Technical Appendix Global Sourcing Decisions for a Multinational Firm With Foreign Tax Credit Planning

Vernon Hsu

Department of Decision Science & Managerial Economics, Chinese University of Hong Kong, Hong Kong, vhsu@cuhk.edu.hk

Qiaohai (Joice) Hu Department of Supply Chain Analytics, University of Missouri St. Louis, joice.hu@gmail.com

1. Definitions of Δs in Figures 1 and 2 and Derivation of Figure 2 1.1. Definitions of Δs in Figure 1

$$\begin{split} &\Delta(O) = \Pr\{D_1 < \theta_1 Q_1, D_2 < \theta_2 Q_2\} \\ &\Delta(C_1) = \Pr\{\theta_1 Q_1 < D_1 < Q_1, D_2 < \theta_2 Q_2\} \\ &\Delta(C_2) = \Pr\{\theta_1 Q_1 < D_1 < Q_1, D_2 < \theta_2 Q_2 + \frac{\tau_1 - \tau_0}{\tau_0 - \tau_2} \frac{1}{r_2 - s_2} [(r_1 - s_1)D_1 - (c_1 - s_1)Q_1] \\ &\Delta(C_3) = \Pr\{D_1 > Q_1, \theta_2 Q_2 < D_2 < \theta_2 Q_2 + \frac{\tau_1 - \tau_0}{\tau_0 - \tau_2} \gamma_1 Q_1\} \\ &\Delta(C_4) = \Pr\{D_1 > Q_1, D_2 < \theta_2 Q_2\} \\ &\Delta(L_4) = \Pr\{D_1 < \theta_1 Q_1, \theta_2 Q_2 < D_2 < Q_2\} \\ &\Delta(L_4) = \Pr\{D_1 < \theta_1 Q_1, D_2 > Q_2\} \\ &\Delta(L_4) = \Pr\{D_1 > Q_1, D_2 > Q_2\} \\ &\Delta(L_5) = \Pr\{D_1 > Q_1, \theta_2 Q_2 + \frac{\tau_1 - \tau_0}{\tau_0 - \tau_2} \gamma_1 Q_1 < D_2 < Q_2\} \\ &\Delta(L_6) = \Pr\{\theta_1 Q_1 < D_1 < Q_1, \theta_2 Q_2 + \frac{\tau_1 - \tau_0}{\tau_0 - \tau_2} \gamma_1 Q_1 < D_2 < Q_2\} \\ &\Delta(L_7) = \Pr\{\theta_1 Q_1 < D_1 < Q_1, D_2 > \theta_2 Q_2 + \frac{\tau_1 - \tau_0}{\tau_0 - \tau_2} \gamma_1 Q_1 < D_2 < Q_2\} \end{split}$$

1.2. Definition of Δs in Figure 2

$$\begin{split} &\Delta(O) = \Pr\{D_1 < \theta_1 Q_1, D_2 < \theta_2 Q_2\} \\ &\Delta(C_1) = \Pr\{\theta_1 Q_1 < D_1 < \theta_1 Q_1 + \frac{\tau_0 - \tau_2}{\tau_1 - \tau_0} \gamma_2 Q_2, D_2 < \theta_2 Q_2\} \\ &\Delta(C_2) = \Pr\{\theta_1 Q_1 < D_1 < \theta_1 Q_1 + \frac{\tau_0 - \tau_2}{\tau_1 - \tau_0} \gamma_2 Q_2, D_2 < \theta_2 Q_2 + \frac{\tau_1 - \tau_0}{\tau_0 - \tau_2} \frac{1}{r_2 - s_2} [(r_1 - s_1) D_1 - (c_1 - s_1) Q_1]\} \\ &\Delta(C_3) = \Pr\{\theta_1 Q_1 + \frac{\tau_0 - \tau_2}{\tau_1 - \tau_0} \gamma_2 Q_2 < D_1 < Q_1, D_2 > Q_2\} \\ &\Delta(C_4) = \Pr\{D_1 > Q_1, D_2 > Q_2\} \\ &\Delta(C_5) = \Pr\{D_1 > Q_1, \theta_2 Q_2 < D_2 < Q_2\} \\ &\Delta(C_6) = \Pr\{\theta_1 Q_1 + \frac{\tau_0 - \tau_2}{\tau_1 - \tau_0} \gamma_2 Q_2 < D_1 < Q_1, \theta_2 Q_2 < D_2 < Q_2\} \\ &\Delta(C_7) = \Pr\{\theta_1 Q_1 + \frac{\tau_0 - \tau_2}{\tau_1 - \tau_0} \gamma_2 Q_2 < D_1 < Q_1, D_2 < \theta_2 Q_2\} \\ &\Delta(C_8) = \Pr\{D_1 > Q_1, D_2 < \theta_2 Q_2\} \\ &\Delta(L_1) = \Pr\{D_1 < \theta_1 Q_1, \theta_2 Q_2 < D_2 < Q_2\} \\ &\Delta(L_2) = \Pr\{D_1 < \theta_1 Q_1, \theta_2 Q_2 < D_2 < Q_2\} \\ &\Delta(L_3) = \Pr\{\theta_1 Q_1 < D_1 < \theta_1 Q_1 + \frac{\tau_0 - \tau_2}{\tau_1 - \tau_0} \gamma_2 Q_2, D_2 > Q_2\} \\ &\Delta(L_4) = \Pr\{\theta_1 Q_1 < D_1 < \theta_1 Q_1 + \frac{\tau_0 - \tau_2}{\tau_1 - \tau_0} \gamma_2 Q_2, D_2 > \theta_2 Q_2 + \frac{\tau_1 - \tau_0}{\tau_0 - \tau_2} \frac{1}{r_2 - s_2} [(r_1 - s_1) D_1 - (c_1 - s_1) Q_1]\} \end{aligned}$$

1.3. Derivation of the First-Order Conditions Under Conditions L, C, and E

Case 1. Q satisfies the L condition Define $\gamma_i = (r_i - c_i)/(r_j - s_j)$, $i \neq j$ and note that $\theta_i = (c_i - s_i)/(r_i - s_i)$. Figure 1 shows different demand realization regions in which expost either event L

(in regions L_1 - L_7) or event C (in regions C_1 - C_4) occurs. Specifically, we note that when $D_i < \theta_i Q_i$, i = 1, 2, neither subsidiary makes a profit, so no tax incurs in region O.

The partial derivatives of $P^{C}(\mathbf{Q})$ with respect to Q_{1} , provided that \mathbf{Q} satisfies ex ante condition L, are as given by

$$\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{1}} = -(c_{1} - s_{1})\{\Delta(O) + \Delta(L_{1}) + \Delta(L_{2})\} - (1 - \tau_{1})(c_{1} - s_{1})[\Delta(C_{1}) + \Delta(C_{2})] - (1 - \tau_{0})(c_{1} - s_{1})[\Delta(L_{3}) + \Delta(L_{6}) + \Delta(L_{7})] + (1 - \tau_{1})(r_{1} - c_{1})[\Delta(C_{3}) + \Delta(C_{4})]$$
(1)
+ $(1 - \tau_{0})(r_{1} - c_{1})[\Delta(L_{4}) + \Delta(L_{5})].$

After collapsing terms, (1) can be rewritten as

$$\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{1}} = (1 - \tau_{1})[(r_{1} - c_{1})Pr\{D_{1} > Q_{1}\} - (c_{1} - s_{1})Pr\{\theta_{1}Q_{1} < D_{1} < Q_{1}\}] - (c_{1} - s_{1})Pr\{D_{1} \le \theta_{1}Q_{1}\} + (\tau_{1} - \tau_{0})\Big\{(r_{1} - c_{1})[\Delta(L_{4}) + \Delta(L_{5})] - (c_{1} - s_{1})[\Delta(L_{3}) + \Delta(L_{6}) + \Delta(L_{7})]\Big\}.$$

$$(2)$$

Equation (2) can be interpreted as follows: the first and second lines are the marginal profitability with respect to an increase of Q_1 for the subsidiary S_1 under its own after-local-tax profit maximization problem discussed earlier in Section 3 (see (10)). The third line represents the marginal benefits of the global firm due to tax cross-crediting across the two subsidiaries.

With a similar analysis, we can also derive the partial derivative of $P^{C}(\mathbf{Q})$ with respect to Q_{2} as follows:

$$\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{2}} = (1 - \tau_{2})[(r_{2} - c_{2})Pr\{D_{2} > Q_{2}\} - (c_{2} - s_{2})Pr\{\theta_{2}Q_{2} < D_{2} < Q_{2}\}] - (c_{2} - s_{2})Pr\{D_{2} \le \theta_{2}Q_{2}\} + (\tau_{2} - \tau_{0})\Big\{(r_{2} - c_{2})[\Delta(L_{2}) + \Delta(L_{3}) + \Delta(L_{4})] - (c_{2} - s_{2})[\Delta(L_{1}) + \Delta(L_{5}) + \Delta(L_{6}) + \Delta(L_{7})]\Big\}.$$

$$(3)$$

The interpretation for (3) is similar to that for (2).

Case 2. Q satisfies the C condition

We now turn to the situation in which a given sourcing decision \mathbf{Q} satisfies ex ante condition C. Figure 2 illustrates different demand realization regions. Similar to Figure 1, in region O, no tax incurs; in regions L_1 - L_4 , we have event L ex post; and in regions C_1 - C_7 , we have event C ex post.

Following a similar analysis as in Case 1, we can show that when \mathbf{Q} satisfies condition C, the partial derivatives are as follows:

$$\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{1}} = (1 - \tau_{1})[(r_{1} - c_{1})Pr\{D_{1} > Q_{1}\} - (c_{1} - s_{1})Pr\{\theta_{1}Q_{1} < D_{1} < Q_{1}\}] - (c_{1} - s_{1})Pr\{D_{1} \le \theta_{1}Q_{1}\} - (\tau_{1} - \tau_{0})(c_{1} - s_{1})[\Delta(L_{3}) + \Delta(L_{4})],$$

$$(4)$$

Figure 2 Demand Realization Regions under the C Condition

and

$$\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{2}} = (1 - \tau_{2})[(r_{2} - c_{2})Pr\{D_{2} > Q_{2}\} - (c_{2} - s_{2})Pr\{\theta_{2}Q_{2} < D_{2} < Q_{2}\}] - (c_{2} - s_{2})Pr\{D_{2} \le \theta_{2}Q_{2}\} - (\tau_{0} - \tau_{2})\{(r_{2} - c_{2})[\Delta(L_{2}) + \Delta(L_{3})] - (c_{2} - s_{2})[\Delta(L_{1}) + \Delta(L_{4})]\}.$$
(5)

Case 3. Q satisfies the ex ante E condition

Under this condition, $\theta_1 Q_1 + \frac{\tau_0 - \tau_2}{\tau_1 - \tau_0} \gamma_2 Q_2 = Q_1$ and $\theta_2 Q_2 + \frac{\tau_1 - \tau_0}{\tau_0 - \tau_2} \gamma_1 Q_1 = Q_2$. As a result, Figures 1 and 2 become identical. Thus, if condition E holds, $\mathbf{Q}^{\mathbf{C}}$ satisfies the following equations:

$$\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{1}} + \frac{(\tau_{1} - \tau_{0})(r_{1} - c_{1})}{(\tau_{0} - \tau_{2})(r_{2} - c_{2})} \frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{2}} = 0,$$
(6)

$$(\tau_1 - \tau_0)(r_1 - c_1)Q_1 - (\tau_0 - \tau_2)(r_2 - c_2)Q_2 = 0,$$
(7)

where $\frac{\partial P^C(\mathbf{Q})}{\partial Q_1}$ and $\frac{\partial P^C(\mathbf{Q})}{\partial Q_2}$ are given by (4) and (5), respectively.

1.4. A single firm's optimal quantity with tax consideration

For any given sourcing quantity Q_i and realized demand D_i , let A_i be S_i 's pretax profits. We have

$$A_i(Q_i) = r_i \min\{Q_i, D_i\} + s_i(Q_i - D_i)^+ - c_i Q_i = (r_i - c_i)Q_i - (r_i - s_i)(Q_i - D_i)^+.$$
(8)

At the end of each year (period), if S_i is profitable, its profits are taxed on the internal managerial books at the managerial tax rate τ . However, if a loss incurs, no tax will be levied. The after-tax profits or losses corresponding to $A_i(Q_i)$ is therefore given by

$$\Pi_i(\tau, Q_i) = A_i(Q_i) - \tau A_i(Q_i)^+ = (1 - \tau)A_i(Q_i) + \tau A_i(Q_i)^-$$

where $A_i(Q_i)^- = min(0, A_i(Q_i))$ and $A_i(Q_i)^+ = max(0, A_i(Q_i))$. The subsidiary S_i 's objective is to choose an optimal sourcing quantity $Q_i(\tau)$ which solves the following maximization problem:

$$P_{i}(\tau) \equiv \max_{Q_{i}} \{ E_{D_{i}}(\Pi_{i}(\tau, Q_{i})) \}.$$
(9)

It is easy to verify that $A_i(Q_i)$, $-A_i(Q_i)^+$ and $A_i(Q_i)^-$ are all concave in Q_i . Thus, $\Pi_i(\tau, Q_i)$ and $E_{D_i}\{\Pi_i(\tau, Q_i)\}$ are also concave in Q_i . The partial derivative of the expected after-tax profits for subsidiary S_i with respect to Q_i as follows

$$\frac{\partial E_{D_i}(\Pi_i(\tau, Q_i))}{\partial Q_i} = (1 - \tau)[(r_i - c_i)Pr\{D_i \ge Q_i\} - (c_i - s_i)Pr\{\theta_i Q_i < D_i < Q_i\}] - (c_i - s_i)Pr\{D_i < \theta_i Q_i\},$$
(10)

where Pr represents probability.

Setting (10) to zero yields

$$Pr\{D_i < Q_i(\tau)\} = \frac{r_i - c_i}{r_i - s_i} - \frac{\tau(c_i - s_i)Pr\{D_i < \theta_i Q_i(\tau)\}}{(1 - \tau)(r_i - s_i)}.$$
(11)

Note that when $\tau = 0$, $Q_i(0)$ is the quantity chosen by a traditional newsvendor without tax consideration. From (11), we gain some insights on the optimal policy under the after-tax objective which are summarized in the following proposition.

Single Firm Proposition: (i) The after-tax objective causes the firm to produce less (i.e., $Q_i(\tau) \leq Q_i(0)$) than the optimal sourcing quantity under the pretax objective; (ii) The optimal sourcing quantity $Q_i(\tau)$ satisfies (5) in the main body of this paper.

2. Proof of the Main Results

Proof of Proposition 1 Let $g_1(\mathbf{Q}) = \Pi_1(\tau_0, Q_1) + \Pi_2(\tau_0, Q_2)$ and $g_2(\mathbf{Q}) = \Pi_1(\tau_1, Q_1) + \Pi_2(\tau_2, Q_2)$. It is straightforward to see that $E[\Pi_i(\tau, Q_i)]$ is strictly concave in Q_i under the assumption that $f_i(\cdot)$ is strictly positive. The sum of strictly concave functions is also strictly concave. Hence, $E[g_1(\mathbf{Q})]$ is strictly concave. By definition, we need to show $P^C(t\mathbf{Q_1} + (1-t)\mathbf{Q_2}) > tP^C(\mathbf{Q_1}) + (1-t)P^C(\mathbf{Q_2})$ for the strict concavity of $P^C(\cdot)$ for 0 < t < 1.

$$\begin{split} P^{C}(t\mathbf{Q_{1}} + (1-t)\mathbf{Q_{2}}) &= E[min[g_{1}(t\mathbf{Q_{1}} + (1-t)\mathbf{Q_{2}}), g_{2}(t\mathbf{Q_{1}} + (1-t)\mathbf{Q_{2}})] \\ &\geq min[E[g_{1}(t\mathbf{Q_{1}} + (1-t)\mathbf{Q_{2}})], E[g_{2}(t\mathbf{Q_{1}} + (1-t)\mathbf{Q_{2}})]] \\ &> min[tE[g_{1}(\mathbf{Q_{1}})] + (1-t)E[g_{1}(\mathbf{Q_{2}})], tE[g_{2}(\mathbf{Q_{1}})] + (1-t)E[g_{1}(\mathbf{Q_{2}})]] \\ &= tminE[g_{1}(\mathbf{Q_{1}}), g_{2}(\mathbf{Q_{1}})] + (1-t)minE[g_{1}(\mathbf{Q_{2}}), g_{2}(\mathbf{Q_{2}})] = tP^{C}(\mathbf{Q_{1}}) + (1-t)P^{C}(\mathbf{Q_{2}}). \end{split}$$

The first inequality holds due to Jensen's inequality. The second strict inequality holds because of the strict concavity of $g_1(\cdot)$ and $g_2(\cdot)$. \Box

Proof of Proposition 2 Proposition 2 is derived by Proposition 1 and setting the first-order conditions given by equations (2) to (7) to zero.

The next result will be used for the proof of Proposition 3.

LEMMA 1. For all $Q_i \leq Q_i(0)$,

$$(r_i - c_i) Pr\{D_i > Q_i\} - (c_i - s_i) Pr\{\theta_i Q_i < D_i < Q_i\} \ge 0.$$
(12)

Proof of Lemma 1. This result follows directly from the marginal after-tax profit of a subsidiary:

$$\frac{\partial E_{D_i}(\Pi_i(\tau, Q_i))}{\partial Q_i} = (1 - \tau)[(r_i - c_i)Pr\{D_i \ge Q_i\} - (c_i - s_i)Pr\{\theta_i Q_i < D_i < Q_i\}] - (c_i - s_i)Pr\{D_i < \theta_i Q_i\}.$$
(13)

Since $E_{D_i}[\Pi_i(0,Q_i)]$ is concave, for all $Q_i \leq Q_i(0), \ \partial E_{D_i}[\Pi_i(0,Q_i)]/\partial Q_i \geq 0$, namely,

$$(r_i - c_i)Pr\{D_i \ge Q_i\} - (c_i - s_i)Pr\{\theta_i Q_i < D_i < Q_i\} \ge (c_i - s_i)Pr\{D_i < \theta_i Q_i\} \ge 0.$$

Proof of Proposition 4 For Part (i), because of the concavity of $P^{C}(\mathbf{Q})$, it suffices to show at $Q_{i} = Q_{i}(\tau_{0}), \partial P^{C}(\mathbf{Q})/\partial Q_{i} \leq 0$ for any Q_{j} . We can derive the marginal profit corresponding to each of the regions in Figure 1 and show that the partial derivatives are given as below:

$$\frac{\partial P^C(\mathbf{Q})}{\partial Q_1} = -(c_1 - s_1)[\Delta(O) + \Delta(L_1) + \Delta(L_2)] - (1 - \tau_1)(c_1 - s_1)[\Delta(C_1) + \Delta(C_2)] - (1 - \tau_0)(c_1 - s_1)[\Delta(L_3) + \Delta(L_6) + \Delta(L_7)] + (1 - \tau_1)(r_1 - c_1)[\Delta(C_3) + \Delta(C_4)]$$
(14)
+ (1 - \tau_0)(r_1 - c_1)[\Delta(L_4) + \Delta(L_5)].

After collapsing terms, it becomes

$$\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{1}} = (1 - \tau_{0})[(r_{1} - c_{1}) - (r_{1} - s_{1})Pr\{D_{1} < Q_{1}\}] - \tau_{0}(c_{1} - s_{1})Pr\{D_{1} < \theta_{1}Q_{1}\} - (\tau_{1} - \tau_{0})\{(r_{1} - c_{1})[\Delta(C_{3}) + \Delta(C_{4})] - (c_{1} - s_{1})[\Delta(C_{1}) + \Delta(C_{2})]\}.$$
(15)

At $Q_1 = Q_1(\tau_0)$, the first line of (15) vanishes. Moreover, since D_1 and D_2 are independent of each other,

$$\begin{split} \frac{\partial P^{C}(\mathbf{Q}))}{\partial Q_{1}} = & (r_{1} - c_{1})[\Delta(C_{3}) + \Delta(C_{4})] - (c_{1} - s_{1})[\Delta(C_{1}) + \Delta(C_{2})] \\ \leq & -(\tau_{1} - \tau_{0})\{(r_{1} - c_{1})[\Delta(C_{3}) + \Delta(C_{4})] - (c_{1} - s_{1})[\Delta(C_{1}) + \Delta(C_{2}) + \Delta(L_{7})]\} \\ = & Pr\{D_{2} < \theta_{2}Q_{2} + \frac{\tau_{1} - \tau_{0}}{\tau_{0} - \tau_{2}}\gamma_{1}Q_{1}\}[(r_{1} - c_{1})Pr\{D_{1} > Q_{1}\} - (c_{1} - s_{1})Pr\{\theta_{1}Q_{1} < D_{1} < Q_{1}\}] \end{split}$$

By Lemma 1, at $Q_1 = Q_1(\tau_0)$,

$$(r_1-c_1)Pr\{D_1>Q_1\}-(c_1-s_1)Pr\{\theta_1Q_1< D_1< Q_1\}\geq 0.$$

Therefore, at $Q_1 = Q_1(\tau_0)$, $\frac{\partial P^C(\mathbf{Q})}{\partial Q_1} \leq 0$. Thus, the concavity of $P^C(\mathbf{Q})$ and Proposition 1(ii) yield $Q_1^C \leq Q_1(\tau_0) \leq Q_1(0)$.

Similarly, using Figure 1,

$$\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{2}} = -(c_{2} - s_{2})[\Delta(O) + \Delta(C_{1}) + \Delta(C_{4})] - (1 - \tau_{0})(c_{2} - s_{2})[\Delta(L_{1}) + \Delta(L_{5}) + \Delta(L_{6}) + \Delta(L_{7})] - (1 - \tau_{2})(c_{2} - s_{2})[\Delta(C_{2}) + \Delta(C_{3})] + (1 - \tau_{0})(r_{2} - c_{2})[\Delta(L_{2}) + \Delta(L_{3}) + \Delta(L_{4})].$$
(16)

After collapsing terms, it becomes

$$\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{2}} = (1 - \tau_{0})[(r_{2} - c_{2}) - (r_{2} - s_{2})Pr\{D_{2} < Q_{2}\}] - \tau_{0}(c_{2} - s_{2})Pr\{D_{2} < \theta_{2}Q_{2}\} - (\tau_{0} - \tau_{2})(c_{2} - s_{2})[\Delta(C_{2}) + \Delta(C_{3})].$$
(17)

The first line of (17) vanishes at $Q_2 = Q_2(\tau_0)$, so

$$\frac{\partial P^C(\mathbf{Q})}{\partial Q_2} = -(\tau_0 - \tau_2)(c_2 - s_2)[\Delta(C_2) + \Delta(C_3)] \le 0$$

Hence, the concavity of $P^{C}(\mathbf{Q})$ and Proposition 1(ii) yield $Q_{2}^{C} \leq Q_{2}(\tau_{0}) \leq Q_{2}(\tau_{2}) \leq Q_{2}(0)$.

For part (ii), we derive the marginal profit corresponding to each of the regions in Figure 2 and show that the partial derivatives of $P^{C}(\mathbf{Q})$ with respect to Q_{1} is as follows:

$$\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{1}} = -(c_{1} - s_{1})[\Delta(O) + \Delta(L_{1}) + \Delta(L_{2})] - (1 - \tau_{0})(c_{1} - s_{1})[\Delta(L_{3}) + \Delta(L_{4})] - (1 - \tau_{1})(c_{1} - s_{1})[\Delta(C_{1}) + \Delta(C_{2}) + \Delta(C_{3}) + \Delta(C_{6}) + \Delta(C_{7}))] + (1 - \tau_{1})(r_{1} - c_{1})[\Delta(C_{4}) + \Delta(C_{5}) + \Delta(C_{8})].$$
(18)

After collapsing terms,

$$\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{1}} = (1 - \tau_{1})[(r_{1} - c_{1}) - (r_{1} - s_{1})Pr\{D_{1} \le Q_{1}\}] - \tau_{1}(c_{1} - s_{1})Pr\{D_{1} \le \theta_{1}Q_{1}\} - (\tau_{1} - \tau_{0})(c_{1} - s_{1})[\Delta(L_{3}) + \Delta(L_{4})].$$
(19)

At $Q_1 = Q_1(\tau_1)$, the first line of (19) vanishes, so

$$\frac{\partial P^C(\mathbf{Q})}{\partial Q_1} = -(\tau_1 - \tau_0)(c_1 - s_1)[\Delta(L_1) + \Delta(L_2)] \le 0.$$

Therefore, the concavity of $P^{C}(\mathbf{Q})$ and Proposition 1(ii) yield $Q_{1}^{C} \leq Q_{1}(\tau_{1}) \leq Q_{1}(\tau_{0}) \leq Q_{1}(0)$.

Similarly, using Figure 2 and the definitions of its areas, the global firm's marginal profit with respect to Q_2 is as follows:

$$\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{2}} = -(c_{2} - s_{2})[\Delta(O) + \Delta(C_{1}) + \Delta(C_{7}) + \Delta(C_{8})] - (1 - \tau_{2})(c_{2} - s_{2})[\Delta(C_{2}) + \Delta(C_{5}) + \Delta(C_{6})] + (1 - \tau_{2})(r_{2} - c_{2})[\Delta(C_{3}) + \Delta(C_{4})] - (1 - \tau_{0})(c_{2} - s_{2})[\Delta(L_{1}) + \Delta(L_{4})] + (1 - \tau_{0})(r_{2} - c_{2})[\Delta(L_{2}) + \Delta(L_{3})].$$

$$(20)$$

After collapsing terms,

At $Q_2 = Q_2(\tau_2)$,

$$\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{2}} = (1 - \tau_{2})[(r_{2} - c_{2}) - (r_{2} - s_{2})Pr\{D_{2} \le Q_{2}\}] - \tau_{2}(c_{2} - s_{2})Pr\{D_{2} \le \theta_{2}Q_{2}\} - (\tau_{0} - \tau_{2})\{(r_{2} - c_{2})[\Delta(L_{2}) + \Delta(L_{3})] - (c_{2} - s_{2})[\Delta(L_{1}) + \Delta(L_{4})]\}.$$
(21)

$$\frac{\partial P^{C}(\mathbf{Q})}{\partial Q_{2}} = -(\tau_{0} - \tau_{2})\{(r_{2} - c_{2})[\Delta(L_{2}) + \Delta(L_{3})] - (c_{2} - s_{2})[\Delta(L_{1}) + \Delta(L_{4})]\}
\leq -(\tau_{0} - \tau_{2})\{(r_{2} - c_{2})[\Delta(L_{2}) + \Delta(L_{3})] - (c_{2} - s_{2})[\Delta(L_{1}) + \Delta(L_{4}) + \Delta(C_{2})]\}
= -(\tau_{0} - \tau_{2})Pr\{D_{1} < \theta_{1}Q_{1} + \frac{\tau_{0} - \tau_{2}}{\tau_{1} - \tau_{0}}\gamma_{2}Q_{2}\}[(r_{2} - c_{2})Pr\{D_{2} > Q_{2}\}
- (c_{2} - s_{2})Pr\{\theta_{2}Q_{2} < D_{2} < Q_{2}\}] \leq 0.$$
(22)

because of Lemma 1. Hence, the concavity of $P^{C}(\mathbf{Q})$ and Proposition 1(ii) yield $Q_{2}^{C} \leq Q_{2}(\tau_{2}) \leq Q_{2}(0)$.

Proof of Corollary 1 Under all three conditions, $dQ_{2j}^C/d\tau_0$ must be decreasing in τ_0 as subsidiary S_2 is subject to home tax rate τ_0 although under certain demand realizations, the excess tax liability may be partially offset by the tax credit generated from subsidiary S_1 . The strict proof is shown below. From (15),

$$\frac{\partial^2 P^C(\mathbf{Q})}{\partial Q_1 \partial \tau_0} = -(c_1 - s_1) [\Delta(L_2) + \Delta(L_4) + (\tau_1 - \tau_0) \frac{d(\Delta(L_3) + \Delta(L_4))}{d\tau_0}] \le 0$$

As shown in Figure 2, as τ_0 increase, the line $Q_1 = \theta_1 Q_1 + \frac{(\tau_1 - \tau_0)}{(\tau_0 - \tau_2)} \gamma_2 Q_2$ shifts to the right as τ_0 increases. Thus, $\Delta(L_3)$ and $\Delta(L_4)$ increase.

$$\frac{\partial^2 P^C(\mathbf{Q})}{\partial Q_1 \partial Q_2} = -(\tau_1 - \tau_0)(c_1 - s_1) \frac{d(\Delta(L_3) + \Delta(L_4))}{dQ_2} \ge 0,$$

and

$$\begin{aligned} \frac{\partial^2 P^C(\mathbf{Q})}{\partial Q_2 \partial \tau_0} &= -\{(r_2 - c_2)[\Delta(L_2) + \Delta(L_3)] - (c_2 - s_2)[\Delta(L_1) + \Delta(L_4)]\} \\ &- (\tau_0 - \tau_2)\{(r_2 - c_2)\frac{d(\Delta(L_2) + \Delta(L_3))}{d\tau_0}] - (c_2 - s_2)\frac{d(\Delta(L_1) + \Delta(L_4))}{d\tau_0}\} \le 0. \end{aligned}$$

From Figure 2, ΔL_2 and ΔL_1 do not change as τ_0 increases. Moreover,

$$(r_{2} - c_{2})\frac{d\Delta L_{3}}{d\tau_{0}} - (c_{2} - s_{2})\frac{d\Delta(L_{4})}{d\tau_{0}}$$

$$\geq ((r_{2} - c_{2})Pr\{D_{2} > Q_{2}\} - (c_{2} - s_{2})Pr\{Pr\{\theta_{2}Q_{2} \le D_{2} \le Q_{2}\}f(\theta_{1}Q_{1} + \frac{\tau_{0} - \tau_{2}}{\tau_{1} - \tau_{0}}\gamma_{2}Q_{2})\frac{\tau_{1} - \tau_{2}}{(\tau_{1} - \tau_{0})^{2}} \ge 0.$$

Hence, $\frac{\partial^2 P^C(\mathbf{Q})}{\partial Q_2 \partial \tau_0} \leq 0$. The concavity of $P^C(\cdot)$ yields $dQ_{2C}^C/d\tau_0 \leq 0$. Above three inequalities and the concavity of $P^C(\cdot)$ implies $dQ_{iC}^C/d\tau_0 < 0$, i = 1, 2.

The proof of $dQ_{1L}^C/d\tau_0 \leq 0$ and $dQ_{2L}^C/d\tau_0 \leq 0$ can be shown similarly. Under condition L,

$$\begin{aligned} \frac{\partial^2 P^C(\mathbf{Q})}{\partial Q_1 \partial Q_2} &= -(\tau_1 - \tau_0) \{ (r_1 - c_1) \frac{d[\Delta(C_3) + \Delta(C_4)]}{dQ_2} - (c_1 - s_1) \frac{d[\Delta(C_1) + \Delta(C_2)]}{dQ_2} \} \\ &= \theta_2 f(\theta_2 Q_2 + \frac{\tau_1 - \tau_0}{\tau_0 - \tau_2} \gamma_1 Q_1) (\tau_1 - \tau_0) \{ (r_1 - c_1) Pr\{D_1 > Q_1\} - (c_1 - s_1) Pr\{\theta_1 Q_1 < D_1 < Q_1\} / 2 \} \ge 0. \end{aligned}$$

Similarly,
$$\frac{\partial P^C(\mathbf{Q})}{\partial Q_i \partial \tau_0} \le 0. \end{aligned}$$

Under condition E, the line $D_2 = \theta_2 Q_2 + \frac{\tau_1 - \tau_0}{\tau_0 - \tau_2} \gamma_1 Q_1$ merges with $D_2 = Q_2$ in Figure 1 and the line $D_1 = \theta_1 Q_1 + \frac{\tau_0 - \tau_2}{\tau_1 - \tau_0} \gamma_2 Q_2$ merges with $D_1 = Q_1$. As a result, Figures 1 and 2 become identical. Additionally, tax liability exactly equals tax credit when both subsidiaries sell up inventory, i.e., $(\tau_1 - \tau_0)(r_1 - c_1)Q_1 = (\tau_0 - \tau_2)(r_2 - c_2)Q_2$.

Here is a simpler proof of the monotonicity of $\mathbf{Q}^{\mathbf{C}}$ with respect to τ_0 . Under condition L or C, $\mathbf{Q}^{\mathbf{C}}$ satisfies the first-order conditions. $dQ_i^C/d\tau_0 \leq 0$ yields directly from the strict concavity of $P^C(\mathbf{Q})$ and $\frac{\partial^2 P^C(\mathbf{Q})}{\partial Q_i \partial \tau_0} \leq 0$, $\frac{\partial^2 P^C(\mathbf{Q})}{\partial Q_1 \partial Q_2} \geq 0$ and the Envelop Theorem. Under condition E, u = 0. Complete differentiating the equality with respect to τ_0 yields

$$-(r_1-c_1)Q_{1E}^C - (r_2-c_2)Q_{2E}^C = -(\tau_1-\tau_0)(r_1-c_1)\frac{dQ_{1E}^C}{d\tau_0} + (\tau_0-\tau_2)(r_2-c_2)\frac{dQ_{2E}^C}{d\tau_0}.$$

Since $(\tau_0 - \tau_2) \left| \frac{dQ_{2E}^C}{d\tau_0} \right| \le Q_{2E}^C$ and $Q_{1E}^C \ge -(\tau_1 - \tau_0) \frac{dQ_{1E}^C}{d\tau_0}$, for the equation above to hold, $\frac{dQ_{1E}^C}{d\tau_0} \ge 0$ must hold. \Box

Proof of Corollary 2 Let t be the Lagrange multiplier, the new objective function can be rewritten as

$$L(\mathbf{Q};\tau_0) = P^C(\mathbf{Q};\tau_0) + t[u - (\tau_1 - \tau_0)(r_1 - c_1)Q_1 + (\tau_0 - \tau_2)(r_2 - c_2)Q_2].$$

The optimal solution satisfies

$$\begin{aligned} \frac{\partial P^C(\mathbf{Q};\tau_0)}{\partial Q_1} &= t(\tau_1 - \tau_0)(r_1 - c_1) & \frac{\partial P^C(\mathbf{Q};\tau_0)}{\partial Q_2} = -t(\tau_0 - \tau_2)(r_2 - c_2), \\ ut &= 0 & u = (\tau_1 - \tau_0)(r_1 - c_1)Q_1 - (\tau_0 - \tau_2)(r_2 - c_2)Q_2. \end{aligned}$$

note that at $\tau_0 = \tau_2$, u > 0 for $\mathbf{Q} \neq 0$, i.e., C condition holds and at $\tau_0 = \tau_1$, u < 0, i.e., the **ex ante** condition L holds. As shown below, as τ_0 increases within the range of $[\tau_2, \tau_1]$, u decreases.

$$\frac{du}{d\tau_0} = -(r_1 - c_1)Q_1^C - (r_2 - c_2)Q_2^C + (\tau_1 - \tau_0)(r_1 - c_1)dQ_1^C/d\tau_0 - (\tau_0 - \tau_2(r_2 - c_2)dQ_2^C/d\tau_0.$$

Note that $(r_i - c_i)Q_i$ is subsidiary *i*'s maximum profit with excess demand. The first-order impact of τ_0 on tax credit (liability) must dominate the absolute value of the second order effect; i.e., $Q_1^C \ge (\tau_1 - \tau_0)|dQ_1^C/d\tau_0|$ and $Q_2^C \ge (\tau_0 - \tau_2)(r_2 - c_2)|dQ_2^C/d\tau_0|$ because the probability of crosscrediting is strictly less than 1 and at the two extreme points (i.e., $\tau_0 = \tau_2, \tau_1, Q_i^C > 0$). Hence, $\frac{du}{d\tau_0} \le 0$. Consequently, there must exist two threshold values, $\tau_2 \le \hat{\tau}_0 \le \tilde{\tau}_0 \le \tau_1$ such that condition C holds for $\tau_0 \in [\tau_2, \hat{\tau}_0)$; E condition holds for $\tau_0 \in [\hat{\tau}_0, \tilde{\tau}_0]$; and for $\tau \in (\tilde{\tau}_0, \tau_1]$, L condition holds.

Figure 3 Demand Realization Regions

Proof of Proposition 5 Part (i) holds because, $Q_i(0)$ deviates further away from the optimal quantity Q_i^C than $\mathbf{Q}(\mathcal{D}_{\mathbf{h}})$ and $\mathbf{Q}(\mathcal{D}_{\mathbf{l}})$, respectively and the concavity of $P^C(\mathbf{Q})$. First, from definition (??), $P(\tau_0; \mathbf{Q})$ is non-increasing and continuous in τ_0 for $\tau_0 \in (\tau_2, \tau_1)$ and any \mathbf{Q} . Hence, $P(\tau_0; \mathbf{Q}(\mathcal{D}_{\mathbf{h}})), P(\tau_0; \mathbf{Q}(\mathcal{D}_{\mathbf{l}}))$ and $P(\tau_0; \mathbf{Q}^{\mathbf{C}})$ are all non-increasing in τ_0 . At $\tau_0 = \tau_2$, $\mathbf{Q}^{\mathbf{C}} = \mathbf{Q}(\mathcal{D}_{\mathbf{l}})$, and \mathcal{D}_l is suboptimal for all $\tau_0 > \tau_2$, so at $\tau_0 = \tau_2$, $P(\tau_0; \mathbf{Q}(\mathcal{D}_{\mathbf{l}})) = P(\mathbf{Q}^{\mathbf{C}}) > P(\tau_0; \mathbf{Q}(\mathcal{D}_{\mathbf{h}}))$. Similarly, at $\tau_0 = \tau_1, \mathbf{Q}^{\mathbf{C}} = \mathbf{Q}(\mathcal{D}_{\mathbf{h}})$; for $\tau_0 \in (\tau_2, \tau_1)$, $\mathbf{Q}(\mathcal{D}_{\mathbf{h}})$) is suboptimal. Hence, $P(\tau_0; \mathbf{Q}^{\mathbf{C}}) = P(\tau_0, \mathbf{Q}(\mathcal{D}_{\mathbf{l}})) > P(\tau_0, \mathbf{Q}(\mathcal{D}_{\mathbf{h}}))$.

To show (ii), we next establish that $P(\tau_0; \mathbf{Q})$ is Lipschitz continuous in τ_0 . From (??), for any $\tau_0^1, \tau_0^2 \in (\tau_2, \tau_1)$ with $\tau_0^1 \tau_0 2$,

$$\left|\frac{P(\tau_0^1; \mathbf{Q}) - P(\tau_0^2; \mathbf{Q})}{\tau_0^1 - \tau_0^2}\right| \le (A_1^+ + A_2^+) \le \sum_{i=1}^2 (r_i - c_i)Q_i.$$

The monotonicity and continuity of $P(\tau_0; \mathbf{Q})$ in τ_0 guarantee there exists a $\tilde{\tau}_0 \in (\tau_2, \tau_1)$, for $\tau_0 \in (\tau_2, \tilde{\tau}_0)$, $P(\tau_0; \mathbf{Q}(\mathcal{D}_{\mathbf{l}})) > P(\tau_0; \mathbf{Q}(\mathcal{D}_{\mathbf{h}}))$ and the opposite holds for $\tau_0 \in (\tilde{\tau}_0, \tau_1)$. \Box

Proof of Proposition 6 This proposition is a direct result of Proposition 1.4 in Appendix 1.4. \Box Proof of Propositions 7 and 8 The proof is embedded in the main body of the paper. \Box

Marginal Profit for the Extensions FTC Carry-Forward

Under the revised ex ante L condition, i.e.,

$$(\tau_0 - \tau_2)(r_2 - c_2)Q_2 - (\tau_1 - \tau_0)(r_1 - c_1)Q_1 > K,$$

the demand realization space can be partitioned as in Figure 4. Following a similar analysis as in Section 4, the MNF's marginal expected profits with respect to Q_i are

$$\frac{\partial P_1^C(\mathbf{Q};K)}{\partial Q_1} = (1-\tau_0)\{(r_1-c_1)Pr\{D_1 > Q_1\} - (c_1-s_1)Pr\{\theta_1Q_1 < D_1 < Q_1\}\} - (c_1-s_1)Pr\{D_1 < \theta_1Q_1\} - (\tau_1-\tau_0)\{(r_1-c_1)[\Delta(C_3) + \Delta(C_4) + \Delta(C_7)] - (c_1-s_1)[\Delta(C_1) + \Delta(C_2) + \Delta(C_6)]$$
(23)

and

$$\frac{\partial P_1^C(\mathbf{Q};K)}{\partial Q_2} = (1-\tau_0)\{(r_2-c_2)Pr\{D_2 > Q_2\} - (c_2-s_2)Pr\{\theta_2Q_2 < D_2 < Q_2\} - (c_2-s_2)Pr\{D_2 < \theta_2Q_2\} - (\tau_0-\tau_2)(c_2-s_2)[\Delta(C_1) + \Delta(C_2) + \Delta(C_3) + \Delta(C_4) + \Delta(C_5)].$$

$$(24)$$

Under the revised ex ante condition C,

$$(\tau_1 - \tau_0)(r_1 - c_1)Q_1 + K > (\tau_0 - \tau_2)(r_2 - c_2)Q_2,$$

Figure 5 Demand Realization Regions

the demand realization space can be partitioned as in Figure 3. After a few transformations, the MNF's marginal profits can be written as

$$\frac{\partial P_1^C(\mathbf{Q};K)}{\partial Q_1} = (1-\tau_1)\{(r_1-c_1)Pr\{D_1 > Q_1\} - (c_1-s_1)Pr\{\theta_1Q_1 < D_1 < Q_1\}\} - (c_1-s_1)Pr\{D_1 < \theta_1Q_1\} - (\tau_1-\tau_0)(c_1-s_1)[\Delta(L_3) + \Delta(L_4)]$$
(25)

and

$$\frac{\partial P_1^C(\mathbf{Q};K)}{\partial Q_2} = (1-\tau_2)\{(r_2-c_2)Pr\{D_2 > Q_2\} - (c_2-s_2)Pr\{\theta_2Q_2 < D_2 < Q_2\}\} - (c_2-s_2)Pr\{D_2 < \theta_2Q_2\} - (\tau_0-\tau_2)\{(r_2-c_2)[\Delta(L_2) + \Delta(L_3)] - (c_2-s_2)[\Delta(L_1) + \Delta(L_4)]\}.$$
(26)

3.2. FTC Carry-Back

Under the revised **ex ante** L condition

$$(\tau_0 - \tau_2)(r_2 - c_2)Q_2 + J > (\tau_1 - \tau_0)(r_1 - c_1)Q_1,$$

the demand realization space can be described by Figure 5. Using Figure 5, the MNF's marginal expected profit with respect to Q_1 is

$$\frac{\partial P_2^C(\mathbf{Q};J)}{\partial Q_1} = (1-\tau_0)[(r_1-c_1)Pr\{D_1 > Q_1\} - (c_1-s_1)Pr\{\theta_1Q_1 < D_1 < Q_1\}] - (c_1-s_1)Pr\{D_1 < \theta_1Q_1\} - (\tau_1-\tau_0)[(r_1-c_1)[\Delta(C_3) + \Delta(C_4)] - (c_1-s_1)[\Delta(C_1) + \Delta(C_2)],$$
(27)

Figure 6 Demand Realization Regions

and that with respect to Q_2 is

$$\frac{\partial P_2^C(\mathbf{Q};J)}{\partial Q_2} = (1-\tau_0)[(r_2-c_2)Pr\{D_2 > Q_2\} - (c_2-s_2)Pr\{\theta_2 Q_2 < D_2 < Q_2\} - (c_2-s_2)Pr\{D_2 < \theta_2 Q_2\} - (\tau_0-\tau_2)(c_2-s_2)[\Delta(C_2) + \Delta(C_3)].$$
(28)

Under the revised **ex ante** condition C

$$(\tau_0 - \tau_2)(r_2 - c_2)Q_2 + J < (\tau_1 - \tau_0)(r_1 - c_1)Q_1,$$

the demand space can be partitioned as in Figure 6. The MNF's marginal profits are as below:

$$\frac{\partial P_2^C(\mathbf{Q};J)}{\partial Q_1} = (1-\tau_1)[(r_1-c_1)Pr\{D_1 > Q_1\} - (c_1-s_1)Pr\{\theta_1Q_1 < D_1 < Q_1\}] - (c_1-s_1)Pr\{D_1 < \theta_1Q_1\} + (\tau_1-\tau_0)[-(c_1-s_1)[\Delta(L_3) + \Delta(L_4) + \Delta(L_5) + \Delta(L_6) + \Delta(L_7)]$$
(29)

and

$$\frac{\partial P_2^C(\mathbf{Q};J)}{\partial Q_2} = (1-\tau_2)[(r_2-c_2)Pr\{D_2 > Q_2\} - (c_2-s_2)Pr\{\theta_2 Q_2 < D_2 < Q_2\} - (c_2-s_2)Pr\{D_2 < \theta_2 Q_2\} - (\tau_0-\tau_2)[(r_2-c_2)[\Delta(L_2) + \Delta(L_3) + \Delta(L_7)] - (c_2-s_2)[\Delta(L_1) + \Delta(L_4) + \Delta(L_6)].$$
(30)

3.3. Loss Carry-Forward

The demand spaces partitions under the revised **ex ante** L and C conditions are shown in Figures 7 and 8, respectively. By comparing Figures 7 and 8 with Figures 1 and 2, respectively, it is clear that four of the boundary lines have shifted upward (or to the right) by a constant, $T_2/(r_2 + s_2)$. As a consequence, the marginal profits of the MNF will have the identical expressions as in Section 4, although the boundaries for some of regions have be adjusted by a constant. Hence, we omit the equations for the MNF's marginal profits here for brevity.

Figure 7 Demand Realization Regions

Figure 8 Demand Realization Regions

3.4. Loss Carry-Back

The global firm's after-tax profits with loss carry-back can be expressed as:

$$\Pi_4^C(\mathbf{Q};Y) = \Pi^C(\mathbf{Q}) + \tau_0 \min\{-A_2^-, Y\},\$$

where $\Pi^{C}(\mathbf{Q})$, defined in Section 3, is the expected after-tax profit without loss carry-back consideration. Since the last term in of Π_{4}^{C} is independent of S_{1} 's decision. Moreover, the tax cross-averaging effect and tax refund will not occur simultaneously. Let $P_{4}^{C}(\mathbf{Q}) \equiv E_{\mathbf{D}}\Pi_{4}^{C}(\mathbf{Q};Y)$). We have the following partial derivatives:

$$\begin{split} &\frac{\partial P_4^C(\mathbf{Q};Y)}{\partial Q_1} = \frac{\partial P^C(\mathbf{Q})}{\partial Q_1}, \\ &\frac{\partial P_4^C(\mathbf{Q};Y)}{\partial Q_2} = \frac{\partial P^C(\mathbf{Q})}{\partial Q_2} + \tau_0(c_2 - s_2) Pr\{\theta_2 Q_2 > D_2 > \theta_2 Q_2 - \frac{Y}{r_2 - s_2}\}. \end{split}$$