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A. Analysis of Welfare Components

In this section, we provide the results concerning the change in welfare components as collection

target τ increases along with the corresponding proofs.

Proposition A.1 Under the RC equilibrium (i.e., when v̄s > τ ≥ τ̄C), (i.)
∂Π

R∗
s,C

∂τ
< 0, (ii.)

∂Π
R∗
o,C

∂τ
<

0 iff τ > τ̃C =
(k+1)v̄o−kv̄s

2
, and (iii.)

∂Π
R∗
c,C

∂τ
< 0 iff µ < µ and τ > ¯̄τC = −

k(µk+µ−k+1)v̄s
2(µk+µ−k) .

Proof of Proposition A.1: Substituting q
R∗
o,C and q

R∗
s,C (from the RC equilibrium in the proof

of Proposition 2) in (1) and (3), we get the OEM and IR profits at the optimality as Π
R∗
o,C =

((k+1)v̄o−kv̄s−τ )τ
k+1

and Π
R∗
s,C =

(τ−v̄s)2
µ(k+1)2 , respectively. Furthermore, the acquisition cost is p

R∗
C =

kvs+a+τ
k+1

and the waste-holder surplus is Π
R∗
c,C = (pR∗C − a)qR∗t,C =

(τ+v̄sk)((µk+µ−k)τ+kv̄s)
µ(k+1)2 . Taking derivatives

with respect to τ we find (i.)
∂Π

R∗
s,C

∂τ
=

2(τ−v̄s)
µ(k+1)2 = −2q

R∗
s

k+1
< 0, (ii.)

∂Π
R∗
o,C

∂τ
=

(k+1)v̄o−kv̄s−2τ

k+1
< 0 iff

τ > τ̃C =
(k+1)v̄o−kv̄s

2
, and (iii.)

∂Π
R∗
c,C

∂τ
=

(2(µk+µ−k))τ+k(µk+µ−k+1)v̄s
µ(k+1)2 < 0 iff µ < µ and τ > ¯̄τC where

¯̄τC = −
k(µk+µ−k+1)v̄s

2(µk+µ−k) = −
k((µ−µ)(k+1)+1)vs

2(µ−µ)(k+1) . Finally, also note that
∂p

R∗
C

∂τ
=

1
1+k

> 0. □

Proposition A.2 Under the RTC equilibrium (i.e., when v̄s > τ ≥ τ̄T and µ > µ̄), (i)
∂Π

T∗
s,C

∂τ
< 0,

(ii.)
∂Π

T∗
o,C

∂τ
≤ 0 iff τ ≥

(k+1)(µk+µ−k)v̄o−k(µk+µ−k−2)v̄s
2µ(k+1) , and (iii.)

∂Π
T∗
c,C

∂τ
> 0.

Proof of Proposition A.2: Plugging q
T∗
s,C and q

T∗
o,C (from region 2 in the proof of Lemma 6) in

(1) and (3), we get the profits at the optimality as Π
T∗
o,C =

(v̄sk−µτ (k+1))((k−µk)(v̄o−v̄s)−µ(v̄o+τ )
(µk+µ−k)2 and Π

T∗
s,C =

µ(τ−v̄s)2
(µk+µ−k)2 , respectively. Furthermore, the acquisition cost at the optimality is p

T∗
C =

(µ−1)kv̄s+µτ
µk+µ−k

+ a

and the waste-holder surplus is Π
T∗
c,C = (pT∗C − a)qT∗t,C =

τ (µv̄sk+µτ−v̄sk)
µk+µ−k

.

Taking derivatives we find that (i.)
∂Π

T∗
s,C

∂τ
=

2µ(τ−v̄s)
(µk+µ−k)2 = −

2µq
T∗
s,C

µk+µ−k
< 0 (recall from the proof of

Proposition 6 that this solution arises only when τ̄T < v̄s which can be rewritten as µk +µ− k ≥ 0),

(ii.)
∂Π

T∗
o,C

∂τ
=

µ((k+1)(µk+µ−k)v̄o−k(µk+µ−k−2)v̄s−2µτ (k+1))
(µk+µ−k)2 > 0 iff τ <

(k+1)(µk+µ−k)v̄o−k(µk+µ−k−2)v̄s
2µ(k+1) , and (iii.)

∂Π
T∗
c,C

∂τ
=

(µk−k)v̄s+2µτ

µk+µ−k
=
µτ+(pT∗C −a)(µk+µ−k)

µk+µ−k
> 0. □
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B. A Generalized Model: Differentiated Prices and Environmen-

tal Benefits

In this section, we generalize our model to allow (i) differentiated acquisition prices and (ii) different

environmental benefits from IR versus OEM recovery. The proofs of the results are similar to proofs

for the base model and therefore omitted for brevity but available from the authors upon request.

Here, we consider the most general form of differentiated acquisition prices:

po = a + α1

k

∑
i=1

qs,i + α2qo (B.1)

ps,i = a + µ1qs,i + µ1

k

∑
j≠i

qs,j + µ2qo (B.2)

where qo denotes the OEM’s collection volume and qs,i denotes an IR i’s collection volume. In

addition, α1 (α2) denotes the sensitivity of OEM’s acquisition cost to IR (OEM) acquisition volume

and µ1 (µ2) denotes the sensitivity of IR acquisition cost to IR (OEM) acquisition volume. Hence,

this model allows waste holders to charge different prices to each player. (Note that the base model

in the paper is a special case of this one where α1 = µ1 = µ and α2 = µ2 = 1.) With this inverse

demand characterization it is straightforward to show that given qo and qs,i values the waste-holder

surplus becomes Πc = (po − a)qo +∑k
i=1(ps,i − a)qs,i. The OEM maximizes her profit Πo = (vo − po)qo

subject to qo ≥ τ . We consider k identical IRs. Each IR i (denoted by subscript s, i) decides on her

collection volume qs,i.
1

Then, IR i’s problem is maxqs,i≥0 Πs,i = (vs − ps,i)qs,i.
We develop the environmental benefit measure assuming that the OEM and IRs’ recovery

efficiencies are different. Therefore, it becomes Πe = (εoqo + εs∑k
i=1 qs,i) where εo and εs represent

the environmental benefits from OEM and IRs’ recovery processes, respectively. Finally, our welfare

construct remains the same, i.e., W = Πo +∑k
i=1 Πs,i +Πe +Πc.

All results under the benchmark scenario (i.e., without IRs) continue to hold as are. Next we

present the results under competition. All our findings continue to hold, the only differences are in

the expressions of thresholds on µ and τ that define regions of findings.

B.1 Implications of EPR on Valuable Waste

We assume that
v̄oµ2
2α2

< v̄s <
(k+1)v̄oµ1
kα1

and v̄s <
2α2µ1(k+1)−α1µ2k−(µ1(k+1)−µ2k)v̄o

k(2α2−α1) . Also, we assume

2α2µ1(k + 1) − α1µ2k ≥ 0. The first condition ensures a competitive equilibrium where both the

OEM and the IRs profitably coexist in the absence of EPR, and the second condition ensures that

1
Recall, for ease of exposition, we also define v̄o = vo − a and v̄s = vs − a.
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only a fraction of e-waste is acquired by these parties in the absence of EPR. The characterization

of the equilibrium is as follows:

Proposition B.3 In the presence of IRs, there are three possible equilibria for a given collection

target τ imposed on the OEM. Those are (i) The NC equilibrium: when τ < τ̄C the OEM’s ac-

quisition volume is q
N∗
o,C =

(k+1)µ1v̄o−kα1v̄s
2α2µ1(k+1)−α1µ2k

and an IR’s acquisition volume is q
N∗
s,C =

2α2v̄s−µ2v̄o
2α2µ1(k+1)−α1µ2k

;

(ii) The RC equilibrium: when τ̄C ≤ τ <
v̄s
µ2

, the OEM’s acquisition volume is q
R∗
o,C = τ and an

IR’s acquisition volume is q
R∗
s,C =

v̄s−τµ2
(k+1)µ1 ; and (iii) The RM equilibrium: when

v̄s
µ2

≤ τ , the OEM’s

acquisition volume is q
R∗
o,M = τ and the IRs do not acquire any waste, where τ̄C =

(k+1)µ1v̄o−kα1v̄s
2α2µ1(k+1)−α1µ2k

.

The total acquisition volume under NC equilibrium (i.e., the volume diverted from landfills

and sent to recycling, q
N∗
t,C = q

N∗
o,C + kqN∗s,C =

v̄o(µ1k−µ2k+µ1)+kv̄s(2α2−α1)
2α2µ1(k+1)−α1µ2k

) may decrease in the OEM’s

per unit revenue vo, as formalized by the next proposition.

Proposition B.4 Under the NC equilibrium, i.e., when τ < τ̄C , there exists a threshold µ̄ =
kµ2
k+1

such that the total acquisition volume q
N∗
t,C decreases with OEM’s per unit revenue vo iff µ1 < µ̄.

The overall effect of more stringent targets on the total environmental benefit is similar to that

under the base model:

Proposition B.5 Under the RC equilibrium, i.e., when τ̄C ≤ τ < v̄s, the total acquisition volume

q
R∗
t,C decreases with the collection target τ iff µ1 < µ̄ =

kµ2
k+1

.

Finally, we identify the effect of higher collection targets on total welfare as follows:

Proposition B.6 In a regulated competitive market (i.e., RC equilibrium with τ̄C ≤ τ <
v̄s
µ2

),

there exists a threshold µ̃ such that the total welfare W
R∗
C (τ ) decreases with collection target τ iff

µ < µ̃1 =
kµ2(v̄s+εs)
(k+1)(v̄o+εo) . Furthermore, µ̃ is increasing in k.

Comparing Propositions B.3-B.6 with their reciprocals (i.e., Propositions 2-5), we see that

naturally the thresholds on µ and τ are more intricate under the generalized model. Nevertheless,

observe that all our findings continue to hold.

B.2 IR Activity Towards OEM Obligations

First, we characterize the equilibrium as follows:
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Proposition B.7 When both OEM and IR volumes count towards the collection target, there are

three possible equilibria for a given collection target τ . Those are (i) The NC equilibrium: Non-

binding regulation, where the OEM acquires q
N∗
o,C =

(k+1)µ1v̄o−kα1v̄s
2α2µ1(k+1)−α1µ2k

and each IR acquires q
N∗
s,C =

2α2v̄s−µ2v̄o
2α2µ1(k+1)−α1µ2k

; (ii) The RTC equilibrium: Binding regulation with IR activity, where the OEM

acquires q
T∗
o,C =

µ1τ (k+1)−v̄sk
µ1k+µ1−kµ2

and each IR acquires q
T∗
s,C =

v̄s−τµ2
µ1k+µ1−kµ2

; and (iii) The RM equilibrium:

Binding regulation without IR activity, where the OEM acquires q
R∗
o,M = τ and the IRs do not acquire

any waste. Table 1 characterizes when these equilibria realize with respect to thresholds µ̄ and

τ̄T =
v̄o(µ1k−µ2k+µ1)+kv̄s(2α2−α1)

2α2µ1(k+1)−α1µ2k
> τ̄C .

τ < τ̄T τ ≥ τ̄T

µ1 ≤ µ̄ NC RM

µ1 > µ̄ NC
τ <

v̄s
µ2

v̄s
µ2

≤ τ

RTC RM

Table 1: Equilibrium characterization when IR activity counts towards the OEM obligations under
generalized model

Our results regarding the positive impact of higher collection target on total acquisition volume

continues to hold:

Proposition B.8 When both OEM and IR volumes count towards the collection target τ and the

regulation is binding, the total acquisition volume q
T∗
t is increasing in τ .

As before, we find that the negative impact of higher collection target on total welfare is not

mitigated when IR activity counts towards meeting the targets.

Proposition B.9 Consider the RTC equilibirum, i.e., let µ1 > µ̄ and τ̄T ≤ τ <
v̄s
µ2

, when IR activity

counts towards OEM obligations. A binding collection target decreases welfare when v̄s+ εs > v̄o+ εo

and µ < µ̃.

To sum up, under this generalized model the summary of findings in Table 8 continue to hold.

C. Extension: E-waste Trading

So far we assume that there is no transaction between the IRs and OEM. In this section we relax

this assumption and allow the OEM to buy items from IRs to meet the collection target τ . For

the sake of simplicity, we assume that k = 1, i.e., there is one IR. If the OEM buys qe units at unit

wholesale price w from the IR, her problem becomes:
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(P3) max
qo,qe≥0

Πo = (vo − p)qo + (vo − w)qe
s.t. qo + qe ≥ τ

qs ≥ qe ≥ 0

whereas the IR’s problem becomes:

(P4) max
qs≥0

Πs = (vs − p)(qs − qe) + (w − p)qe

Selling qe units to the OEM at price w per unit, the IR makes w − p per unit. As before, he

also receives vs − p from the recovery of remaning qs − qe units. With the below analysis we show

that there are three possible equilibrium solutions: The first one corresponds to the case with no

trading; and therefore our results under Section 5 hold here. The second one captures the case

where the IR sells all of her collection to the OEM and is equivalent to the case analyzed under

Section 6. Finally, the third one captures the case where the IR sells only a fraction of her collection

to the OEM. In this case we show that (i) if µ is smaller than a threshold then the solution again

converges to that under one of the two regulatory scenarios analyzed in the paper; (ii) if µ is larger

than a threshold (but not too large, see below for the conditions) then we find that the negative

implications of higher collection target on the total landfill diversion and welfare are still observed.

Next we provide the details of the analysis:

We write the Lagrangian of the OEM’s problem as Lo = Πo+γ1(qo+qe−τ )+γ2qe+γ3(qs−qe). Then

we calculate the optimality conditions as
∂Lo

qo
= −µqs−a+γ1−2qo+vo = 0,

∂Lo

qe
= vo−w+γ1+γ2−γ3 = 0,

∂Πs

qs
= −2µqs − a − qo + vs = 0, γ1(qo + qe − τ ) = 0, γ2qe = 0, and γ3(qs − qe) = 0. Let w̄ = w − a.

Solving these for optimal quantities q
∗
o , q

∗
s , q

∗
e and the Lagrangian multipliers γ

∗
i for i = 1, 2, 3, we

find three possible equilibrium solutions.

• Solution 1 (q
∗
e = 0): Here we find γ

∗
1 =

3τ+v̄s−2v̄o
3

, γ
∗
2 =

2w̄−3τ−v̄s
2

, γ
∗
3 = 0, q

∗
e = 0, q

∗
o = τ, q

∗
s =

v̄s−τ
2µ

.

Note that this solution is the same as the RC equilibrium in Proposition 2 (with k = 1), i.e.,

when there is no trading and only OEM counts towards the collection targets. The optimality

conditions γ
∗
1 ≥ 0 can be written as τ ≥ τ̄C =

2v̄o−v̄s
3

and γ
∗
2 ≥ 0 can be written as w̄ ≥

3τ+v̄s
2

= w̄1.

Also note that
∂Π

∗
s

∂w
= 0. Therefore, if w̄ ≥ w̄1 then there is no trading and our results under

Section 5 regarding the decrease in total landfill diversion and welfare as collection target increases

(i.e., Proposition 4 and 5, respectively) hold here.

• Solution 2 (q
∗
e = q

∗
s ): Here we have γ

∗
1 =

3µτ−2µv̄o+µv̄s+v̄o−2v̄s
2µ−1

, γ
∗
2 = 0, γ

∗
3 =

−2µw̄+3µτ+µv̄s+w̄−2v̄s
2µ−1

,

q
∗
o =

2µτ−v̄s
2µ−1

, q
∗
s = q

∗
e =

v̄s−τ
2µ−1

. Note that this solution is the same as the RTC equilibrium in

Proposition 6, i.e., when the IR collection counts towards collection targets. The optimality
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condition γ
∗
1 > 0 can be written as τ ≥ τ̄T and γ

∗
3 ≥ 0 can be written as w̄ ≤

(3µτ+µv̄s−2v̄s)
(2µ−1) = w̄2.

Therefore, if w̄ < w̄2 then the OEM buys all of IR’s e-waste. In this case, our results under

Section 6 regarding the decrease in total welfare as collection target increases (i.e., Proposition 8)

hold here. Also note that
∂Π

∗
s

w
=
v̄s−τ
2µ−1

= q
∗
s > 0. Therefore, the IR would want to pick a wholesale

price as high as possible.

• Solution 3 (0 < q
∗
e < q

∗
s ): Here we find γ

∗
1 = −v̄o + w̄, γ

∗
2 = 0, γ

∗
3 = 0, q

∗
e =

v̄s−2w̄+3τ

3
, q

∗
o =

2w̄−v̄s
3

, q
∗
s =

2v̄s−w̄
3µ

. Optimality condition q
∗
s − q

∗
e > 0 can be written as w̄ <

3µτ+µv̄s−2v̄s
2µ−1

= w̄2 and q
∗
e > 0

can be written as w <
v̄s+3τ

2
= w̄1. Here, plugging in optimal values we find total acquisition

volume as q
∗
t = q

∗
o + q

∗
s =

(2µ−1)w̄+(−µ+2)v̄s
3µ

. furthermore, profits are Π
∗
o =

4w̄
2−9w̄τ−4w̄v̄s+9τ v̄o+v̄

2
s

9

and Π
∗
s =

(−3µ+4)v̄2s+(9µw̄−9µτ−4w̄)v̄s−w̄(6µw̄−9µτ−w̄)
9µ

. Also p
∗
=
v̄s+w̄+3a

3
and Π

∗
c =

(v̄s+w̄)(2µw̄−µv̄s−w̄+2v̄s)
9µ

.

Finally W
∗
=

(2µε+2µv̄s−ε−v̄s)w̄+3µ(v̄o−v̄s)τ−v̄s(ε+v̄s)(µ−2)
3µ

.

Now assume the IR can choose w̄
∗

in the first stage maximizing her profit. We find that
∂
2
Π
∗
s

∂w̄2 =

−
2(6µ−1)

9µ
. Therefore, the concavity of Π

∗
s depends on µ as we analyze next:

– If 6µ ≤ 1 then Π
∗
s is convex in w̄. In that case, w̄

∗
will be a corner solution (i.e., at w̄1 or

w̄2). We find that Π
∗
s (w̄= w̄1)−Π

∗
s (w̄= w̄2)= (v̄s−τ )((4µ−12µ

2−1)τ+(4µ2+1)v̄s)
4(2µ−1)2µ >0 iff τ <

(4µ2+1)v̄s
12µ2−4µ+1

= τ̂ .

Therefore, if τ < τ̂ then w̄
∗
= w̄

∗
1 and this solution becomes the same as solution 1 above.

Otherwise (i.e., if τ > τ̂), then w̄
∗
= w̄

∗
2 and this solution becomes the same as solution 2 above.

– If 6µ > 1 then Π
∗
s is concave in w̄ and there is a profit maximizing interior w̄

∗
. Solv-

ing
∂Π

∗
s

∂w̄
=

(−12µ+2)w̄+9µτ+9µv̄s−4v̄s
9µ

= 0 for w̄, we find that w̄
∗
=

9µτ+9µv̄s−4v̄s
2(6µ−1) . We also find

the total acquisition volume as qt(w̄ = w̄
∗) = 6µτ+2µv̄s−3τ+3v̄s

2(6µ−1) and
∂qt(w̄=w̄∗)

∂τ
=

3(2µ−1)
2(6µ−1) ≤ 0 iff

µ ≤ 1/2. Therefore, similar to our results under Section 5, higher collection target may

result in lower waste recovery when the IR demand elasticity µ is small. Finally, we find

the total welfare W
∗(w̄ = w̄

∗) = 6µετ+2µεv̄s+12µτv̄o−6µτv̄s+2µv̄
2
s−3ετ+3εv̄s−2τ v̄o−τ v̄s+3v̄

2
s

2(6µ−1) and ∂W
∗

∂τ
=

6µε+12µv̄o−6µv̄s−3ε−2v̄o−v̄s
2(6µ−1) . Therefore ∂W

∗

∂τ
≤ 0 iff µ ≤

2(v̄o+ε)+(v̄s+ε)
6(2(v̄o+ε)−(v̄s+ε)) . Again, this is similar to our

earlier findings, i.e., the total welfare decreases with collection target iff µ is below a threshold.
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