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1. Definitions of ∆s in Figures 1 and 2 and Derivation of Figure 2
1.1. Definitions of ∆s in Figure 1

∆(O) = Pr{D1 < θ1Q1,D2 < θ2Q2}

∆(C1) = Pr{θ1Q1 <D1 <Q1,D2 < θ2Q2}

∆(C2) = Pr{θ1Q1 <D1 <Q1,D2 < θ2Q2 +
τ1− τ0
τ0− τ2

1

r2− s2
[(r1− s1)D1− (c1− s1)Q1]

∆(C3) = Pr{D1 >Q1, θ2Q2 <D2 < θ2Q2 +
τ1− τ0
τ0− τ2

γ1Q1}

∆(C4) = Pr{D1 >Q1,D2 < θ2Q2}

∆(L1) = Pr{D1 < θ1Q1, θ2Q2 <D2 <Q2}

∆(L2) = Pr{D1 < θ1Q1,D2 >Q2}

∆(L3) = Pr{θ1Q1 <D1 <Q1,D2 >Q2}

∆(L4) = Pr{D1 >Q1,D2 >Q2}

∆(L5) = Pr{D1 >Q1, θ2Q2 +
τ1− τ0
τ0− τ2

γ1Q1 <D2 <Q2}

∆(L6) = Pr{θ1Q1 <D1 <Q1, θ2Q2 +
τ1− τ0
τ0− τ2

γ1Q1 <D2 <Q2}

∆(L7) = Pr{θ1Q1 <D1 <Q1,D2 > θ2Q2 +
τ1− τ0
τ0− τ2

1

r2− s2
[(r1− s1)D1− (c1− s1)Q1]}

1
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Figure 3: Demand Realization Regions under the L Condition

Thus, below this line in Figure 3 is region C3 and above region L5. Finally, when θiQi < Di < Qi,

i = 1, 2, (τ0 − τ2)A
+
2 = (τ1 − τ0)A

+
1 if and only if

D2 = θ2Q2 +
τ1 − τ0

τ0 − τ2

1

r2 − s2
[(r1 − s1)D1 − (c1 − s1)Q1].

Thus, below the line is C2, and above it are regions L6 and L7.

We will now focus on the marginal after-tax profitability with respect to an increase of Q1

in each of the demand realization regions in Figure 3. First, note that when the subsidiary S1

has excess inventory, the marginal pretax cost is −(c1 − s1). When S1 has excess demand, the

pretax marginal profitability is (r1 − c1). In addition, based on discussions earlier, no tax is paid

if the global firm is not profitable. When the firm is profitable, the internalized effective tax rate

applied to either a marginal profit or a marginal cost is τ1 in an event C and τ0 in an event L. For

expository easiness, let ∆(W ) be the probability of the demand realization in a region W in Figure

3. We can now give the partial derivatives of PC(Q) with respect to Q1, provided that Q satisfies

condition (8).

∂PC(Q)

∂Q1
= −(c1 − s1){∆(O) + ∆(L1) + ∆(L2)} − (1 − τ1)(c1 − s1)[∆(C1) + ∆(C2)]

− (1 − τ0)(c1 − s1)[∆(L3) + ∆(L6) + ∆(L7)] + (1 − τ1)(r1 − c1)[∆(C3) + ∆(C4)]

+ (1 − τ0)(r1 − c1)[∆(L4) + ∆(L5)]

(11)

15

Figure 1 Demand Realization Regions under the L Condition.

1.2. Definition of ∆s in Figure 2

∆(O) = Pr{D1 < θ1Q1,D2 < θ2Q2}

∆(C1) = Pr{θ1Q1 <D1 < θ1Q1 +
τ0− τ2
τ1− τ0

γ2Q2,D2 < θ2Q2}

∆(C2) = Pr{θ1Q1 <D1 < θ1Q1 +
τ0− τ2
τ1− τ0

γ2Q2,D2 < θ2Q2 +
τ1− τ0
τ0− τ2

1

r2− s2
[(r1− s1)D1− (c1− s1)Q1]}

∆(C3) = Pr{θ1Q1 +
τ0− τ2
τ1− τ0

γ2Q2 <D1 <Q1,D2 >Q2}

∆(C4) = Pr{D1 >Q1,D2 >Q2}

∆(C5) = Pr{D1 >Q1, θ2Q2 <D2 <Q2}

∆(C6) = Pr{θ1Q1 +
τ0− τ2
τ1− τ0

γ2Q2 <D1 <Q1, θ2Q2 <D2 <Q2}

∆(C7) = Pr{θ1Q1 +
τ0− τ2
τ1− τ0

γ2Q2 <D1 <Q1,D2 < θ2Q2}

∆(C8) = Pr{D1 >Q1,D2 < θ2Q2}

∆(L1) = Pr{D1 < θ1Q1, θ2Q2 <D2 <Q2}

∆(L2) = Pr{D1 < θ1Q1,D2 >Q2}

∆(L3) = Pr{θ1Q1 <D1 < θ1Q1 +
τ0− τ2
τ1− τ0

γ2Q2,D2 >Q2}

∆(L4) = Pr{θ1Q1 <D1 < θ1Q1 +
τ0− τ2
τ1− τ0

γ2Q2,D2 > θ2Q2 +
τ1− τ0
τ0− τ2

1

r2− s2
[(r1− s1)D1− (c1− s1)Q1]}

1.3. Derivation of the First-Order Conditions Under Conditions L, C, and E

Case 1. Q satisfies the L condition Define γi = (ri − ci)/(rj − sj), i 6= j and note that θi = (ci −
si)/(ri− si). Figure 1 shows different demand realization regions in which ex post either event L
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(in regions L1-L7) or event C (in regions C1-C4) occurs. Specifically, we note that when Di < θiQi,

i= 1,2, neither subsidiary makes a profit, so no tax incurs in region O.

The partial derivatives of PC(Q) with respect to Q1, provided that Q satisfies ex ante condition

L, are as given by

∂PC(Q)

∂Q1

=−(c1− s1){∆(O) + ∆(L1) + ∆(L2)}− (1− τ1)(c1− s1)[∆(C1) + ∆(C2)]

− (1− τ0)(c1− s1)[∆(L3) + ∆(L6) + ∆(L7)] + (1− τ1)(r1− c1)[∆(C3) + ∆(C4)]

+ (1− τ0)(r1− c1)[∆(L4) + ∆(L5)].

(1)

After collapsing terms, (1) can be rewritten as

∂PC(Q)

∂Q1

= (1− τ1)[(r1− c1)Pr{D1 >Q1}− (c1− s1)Pr{θ1Q1 <D1 <Q1}]

− (c1− s1)Pr{D1 ≤ θ1Q1}+ (τ1− τ0)
{

(r1− c1)[∆(L4) + ∆(L5)]

− (c1− s1)[∆(L3) + ∆(L6) + ∆(L7)]
}
.

(2)

Equation (2) can be interpreted as follows: the first and second lines are the marginal profitability

with respect to an increase of Q1 for the subsidiary S1 under its own after-local-tax profit maxi-

mization problem discussed earlier in Section 3 (see (10)). The third line represents the marginal

benefits of the global firm due to tax cross-crediting across the two subsidiaries.

With a similar analysis, we can also derive the partial derivative of PC(Q) with respect to Q2

as follows:

∂PC(Q)

∂Q2

= (1− τ2)[(r2− c2)Pr{D2 >Q2}− (c2− s2)Pr{θ2Q2 <D2 <Q2}]

− (c2− s2)Pr{D2 ≤ θ2Q2}+ (τ2− τ0)
{

(r2− c2)[∆(L2) + ∆(L3) + ∆(L4)]

− (c2− s2)[∆(L1) + ∆(L5) + ∆(L6) + ∆(L7)]
}
.

(3)

The interpretation for (3) is similar to that for (2).

Case 2. Q satisfies the C condition

We now turn to the situation in which a given sourcing decision Q satisfies ex ante condition C.

Figure 2 illustrates different demand realization regions. Similar to Figure 1, in region O, no tax

incurs; in regions L1-L4, we have event L ex post; and in regions C1-C7, we have event C ex post.

Following a similar analysis as in Case 1, we can show that when Q satisfies condition C, the

partial derivatives are as follows:

∂PC(Q)

∂Q1

= (1− τ1)[(r1− c1)Pr{D1 >Q1}− (c1− s1)Pr{θ1Q1 <D1 <Q1}]

− (c1− s1)Pr{D1 ≤ θ1Q1}− (τ1− τ0)(c1− s1)[∆(L3) + ∆(L4)],

(4)
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Figure 4: Demand Realization Regions under the C Condition

Case 3. Q satisfies the E condition

Under this condition, θ1Q1+ τ0−τ2
τ1−τ0

γ2Q2 = Q1 and θ2Q2+ τ1−τ0
τ0−τ2

γ1Q1 = Q2. As a result, Figures

3 and 4 become identical. Thus, when condition (10) holds, QC satisfies the following equations.

∂PC(Q)

∂Q1
+

(τ1 − τ0)(r1 − c1)

(τ0 − τ2)(r2 − c2)

∂PC(Q)

∂Q2
= 0 (16)

(τ1 − τ0)(r1 − c1)Q1 − (τ0 − τ2)(r2 − c2)Q2 = 0 (17)

where
∂P C(Q)

∂Q1
and

∂P C(Q)
∂Q2

are given by (14) and (15), respectively.

Because PC(Q) is jointly concave in Q, we can now summarize the results in this section in

the following proposition:

Proposition 4. The optimal sourcing decision QC = (QC
1 , QC

2 ) to the global firm’s after-tax profit

maximization problem under the centralized policy can be obtained by setting expressions (12) and

(13) to zero if QC satisfies the L condition; or by setting (14) and (15) to zero if QC satisfies the

C condition; or by solving (16) and (17) if QC satisfies the E condition.

We remark that the E condition, under which the two divisions’ sourcing decisions are directly

proportional to a fixed constant (see (17)), will rarely occur. Thus, for conciseness of our analysis,

we will focus on the L and C conditions in the remainder of the paper.

It is obvious that an increase of any tax rate τ0, τ1 or τ2 will decrease the worldwide after-tax

profits PC(QC). However, the impacts of a change in these tax rates on the global firm’s optimal

sourcing decisions are not as straightforward. We found that under the centralized policy, the

17

Figure 2 Demand Realization Regions under the C Condition

and

∂PC(Q)

∂Q2

= (1− τ2)[(r2− c2)Pr{D2 >Q2}− (c2− s2)Pr{θ2Q2 <D2 <Q2}]− (c2− s2)Pr{D2 ≤ θ2Q2}

− (τ0− τ2){(r2− c2)[∆(L2) + ∆(L3)]− (c2− s2)[∆(L1) + ∆(L4)]}.
(5)

Case 3. Q satisfies the ex ante E condition

Under this condition, θ1Q1 + τ0−τ2
τ1−τ0

γ2Q2 =Q1 and θ2Q2 + τ1−τ0
τ0−τ2

γ1Q1 =Q2. As a result, Figures 1

and 2 become identical. Thus, if condition E holds, QC satisfies the following equations:

∂PC(Q)

∂Q1

+
(τ1− τ0)(r1− c1)
(τ0− τ2)(r2− c2)

∂PC(Q)

∂Q2

= 0, (6)

(τ1− τ0)(r1− c1)Q1− (τ0− τ2)(r2− c2)Q2 = 0, (7)

where ∂PC(Q)

∂Q1
and ∂PC(Q)

∂Q2
are given by (4) and (5), respectively.

1.4. A single firm’s optimal quantity with tax consideration

For any given sourcing quantity Qi and realized demand Di, let Ai be Si’s pretax profits. We have

Ai(Qi) = rimin{Qi,Di}+ si(Qi−Di)
+− ciQi = (ri− ci)Qi− (ri− si)(Qi−Di)

+. (8)

At the end of each year (period), if Si is profitable, its profits are taxed on the internal managerial

books at the managerial tax rate τ . However, if a loss incurs, no tax will be levied. The after-tax

profits or losses corresponding to Ai(Qi) is therefore given by

Πi(τ,Qi) =Ai(Qi)− τAi(Qi)
+ = (1− τ)Ai(Qi) + τAi(Qi)

−
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where Ai(Qi)
− =min(0,Ai(Qi)) and Ai(Qi)

+ =max(0,Ai(Qi)). The subsidiary Si’s objective is to

choose an optimal sourcing quantity Qi(τ) which solves the following maximization problem:

Pi(τ)≡max
Qi

{EDi
(Πi(τ,Qi))}. (9)

It is easy to verify that Ai(Qi), −Ai(Qi)
+ and Ai(Qi)

− are all concave in Qi. Thus, Πi(τ,Qi) and

EDi
{Πi(τ,Qi)} are also concave in Qi. The partial derivative of the expected after-tax profits for

subsidiary Si with respect to Qi as follows

∂EDi
(Πi(τ,Qi))

∂Qi

= (1− τ)[(ri− ci)Pr{Di ≥Qi}− (ci− si)Pr{θiQi <Di <Qi}]

− (ci− si)Pr{Di < θiQi},
(10)

where Pr represents probability.

Setting (10) to zero yields

Pr{Di <Qi(τ)}=
ri− ci
ri− si

− τ(ci− si)Pr{Di < θiQi(τ)}
(1− τ)(ri− si)

. (11)

Note that when τ = 0, Qi(0) is the quantity chosen by a traditional newsvendor without tax

consideration. From (11), we gain some insights on the optimal policy under the after-tax objective

which are summarized in the following proposition.

Single Firm Proposition: (i) The after-tax objective causes the firm to produce less (i.e.,

Qi(τ) ≤ Qi(0)) than the optimal sourcing quantity under the pretax objective; (ii) The optimal

sourcing quantity Qi(τ) satisfies (5) in the main body of this paper.

2. Proof of the Main Results

Proof of Proposition 1 Let g1(Q) = Π1(τ0,Q1)+Π2(τ0,Q2) and g2(Q) = Π1(τ1,Q1)+Π2(τ2,Q2).

It is straightforward to see that E[Πi(τ,Qi)] is strictly concave in Qi under the assumption that fi(·)
is strictly positive. The sum of strictly concave functions is also strictly concave. Hence, E[g1(Q)]

is strictly concave. By definition, we need to show PC(tQ1 +(1− t)Q2)> tPC(Q1)+(1− t)PC(Q2)

for the strict concavity of PC(·) for 0< t< 1.

PC(tQ1 + (1− t)Q2) =E[min[g1(tQ1 + (1− t)Q2), g2(tQ1 + (1− t)Q2)]

≥min[E[g1(tQ1 + (1− t)Q2)],E[g2(tQ1 + (1− t)Q2)]]

>min[tE[g1(Q1)] + (1− t)E[g1(Q2)], tE[g2(Q1)] + (1− t)E[g1(Q2)]]

= tminE[g1(Q1), g2(Q1)] + (1− t)minE[g1(Q2), g2(Q2)] = tPC(Q1) + (1− t)PC(Q2).

The first inequality holds due to Jensen’s inequality. The second strict inequality holds because of

the strict concavity of g1(·) and g2(·). �
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Proof of Proposition 2 Proposition 2 is derived by Proposition 1 and setting the first-order

conditions given by equations (2) to (7) to zero.

The next result will be used for the proof of Proposition 3.

Lemma 1. For all Qi ≤Qi(0),

(ri− ci)Pr{Di >Qi}− (ci− si)Pr{θiQi <Di <Qi} ≥ 0. (12)

Proof of Lemma 1. This result follows directly from the marginal after-tax profit of a sub-

sidiary:

∂EDi
(Πi(τ,Qi))

∂Qi

= (1− τ)[(ri− ci)Pr{Di ≥Qi}− (ci− si)Pr{θiQi <Di <Qi}]

− (ci− si)Pr{Di < θiQi}.
(13)

Since EDi
[Πi(0,Qi)] is concave, for all Qi ≤Qi(0), ∂EDi

[Πi(0,Qi)]/∂Qi ≥ 0, namely,

(ri− ci)Pr{Di ≥Qi}− (ci− si)Pr{θiQi <Di <Qi} ≥ (ci− si)Pr{Di < θiQi} ≥ 0.

Proof of Proposition 4 For Part (i), because of the concavity of PC(Q), it suffices to show at

Qi =Qi(τ0), ∂P
C(Q)/∂Qi ≤ 0 for any Qj. We can derive the marginal profit corresponding to each

of the regions in Figure 1 and show that the partial derivatives are given as below:

∂PC(Q)

∂Q1

=−(c1− s1)[∆(O) + ∆(L1) + ∆(L2)]− (1− τ1)(c1− s1)[∆(C1) + ∆(C2)]

− (1− τ0)(c1− s1)[∆(L3) + ∆(L6) + ∆(L7)] + (1− τ1)(r1− c1)[∆(C3) + ∆(C4)]

+ (1− τ0)(r1− c1)[∆(L4) + ∆(L5)].

(14)

After collapsing terms, it becomes

∂PC(Q))

∂Q1

= (1− τ0)[(r1− c1)− (r1− s1)Pr{D1 <Q1}]− τ0(c1− s1)Pr{D1 < θ1Q1}

− (τ1− τ0){(r1− c1)[∆(C3) + ∆(C4)]− (c1− s1)[∆(C1) + ∆(C2)]}.
(15)

At Q1 =Q1(τ0), the first line of (15) vanishes. Moreover, since D1 and D2 are independent of each

other,

∂PC(Q))

∂Q1

=(r1− c1)[∆(C3) + ∆(C4)]− (c1− s1)[∆(C1) + ∆(C2)]

≤−(τ1− τ0){(r1− c1)[∆(C3) + ∆(C4)]− (c1− s1)[∆(C1) + ∆(C2) + ∆(L7)]}

= Pr{D2 < θ2Q2 +
τ1− τ0
τ0− τ2

γ1Q1}[(r1− c1)Pr{D1 >Q1}− (c1− s1)Pr{θ1Q1 <D1 <Q1}].

By Lemma 1, at Q1 =Q1(τ0),

(r1− c1)Pr{D1 >Q1}− (c1− s1)Pr{θ1Q1 <D1 <Q1} ≥ 0.
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Therefore, at Q1 =Q1(τ0),
∂PC(Q)

∂Q1
≤ 0. Thus, the concavity of PC(Q) and Proposition 1(ii) yield

QC
1 ≤Q1(τ0)≤Q1(0).

Similarly, using Figure 1,

∂PC(Q)

∂Q2

=−(c2− s2)[∆(O) + ∆(C1) + ∆(C4)]− (1− τ0)(c2− s2)[∆(L1) + ∆(L5) + ∆(L6) + ∆(L7)]

− (1− τ2)(c2− s2)[∆(C2) + ∆(C3)] + (1− τ0)(r2− c2)[∆(L2) + ∆(L3) + ∆(L4)].
(16)

After collapsing terms, it becomes

∂PC(Q)

∂Q2

= (1− τ0)[(r2− c2)− (r2− s2)Pr{D2 <Q2}]− τ0(c2− s2)Pr{D2 < θ2Q2}

− (τ0− τ2)(c2− s2)[∆(C2) + ∆(C3)].

(17)

The first line of (17) vanishes at Q2 =Q2(τ0), so

∂PC(Q)

∂Q2

=−(τ0− τ2)(c2− s2)[∆(C2) + ∆(C3)]≤ 0.

Hence, the concavity of PC(Q) and Proposition 1(ii) yield QC
2 ≤Q2(τ0)≤Q2(τ2)≤Q2(0).

For part (ii), we derive the marginal profit corresponding to each of the regions in Figure 2 and

show that the partial derivatives of PC(Q) with respect to Q1 is as follows:

∂PC(Q)

∂Q1

=−(c1− s1)[∆(O) + ∆(L1) + ∆(L2)]− (1− τ0)(c1− s1)[∆(L3) + ∆(L4)]

− (1− τ1)(c1− s1)[∆(C1) + ∆(C2) + ∆(C3) + ∆(C6) + ∆(C7))]

+ (1− τ1)(r1− c1)[∆(C4) + ∆(C5) + ∆(C8)].

(18)

After collapsing terms,

∂PC(Q)

∂Q1

= (1− τ1)[(r1− c1)− (r1− s1)Pr{D1 ≤Q1}]− τ1(c1− s1)Pr{D1 ≤ θ1Q1}

− (τ1− τ0)(c1− s1)[∆(L3) + ∆(L4)].

(19)

At Q1 =Q1(τ1), the first line of (19) vanishes, so

∂PC(Q)

∂Q1

=−(τ1− τ0)(c1− s1)[∆(L1) + ∆(L2)]≤ 0.

Therefore, the concavity of PC(Q) and Proposition 1(ii) yield QC
1 ≤Q1(τ1)≤Q1(τ0)≤Q1(0).

Similarly, using Figure 2 and the definitions of its areas, the global firm’s marginal profit with

respect to Q2 is as follows:

∂PC(Q)

∂Q2

=−(c2− s2)[∆(O) + ∆(C1) + ∆(C7) + ∆(C8)]− (1− τ2)(c2− s2)[∆(C2) + ∆(C5) + ∆(C6)]

+ (1− τ2)(r2− c2)[∆(C3) + ∆(C4)]− (1− τ0)(c2− s2)[∆(L1) + ∆(L4)]

+ (1− τ0)(r2− c2)[∆(L2) + ∆(L3)].
(20)
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After collapsing terms,

∂PC(Q)

∂Q2

= (1− τ2)[(r2− c2)− (r2− s2)Pr{D2 ≤Q2}]− τ2(c2− s2)Pr{D2 ≤ θ2Q2}

− (τ0− τ2){(r2− c2)[∆(L2) + ∆(L3)]− (c2− s2)[∆(L1) + ∆(L4)]}.
(21)

At Q2 =Q2(τ2),

∂PC(Q)

∂Q2

=−(τ0− τ2){(r2− c2)[∆(L2) + ∆(L3)]− (c2− s2)[∆(L1) + ∆(L4)]}

≤−(τ0− τ2){(r2− c2)[∆(L2) + ∆(L3)]− (c2− s2)[∆(L1) + ∆(L4) + ∆(C2)]}

=−(τ0− τ2)Pr{D1 < θ1Q1 +
τ0− τ2
τ1− τ0

γ2Q2}[(r2− c2)Pr{D2 >Q2}

− (c2− s2)Pr{θ2Q2 <D2 <Q2}]≤ 0.

(22)

because of Lemma 1. Hence, the concavity of PC(Q) and Proposition 1(ii) yield QC
2 ≤ Q2(τ2) ≤

Q2(0).

Proof of Corollary 1 Under all three conditions, dQC
2j/dτ0 must be decreasing in τ0 as subsidiary

S2 is subject to home tax rate τ0 although under certain demand realizations, the excess tax liability

may be partially offset by the tax credit generated from subsidiary S1. The strict proof is shown

below. From (15),

∂2PC(Q)

∂Q1∂τ0
=−(c1− s1)[∆(L2) + ∆(L4) + (τ1− τ0)

d(∆(L3) + ∆(L4))

dτ0
]≤ 0.

As shown in Figure 2, as τ0 increase, the line Q1 = θ1Q1 + (τ1−τ0)
(τ0−τ2)

γ2Q2 shifts to the right as τ0

increases. Thus, ∆(L3) and ∆(L4) increase.

∂2PC(Q)

∂Q1∂Q2

=−(τ1− τ0)(c1− s1)
d(∆(L3) + ∆(L4))

dQ2

≥ 0,

and

∂2PC(Q)

∂Q2∂τ0
=−{(r2− c2)[∆(L2) + ∆(L3)]− (c2− s2)[∆(L1) + ∆(L4)]}

− (τ0− τ2){(r2− c2)
d(∆(L2) + ∆(L3))

dτ0
]− (c2− s2)

d(∆(L1) + ∆(L4)

dτ0
} ≤ 0.

From Figure 2, ∆L2 and ∆L1 do not change as τ0 increases. Moreover,

(r2− c2)
d∆L3

dτ0
− (c2− s2)

d∆(L4)

dτ0

≥ ((r2− c2)Pr{D2 >Q2}− (c2− s2)Pr{Pr{θ2Q2 ≤D2 ≤Q2}f(θ1Q1 +
τ0− τ2
τ1− τ0

γ2Q2)
τ1− τ2

(τ1− τ0)2
≥ 0.

Hence, ∂2PC(Q)

∂Q2∂τ0
≤ 0. The concavity of PC(·) yields dQC

2C/dτ0 ≤ 0. Above three inequalities and the

concavity of PC(·) implies dQC
iC/dτ0 < 0, i= 1,2.
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The proof of dQC
1L/dτ0 ≤ 0 and dQC

2L/dτ0 ≤ 0 can be shown similarly. Under condition L,

∂2PC(Q)

∂Q1∂Q2

=−(τ1− τ0){(r1− c1)
d[∆(C3) + ∆(C4)]

dQ2

− (c1− s1)
d[∆(C1) + ∆(C2)]

dQ2

}

= θ2f(θ2Q2 +
τ1− τ0
τ0− τ2

γ1Q1)(τ1− τ0){(r1− c1)Pr{D1 >Q1}− (c1− s1)Pr{θ1Q1 <D1 <Q1}/2} ≥ 0.

Similarly, ∂PC(Q)

∂Qi∂τ0
≤ 0.

Under condition E, the line D2 = θ2Q2 + τ1−τ0
τ0−τ2

γ1Q1 merges with D2 =Q2 in Figure 1 and the

line D1 = θ1Q1 + τ0−τ2
τ1−τ0

γ2Q2 merges with D1 =Q1. As a result, Figures 1 and 2 become identical.

Additionally, tax liability exactly equals tax credit when both subsidiaries sell up inventory, i.e.,

(τ1− τ0)(r1− c1)Q1 = (τ0− τ2)(r2− c2)Q2.

Here is a simpler proof of the monotonicity of QC with respect to τ0. Under condition L or

C, QC satisfies the first-order conditions. dQC
i /dτ0 ≤ 0 yields directly from the strict concavity

of PC(Q) and ∂2PC(Q)

∂Qi∂τ0
≤ 0, ∂2PC(Q)

∂Q1∂Q2
≥ 0 and the Envelop Theorem. Under condition E, u = 0.

Complete differentiating the equality with respect to τ0 yields

−(r1− c1)QC
1E − (r2− c2)QC

2E =−(τ1− τ0)(r1− c1)
dQC

1E

dτ0
+ (τ0− τ2)(r2− c2)

dQC
2E

dτ0
.

Since (τ0 − τ2)|dQ
C
2E

dτ0
| ≤ QC

2E and QC
1E ≥ −(τ1 − τ0)dQ

C
1E

dτ0
, for the equation above to hold,

dQC
1E

dτ0
≥ 0

must hold. �

Proof of Corollary 2 Let t be the Lagrange multiplier, the new objective function can be rewrit-

ten as

L(Q; τ0) = PC(Q; τ0) + t[u− (τ1− τ0)(r1− c1)Q1 + (τ0− τ2)(r2− c2)Q2].

The optimal solution satisfies

∂PC(Q; τ0)

∂Q1

= t(τ1− τ0)(r1− c1)
∂PC(Q; τ0)

∂Q2

=−t(τ0− τ2)(r2− c2),

ut= 0 u= (τ1− τ0)(r1− c1)Q1− (τ0− τ2)(r2− c2)Q2.

note that at τ0 = τ2, u> 0 for Q 6= 0, i.e., C condition holds and at τ0 = τ1, u< 0, i.e., the ex ante

condition L holds. As shown below, as τ0 increases within the range of [τ2, τ1], u decreases.

du

dτ0
=−(r1− c1)QC

1 − (r2− c2)QC
2 + (τ1− τ0)(r1− c1)dQC

1 /dτ0− (τ0− τ2(r2− c2)dQC
2 /dτ0.

Note that (ri− ci)Qi is subsidiary i’s maximum profit with excess demand. The first-order impact

of τ0 on tax credit (liability) must dominate the absolute value of the second order effect; i.e.,

QC
1 ≥ (τ1 − τ0)|dQC

1 /dτ0| and QC
2 ≥ (τ0 − τ2)(r2 − c2)|dQC

2 /dτ0| because the probability of cross-

crediting is strictly less than 1 and at the two extreme points (i.e., τ0 = τ2, τ1, Q
C
i > 0). Hence,

du
dτ0
≤ 0. Consequently, there must exist two threshold values, τ2 ≤ τ̂0 ≤ τ̃0 ≤ τ1 such that condition

C holds for τ0 ∈ [τ2, τ̂0); E condition holds for τ0 ∈ [τ̂0, τ̃0]; and for τ ∈ (τ̃0, τ1], L condition holds.

�
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Figure 8: demand realization regions

Condition C becomes

(τ1 − τ0)(r1 − c1)Q1 + K > (τ0 − τ2)(r2 − c2)Q2

And under this condition the demand realization space can be partitioned as in Figure 9. After a

Figure 9: Demand Realization Regions

44

Figure 3 Demand Realization Regions

Proof of Proposition 5 Part (i) holds because, Qi(0) deviates further away from the optimal

quantity QC
i than Q(Dh) and Q(Dl), respectively and the concavity of PC(Q). First, from def-

inition (??), P (τ0;Q) is non-increasing and continuous in τ0 for τ0 ∈ (τ2, τ1) and any Q. Hence,

P (τ0;Q(Dh)), P (τ0;Q(Dl)) and P (τ0;Q
C) are all non-increasing in τ0. At τ0 = τ2, QC = Q(Dl), and

Dl is suboptimal for all τ0 > τ2, so at τ0 = τ2, P (τ0;Q(Dl)) = P (QC)>P (τ0;Q(Dh)). Similarly, at

τ0 = τ1,Q
C = Q(Dh); for τ0 ∈ (τ2, τ1), Q(Dh)) is suboptimal. Hence, P (τ0;Q

C) = P (τ0,Q(Dl)) >

P (τ0,Q(Dh)).

To show (ii), we next establish that P (τ0;Q) is Lipschitz continuous in τ0. From (??), for any

τ 10 , τ
2
0 ∈ (τ2, τ1) with τ 10 τ02,∣∣∣∣P (τ 10 ;Q)−P (τ 20 ;Q)

τ 10 − τ 20

∣∣∣∣≤ (A+
1 +A+

2 )≤
2∑
1

(ri− ci)Qi.

The monotonicity and continuity of P (τ0;Q) in τ0 guarantee there exists a τ̃0 ∈ (τ2, τ1), for τ0 ∈
(τ2, τ̃0), P (τ0;Q(Dl)))>P (τ0;Q(Dh))) and the opposite holds for τ0 ∈ (τ̃0, τ1). �

Proof of Proposition 6 This proposition is a direct result of Proposition 1.4 in Appendix 1.4. �

Proof of Propositions 7 and 8 The proof is embedded in the main body of the paper. �

3. Marginal Profit for the Extensions
3.1. FTC Carry-Forward

Under the revised ex ante L condition, i.e.,

(τ0− τ2)(r2− c2)Q2− (τ1− τ0)(r1− c1)Q1 >K,
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Figure 8: demand realization regions

Condition C becomes

(τ1 − τ0)(r1 − c1)Q1 + K > (τ0 − τ2)(r2 − c2)Q2

And under this condition the demand realization space can be partitioned as in Figure 9. After a

Figure 9: Demand Realization Regions

44

Figure 4 Demand Realization Regions

the demand realization space can be partitioned as in Figure 4. Following a similar analysis as in

Section 4, the MNF’s marginal expected profits with respect to Qi are

∂PC
1 (Q;K)

∂Q1

= (1− τ0){(r1− c1)Pr{D1 >Q1}− (c1− s1)Pr{θ1Q1 <D1 <Q1}}

− (c1− s1)Pr{D1 < θ1Q1}

− (τ1− τ0){(r1− c1)[∆(C3) + ∆(C4) + ∆(C7)]− (c1− s1)[∆(C1)

+ ∆(C2) + ∆(C6)]

(23)

and

∂PC
1 (Q;K)

∂Q2

= (1− τ0){(r2− c2)Pr{D2 >Q2}− (c2− s2)Pr{θ2Q2 <D2 <Q2}

− (c2− s2)Pr{D2 < θ2Q2}

− (τ0− τ2)(c2− s2)[∆(C1) + ∆(C2) + ∆(C3) + ∆(C4) + ∆(C5)].

(24)

Under the revised ex ante condition C,

(τ1− τ0)(r1− c1)Q1 +K > (τ0− τ2)(r2− c2)Q2,
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Figure 10: Demand Realization Regions

Corresponding to Condition C, we have the following inequality:

(τ0 − τ2)(r2 − c2)Q2 + J < (τ1 − τ0)(r1 − c1)Q1. (57)

And this condition, the demand space can be partitioned as in Figure 11. Under condition (24),

Figure 11: Demand Realization Regions

the MNF’s marginal profits are as below:

46

Figure 5 Demand Realization Regions

the demand realization space can be partitioned as in Figure 3. After a few transformations, the

MNF’s marginal profits can be written as

∂PC
1 (Q;K)

∂Q1

= (1− τ1){(r1− c1)Pr{D1 >Q1}− (c1− s1)Pr{θ1Q1 <D1 <Q1}}

− (c1− s1)Pr{D1 < θ1Q1}

− (τ1− τ0)(c1− s1)[∆(L3) + ∆(L4)]

(25)

and

∂PC
1 (Q;K)

∂Q2

= (1− τ2){(r2− c2)Pr{D2 >Q2}− (c2− s2)Pr{θ2Q2 <D2 <Q2}}

− (c2− s2)Pr{D2 < θ2Q2}

− (τ0− τ2){(r2− c2)[∆(L2) + ∆(L3)]− (c2− s2)[∆(L1) + ∆(L4)]}.

(26)

3.2. FTC Carry-Back

Under the revised ex ante L condition

(τ0− τ2)(r2− c2)Q2 +J > (τ1− τ0)(r1− c1)Q1,

the demand realization space can be described by Figure 5. Using Figure 5, the MNF’s marginal

expected profit with respect to Q1 is

∂PC
2 (Q;J)

∂Q1

= (1− τ0)[(r1− c1)Pr{D1 >Q1}− (c1− s1)Pr{θ1Q1 <D1 <Q1}]

− (c1− s1)Pr{D1 < θ1Q1}

− (τ1− τ0)[(r1− c1)[∆(C3) + ∆(C4)]− (c1− s1)[∆(C1) + ∆(C2)],

(27)
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Figure 10: Demand Realization Regions

Corresponding to Condition C, we have the following inequality:

(τ0 − τ2)(r2 − c2)Q2 + J < (τ1 − τ0)(r1 − c1)Q1. (57)

And this condition, the demand space can be partitioned as in Figure 11. Under condition (24),

Figure 11: Demand Realization Regions

the MNF’s marginal profits are as below:

46

Figure 6 Demand Realization Regions

and that with respect to Q2 is

∂PC
2 (Q;J)

∂Q2

= (1− τ0)[(r2− c2)Pr{D2 >Q2}− (c2− s2)Pr{θ2Q2 <D2 <Q2}

− (c2− s2)Pr{D2 < θ2Q2}

− (τ0− τ2)(c2− s2)[∆(C2) + ∆(C3)].

(28)

Under the revised ex ante condition C

(τ0− τ2)(r2− c2)Q2 +J < (τ1− τ0)(r1− c1)Q1,

the demand space can be partitioned as in Figure 6. The MNF’s marginal profits are as below:

∂PC
2 (Q;J)

∂Q1

= (1− τ1)[(r1− c1)Pr{D1 >Q1}− (c1− s1)Pr{θ1Q1 <D1 <Q1}]

− (c1− s1)Pr{D1 < θ1Q1}

+ (τ1− τ0)[−(c1− s1)[∆(L3) + ∆(L4) + ∆(L5) + ∆(L6) + ∆(L7)]

(29)

and

∂PC
2 (Q;J)

∂Q2

= (1− τ2)[(r2− c2)Pr{D2 >Q2}− (c2− s2)Pr{θ2Q2 <D2 <Q2}

− (c2− s2)Pr{D2 < θ2Q2}

− (τ0− τ2)[(r2− c2)[∆(L2) + ∆(L3) + ∆(L7)]

− (c2− s2)[∆(L1) + ∆(L4) + ∆(L6)].

(30)
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3.3. Loss Carry-Forward

The demand spaces partitions under the revised ex ante L and C conditions are shown in Figures

7 and 8, respectively. By comparing Figures 7 and 8 with Figures 1 and 2, respectively, it is clear

that four of the boundary lines have shifted upward (or to the right) by a constant, T2/(r2 + s2).

As a consequence, the marginal profits of the MNF will have the identical expressions as in Section

4, although the boundaries for some of regions have be adjusted by a constant. Hence, we omit the

equations for the MNF’s marginal profits here for brevity.

Figure 12: Demand Realization Regions

Figure 13: Demand Realization Regions

respectively. The demand spaces partitions under these conditions are shown in Figures 12 and 13,

respectively. By comparing Figures 12 and 13 with Figures 3 and 4, respectively, it is clear that

four of the boundary lines have shifted upward (or to the right) by a constant, T2/(r2 + s2). As a

consequence, the marginal profits of the MNF will have the identical expressions as in §4, although

the boundaries for some of regions have be adjusted by a constant. Hence, we omit the equations

for the MNF’s marginal profits here for brevity.

48

Figure 7 Demand Realization Regions
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Figure 12: Demand Realization Regions

Figure 13: Demand Realization Regions

respectively. The demand spaces partitions under these conditions are shown in Figures 12 and 13,

respectively. By comparing Figures 12 and 13 with Figures 3 and 4, respectively, it is clear that

four of the boundary lines have shifted upward (or to the right) by a constant, T2/(r2 + s2). As a

consequence, the marginal profits of the MNF will have the identical expressions as in §4, although

the boundaries for some of regions have be adjusted by a constant. Hence, we omit the equations

for the MNF’s marginal profits here for brevity.

48

Figure 8 Demand Realization Regions

3.4. Loss Carry-Back

The global firm’s after-tax profits with loss carry-back can be expressed as:

ΠC
4 (Q;Y ) = ΠC(Q) + τ0 min{−A−

2 , Y },

where ΠC(Q), defined in Section 3, is the expected after-tax profit without loss carry-back consider-

ation. Since the last term in of ΠC
4 is independent of S1’s decision. Moreover, the tax cross-averaging

effect and tax refund will not occur simultaneously. Let PC
4 (Q) ≡ EDΠC

4 (Q;Y )). We have the

following partial derivatives:

∂PC
4 (Q;Y )

∂Q1

=
∂PC(Q)

∂Q1

,

∂PC
4 (Q;Y )

∂Q2

=
∂PC(Q)

∂Q2

+ τ0(c2− s2)Pr{θ2Q2 >D2 > θ2Q2−
Y

r2− s2
}.


