Technical Appendix
 Global Sourcing Decisions for a Multinational Firm With Foreign Tax Credit Planning

Vernon Hsu
Department of Decision Science \& Managerial Economics, Chinese University of Hong Kong, Hong Kong, vhsu@cuhk.edu.hk

Qiaohai (Joice) Hu
Department of Supply Chain Analytics, University of Missouri St. Louis, joice.hu@gmail.com

1. Definitions of $\Delta \mathrm{s}$ in Figures 1 and 2 and Derivation of Figure 2

 1.1. Definitions of $\Delta \mathrm{s}$ in Figure 1$$
\begin{aligned}
& \Delta(O)=\operatorname{Pr}\left\{D_{1}<\theta_{1} Q_{1}, D_{2}<\theta_{2} Q_{2}\right\} \\
& \Delta\left(C_{1}\right)=\operatorname{Pr}\left\{\theta_{1} Q_{1}<D_{1}<Q_{1}, D_{2}<\theta_{2} Q_{2}\right\} \\
& \Delta\left(C_{2}\right)=\operatorname{Pr}\left\{\theta_{1} Q_{1}<D_{1}<Q_{1}, D_{2}<\theta_{2} Q_{2}+\frac{\tau_{1}-\tau_{0}}{\tau_{0}-\tau_{2}} \frac{1}{r_{2}-s_{2}}\left[\left(r_{1}-s_{1}\right) D_{1}-\left(c_{1}-s_{1}\right) Q_{1}\right]\right. \\
& \Delta\left(C_{3}\right)=\operatorname{Pr}\left\{D_{1}>Q_{1}, \theta_{2} Q_{2}<D_{2}<\theta_{2} Q_{2}+\frac{\tau_{1}-\tau_{0}}{\tau_{0}-\tau_{2}} \gamma_{1} Q_{1}\right\} \\
& \Delta\left(C_{4}\right)=\operatorname{Pr}\left\{D_{1}>Q_{1}, D_{2}<\theta_{2} Q_{2}\right\} \\
& \Delta\left(L_{1}\right)=\operatorname{Pr}\left\{D_{1}<\theta_{1} Q_{1}, \theta_{2} Q_{2}<D_{2}<Q_{2}\right\} \\
& \Delta\left(L_{2}\right)=\operatorname{Pr}\left\{D_{1}<\theta_{1} Q_{1}, D_{2}>Q_{2}\right\} \\
& \Delta\left(L_{3}\right)=\operatorname{Pr}\left\{\theta_{1} Q_{1}<D_{1}<Q_{1}, D_{2}>Q_{2}\right\} \\
& \Delta\left(L_{4}\right)=\operatorname{Pr}\left\{D_{1}>Q_{1}, D_{2}>Q_{2}\right\} \\
& \Delta\left(L_{5}\right)=\operatorname{Pr}\left\{D_{1}>Q_{1}, \theta_{2} Q_{2}+\frac{\tau_{1}-\tau_{0}}{\tau_{0}-\tau_{2}} \gamma_{1} Q_{1}<D_{2}<Q_{2}\right\} \\
& \Delta\left(L_{6}\right)=\operatorname{Pr}\left\{\theta_{1} Q_{1}<D_{1}<Q_{1}, \theta_{2} Q_{2}+\frac{\tau_{1}-\tau_{0}}{\tau_{0}-\tau_{2}} \gamma_{1} Q_{1}<D_{2}<Q_{2}\right\} \\
& \Delta\left(L_{7}\right)=\operatorname{Pr}\left\{\theta_{1} Q_{1}<D_{1}<Q_{1}, D_{2}>\theta_{2} Q_{2}+\frac{\tau_{1}-\tau_{0}}{\tau_{0}-\tau_{2}} \frac{1}{r_{2}-s_{2}}\left[\left(r_{1}-s_{1}\right) D_{1}-\left(c_{1}-s_{1}\right) Q_{1}\right]\right\}
\end{aligned}
$$

Figure 1 Demand Realization Regions under the L Condition.

1.2. Definition of $\Delta \mathrm{s}$ in Figure 2

$\Delta(O)=\operatorname{Pr}\left\{D_{1}<\theta_{1} Q_{1}, D_{2}<\theta_{2} Q_{2}\right\}$
$\Delta\left(C_{1}\right)=\operatorname{Pr}\left\{\theta_{1} Q_{1}<D_{1}<\theta_{1} Q_{1}+\frac{\tau_{0}-\tau_{2}}{\tau_{1}-\tau_{0}} \gamma_{2} Q_{2}, D_{2}<\theta_{2} Q_{2}\right\}$
$\Delta\left(C_{2}\right)=\operatorname{Pr}\left\{\theta_{1} Q_{1}<D_{1}<\theta_{1} Q_{1}+\frac{\tau_{0}-\tau_{2}}{\tau_{1}-\tau_{0}} \gamma_{2} Q_{2}, D_{2}<\theta_{2} Q_{2}+\frac{\tau_{1}-\tau_{0}}{\tau_{0}-\tau_{2}} \frac{1}{r_{2}-s_{2}}\left[\left(r_{1}-s_{1}\right) D_{1}-\left(c_{1}-s_{1}\right) Q_{1}\right]\right\}$
$\Delta\left(C_{3}\right)=\operatorname{Pr}\left\{\theta_{1} Q_{1}+\frac{\tau_{0}-\tau_{2}}{\tau_{1}-\tau_{0}} \gamma_{2} Q_{2}<D_{1}<Q_{1}, D_{2}>Q_{2}\right\}$
$\Delta\left(C_{4}\right)=\operatorname{Pr}\left\{D_{1}>Q_{1}, D_{2}>Q_{2}\right\}$
$\Delta\left(C_{5}\right)=\operatorname{Pr}\left\{D_{1}>Q_{1}, \theta_{2} Q_{2}<D_{2}<Q_{2}\right\}$
$\Delta\left(C_{6}\right)=\operatorname{Pr}\left\{\theta_{1} Q_{1}+\frac{\tau_{0}-\tau_{2}}{\tau_{1}-\tau_{0}} \gamma_{2} Q_{2}<D_{1}<Q_{1}, \theta_{2} Q_{2}<D_{2}<Q_{2}\right\}$
$\Delta\left(C_{7}\right)=\operatorname{Pr}\left\{\theta_{1} Q_{1}+\frac{\tau_{0}-\tau_{2}}{\tau_{1}-\tau_{0}} \gamma_{2} Q_{2}<D_{1}<Q_{1}, D_{2}<\theta_{2} Q_{2}\right\}$
$\Delta\left(C_{8}\right)=\operatorname{Pr}\left\{D_{1}>Q_{1}, D_{2}<\theta_{2} Q_{2}\right\}$
$\Delta\left(L_{1}\right)=\operatorname{Pr}\left\{D_{1}<\theta_{1} Q_{1}, \theta_{2} Q_{2}<D_{2}<Q_{2}\right\}$
$\Delta\left(L_{2}\right)=\operatorname{Pr}\left\{D_{1}<\theta_{1} Q_{1}, D_{2}>Q_{2}\right\}$
$\Delta\left(L_{3}\right)=\operatorname{Pr}\left\{\theta_{1} Q_{1}<D_{1}<\theta_{1} Q_{1}+\frac{\tau_{0}-\tau_{2}}{\tau_{1}-\tau_{0}} \gamma_{2} Q_{2}, D_{2}>Q_{2}\right\}$
$\Delta\left(L_{4}\right)=\operatorname{Pr}\left\{\theta_{1} Q_{1}<D_{1}<\theta_{1} Q_{1}+\frac{\tau_{0}-\tau_{2}}{\tau_{1}-\tau_{0}} \gamma_{2} Q_{2}, D_{2}>\theta_{2} Q_{2}+\frac{\tau_{1}-\tau_{0}}{\tau_{0}-\tau_{2}} \frac{1}{r_{2}-s_{2}}\left[\left(r_{1}-s_{1}\right) D_{1}-\left(c_{1}-s_{1}\right) Q_{1}\right]\right\}$

1.3. Derivation of the First-Order Conditions Under Conditions L, C, and E

Case 1. Q satisfies the L condition Define $\gamma_{i}=\left(r_{i}-c_{i}\right) /\left(r_{j}-s_{j}\right), i \neq j$ and note that $\theta_{i}=\left(c_{i}-\right.$ $\left.s_{i}\right) /\left(r_{i}-s_{i}\right)$. Figure 1 shows different demand realization regions in which ex post either event L
(in regions $L_{1}-L_{7}$) or event C (in regions $C_{1}-C_{4}$) occurs. Specifically, we note that when $D_{i}<\theta_{i} Q_{i}$, $i=1,2$, neither subsidiary makes a profit, so no tax incurs in region O.

The partial derivatives of $P^{C}(\mathbf{Q})$ with respect to Q_{1}, provided that \mathbf{Q} satisfies ex ante condition L, are as given by

$$
\begin{align*}
\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{1}}= & -\left(c_{1}-s_{1}\right)\left\{\Delta(O)+\Delta\left(L_{1}\right)+\Delta\left(L_{2}\right)\right\}-\left(1-\tau_{1}\right)\left(c_{1}-s_{1}\right)\left[\Delta\left(C_{1}\right)+\Delta\left(C_{2}\right)\right] \\
& -\left(1-\tau_{0}\right)\left(c_{1}-s_{1}\right)\left[\Delta\left(L_{3}\right)+\Delta\left(L_{6}\right)+\Delta\left(L_{7}\right)\right]+\left(1-\tau_{1}\right)\left(r_{1}-c_{1}\right)\left[\Delta\left(C_{3}\right)+\Delta\left(C_{4}\right)\right] \tag{1}\\
& +\left(1-\tau_{0}\right)\left(r_{1}-c_{1}\right)\left[\Delta\left(L_{4}\right)+\Delta\left(L_{5}\right)\right]
\end{align*}
$$

After collapsing terms, (1) can be rewritten as

$$
\begin{align*}
\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{1}}= & \left(1-\tau_{1}\right)\left[\left(r_{1}-c_{1}\right) \operatorname{Pr}\left\{D_{1}>Q_{1}\right\}-\left(c_{1}-s_{1}\right) \operatorname{Pr}\left\{\theta_{1} Q_{1}<D_{1}<Q_{1}\right\}\right] \\
& -\left(c_{1}-s_{1}\right) \operatorname{Pr}\left\{D_{1} \leq \theta_{1} Q_{1}\right\}+\left(\tau_{1}-\tau_{0}\right)\left\{\left(r_{1}-c_{1}\right)\left[\Delta\left(L_{4}\right)+\Delta\left(L_{5}\right)\right]\right. \tag{2}\\
& \left.-\left(c_{1}-s_{1}\right)\left[\Delta\left(L_{3}\right)+\Delta\left(L_{6}\right)+\Delta\left(L_{7}\right)\right]\right\}
\end{align*}
$$

Equation (2) can be interpreted as follows: the first and second lines are the marginal profitability with respect to an increase of Q_{1} for the subsidiary S_{1} under its own after-local-tax profit maximization problem discussed earlier in Section 3 (see (10)). The third line represents the marginal benefits of the global firm due to tax cross-crediting across the two subsidiaries.

With a similar analysis, we can also derive the partial derivative of $P^{C}(\mathbf{Q})$ with respect to Q_{2} as follows:

$$
\begin{align*}
\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{2}}= & \left(1-\tau_{2}\right)\left[\left(r_{2}-c_{2}\right) \operatorname{Pr}\left\{D_{2}>Q_{2}\right\}-\left(c_{2}-s_{2}\right) \operatorname{Pr}\left\{\theta_{2} Q_{2}<D_{2}<Q_{2}\right\}\right] \\
& -\left(c_{2}-s_{2}\right) \operatorname{Pr}\left\{D_{2} \leq \theta_{2} Q_{2}\right\}+\left(\tau_{2}-\tau_{0}\right)\left\{\left(r_{2}-c_{2}\right)\left[\Delta\left(L_{2}\right)+\Delta\left(L_{3}\right)+\Delta\left(L_{4}\right)\right]\right. \tag{3}\\
& \left.-\left(c_{2}-s_{2}\right)\left[\Delta\left(L_{1}\right)+\Delta\left(L_{5}\right)+\Delta\left(L_{6}\right)+\Delta\left(L_{7}\right)\right]\right\} .
\end{align*}
$$

The interpretation for (3) is similar to that for (2).
Case 2. \mathbf{Q} satisfies the C condition
We now turn to the situation in which a given sourcing decision \mathbf{Q} satisfies ex ante condition C. Figure 2 illustrates different demand realization regions. Similar to Figure 1, in region O, no tax incurs; in regions $L_{1}-L_{4}$, we have event L ex post; and in regions $C_{1}-C_{7}$, we have event C ex post.

Following a similar analysis as in Case 1, we can show that when \mathbf{Q} satisfies condition C, the partial derivatives are as follows:

$$
\begin{align*}
\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{1}}= & \left(1-\tau_{1}\right)\left[\left(r_{1}-c_{1}\right) \operatorname{Pr}\left\{D_{1}>Q_{1}\right\}-\left(c_{1}-s_{1}\right) \operatorname{Pr}\left\{\theta_{1} Q_{1}<D_{1}<Q_{1}\right\}\right] \tag{4}\\
& -\left(c_{1}-s_{1}\right) \operatorname{Pr}\left\{D_{1} \leq \theta_{1} Q_{1}\right\}-\left(\tau_{1}-\tau_{0}\right)\left(c_{1}-s_{1}\right)\left[\Delta\left(L_{3}\right)+\Delta\left(L_{4}\right)\right]
\end{align*}
$$

Figure 2 Demand Realization Regions under the C Condition
and

$$
\begin{align*}
\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{2}}= & \left(1-\tau_{2}\right)\left[\left(r_{2}-c_{2}\right) \operatorname{Pr}\left\{D_{2}>Q_{2}\right\}-\left(c_{2}-s_{2}\right) \operatorname{Pr}\left\{\theta_{2} Q_{2}<D_{2}<Q_{2}\right\}\right]-\left(c_{2}-s_{2}\right) \operatorname{Pr}\left\{D_{2} \leq \theta_{2} Q_{2}\right\} \\
& -\left(\tau_{0}-\tau_{2}\right)\left\{\left(r_{2}-c_{2}\right)\left[\Delta\left(L_{2}\right)+\Delta\left(L_{3}\right)\right]-\left(c_{2}-s_{2}\right)\left[\Delta\left(L_{1}\right)+\Delta\left(L_{4}\right)\right]\right\} \tag{5}
\end{align*}
$$

Case 3. Q satisfies the ex ante E condition
Under this condition, $\theta_{1} Q_{1}+\frac{\tau_{0}-\tau_{2}}{\tau_{1}-\tau_{0}} \gamma_{2} Q_{2}=Q_{1}$ and $\theta_{2} Q_{2}+\frac{\tau_{1}-\tau_{0}}{\tau_{0}-\tau_{2}} \gamma_{1} Q_{1}=Q_{2}$. As a result, Figures 1 and 2 become identical. Thus, if condition E holds, $\mathbf{Q}^{\mathbf{C}}$ satisfies the following equations:

$$
\begin{array}{r}
\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{1}}+\frac{\left(\tau_{1}-\tau_{0}\right)\left(r_{1}-c_{1}\right)}{\left(\tau_{0}-\tau_{2}\right)\left(r_{2}-c_{2}\right)} \frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{2}}=0, \\
\left(\tau_{1}-\tau_{0}\right)\left(r_{1}-c_{1}\right) Q_{1}-\left(\tau_{0}-\tau_{2}\right)\left(r_{2}-c_{2}\right) Q_{2}=0 \tag{7}
\end{array}
$$

where $\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{1}}$ and $\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{2}}$ are given by (4) and (5), respectively.

1.4. A single firm's optimal quantity with tax consideration

For any given sourcing quantity Q_{i} and realized demand D_{i}, let A_{i} be S_{i} 's pretax profits. We have

$$
\begin{equation*}
A_{i}\left(Q_{i}\right)=r_{i} \min \left\{Q_{i}, D_{i}\right\}+s_{i}\left(Q_{i}-D_{i}\right)^{+}-c_{i} Q_{i}=\left(r_{i}-c_{i}\right) Q_{i}-\left(r_{i}-s_{i}\right)\left(Q_{i}-D_{i}\right)^{+} . \tag{8}
\end{equation*}
$$

At the end of each year (period), if S_{i} is profitable, its profits are taxed on the internal managerial books at the managerial tax rate τ. However, if a loss incurs, no tax will be levied. The after-tax profits or losses corresponding to $A_{i}\left(Q_{i}\right)$ is therefore given by

$$
\Pi_{i}\left(\tau, Q_{i}\right)=A_{i}\left(Q_{i}\right)-\tau A_{i}\left(Q_{i}\right)^{+}=(1-\tau) A_{i}\left(Q_{i}\right)+\tau A_{i}\left(Q_{i}\right)^{-}
$$

where $A_{i}\left(Q_{i}\right)^{-}=\min \left(0, A_{i}\left(Q_{i}\right)\right)$ and $A_{i}\left(Q_{i}\right)^{+}=\max \left(0, A_{i}\left(Q_{i}\right)\right)$. The subsidiary S_{i} 's objective is to choose an optimal sourcing quantity $Q_{i}(\tau)$ which solves the following maximization problem:

$$
\begin{equation*}
P_{i}(\tau) \equiv \max _{Q_{i}}\left\{E_{D_{i}}\left(\Pi_{i}\left(\tau, Q_{i}\right)\right)\right\} \tag{9}
\end{equation*}
$$

It is easy to verify that $A_{i}\left(Q_{i}\right),-A_{i}\left(Q_{i}\right)^{+}$and $A_{i}\left(Q_{i}\right)^{-}$are all concave in Q_{i}. Thus, $\Pi_{i}\left(\tau, Q_{i}\right)$ and $E_{D_{i}}\left\{\Pi_{i}\left(\tau, Q_{i}\right)\right\}$ are also concave in Q_{i}. The partial derivative of the expected after-tax profits for subsidiary S_{i} with respect to Q_{i} as follows

$$
\begin{align*}
\frac{\partial E_{D_{i}}\left(\Pi_{i}\left(\tau, Q_{i}\right)\right)}{\partial Q_{i}} & =(1-\tau)\left[\left(r_{i}-c_{i}\right) \operatorname{Pr}\left\{D_{i} \geq Q_{i}\right\}-\left(c_{i}-s_{i}\right) \operatorname{Pr}\left\{\theta_{i} Q_{i}<D_{i}<Q_{i}\right\}\right] \tag{10}\\
& -\left(c_{i}-s_{i}\right) \operatorname{Pr}\left\{D_{i}<\theta_{i} Q_{i}\right\}
\end{align*}
$$

where Pr represents probability.
Setting (10) to zero yields

$$
\begin{equation*}
\operatorname{Pr}\left\{D_{i}<Q_{i}(\tau)\right\}=\frac{r_{i}-c_{i}}{r_{i}-s_{i}}-\frac{\tau\left(c_{i}-s_{i}\right) \operatorname{Pr}\left\{D_{i}<\theta_{i} Q_{i}(\tau)\right\}}{(1-\tau)\left(r_{i}-s_{i}\right)} . \tag{11}
\end{equation*}
$$

Note that when $\tau=0, Q_{i}(0)$ is the quantity chosen by a traditional newsvendor without tax consideration. From (11), we gain some insights on the optimal policy under the after-tax objective which are summarized in the following proposition.

Single Firm Proposition: (i) The after-tax objective causes the firm to produce less (i.e., $\left.Q_{i}(\tau) \leq Q_{i}(0)\right)$ than the optimal sourcing quantity under the pretax objective; (ii) The optimal sourcing quantity $Q_{i}(\tau)$ satisfies (5) in the main body of this paper.

2. Proof of the Main Results

Proof of Proposition 1 Let $g_{1}(\mathbf{Q})=\Pi_{1}\left(\tau_{0}, Q_{1}\right)+\Pi_{2}\left(\tau_{0}, Q_{2}\right)$ and $g_{2}(\mathbf{Q})=\Pi_{1}\left(\tau_{1}, Q_{1}\right)+\Pi_{2}\left(\tau_{2}, Q_{2}\right)$. It is straightforward to see that $E\left[\Pi_{i}\left(\tau, Q_{i}\right)\right]$ is strictly concave in Q_{i} under the assumption that $f_{i}(\cdot)$ is strictly positive. The sum of strictly concave functions is also strictly concave. Hence, $E\left[g_{1}(\mathbf{Q})\right]$ is strictly concave. By definition, we need to show $P^{C}\left(t \mathbf{Q}_{\mathbf{1}}+(1-t) \mathbf{Q}_{\mathbf{2}}\right)>t P^{C}\left(\mathbf{Q}_{\mathbf{1}}\right)+(1-t) P^{C}\left(\mathbf{Q}_{\mathbf{2}}\right)$ for the strict concavity of $P^{C}(\cdot)$ for $0<t<1$.

$$
\begin{aligned}
& P^{C}\left(t \mathbf{Q}_{\mathbf{1}}+(1-t) \mathbf{Q}_{\mathbf{2}}\right)=E\left[\min \left[g_{1}\left(t \mathbf{Q}_{\mathbf{1}}+(1-t) \mathbf{Q}_{\mathbf{2}}\right), g_{2}\left(t \mathbf{Q}_{\mathbf{1}}+(1-t) \mathbf{Q}_{\mathbf{2}}\right)\right]\right. \\
& \geq \min \left[E\left[g_{1}\left(t \mathbf{Q}_{\mathbf{1}}+(1-t) \mathbf{Q}_{\mathbf{2}}\right)\right], E\left[g_{2}\left(t \mathbf{Q}_{\mathbf{1}}+(1-t) \mathbf{Q}_{\mathbf{2}}\right)\right]\right] \\
& >\min \left[t E\left[g_{1}\left(\mathbf{Q}_{\mathbf{1}}\right)\right]+(1-t) E\left[g_{1}\left(\mathbf{Q}_{\mathbf{2}}\right)\right], t E\left[g_{2}\left(\mathbf{Q}_{\mathbf{1}}\right)\right]+(1-t) E\left[g_{1}\left(\mathbf{Q}_{\mathbf{2}}\right)\right]\right] \\
& =\operatorname{tmin} E\left[g_{1}\left(\mathbf{Q}_{\mathbf{1}}\right), g_{2}\left(\mathbf{Q}_{\mathbf{1}}\right)\right]+(1-t) \min E\left[g_{\mathbf{1}}\left(\mathbf{Q}_{\mathbf{2}}\right), g_{2}\left(\mathbf{Q}_{\mathbf{2}}\right)\right]=t P^{C}\left(\mathbf{Q}_{\mathbf{1}}\right)+(1-t) P^{C}\left(\mathbf{Q}_{\mathbf{2}}\right) .
\end{aligned}
$$

The first inequality holds due to Jensen's inequality. The second strict inequality holds because of the strict concavity of $g_{1}(\cdot)$ and $g_{2}(\cdot)$.

Proof of Proposition 2 Proposition 2 is derived by Proposition 1 and setting the first-order conditions given by equations (2) to (7) to zero.

The next result will be used for the proof of Proposition 3.
Lemma 1. For all $Q_{i} \leq Q_{i}(0)$,

$$
\begin{equation*}
\left(r_{i}-c_{i}\right) \operatorname{Pr}\left\{D_{i}>Q_{i}\right\}-\left(c_{i}-s_{i}\right) \operatorname{Pr}\left\{\theta_{i} Q_{i}<D_{i}<Q_{i}\right\} \geq 0 . \tag{12}
\end{equation*}
$$

Proof of Lemma 1. This result follows directly from the marginal after-tax profit of a subsidiary:

$$
\begin{align*}
\frac{\partial E_{D_{i}}\left(\Pi_{i}\left(\tau, Q_{i}\right)\right)}{\partial Q_{i}} & =(1-\tau)\left[\left(r_{i}-c_{i}\right) \operatorname{Pr}\left\{D_{i} \geq Q_{i}\right\}-\left(c_{i}-s_{i}\right) \operatorname{Pr}\left\{\theta_{i} Q_{i}<D_{i}<Q_{i}\right\}\right] \tag{13}\\
& -\left(c_{i}-s_{i}\right) \operatorname{Pr}\left\{D_{i}<\theta_{i} Q_{i}\right\}
\end{align*}
$$

Since $E_{D_{i}}\left[\Pi_{i}\left(0, Q_{i}\right)\right]$ is concave, for all $Q_{i} \leq Q_{i}(0), \partial E_{D_{i}}\left[\Pi_{i}\left(0, Q_{i}\right)\right] / \partial Q_{i} \geq 0$, namely,

$$
\left(r_{i}-c_{i}\right) \operatorname{Pr}\left\{D_{i} \geq Q_{i}\right\}-\left(c_{i}-s_{i}\right) \operatorname{Pr}\left\{\theta_{i} Q_{i}<D_{i}<Q_{i}\right\} \geq\left(c_{i}-s_{i}\right) \operatorname{Pr}\left\{D_{i}<\theta_{i} Q_{i}\right\} \geq 0
$$

Proof of Proposition 4 For Part (i), because of the concavity of $P^{C}(\mathbf{Q})$, it suffices to show at $Q_{i}=Q_{i}\left(\tau_{0}\right), \partial P^{C}(\mathbf{Q}) / \partial Q_{i} \leq 0$ for any Q_{j}. We can derive the marginal profit corresponding to each of the regions in Figure 1 and show that the partial derivatives are given as below:

$$
\begin{align*}
\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{1}}= & -\left(c_{1}-s_{1}\right)\left[\Delta(O)+\Delta\left(L_{1}\right)+\Delta\left(L_{2}\right)\right]-\left(1-\tau_{1}\right)\left(c_{1}-s_{1}\right)\left[\Delta\left(C_{1}\right)+\Delta\left(C_{2}\right)\right] \\
& -\left(1-\tau_{0}\right)\left(c_{1}-s_{1}\right)\left[\Delta\left(L_{3}\right)+\Delta\left(L_{6}\right)+\Delta\left(L_{7}\right)\right]+\left(1-\tau_{1}\right)\left(r_{1}-c_{1}\right)\left[\Delta\left(C_{3}\right)+\Delta\left(C_{4}\right)\right] \tag{14}\\
& +\left(1-\tau_{0}\right)\left(r_{1}-c_{1}\right)\left[\Delta\left(L_{4}\right)+\Delta\left(L_{5}\right)\right]
\end{align*}
$$

After collapsing terms, it becomes

$$
\begin{align*}
\frac{\left.\partial P^{C}(\mathbf{Q})\right)}{\partial Q_{1}}= & \left(1-\tau_{0}\right)\left[\left(r_{1}-c_{1}\right)-\left(r_{1}-s_{1}\right) \operatorname{Pr}\left\{D_{1}<Q_{1}\right\}\right]-\tau_{0}\left(c_{1}-s_{1}\right) \operatorname{Pr}\left\{D_{1}<\theta_{1} Q_{1}\right\} \tag{15}\\
& -\left(\tau_{1}-\tau_{0}\right)\left\{\left(r_{1}-c_{1}\right)\left[\Delta\left(C_{3}\right)+\Delta\left(C_{4}\right)\right]-\left(c_{1}-s_{1}\right)\left[\Delta\left(C_{1}\right)+\Delta\left(C_{2}\right)\right]\right\}
\end{align*}
$$

At $Q_{1}=Q_{1}\left(\tau_{0}\right)$, the first line of (15) vanishes. Moreover, since D_{1} and D_{2} are independent of each other,

$$
\begin{aligned}
\frac{\left.\partial P^{C}(\mathbf{Q})\right)}{\partial Q_{1}}= & \left(r_{1}-c_{1}\right)\left[\Delta\left(C_{3}\right)+\Delta\left(C_{4}\right)\right]-\left(c_{1}-s_{1}\right)\left[\Delta\left(C_{1}\right)+\Delta\left(C_{2}\right)\right] \\
& \leq-\left(\tau_{1}-\tau_{0}\right)\left\{\left(r_{1}-c_{1}\right)\left[\Delta\left(C_{3}\right)+\Delta\left(C_{4}\right)\right]-\left(c_{1}-s_{1}\right)\left[\Delta\left(C_{1}\right)+\Delta\left(C_{2}\right)+\Delta\left(L_{7}\right)\right]\right\} \\
& =\operatorname{Pr}\left\{D_{2}<\theta_{2} Q_{2}+\frac{\tau_{1}-\tau_{0}}{\tau_{0}-\tau_{2}} \gamma_{1} Q_{1}\right\}\left[\left(r_{1}-c_{1}\right) \operatorname{Pr}\left\{D_{1}>Q_{1}\right\}-\left(c_{1}-s_{1}\right) \operatorname{Pr}\left\{\theta_{1} Q_{1}<D_{1}<Q_{1}\right\}\right] .
\end{aligned}
$$

By Lemma 1, at $Q_{1}=Q_{1}\left(\tau_{0}\right)$,

$$
\left(r_{1}-c_{1}\right) \operatorname{Pr}\left\{D_{1}>Q_{1}\right\}-\left(c_{1}-s_{1}\right) \operatorname{Pr}\left\{\theta_{1} Q_{1}<D_{1}<Q_{1}\right\} \geq 0 .
$$

Therefore, at $Q_{1}=Q_{1}\left(\tau_{0}\right), \frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{1}} \leq 0$. Thus, the concavity of $P^{C}(\mathbf{Q})$ and Proposition 1(ii) yield $Q_{1}^{C} \leq Q_{1}\left(\tau_{0}\right) \leq Q_{1}(0)$.

Similarly, using Figure 1,

$$
\begin{align*}
\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{2}}= & -\left(c_{2}-s_{2}\right)\left[\Delta(O)+\Delta\left(C_{1}\right)+\Delta\left(C_{4}\right)\right]-\left(1-\tau_{0}\right)\left(c_{2}-s_{2}\right)\left[\Delta\left(L_{1}\right)+\Delta\left(L_{5}\right)+\Delta\left(L_{6}\right)+\Delta\left(L_{7}\right)\right] \\
& -\left(1-\tau_{2}\right)\left(c_{2}-s_{2}\right)\left[\Delta\left(C_{2}\right)+\Delta\left(C_{3}\right)\right]+\left(1-\tau_{0}\right)\left(r_{2}-c_{2}\right)\left[\Delta\left(L_{2}\right)+\Delta\left(L_{3}\right)+\Delta\left(L_{4}\right)\right] \tag{16}
\end{align*}
$$

After collapsing terms, it becomes

$$
\begin{align*}
\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{2}}= & \left(1-\tau_{0}\right)\left[\left(r_{2}-c_{2}\right)-\left(r_{2}-s_{2}\right) \operatorname{Pr}\left\{D_{2}<Q_{2}\right\}\right]-\tau_{0}\left(c_{2}-s_{2}\right) \operatorname{Pr}\left\{D_{2}<\theta_{2} Q_{2}\right\} \tag{17}\\
& -\left(\tau_{0}-\tau_{2}\right)\left(c_{2}-s_{2}\right)\left[\Delta\left(C_{2}\right)+\Delta\left(C_{3}\right)\right] .
\end{align*}
$$

The first line of (17) vanishes at $Q_{2}=Q_{2}\left(\tau_{0}\right)$, so

$$
\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{2}}=-\left(\tau_{0}-\tau_{2}\right)\left(c_{2}-s_{2}\right)\left[\Delta\left(C_{2}\right)+\Delta\left(C_{3}\right)\right] \leq 0
$$

Hence, the concavity of $P^{C}(\mathbf{Q})$ and Proposition 1(ii) yield $Q_{2}^{C} \leq Q_{2}\left(\tau_{0}\right) \leq Q_{2}\left(\tau_{2}\right) \leq Q_{2}(0)$.
For part (ii), we derive the marginal profit corresponding to each of the regions in Figure 2 and show that the partial derivatives of $P^{C}(\mathbf{Q})$ with respect to Q_{1} is as follows:

$$
\begin{align*}
\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{1}}= & -\left(c_{1}-s_{1}\right)\left[\Delta(O)+\Delta\left(L_{1}\right)+\Delta\left(L_{2}\right)\right]-\left(1-\tau_{0}\right)\left(c_{1}-s_{1}\right)\left[\Delta\left(L_{3}\right)+\Delta\left(L_{4}\right)\right] \\
& \left.-\left(1-\tau_{1}\right)\left(c_{1}-s_{1}\right)\left[\Delta\left(C_{1}\right)+\Delta\left(C_{2}\right)+\Delta\left(C_{3}\right)+\Delta\left(C_{6}\right)+\Delta\left(C_{7}\right)\right)\right] \tag{18}\\
& +\left(1-\tau_{1}\right)\left(r_{1}-c_{1}\right)\left[\Delta\left(C_{4}\right)+\Delta\left(C_{5}\right)+\Delta\left(C_{8}\right)\right] .
\end{align*}
$$

After collapsing terms,

$$
\begin{align*}
\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{1}}= & \left(1-\tau_{1}\right)\left[\left(r_{1}-c_{1}\right)-\left(r_{1}-s_{1}\right) \operatorname{Pr}\left\{D_{1} \leq Q_{1}\right\}\right]-\tau_{1}\left(c_{1}-s_{1}\right) \operatorname{Pr}\left\{D_{1} \leq \theta_{1} Q_{1}\right\} \tag{19}\\
& -\left(\tau_{1}-\tau_{0}\right)\left(c_{1}-s_{1}\right)\left[\Delta\left(L_{3}\right)+\Delta\left(L_{4}\right)\right]
\end{align*}
$$

At $Q_{1}=Q_{1}\left(\tau_{1}\right)$, the first line of (19) vanishes, so

$$
\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{1}}=-\left(\tau_{1}-\tau_{0}\right)\left(c_{1}-s_{1}\right)\left[\Delta\left(L_{1}\right)+\Delta\left(L_{2}\right)\right] \leq 0 .
$$

Therefore, the concavity of $P^{C}(\mathbf{Q})$ and Proposition 1(ii) yield $Q_{1}^{C} \leq Q_{1}\left(\tau_{1}\right) \leq Q_{1}\left(\tau_{0}\right) \leq Q_{1}(0)$.
Similarly, using Figure 2 and the definitions of its areas, the global firm's marginal profit with respect to Q_{2} is as follows:

$$
\begin{align*}
\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{2}} & =-\left(c_{2}-s_{2}\right)\left[\Delta(O)+\Delta\left(C_{1}\right)+\Delta\left(C_{7}\right)+\Delta\left(C_{8}\right)\right]-\left(1-\tau_{2}\right)\left(c_{2}-s_{2}\right)\left[\Delta\left(C_{2}\right)+\Delta\left(C_{5}\right)+\Delta\left(C_{6}\right)\right] \\
& +\left(1-\tau_{2}\right)\left(r_{2}-c_{2}\right)\left[\Delta\left(C_{3}\right)+\Delta\left(C_{4}\right)\right]-\left(1-\tau_{0}\right)\left(c_{2}-s_{2}\right)\left[\Delta\left(L_{1}\right)+\Delta\left(L_{4}\right)\right] \\
& +\left(1-\tau_{0}\right)\left(r_{2}-c_{2}\right)\left[\Delta\left(L_{2}\right)+\Delta\left(L_{3}\right)\right] \tag{20}
\end{align*}
$$

After collapsing terms,

$$
\begin{align*}
\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{2}}= & \left(1-\tau_{2}\right)\left[\left(r_{2}-c_{2}\right)-\left(r_{2}-s_{2}\right) \operatorname{Pr}\left\{D_{2} \leq Q_{2}\right\}\right]-\tau_{2}\left(c_{2}-s_{2}\right) \operatorname{Pr}\left\{D_{2} \leq \theta_{2} Q_{2}\right\} \tag{21}\\
& -\left(\tau_{0}-\tau_{2}\right)\left\{\left(r_{2}-c_{2}\right)\left[\Delta\left(L_{2}\right)+\Delta\left(L_{3}\right)\right]-\left(c_{2}-s_{2}\right)\left[\Delta\left(L_{1}\right)+\Delta\left(L_{4}\right)\right]\right\} .
\end{align*}
$$

At $Q_{2}=Q_{2}\left(\tau_{2}\right)$,

$$
\begin{align*}
\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{2}}= & -\left(\tau_{0}-\tau_{2}\right)\left\{\left(r_{2}-c_{2}\right)\left[\Delta\left(L_{2}\right)+\Delta\left(L_{3}\right)\right]-\left(c_{2}-s_{2}\right)\left[\Delta\left(L_{1}\right)+\Delta\left(L_{4}\right)\right]\right\} \\
\leq & -\left(\tau_{0}-\tau_{2}\right)\left\{\left(r_{2}-c_{2}\right)\left[\Delta\left(L_{2}\right)+\Delta\left(L_{3}\right)\right]-\left(c_{2}-s_{2}\right)\left[\Delta\left(L_{1}\right)+\Delta\left(L_{4}\right)+\Delta\left(C_{2}\right)\right]\right\} \tag{22}\\
= & -\left(\tau_{0}-\tau_{2}\right) \operatorname{Pr}\left\{D_{1}<\theta_{1} Q_{1}+\frac{\tau_{0}-\tau_{2}}{\tau_{1}-\tau_{0}} \gamma_{2} Q_{2}\right\}\left[\left(r_{2}-c_{2}\right) \operatorname{Pr}\left\{D_{2}>Q_{2}\right\}\right. \\
& \left.-\left(c_{2}-s_{2}\right) \operatorname{Pr}\left\{\theta_{2} Q_{2}<D_{2}<Q_{2}\right\}\right] \leq 0 .
\end{align*}
$$

because of Lemma 1. Hence, the concavity of $P^{C}(\mathbf{Q})$ and Proposition 1(ii) yield $Q_{2}^{C} \leq Q_{2}\left(\tau_{2}\right) \leq$ $Q_{2}(0)$.

Proof of Corollary 1 Under all three conditions, $d Q_{2 j}^{C} / d \tau_{0}$ must be decreasing in τ_{0} as subsidiary S_{2} is subject to home tax rate τ_{0} although under certain demand realizations, the excess tax liability may be partially offset by the tax credit generated from subsidiary S_{1}. The strict proof is shown below. From (15),

$$
\frac{\partial^{2} P^{C}(\mathbf{Q})}{\partial Q_{1} \partial \tau_{0}}=-\left(c_{1}-s_{1}\right)\left[\Delta\left(L_{2}\right)+\Delta\left(L_{4}\right)+\left(\tau_{1}-\tau_{0}\right) \frac{d\left(\Delta\left(L_{3}\right)+\Delta\left(L_{4}\right)\right)}{d \tau_{0}}\right] \leq 0 .
$$

As shown in Figure 2, as τ_{0} increase, the line $Q_{1}=\theta_{1} Q_{1}+\frac{\left(\tau_{1}-\tau_{0}\right)}{\left(\tau_{0}-\tau_{2}\right)} \gamma_{2} Q_{2}$ shifts to the right as τ_{0} increases. Thus, $\Delta\left(L_{3}\right)$ and $\Delta\left(L_{4}\right)$ increase.

$$
\frac{\partial^{2} P^{C}(\mathbf{Q})}{\partial Q_{1} \partial Q_{2}}=-\left(\tau_{1}-\tau_{0}\right)\left(c_{1}-s_{1}\right) \frac{d\left(\Delta\left(L_{3}\right)+\Delta\left(L_{4}\right)\right)}{d Q_{2}} \geq 0
$$

and

$$
\begin{aligned}
\frac{\partial^{2} P^{C}(\mathbf{Q})}{\partial Q_{2} \partial \tau_{0}} & =-\left\{\left(r_{2}-c_{2}\right)\left[\Delta\left(L_{2}\right)+\Delta\left(L_{3}\right)\right]-\left(c_{2}-s_{2}\right)\left[\Delta\left(L_{1}\right)+\Delta\left(L_{4}\right)\right]\right\} \\
& \left.-\left(\tau_{0}-\tau_{2}\right)\left\{\left(r_{2}-c_{2}\right) \frac{d\left(\Delta\left(L_{2}\right)+\Delta\left(L_{3}\right)\right)}{d \tau_{0}}\right]-\left(c_{2}-s_{2}\right) \frac{d\left(\Delta\left(L_{1}\right)+\Delta\left(L_{4}\right)\right.}{d \tau_{0}}\right\} \leq 0
\end{aligned}
$$

From Figure $2, \Delta L_{2}$ and ΔL_{1} do not change as τ_{0} increases. Moreover,

$$
\begin{aligned}
& \left(r_{2}-c_{2}\right) \frac{d \Delta L_{3}}{d \tau_{0}}-\left(c_{2}-s_{2}\right) \frac{d \Delta\left(L_{4}\right)}{d \tau_{0}} \\
& \geq\left(\left(r_{2}-c_{2}\right) \operatorname{Pr}\left\{D_{2}>Q_{2}\right\}-\left(c_{2}-s_{2}\right) \operatorname{Pr}\left\{\operatorname{Pr}\left\{\theta_{2} Q_{2} \leq D_{2} \leq Q_{2}\right\} f\left(\theta_{1} Q_{1}+\frac{\tau_{0}-\tau_{2}}{\tau_{1}-\tau_{0}} \gamma_{2} Q_{2}\right) \frac{\tau_{1}-\tau_{2}}{\left(\tau_{1}-\tau_{0}\right)^{2}} \geq 0 .\right.\right.
\end{aligned}
$$

Hence, $\frac{\partial^{2} P^{C}(\mathbf{Q})}{\partial Q_{2} \partial \tau_{0}} \leq 0$. The concavity of $P^{C}(\cdot)$ yields $d Q_{2 C}^{C} / d \tau_{0} \leq 0$. Above three inequalities and the concavity of $P^{C}(\cdot)$ implies $d Q_{i C}^{C} / d \tau_{0}<0, i=1,2$.

The proof of $d Q_{1 L}^{C} / d \tau_{0} \leq 0$ and $d Q_{2 L}^{C} / d \tau_{0} \leq 0$ can be shown similarly. Under condition L,

$$
\begin{array}{r}
\frac{\partial^{2} P^{C}(\mathbf{Q})}{\partial Q_{1} \partial Q_{2}}=-\left(\tau_{1}-\tau_{0}\right)\left\{\left(r_{1}-c_{1}\right) \frac{d\left[\Delta\left(C_{3}\right)+\Delta\left(C_{4}\right)\right]}{d Q_{2}}-\left(c_{1}-s_{1}\right) \frac{d\left[\Delta\left(C_{1}\right)+\Delta\left(C_{2}\right)\right]}{d Q_{2}}\right\} \\
=\theta_{2} f\left(\theta_{2} Q_{2}+\frac{\tau_{1}-\tau_{0}}{\tau_{0}-\tau_{2}} \gamma_{1} Q_{1}\right)\left(\tau_{1}-\tau_{0}\right)\left\{\left(r_{1}-c_{1}\right) \operatorname{Pr}\left\{D_{1}>Q_{1}\right\}-\left(c_{1}-s_{1}\right) \operatorname{Pr}\left\{\theta_{1} Q_{1}<D_{1}<Q_{1}\right\} / 2\right\} \geq 0 .
\end{array}
$$

Similarly, $\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{i} \partial \tau_{0}} \leq 0$.
Under condition E, the line $D_{2}=\theta_{2} Q_{2}+\frac{\tau_{1}-\tau_{0}}{\tau_{0}-\tau_{2}} \gamma_{1} Q_{1}$ merges with $D_{2}=Q_{2}$ in Figure 1 and the line $D_{1}=\theta_{1} Q_{1}+\frac{\tau_{0}-\tau_{2}}{\tau_{1}-\tau_{0}} \gamma_{2} Q_{2}$ merges with $D_{1}=Q_{1}$. As a result, Figures 1 and 2 become identical. Additionally, tax liability exactly equals tax credit when both subsidiaries sell up inventory, i.e., $\left(\tau_{1}-\tau_{0}\right)\left(r_{1}-c_{1}\right) Q_{1}=\left(\tau_{0}-\tau_{2}\right)\left(r_{2}-c_{2}\right) Q_{2}$.

Here is a simpler proof of the monotonicity of $\mathbf{Q}^{\mathbf{C}}$ with respect to τ_{0}. Under condition L or $C, \mathbf{Q}^{\mathbf{C}}$ satisfies the first-order conditions. $d Q_{i}^{C} / d \tau_{0} \leq 0$ yields directly from the strict concavity of $P^{C}(\mathbf{Q})$ and $\frac{\partial^{2} P^{C}(\mathbf{Q})}{\partial Q_{i} \partial \tau_{0}} \leq 0, \frac{\partial^{2} P^{C}(\mathbf{Q})}{\partial Q_{1} \partial Q_{2}} \geq 0$ and the Envelop Theorem. Under condition $E, u=0$. Complete differentiating the equality with respect to τ_{0} yields

$$
-\left(r_{1}-c_{1}\right) Q_{1 E}^{C}-\left(r_{2}-c_{2}\right) Q_{2 E}^{C}=-\left(\tau_{1}-\tau_{0}\right)\left(r_{1}-c_{1}\right) \frac{d Q_{1 E}^{C}}{d \tau_{0}}+\left(\tau_{0}-\tau_{2}\right)\left(r_{2}-c_{2}\right) \frac{d Q_{2 E}^{C}}{d \tau_{0}}
$$

Since $\left(\tau_{0}-\tau_{2}\right)\left|\frac{d Q_{2 E}^{C}}{d \tau_{0}}\right| \leq Q_{2 E}^{C}$ and $Q_{1 E}^{C} \geq-\left(\tau_{1}-\tau_{0}\right) \frac{d Q_{1 E}^{C}}{d \tau_{0}}$, for the equation above to hold, $\frac{d Q_{1 E}^{C}}{d \tau_{0}} \geq 0$ must hold.

Proof of Corollary 2 Let t be the Lagrange multiplier, the new objective function can be rewritten as

$$
L\left(\mathbf{Q} ; \tau_{0}\right)=P^{C}\left(\mathbf{Q} ; \tau_{0}\right)+t\left[u-\left(\tau_{1}-\tau_{0}\right)\left(r_{1}-c_{1}\right) Q_{1}+\left(\tau_{0}-\tau_{2}\right)\left(r_{2}-c_{2}\right) Q_{2}\right] .
$$

The optimal solution satisfies

$$
\begin{aligned}
& \frac{\partial P^{C}\left(\mathbf{Q} ; \tau_{0}\right)}{\partial Q_{1}}=t\left(\tau_{1}-\tau_{0}\right)\left(r_{1}-c_{1}\right) \quad \frac{\partial P^{C}\left(\mathbf{Q} ; \tau_{0}\right)}{\partial Q_{2}}=-t\left(\tau_{0}-\tau_{2}\right)\left(r_{2}-c_{2}\right), \\
& u t=0 \quad u=\left(\tau_{1}-\tau_{0}\right)\left(r_{1}-c_{1}\right) Q_{1}-\left(\tau_{0}-\tau_{2}\right)\left(r_{2}-c_{2}\right) Q_{2} .
\end{aligned}
$$

note that at $\tau_{0}=\tau_{2}, u>0$ for $\mathbf{Q} \neq 0$, i.e., C condition holds and at $\tau_{0}=\tau_{1}, u<0$, i.e., the ex ante condition L holds. As shown below, as τ_{0} increases within the range of $\left[\tau_{2}, \tau_{1}\right], u$ decreases.

$$
\frac{d u}{d \tau_{0}}=-\left(r_{1}-c_{1}\right) Q_{1}^{C}-\left(r_{2}-c_{2}\right) Q_{2}^{C}+\left(\tau_{1}-\tau_{0}\right)\left(r_{1}-c_{1}\right) d Q_{1}^{C} / d \tau_{0}-\left(\tau_{0}-\tau_{2}\left(r_{2}-c_{2}\right) d Q_{2}^{C} / d \tau_{0}\right.
$$

Note that $\left(r_{i}-c_{i}\right) Q_{i}$ is subsidiary i 's maximum profit with excess demand. The first-order impact of τ_{0} on tax credit (liability) must dominate the absolute value of the second order effect; i.e., $Q_{1}^{C} \geq\left(\tau_{1}-\tau_{0}\right)\left|d Q_{1}^{C} / d \tau_{0}\right|$ and $Q_{2}^{C} \geq\left(\tau_{0}-\tau_{2}\right)\left(r_{2}-c_{2}\right)\left|d Q_{2}^{C} / d \tau_{0}\right|$ because the probability of crosscrediting is strictly less than 1 and at the two extreme points (i.e., $\tau_{0}=\tau_{2}, \tau_{1}, Q_{i}^{C}>0$). Hence, $\frac{d u}{d \tau_{0}} \leq 0$. Consequently, there must exist two threshold values, $\tau_{2} \leq \hat{\tau}_{0} \leq \tilde{\tau}_{0} \leq \tau_{1}$ such that condition C holds for $\tau_{0} \in\left[\tau_{2}, \hat{\tau}_{0}\right) ; E$ condition holds for $\tau_{0} \in\left[\hat{\tau}_{0}, \tilde{\tau}_{0}\right]$; and for $\tau \in\left(\tilde{\tau}_{0}, \tau_{1}\right], L$ condition holds.

Figure 3 Demand Realization Regions
Proof of Proposition 5 Part (i) holds because, $Q_{i}(0)$ deviates further away from the optimal quantity Q_{i}^{C} than $\mathbf{Q}\left(\mathcal{D}_{\mathbf{h}}\right)$ and $\mathbf{Q}\left(\mathcal{D}_{\mathbf{1}}\right)$, respectively and the concavity of $P^{C}(\mathbf{Q})$. First, from definition (??), $P\left(\tau_{0} ; \mathbf{Q}\right)$ is non-increasing and continuous in τ_{0} for $\tau_{0} \in\left(\tau_{2}, \tau_{1}\right)$ and any \mathbf{Q}. Hence, $P\left(\tau_{0} ; \mathbf{Q}\left(\mathcal{D}_{\mathbf{h}}\right)\right), P\left(\tau_{0} ; \mathbf{Q}\left(\mathcal{D}_{1}\right)\right)$ and $P\left(\tau_{0} ; \mathbf{Q}^{\mathbf{C}}\right)$ are all non-increasing in τ_{0}. At $\tau_{0}=\tau_{2}, \mathbf{Q}^{\mathbf{C}}=\mathbf{Q}\left(\mathcal{D}_{1}\right)$, and \mathcal{D}_{l} is suboptimal for all $\tau_{0}>\tau_{2}$, so at $\tau_{0}=\tau_{2}, P\left(\tau_{0} ; \mathbf{Q}\left(\mathcal{D}_{1}\right)\right)=P\left(\mathbf{Q}^{\mathbf{C}}\right)>P\left(\tau_{0} ; \mathbf{Q}\left(\mathcal{D}_{\mathbf{h}}\right)\right)$. Similarly, at $\tau_{0}=\tau_{1}, \mathbf{Q}^{\mathbf{C}}=\mathbf{Q}\left(\mathcal{D}_{\mathbf{h}}\right)$; for $\left.\tau_{0} \in\left(\tau_{2}, \tau_{1}\right), \mathbf{Q}\left(\mathcal{D}_{\mathbf{h}}\right)\right)$ is suboptimal. Hence, $P\left(\tau_{0} ; \mathbf{Q}^{\mathbf{C}}\right)=P\left(\tau_{0}, \mathbf{Q}\left(\mathcal{D}_{\mathbf{1}}\right)\right)>$ $P\left(\tau_{0}, \mathbf{Q}\left(\mathcal{D}_{\mathbf{h}}\right)\right)$.

To show (ii), we next establish that $P\left(\tau_{0} ; \mathbf{Q}\right)$ is Lipschitz continuous in τ_{0}. From (??), for any $\tau_{0}^{1}, \tau_{0}^{2} \in\left(\tau_{2}, \tau_{1}\right)$ with $\tau_{0}^{1} \tau_{0} 2$,

$$
\left|\frac{P\left(\tau_{0}^{1} ; \mathbf{Q}\right)-P\left(\tau_{0}^{2} ; \mathbf{Q}\right)}{\tau_{0}^{1}-\tau_{0}^{2}}\right| \leq\left(A_{1}^{+}+A_{2}^{+}\right) \leq \sum_{1}^{2}\left(r_{i}-c_{i}\right) Q_{i} .
$$

The monotonicity and continuity of $P\left(\tau_{0} ; \mathbf{Q}\right)$ in τ_{0} guarantee there exists a $\tilde{\tau}_{0} \in\left(\tau_{2}, \tau_{1}\right)$, for $\tau_{0} \in$ $\left.\left.\left(\tau_{2}, \tilde{\tau}_{0}\right), P\left(\tau_{0} ; \mathbf{Q}\left(\mathcal{D}_{1}\right)\right)\right)>P\left(\tau_{0} ; \mathbf{Q}\left(\mathcal{D}_{\mathbf{h}}\right)\right)\right)$ and the opposite holds for $\tau_{0} \in\left(\tilde{\tau}_{0}, \tau_{1}\right)$.

Proof of Proposition 6 This proposition is a direct result of Proposition 1.4 in Appendix 1.4.
Proof of Propositions 7 and 8 The proof is embedded in the main body of the paper.

3. Marginal Profit for the Extensions

3.1. FTC Carry-Forward

Under the revised ex ante L condition, i.e.,

$$
\left(\tau_{0}-\tau_{2}\right)\left(r_{2}-c_{2}\right) Q_{2}-\left(\tau_{1}-\tau_{0}\right)\left(r_{1}-c_{1}\right) Q_{1}>K
$$

Figure 4 Demand Realization Regions
the demand realization space can be partitioned as in Figure 4. Following a similar analysis as in Section 4, the MNF's marginal expected profits with respect to Q_{i} are

$$
\begin{align*}
\frac{\partial P_{1}^{C}(\mathbf{Q} ; K)}{\partial Q_{1}}= & \left(1-\tau_{0}\right)\left\{\left(r_{1}-c_{1}\right) \operatorname{Pr}\left\{D_{1}>Q_{1}\right\}-\left(c_{1}-s_{1}\right) \operatorname{Pr}\left\{\theta_{1} Q_{1}<D_{1}<Q_{1}\right\}\right\} \\
& -\left(c_{1}-s_{1}\right) \operatorname{Pr}\left\{D_{1}<\theta_{1} Q_{1}\right\} \tag{23}\\
- & \left(\tau_{1}-\tau_{0}\right)\left\{\left(r_{1}-c_{1}\right)\left[\Delta\left(C_{3}\right)+\Delta\left(C_{4}\right)+\Delta\left(C_{7}\right)\right]-\left(c_{1}-s_{1}\right)\left[\Delta\left(C_{1}\right)\right.\right. \\
& \left.+\Delta\left(C_{2}\right)+\Delta\left(C_{6}\right)\right]
\end{align*}
$$

and

$$
\begin{align*}
\frac{\partial P_{1}^{C}(\mathbf{Q} ; K)}{\partial Q_{2}}= & \left(1-\tau_{0}\right)\left\{\left(r_{2}-c_{2}\right) \operatorname{Pr}\left\{D_{2}>Q_{2}\right\}-\left(c_{2}-s_{2}\right) \operatorname{Pr}\left\{\theta_{2} Q_{2}<D_{2}<Q_{2}\right\}\right. \\
& -\left(c_{2}-s_{2}\right) \operatorname{Pr}\left\{D_{2}<\theta_{2} Q_{2}\right\} \tag{24}\\
= & \left(\tau_{0}-\tau_{2}\right)\left(c_{2}-s_{2}\right)\left[\Delta\left(C_{1}\right)+\Delta\left(C_{2}\right)+\Delta\left(C_{3}\right)+\Delta\left(C_{4}\right)+\Delta\left(C_{5}\right)\right]
\end{align*}
$$

Under the revised ex ante condition C,

$$
\left(\tau_{1}-\tau_{0}\right)\left(r_{1}-c_{1}\right) Q_{1}+K>\left(\tau_{0}-\tau_{2}\right)\left(r_{2}-c_{2}\right) Q_{2}
$$

Figure 5 Demand Realization Regions
the demand realization space can be partitioned as in Figure 3. After a few transformations, the MNF's marginal profits can be written as

$$
\begin{align*}
\frac{\partial P_{1}^{C}(\mathbf{Q} ; K)}{\partial Q_{1}}= & \left(1-\tau_{1}\right)\left\{\left(r_{1}-c_{1}\right) \operatorname{Pr}\left\{D_{1}>Q_{1}\right\}-\left(c_{1}-s_{1}\right) \operatorname{Pr}\left\{\theta_{1} Q_{1}<D_{1}<Q_{1}\right\}\right\} \\
& -\left(c_{1}-s_{1}\right) \operatorname{Pr}\left\{D_{1}<\theta_{1} Q_{1}\right\} \tag{25}\\
& -\left(\tau_{1}-\tau_{0}\right)\left(c_{1}-s_{1}\right)\left[\Delta\left(L_{3}\right)+\Delta\left(L_{4}\right)\right]
\end{align*}
$$

and

$$
\begin{align*}
\frac{\partial P_{1}^{C}(\mathbf{Q} ; K)}{\partial Q_{2}}= & \left(1-\tau_{2}\right)\left\{\left(r_{2}-c_{2}\right) \operatorname{Pr}\left\{D_{2}>Q_{2}\right\}-\left(c_{2}-s_{2}\right) \operatorname{Pr}\left\{\theta_{2} Q_{2}<D_{2}<Q_{2}\right\}\right\} \\
& -\left(c_{2}-s_{2}\right) \operatorname{Pr}\left\{D_{2}<\theta_{2} Q_{2}\right\} \tag{26}\\
& -\left(\tau_{0}-\tau_{2}\right)\left\{\left(r_{2}-c_{2}\right)\left[\Delta\left(L_{2}\right)+\Delta\left(L_{3}\right)\right]-\left(c_{2}-s_{2}\right)\left[\Delta\left(L_{1}\right)+\Delta\left(L_{4}\right)\right]\right\}
\end{align*}
$$

3.2. FTC Carry-Back

Under the revised ex ante L condition

$$
\left(\tau_{0}-\tau_{2}\right)\left(r_{2}-c_{2}\right) Q_{2}+J>\left(\tau_{1}-\tau_{0}\right)\left(r_{1}-c_{1}\right) Q_{1}
$$

the demand realization space can be described by Figure 5. Using Figure 5, the MNF's marginal expected profit with respect to Q_{1} is

$$
\begin{align*}
\frac{\partial P_{2}^{C}(\mathbf{Q} ; J)}{\partial Q_{1}}= & \left(1-\tau_{0}\right)\left[\left(r_{1}-c_{1}\right) \operatorname{Pr}\left\{D_{1}>Q_{1}\right\}-\left(c_{1}-s_{1}\right) \operatorname{Pr}\left\{\theta_{1} Q_{1}<D_{1}<Q_{1}\right\}\right] \\
& -\left(c_{1}-s_{1}\right) \operatorname{Pr}\left\{D_{1}<\theta_{1} Q_{1}\right\} \tag{27}\\
& -\left(\tau_{1}-\tau_{0}\right)\left[\left(r_{1}-c_{1}\right)\left[\Delta\left(C_{3}\right)+\Delta\left(C_{4}\right)\right]-\left(c_{1}-s_{1}\right)\left[\Delta\left(C_{1}\right)+\Delta\left(C_{2}\right)\right]\right.
\end{align*}
$$

Figure 6 Demand Realization Regions
and that with respect to Q_{2} is

$$
\begin{align*}
\frac{\partial P_{2}^{C}(\mathbf{Q} ; J)}{\partial Q_{2}}= & \left(1-\tau_{0}\right)\left[\left(r_{2}-c_{2}\right) \operatorname{Pr}\left\{D_{2}>Q_{2}\right\}-\left(c_{2}-s_{2}\right) \operatorname{Pr}\left\{\theta_{2} Q_{2}<D_{2}<Q_{2}\right\}\right. \\
& -\left(c_{2}-s_{2}\right) \operatorname{Pr}\left\{D_{2}<\theta_{2} Q_{2}\right\} \tag{28}\\
= & \left(\tau_{0}-\tau_{2}\right)\left(c_{2}-s_{2}\right)\left[\Delta\left(C_{2}\right)+\Delta\left(C_{3}\right)\right] .
\end{align*}
$$

Under the revised ex ante condition C

$$
\left(\tau_{0}-\tau_{2}\right)\left(r_{2}-c_{2}\right) Q_{2}+J<\left(\tau_{1}-\tau_{0}\right)\left(r_{1}-c_{1}\right) Q_{1},
$$

the demand space can be partitioned as in Figure 6. The MNF's marginal profits are as below:

$$
\begin{align*}
\frac{\partial P_{2}^{C}(\mathbf{Q} ; J)}{\partial Q_{1}}= & \left(1-\tau_{1}\right)\left[\left(r_{1}-c_{1}\right) \operatorname{Pr}\left\{D_{1}>Q_{1}\right\}-\left(c_{1}-s_{1}\right) \operatorname{Pr}\left\{\theta_{1} Q_{1}<D_{1}<Q_{1}\right\}\right] \\
& -\left(c_{1}-s_{1}\right) \operatorname{Pr}\left\{D_{1}<\theta_{1} Q_{1}\right\} \tag{29}\\
+ & \left(\tau_{1}-\tau_{0}\right)\left[-\left(c_{1}-s_{1}\right)\left[\Delta\left(L_{3}\right)+\Delta\left(L_{4}\right)+\Delta\left(L_{5}\right)+\Delta\left(L_{6}\right)+\Delta\left(L_{7}\right)\right]\right.
\end{align*}
$$

and

$$
\begin{align*}
\frac{\partial P_{2}^{C}(\mathbf{Q} ; J)}{\partial Q_{2}}= & \left(1-\tau_{2}\right)\left[\left(r_{2}-c_{2}\right) \operatorname{Pr}\left\{D_{2}>Q_{2}\right\}-\left(c_{2}-s_{2}\right) \operatorname{Pr}\left\{\theta_{2} Q_{2}<D_{2}<Q_{2}\right\}\right. \\
& -\left(c_{2}-s_{2}\right) \operatorname{Pr}\left\{D_{2}<\theta_{2} Q_{2}\right\} \tag{30}\\
- & \left(\tau_{0}-\tau_{2}\right)\left[\left(r_{2}-c_{2}\right)\left[\Delta\left(L_{2}\right)+\Delta\left(L_{3}\right)+\Delta\left(L_{7}\right)\right]\right. \\
& -\left(c_{2}-s_{2}\right)\left[\Delta\left(L_{1}\right)+\Delta\left(L_{4}\right)+\Delta\left(L_{6}\right)\right] .
\end{align*}
$$

3.3. Loss Carry-Forward

The demand spaces partitions under the revised ex ante L and C conditions are shown in Figures 7 and 8, respectively. By comparing Figures 7 and 8 with Figures 1 and 2, respectively, it is clear that four of the boundary lines have shifted upward (or to the right) by a constant, $T_{2} /\left(r_{2}+s_{2}\right)$. As a consequence, the marginal profits of the MNF will have the identical expressions as in Section 4, although the boundaries for some of regions have be adjusted by a constant. Hence, we omit the equations for the MNF's marginal profits here for brevity.

Figure 7 Demand Realization Regions

Figure 8 Demand Realization Regions

3.4. Loss Carry-Back

The global firm's after-tax profits with loss carry-back can be expressed as:

$$
\Pi_{4}^{C}(\mathbf{Q} ; Y)=\Pi^{C}(\mathbf{Q})+\tau_{0} \min \left\{-A_{2}^{-}, Y\right\},
$$

where $\Pi^{C}(\mathbf{Q})$, defined in Section 3, is the expected after-tax profit without loss carry-back consideration. Since the last term in of Π_{4}^{C} is independent of S_{1} 's decision. Moreover, the tax cross-averaging effect and tax refund will not occur simultaneously. Let $P_{4}^{C}(\mathbf{Q}) \equiv E_{\mathbf{D}} \Pi_{4}^{C}(\mathbf{Q} ; Y)$). We have the following partial derivatives:

$$
\begin{aligned}
& \frac{\partial P_{4}^{C}(\mathbf{Q} ; Y)}{\partial Q_{1}}=\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{1}} \\
& \frac{\partial P_{4}^{C}(\mathbf{Q} ; Y)}{\partial Q_{2}}=\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{2}}+\tau_{0}\left(c_{2}-s_{2}\right) \operatorname{Pr}\left\{\theta_{2} Q_{2}>D_{2}>\theta_{2} Q_{2}-\frac{Y}{r_{2}-s_{2}}\right\} .
\end{aligned}
$$

