. 6 =1 > 0%,

— (£ =0, <e< &G =45 > 7" = min{ga, €/} as ¢ > €/¢°. And ¢ = 0 < gf*.
ges > eds =0.

For either case (§° — 9)q5, < £°Gq or case (% — 0)q5, > £°Qa, it is not hard to show that the
total quantity of emissions of the integrated system is no less than € while no more than € in

the decentralized system.
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e ¢ > & ¢¢ = min{gs(v,0),e/&°} > ¢@ = min{qa,e/&°} Moreover, ¢ = ¢ = 0 and
6 = 69 = 0. The total emissions of the integrated system is £°¢° which is no less than £5¢¢

of the decentralized system.

So for all scenarios (i)-(iii), we see that ¢ < ¢° ¢% < @°, and 6% < 6°°. Meanwhile, the

integrated system generates more emissions as well. |

Proof of Proposition 10.

Parts (a) and (b) are proved simultaneously. We first show that for any number y € [0, 1], K~1(y) <
F~Y(y). To prove this, denote K~ 1(y) = z; and F~1(y) = 2, then F(z1)(1 — g(21)) = F(22).
Because F(-) is decreasing and g(-) > 0, 21 < z».

(i) If v < p < ¢/d, based on Theorem 2 (i) and Proposition A4 (i) with & = 0, & = 0,
ci=c3=cc'=c"+c, =" =" -0 and £ = £, then we use the inequalities

az, < az < q3(0,v).

€ < .
T oem =5

€ € X
§“ = maX{Q,@(Oap)v é-m} > max{qﬁ, §m} = qd

é .

T 9Em S SRS

€ € €
qg = maX{Qﬂ(Oap)’g,m} > gim 2 Il’lll'l{q]_—l, gm} = ¢

— q3(0,v) < ;n :

(ii) If ¢/ < v < p, based on Theorem 2 (ii) and Proposition A4 (ii) with & = 0, & = 0,
ci=c3=c =" +c, =" =" -6 and £ = £, then we use the inequalities

a6, < 4g, < 4a(0,0).

gm_éSqG2:

~C 3 e ~d
= > > >
q max{qa(o,p), g _5} > max{qu, e —6} >q
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_qu<§m_5§qG1:

~c € . e .
g :max{qa(o,p),fm_é} > &3 Zmln{qgl,ém_é} = ¢
e
_ qgl <m§qa(0,v):
e € € . € .
q :maX{Qa(O>P)a£m_5} > e > mlH{QQI,M} = ¢

e

TN

— ¢a(0,v) <

- . e X
4 = qa(0,v) > g, > min {qu, Smé} — qd

(iii) Suppose v < ¢/d < p. Based on Theorem 3 (iii) and Proposition A4 (iii) with & = 0, £&5 =0,

ci=cs=c,c"=c"4c, =M = -0 and £ = ™, we have the following.

— €< (™ —0)qgg, : It implies that & < (§™ — 6)g,(0,¢/6)

N N e € N
qu — qC = maX{qa(Oyl)), fm — 5} Z maX{QGQ’ ém_(s} = qQQ 2 qd

€
CRNTSS

Since ¢f™ = ¢¢, 0" = 1. Moreover, the total quantity of emissions of the integrated

system is (§™ — §)¢¢ which is no less than € by

. e A . € _

(€7 = 0™ + &M@ — ™) = (" = 08" = (" =) s =
If ¢¢ gm or ¢4 gm #m—5, then both the total quantity of emissions of the decentralized
system are e. If ¢ = = g, then ¢¢ > gm%a which implies that q = % and the

total quantity of emissions of the decentralized system is (¢™ — 6)¢?. Therefore, the
total quantity of emissions of the integrated system is no less than the total quantity of

emissions of the decentralized system.

— (€™ = 0)gg, <e< (€M —d)ay

qu = ¢° = max {Qa(O,,O), gmé—(S} > max {qQQ’ (gmé_ 5)} _ (gmé_ 5) > (jd

<s1nce G{ d ¢ })
q {m é‘m_ :

Since ¢{™ = ¢¢, 0" = 1. Moreover, the total quantity of emissions of the integrated

system is (§™ — §)¢¢ which is no less than e by

(€™ = 0)g™ +E™(G° — g™ = (" = 8)¢° = (™ = 0) e = &
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If ¢¢ 67 or ¢4 gm zm—5, then both the total quantity of emissions of the decentralized
system are e. Therefore, the total quantity of emissions of the integrated system is no

less than the total quantity of emissions of the decentralized system.
= &My < (€M = 6)g4(0,¢/9)
* (€7 —0)ag < e < Mgy < (€7 —0)a(0,¢/9)

~cm ~C e e e 5d
™ = §° = max qa(O,p),fmié > max quQ,gmié ngiézq

<since it e { ¢ q})
g

Since ¢{™ = ¢°, 0™ = 1. Moreover, the total quantity of emissions of the integrated

m

system is (§™ — §)¢¢ which is no less than e by
€

g o

then the total quantity of emissions of the decentralized system is e. If

= €.

(€™ =0)g™ +£™(q° — ¢i™) = (§™ = 0)¢° = (§™ —9)

If ¢

gm )
G4 = = gy, then (& — 5)‘17-2 < e. Therefore, the total quantity of emissions of the
integrated system is no less than the total quantity of emissions of the decentralized

system.

* Mgy < e < (M —0)gy(0,¢/6)

~cm ~C e e . e ~d
g = ¢ =max qa(O,p)vm ng_ézmm U gm [ =4

Since ¢{™ = ¢°, 0™ = 1. Moreover, the total quantity of emissions of the integrated

system is (§™ — §)¢¢ which is no less than e by

ACm m( sc ~cm m ~C m € _
(™ = 0)gr™ +E™(G° — ¢f™) = (€™ = 8)¢° > (& —6)5m_5 — ¢
Since q = mm{ T qfl} < g;n, cﬁlm = (0 and the total quantity of emissions of the

decentralized system is e. Therefore, the total quantity of emissions of the integrated

system is no less than the total quantity of emissions of the decentralized system.

* My < (§M —0)g4(0,¢/d) < e < EMqy(0,¢/6)

m ;5C =
—e
Since ¢{"™ = S , the total quantity of emissions of the integrated system is e.

s _
Since ¢% = min{éim,q]:-l} < §m7 g =

decentralized system is €. Therefore, the total quantity of emissions of the integrated

= 0 and the total quantity of emissions of the

system is no less than the total quantity of emissions of the decentralized system.
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— £"Mqz > (€M = 6)q4(0,¢/6)
* (M —0)qy <e < (§"—0)gy(0,¢/0)

. é é al .4 é
= > > — o~
¢° = max {qa(O,p), em _5} Zen 52 q <smce q* € {gn’%i})

- ng’Y(Ovc/(S) <e

. . & . & A
¢° = min {qw(ovv)7 m} > min {Qﬁla fm} = ¢

Since ¢{" = 0, the total quantity of emissions of the integrated system is £™¢“ which is

no less than e by

(€™ =)™ + €7 - ¢i™) = €7 > Smgn =e.

e e
Since ¢ = min {q]:.l, fm} < g—m, (jilm = (0. Hence the total quantity of emissions
of the decentralized system are £™§?. Therefore, the total quantity of emissions of the
integrated system is no less than the total quantity of emissions of the decentralized

system. [

Proof of Theorem 11.

For part (a), we only show case v < ¢/d < p because cases v < p < ¢/d and ¢/d < p < v can be
proved analogously. Let £% = ™ = £.

(iii) v < ¢/d < pr

e Suppose &/({ —4) < gg,. Then §t e {ag, . €/(§ —0),€/&} which implies that §¢ < qg,- At the
same time, the conditions e/§ < &/({ —d) < gg, < g5 hold and imply

a° = ¢’ = max{gg,. /(€ = 6)} = g5, > ¢* > ¢{"
which follows from Proposition A3.
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e Suppose €/(§ — ) > g, and e/€ < qy-

~ g5 < &/(¢ — &) implies ¢* € {gz,¢/¢} < g = ¢ and ¢fm = T°, g = €C Hence
qdm < qu
~ay > &/(¢ — ) implies ¢* € {¢/(¢—0),8/¢} < &/(§—9) = q* and ¢i" = L=,
g = T2, Hence ¢{™ < g{*.
e Suppose /¢ > qy. Then ¢¢ = min{qr,,e/¢} = ¢%, ¢{™ =0 and ¢{* = 0.
We obtain part (b) from the following:
the total cost of the case: regulated supplier
= [Bmin{D,q"}] —w(gha’ - "q] + [w@a’ - (¢ + g - (@ - )
—pl(§ — )t +&(@" — i) — &t +ole— (€ - o) — €@ — 7))
= [Bmin{D,¢"}] - (F(a") - ¢™)a’ — e"q’| + [(P(a") = ™) = (¢ + )l — ¢*(a* - a)
—pl(€ — )l + &(a" — @) — et + vle - (¢ - )" — €(a — )]
> [Bmin{D,q%}] ~ (F(@) - "’ - "’ + [(F(a) = &™)’ = (¢ + af™ — (@ — ¢
—pl(€ = )™ + €(d" — @) — & + vle — (€ - )it — €(a” — @™
> [Emin{D, §"}] - (F(¢") = ")’ = "q"| + |(F(@") = e™)a = (¢* + at™ — (" — ™)
—pl(& = O™ +&(¢" — ¢f™) — et +vle— (€ - 0)d™ —£(¢" — ai™)]*
= Emin{D,¢"}] - (F(¢") - F(@"))q" - "¢ = (" + )ai™ — (" — 4i"™)
—pl(& = 0)dI™ +&(¢" — ¢i™) — @t +vle— (€ - 0@ — £(¢" — ai™)]*
> Emin{D,§"}] - ¢"¢? = (¢ + ¢)gf™ — ¢*(¢7 - ¢f™)
—pl(€ — o)gi™ +£< —a"™) — e +ole = (- 0™ — £(q" — ™)
> E[min{D,§%] - ¢"¢? — c*¢ - cgi™
—pl(& - 8™ + 5<q — ™) — et +ole — (- )™ — (@ — afm)
= Emin{D,¢"}] - w(§)§’ — "¢’ — g™ +w(§)q" — °¢"
—pl(€ = 8)g{™ + €(@" — 4i™) — & +ole— (€ - o)™ &~ @™]*
= |Emin{D, §"}] — w(g")g* — (" + )g{™ — (¢ - ¢{™)
=& = O™ +£(¢" — ¢f™) — el +vle — (6 - 0)gf™ — £(¢" — ¢f™)]T
+w(g?)g? — ¢’
= the total cost of the case: regulated manufacturer
|
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