Online Supplement for “Appointment Scheduling and
the Effects of Customer Congestion on Service”

Zheng Zhang
Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109, zhazheng@umich.edu

Bjorn P. Berg
Division of Health Policy and Management, University of Minnesota, Minneapolis, MN 55455, bberg@umn.edu

Brian T. Denton
Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109, btdenton@umich.edu

Xiaolan Xie
Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai 200030, China, xie@sjtu.edu.cn

Center for Biomedical and Healthcare Engineering, Ecole Nationale Superiéure des Mines, Saint Etienne 42023, France,
xie@emse.fr

Proof of Lemma 1

Proof: Here and throughout the appendix, we let C;(w) denote the completion time for customer
i in scenario w and A is the difference operator. We have |AC;(w)| =0 as a; =0, Wi(w) =0 and
91 (Wi(w)) =0 by assumption. Assuming ||Aal| < h where h is a constant number, we have the

following inequalities:
AW (W)| < |ACH(w) — Aas| < |ACH (w)| +|Aaz| < h, (EC-1a)
|26 (W2 (w))| < L(w) | AWa(w)| < L(w)h, (EC-1b)
|ACs (w)| = [Aaz + AWa(w) — Ada(Wa(w))]

<|Aas| + [ AW (w)| 4+ | Ade(Wa(w))| < (L(w) +2)h, (EC-1c¢)

where inequality (EC-1a) is from the definition of waiting time, inequality (EC-1b) is from Assump-
tion 1 where L(w) is a constant defined in Assumption 1, and inequality (EC-1c) is from the

definition of completion time. By induction, we have
AW ()] |AC; -1 ()] + | Aag] < (L(w) +3) b, (EC-2a)
|A6,(Wi(w))] < L(w)| AW(w)| < L(w) (L(w) +3) " h, (EC-2b)
[AC ()] < |Das| + [AWa(w)| + | A6 (Wa ()| < (L(w) +1) (L(w) +3)" " h. (EC-2¢)
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Thus, W;(w) and &;(W;(w)) are Lipschitz-continuous in a. Letting K = (L(w)+3)""', we have
AW (w) < Kh, A§;(W;i(w)) < Kh, and AC;(w) < Kh for all i and w and thus O(w) < Kh. As a
result, we have the following inequality:

[Af(a,w)| <Y | AW (w)] + Z&IA&(Wi(w))I +]A0W); (EC-3a)

=2

< (i a; + i Bi + 1) Kh. (EC-3b)

Therefore, f(a,w) defined as (2a) is Lipschitz-continuous in a. O

Proof of Lemma 2
Proof: The sample path cost function, f(a,w), is differentiable everywhere except at points with
one of the following conditions:

(1)  customer ¢ arrives at exactly when ¢ — 1 completes, i.e., a;_1 +
Wii(w) + &1 (w) = 8ia(Wia (w)) = ai,

(71) the last customer, n, completes at exactly when the session
ends, i.e., a, + W, (w) +&,(w) — 6, (W, (w)) =4,

(131) 0;(W;(w)) is nondifferentiable at W;(w).
Conditions (i) and (7i) occur with probability zero because &;(w) — 9;(W;(w)) is a continuous ran-
dom variable with finite density according to Assumption 3. W;(w) is also a random variable that
is independent of a; and d. Condition (7ii) also occurs with probability zero because the set of
nondifferential points of §;(W;(w)) is finite according to Assumption 2. As a result, f(a,w) is dif-

ferentiable everywhere except at finite saddle points at measure 0. ([l

Proofs of Theorem 1 and Lemma 3
We omit to prove Theorem 1 and Lemma 3 as similar proofs can be found in the literature, e.g.,

proofs of Theorem 1 and Lemma 4 in Zhang and Xie (2015).

Proof of Theorem 2

Proof: We first prove equation (3): we let € denote a sufficiently small positive constant. When
W;(w) =0 and a; is increased by €, W;(w) and §;(W;(w)) are unchanged, but C;(w) is increased
by €, and thus f(a,w) is increased by A;;1e. When W;(w) >0 and a; is increased by €, W;(w) and
9;(W;(w)) are decreased by € and §(w)e, respectively, the start time of customer ¢ is unchanged,
and thus C;(w) is increased by §/(w)e. As a result, f(a,w) is decreased by [a; + . (w)(B; — Ait1)] €.
We next prove equation (4): when W;(w) =0 and C;_;(w) is increased by ¢, W;(w) is unchanged
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and thus f(a,w) is unchanged. When W;(w) > 0 and C;_;(w) is increased, W;(w) and 6;(W;(w)) are

increased by € and 6} (w)e, respectively, the start time of customer i is increased by €, and thus C;(w)
is increased by (1 —0d}(w))e. As a result, f(a,w) is increased by [a; + (1 — ) (w))Nir1 + 0L (w)5i] €.
When i =n+1 and C,;_;(w) is increased by ¢, the overtime, O(w), is increased by e if O(w) >0,
and unchanged if O(w) = 0. O

Proof of Theorem 3

Proof: When q; is increased, AC;(w) > 0 and thus AW, ;(w) > 0. According to Assumption 4,
ANdiy1(w) < AW (w), and thus AC;,;(w) = AW, (w) — Adir1(w) > 0. By induction, we have
AC;(w) >0, AW;(w) >0, Vj>i, and AO(w) > 0. O

Proof of Lemma 4

Proof: When both W;(w) and I;(w) are positive, the decrease of both W;(w) and I;(w) results in
less waiting time and nonincreasing completion time for customer i according to Assumption 4, and
thus it does not increase waiting time for the remaining customers. As a result, without increasing
the total cost, W;(w) and I;(w) can be decreased until either of them reaches zero, suggesting
the complementary slackness constraints (8j)-(8k) automatically hold when the optimal solution is

achieved. 0O

Proof of Theorem 4

Proof: Under Assumptions 4-5, increasing the service time for customer ¢ does not reduce wait-
ing time for the remaining customers and thus there is no reduction in the total cost. Therefore,
0;(w) > 0;(W;(w)) when the optimal solution is achieved. On the other hand, constraints (8d)-(8e)
jointly enforce &;(w) < 8;(Wi(w)); as a result, §;(w) = 8;(W;(w)) automatically holds for each i and

w. Under Assumptions 4, constraints (8j)-(8k) can be removed according to Lemma 4. Therefore,

model (8) reduces to the convex program (9). O
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