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A Simulation

We construct a discrete event simulation of the operation of ambulances and EDs in an MCI.

This simulation is used to obtain the state trajectories of the system required in the ADP

algorithm and to evaluate the performance of the policy obtained from the ADP and other

heuristic policies tested in this work.

The simulation starts with NA ambulances arriving at the accident site. An ambulance

transports a patient to a destination hospital as instructed by a chosen decision logic (ADP

policy or heuristic policy). After bringing a patient to a hospital, the ambulance returns to

the accident site for its next transport task. If the hospital is currently busy, the patient joins

its queue and waits until treatment becomes available. Once his/her treatment starts, the

survival probability of the patient is recorded. These processes are repeated until all patients

are transported and begin treatment at the hospitals.

A discrete event simulation proceeds by sequentially executing events in an event list. Events

registered in the event list are sorted in order of event start time, and the simulation executes

the first event in the list. The simulation clock is advanced to the start time of the current event,

and the system state is updated according to the results of the event execution. Execution of an

event may generate another event, which will be inserted into the event list at an appropriate

slot. After executing an event, we repeat the process and execute the next event in the event

list. The simulation runs continuously until the event list is empty.

Figure A.1 shows a flowchart of the simulation model. First, the simulation clock and

system states are initialized. Then, we construct an initial event list by inserting NA Ambulance

arrival (at the accident site) events with an event start time of 0, where NA is the number of

ambulances. The initialization phase creates an environment in which ambulances are ready to

transport patients.
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There are three types of events: Ambulance arrival at the site, Ambulance arrival at hospital

j, and Treatment completion. When executed, each event changes the relevant system state and

possibly generates another event to update the event list. This is shown in the square boxes in

the middle of Figure A.1.

For the Ambulance arrival at the site event, the simulation first identifies the number of

patients at the site from the system state information. If there are patients waiting at the site,

a decision is made in regard to which class of patients will be transported and to which hospital.

This decision is made using the policy solution applied in the simulation. The system state is

updated accordingly; for example, the number of patients in the selected class decreases by one,

the ambulance status changes to ’transporting,’ and so on. Finally, a new event, Ambulance

arrival at hospital j, is generated. The start time of this event is determined by the probability

distribution of its travel time, and the event is added to the event list in the proper order. If

there are no more patients at the site, nothing happens.

The Ambulance arrival at hospital j event updates the system state as follows. The number

of patients (in the class of the transported patient) in hospital j increases by one, the ambulance

status changes to ’returning,’ and other relevant state information is updated. Then, a new

event, Ambulance arrival at the site, is added to the event list, with its start time set according

to the travel time distribution. If there are no patients in hospital j (i.e., hospital j is empty),

another new event, Treatment completion, is created. The start time of this event is determined

by the probability distribution of the service time of hospital j.

In the case of the Treatment completion event, the number of patients in the hospital is

reduced by one. When there is a patient waiting in the queue, the Treatment completion event

is generated and inserted into the event list and its start time is given by the service time

distribution.

B ADP Algorithm Development

To solve the problem considered in this paper, Equation (2) is computed for every possible s ∈ S

until the value of each state converges to its optimal value. For our problem, the state space is

too large, rendering the iterative process computationally prohibitive. ADP is a powerful tool

for managing the curse of dimensionality. Unlike DP, which computes values for all possible

states, ADP randomly generates sample paths and only computes values for the states on the

generated paths by stepping forward from the initial state. This is done by solving the following
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1. Set simulation clock = 0

2. Initialize system state

- Num. of immediate-class patients (𝑛𝐼),

- Num. of delayed-class patients 𝑛𝐷 ,

- Num. of ambulances (𝑁𝐴),

- Num. of patients in the each hospital (𝑟𝑗 , 𝑦𝑗 , 𝑗 ∈ {1, 2, … , 𝑁𝐻})

3. Insert 𝑁𝐴 Ambulance arrival at the accident site events

into the Event List

1. Sort events in the Event List in order of time

2. Get the first event in the Event List

3. Advance simulation clock to the time of the event

1. Check the patient is existed at the 

accident site

2. If there are patients on site, select the 

class of patient and the hospital

3. Decrease the number of  selected class 

patients waiting on the site by one

4. Change the ambulance state

5. Insert Ambulance arrival at the 

hospital event into the Event List

1. Change the ambulance state

2. Increase the number of patients in the 

hospital by one.

3. Insert Ambulance arrival at the 

accident site event into the Event List

4. If there are no patients in the hospital, 

insert Treatment completion event into 

the Event List

1. Decrease the number of patients in the 

hospital by one

2. If there are patients in the hospital, 

insert Treatment completion event into 

the Event List

Event type?

ambulance arrival at the accident site Ambulance arrival at the hospital Treatment completion

Event List 

is empty?

Terminate the 

simulation 

Yes

No

Figure A.1: Simulation flow chart

equation at each iteration:

v̂n = max
x∈X

[R(sn, xn) + E{V̄ n−1(s′
n
)|sn, xn}], (B.1)

where n denotes the current iteration number, v̂n is the sample estimate of the value of the

current state sn, and V̄ n−1(s′n) is the approximate value of state s′n updated at (n−1). Equation

(B.1) is the same as Equation (2), except that an approximate value V̄ n−1(s′n) is used for the

next state s′. The value of the current state sn is then approximated by the weighted sum of

the sample estimate obtained from this iteration (v̂n) and its approximate value on (n − 1)th

iteration, V̄ n−1(s′n), as follows:

V̄ n(s) = (1− αn)V̄ n−1(s) + αnv̂
n. (B.2)
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In Equation (B.2), the stepsize αn determines the weight of the sample estimate obtained in this

iteration when calculating the approximate value of the current state.

To solve equations (B.1) and (B.2), we construct a simulation-based ADP algorithm. The

simulation model (described in Section A) performs two functions in the algorithm. First, it

generates a random sample path in the state space. The algorithm computes estimated values

while stepping through the states chosen in the sample path. Second, the simulation model

estimates the expectation E{V̄ n−1(s′n)|sn, xn} required to solve Equation (B.1). The overall

process is described in Algorithm 1.

In the first iteration cycle (n = 1), the algorithm computes the estimate v̂n and decides

action xn of the initial state (lines 12 and 15). In lines 12, 13, and 16, E{V̄ n−1(s′n)|sn0 , xn} must

be computed. As we do not have explicit knowledge of the transition probabilities p(s, x, s′), the

simulation model is used to estimate the expectation. Specifically, we evaluate the expectation

by running the simulation model Nsim times for each possible action x ∈ X(sn0 ) until the current

state transitions to the next state (line 10). The value of the initial state is then updated to

compute V̄ n(sn0 ) (line 18). The simulation model is now executed to progress to the next decision

epoch, and returns the next state whose value is going to be updated (line 19). This process is

repeated until the first sample path is completed (i.e., all patients are being treated in hospitals),

and the values for the states included in the sample path are updated. The next iteration then

proceeds with a new sample path. The overall process is repeated for N iterations.
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Algorithm 1 Simulation-based ADP

1: V̄ 0(s)← 0 ∀s

2: Set the maximum iteration number N

3: Choose an Initial state s10

4: for n = 1 to N do

5: Initialize the discrete event simulation configuration

6: TPH ← total patients in hospitals

7: PA← patients in ambulances

8: while nI > 0 or nD > 0 or TPH > 0 or PA > 0 do

9: ran← rand()

10: Compute E{V̄ n−1(s′n)|sn, x} by running the simulation model Nsim times for each

possible action x ∈ X(sn) through the next decision epoch

11: if ran ≥ e−ε×n then

12: xn ← arg maxx∈X(s)[R(sn, xn) + E{V̄ n−1(s′n)|sn, xn}] (exploitation)

13: v̂n ← maxx∈X(s)[R(sn, xn) + E{V̄ n−1(s′n)|sn, xn}]

14: else

15: xn ← randomly selected x ∈ X(s) (exploration)

16: v̂n ← R(sn, xn) + E{V̄ n−1(s′n)|sn, xn)}

17: end if

18: V̄ n(sn)← (1− αn(sn))V̄ n−1(sn) + αn(sn)v̂n

19: sn ← SM (sn, xn, w(sn, xn))

20: TPH ← total patients in hospitals

21: PA← patients in ambulances

22: end while

23: end for

B.1 Exploitation vs Exploration

At the start of Algorithm 1, the values of all states are initialized to zero. The values of the

states that happen to be included in the sample path are updated to nonzero values, while the

values of the other states remain at zero. This causes a bias in the choice of actions (line 13 of

Algorithm 1), because actions that drive the next transition toward nonzero-valued states are

preferred. When this happens early in the iterative process, the algorithm only updates a small

portion of the state space, leaving most of the states with zero values. Clearly, this will lead to
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a poor solution. To prevent this problem, we need to implement a mechanism that intentionally

chooses actions that ensure as many states as possible are visited and their values updated.

This is particularly important during the early stages of the iteration. As these actions may not

necessarily maximize the sample estimate v̂n, we need to use an exploration mechanism that

allows an action to be selected even if it does not maximize v̂n. This is implemented in line 15

of Algorithm 1, where we randomly choose an action xn.

If this biased selection of actions occurs during the later stages of the iteration, it works to

the advantage of the algorithm. Once a reasonably large number of states have been updated,

we want the algorithm to focus on the portion of the state space whose values are relatively high.

This exploitation increases the accuracy of the values of those states, improving the quality of

the approximation.

To induce early exploration and later exploitation in the iterative process, we use the Epsilon-

Greedy Exploration technique (Schmid, 2012), setting an exploration rate e−ε×n as a threshold to

choose between exploration and exploitation. The initial exploration rate is high, but decreases

as the number of iterations increases. The parameter ε in the exploration rate is known to affect

the overall performance of the ADP algorithm.

B.2 Stepsize

In line 18 of Algorithm 1, the parameter αn is used to control the weight of the sample

estimate obtained from this iteration, v̂n, in the approximation of the state value. A common

rule is that, if there is little knowledge of state s, i.e., s has been visited few times, then a high

weight is assigned to the newly obtained sample estimate v̂n, and vice versa. This practice is

often implemented through the harmonic stepsize rule (Powell, 2007; Fang et al., 2013):

αn =
c

c+ n′ − 1
, (B.3)

where c is a constant and n′ is the number of visits to state s. The larger the constant c in

Equation (B.3), the slower the rate at which αn falls to zero.

B.3 Aggregation

Although an exploration strategy has been adopted in the algorithm, the large state space in our

problem makes it possible that many states will never be visited during the iterative process.

Thus, we need to develop a more aggressive approach to approximate the values of these states.

We choose the aggregation method, which is a value function approximation technique. The
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aggregation method groups states that are considered to be similar–if the value of one state in

the group is updated by the algorithm, the states of other members of the group are also updated

to have the same value (Powell, 2007). We use τj , the start time of the treatment for the current

patient, as the criterion for grouping the states. Specifically, given an aggregation level L, we

aggregate the care start time τj for the current patient in the following way: [0, L), [L, 2L), ....

For example, when L = 5, we aggregate the states which have τj ∈ [0, 5) and have the same

values for the rest of the state elements.

Based on preliminary experiments, we set these parameters to ε = 0.001, c = 5, L = 5.

C Sensitivity Analysis for Delta

A comment on δj is in order. In our problem setting, ’tier-1’ denotes hospitals with a lower

care capability, where limited facilities or care provider skill levels lead to a less than the desired

level of care for class-I patients. To differentiate the care capabilities between tier-1 and tier-

2 hospitals, we use the adjustment factor δj (δj < 1.0) when hospital j is a tier-1 hospital.

Certainly, δj influences the reward function, thereby affecting the derived policy solution. One

may wonder whether a high value of δj would change this observation; for example, δj = 1.0

would mean that there is no difference in survival probability outcomes between tier-1 and

tier-2 hospitals. However, it should be emphasized that the reward function value is not only

determined by δj , but also by the waiting time at the hospital. These two factors collectively

determine the reward function value based on which the optimal policy is computed. Our

experiments, in which δj changed from 0.2 to 1.0, show that even for larger values of δj – tier-

1 and tier-2 hospitals have similar care capabilities – the hospital selection decision plays an

important role in the overall success of EMS operations (see Table C.1) because the survival

probability depends on the waiting time at the destination hospital; choosing a destination

hospital that ensures timely care provision is still important.

Table C.1: Average number of survivors of three decision rules for each value of δj

δj 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
¬ (optimal, optimal) 6.430 6.401 6.462 6.461 6.471 6.48 6.506 0.493 6.509
­ (simple, optimal) 6.077 6.059 6.077 6.043 6.066 6.091 6.091 6.057 6.101
® (optimal, simple) 5.947 5.987 5.95 5.95 5.965 5.968 5.968 5.973 5.987

¬ - ®

Effect of optimal
hospital selection

0.483 0.414 0.512 0.511 0.506 0.512 0.528 0.52 0.522

¬ - ­

Effect of optimal
transport priority

0.353 0.342 0.385 0.418 0.405 0.389 0.415 0.436 0.408
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D D. Sensitivity Analysis for the Service Time Ratio Between

Tier-1 and Tier-2

As mentioned in Section 3.3.1, the mean service time of a hospital is inversely proportional to

the total number of medical staff in the hospital. The personnel requirement set by the Ministry

of Health and Welfare of South Korea states that the number of medical staff in tier-2 hospitals

is 1.5 times higher than the number of medical staff in tier-1 hospitals. Thus, the service time

of the tier-1 hospital is set to be 1.5 times longer than that of the tier-2 hospital.

To examine how this factor (service time ratios between tier-1 and tier-2, ρ) may change the

experimental outcomes, we conduct sensitivity analysis with respect to the service time difference

of two hospitals. Using the values from the experiments described above as a reference (ρ = 1.5),

we vary ρ from 1, 1.25, 1.75, to 2. Table D.1 show that (optimal, optimal) is the best policy and

also that the effect of optimizing each decision increases as ρ increases. This means that as the

service time ratio between tier-1 and tier-2, ρ, becomes larger, the effect of sending to hospitals

with potentially fewer patients waiting becomes more important. In addition, as ρ increases,

the service time of the tier-1 hospital becomes longer and completing the treatment is delayed.

Similar to the sensitivity analysis for service time, it may be better to transport class-D patients

than class-I patients with a significant decrease in survival over time. Therefore, as ρ increases,

the effect of prioritizing patient transport also becomes more important.

Table D.1: Average numbers of survivors of three decision rules for service time ratios between
tier-1 and tier-2

ρ 1 1.25 1.5 1.75 2
¬ (optimal, optimal) 6.495 6.45 6.430 6.412 6.395
­ (simple, optimal) 6.284 6.141 6.077 6.052 5.962
® (optimal, simple) 6.299 6.141 5.947 5.830 5.810

¬ - ®

Effect of optimal hospital selection 0.196 0.310 0.483 0.582 0.585

¬ - ­

Effect of optimal transport priority 0.211 0.309 0.353 0.360 0.433

E Transition Probabilities for the Reduced Problem

The reduced problem considers the accident environment in which patients are transported to

two hospitals by one ambulance.

Problem description. There are two classes of patients, class-I and class-D, denoted by nI and

nD, respectively. These patients have a limited survival time within which they must receive care
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at a hospital. The survival time for the patients in each class follows an exponential distribution

with mean survival times of 1
rI

and 1
rD

, respectively, where ri denotes the abandonment rate.

We assume that 1
rI
< 1

rD
.

Two hospitals, tier-1 and tier-2, are accessible from the accident site. The tier-j hospital is

located at an average distance of 1
µj

minutes by ambulance. The tier-2 hospital has a higher

capability in that it can treat patients faster and with a better survival outcome. This is

represented by a higher service rate (w2 > w1) and an adjustment factor δ to give a higher

probability of survival in the immediate reward.

System state. The system state is defined as S = (nI , nD, h1, h2, a), where nI (nD) denotes

the number of class-I (class-D) patients remaining on the accident site, hj(j = 1, 2) is the

number of patients waiting in the tier-j hospital, and a represents the ambulance states and

is defined as in the original problem; however, because there is only one ambulance, it can be

explicitly stated as a ∈ {a01, a11, a02, a12}, where a0i indicates the ambulance is traveling to the tier-i

hospital and a1i denotes that it is on the return trip.

State transition probability. The model has three events – patient death, ambulance arrival,

and patient discharge. A patient dies if he or she is not picked up by an ambulance before

the survival time expires. The ambulance arrival event refers to the ambulance’s arrival at a

destination hospital or its return to the accident site. Finally, the patient discharge event occurs

when the patient’s treatment at a hospital is complete.

The system state transitions to other states upon the occurrence of these three events.

Patient death, discharge, and ambulance arrival at a hospital events are natural processes that

do not involve decision making; only the event of an ambulance arriving at the accident site

requires a decision to be made.

As described above, this model assumes that the inter-arrival times for all three events follow

an exponential distribution. Under this assumption, the event generation process of this model

follows the Poisson process (Ross et al., 1996). Therefore, the system state transition probability

is given by the arrival rate of each event divided by the sum of all rates, which is:

γ = (µj) + (rInI + rDnD) + (1h1>0w1 + 1h2>0w2). (E.1)

where the first term is the rate at which ambulances arrive at the scene or at a hospital, the

second term is the rate at which the patients die at the accident site and the final term denotes

the rate at which patients are discharged from the hospital. The indicator function 1h>0 takes

a value of 1 when there is at least one patient in the hospital and a value of 0 when there are no
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patients. Therefore, when an ambulance returns to the accident site, the transition probabilities

for the three events are as follows:

Transition probability by patient death event =
rini
γ
, i ∈ {I,D}, (E.2)

Transition probability by patient discharge event =
1hj>0wj

γ
, j ∈ {1, 2}, (E.3)

Transition probability by ambulance arrival event =
µj
γ
, j ∈ {1, 2}. (E.4)

Finally, the resulting state transition diagram is shown in Figure E.1.

𝒏𝑰, 𝒏𝑫, 𝒉𝟏, 𝒉𝟐, 𝒂𝟏
𝟎

𝒏𝑰 − 𝟏,𝒏𝑫, 𝒉𝟏, 𝒉𝟐, 𝒂𝟏
𝟎

𝒏𝑰, 𝒏𝑫 − 𝟏, 𝒉𝟏, 𝒉𝟐, 𝒂𝟏
𝟎

𝒏𝑰 − 𝟏,𝒏𝑫, 𝒉𝟏, 𝒉𝟐, 𝒂𝟏
𝟏

𝒏𝑰 − 𝟏,𝒏𝑫, 𝒉𝟏, 𝒉𝟐, 𝒂𝟐
𝟏

𝒏𝑰, 𝒏𝑫 − 𝟏,𝑯𝟏, 𝑯𝟐, 𝒂𝟐
𝟏

𝒏𝑰, 𝒏𝑫 − 𝟏, 𝒉𝟏, 𝒉𝟐, 𝒂𝟐
𝟏

Decision Epoch

𝒓𝑫𝒏𝑫
𝜸

Action = (𝑰, 𝟏)

Action = (𝑰, 𝟐) Action = (𝑫, 𝟏)

Action = (𝑫, 𝟐)

𝒏𝑰, 𝒏𝑫, 𝒉𝟏 − 𝟏, 𝒉𝟐, 𝒂𝟏
𝟎

𝒏𝑰, 𝒏𝑫, 𝒉𝟏, 𝒉𝟐 − 𝟏, 𝒂𝟏
𝟎

𝒓𝑰𝒏𝑰
𝜸

𝒘𝟏

𝜸

𝒘𝟐

𝜸
𝝁𝟏
𝜸

Figure E.1: A State transition when the ambulance is returning to the scene. The value of γ is
the sum of the rates of all state transition events, γ = (µj)+(rInI+rDnD)+(1h1>0w1+1h2>0w2).

F Proof of Proposition 1

Proposition 1. Suppose that µk > 2wk
′ for k, k′ ∈ {A,B}, and let us define

r∗ = µBwB(hAµA+wA)−µAwA(hBµB+wB)
µAwAhB−µBwBhA

. r∗ is defined only when µAwAhB 6= µBwBhA. When

there is only one patient at the site whose abandonment rate is r, the optimal hospital to

transport the patient to is determined as follows:

(i) If µAwAhB = µBwBhA, transport the patient to hospital k that has the smaller ( 1
µk

+ hk

wk ).

(ii) If r∗ = 0, transport the patient to hospital k that has the smaller ( 1
µk

hk

wk ).

(iii) If r∗ < 0, transport the patient to hospital k that has the smaller ( 1
µk

+ hk

wk ).

(iv) If 0 < r ≤ r∗, transport the patient to hospital k that has the smaller ( 1
µk

+ hk

wk ).

(v) If 0 < r∗ < r, transport the patient to hospital k that has the larger ( 1
µk

+ hk

wk ).

Proof. Proposition 1 applies to the following subsets of the state space: (0, 1, hA, hB, a) and

(1, 0, hA, hB, a). We first look at state (0, 1, hA, hB, a). As there is only one patient at the scene,
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when transporting the patient to either of the two hospitals, the optimal decision is to choose

an action that yields the largest immediate reward.

Under the assumption of µk > 2wk
′ for k, k′ ∈ {A,B}, the reward for transporting a class-D

patient to hospital A or B is given by Equation (6) in Section 4.2 as:

R(s,A) =
µAwA

(hArD + wA)(rD + µA)
, (F.1)

R(s,B) =
µBwB

(hBrD + wB)(rD + µB)
. (F.2)

Comparing R(s,A) and R(s,B) can be written as determining inequality of the following:

µAwA

(hArD + wA)(rD + µA)
R

µBwB

(hBrD + wB)(rD + µB)
(F.3)

Rearranging Equation (F.3) and by letting mk and ck denote hk

µkwk and hk

wk + 1
µk

, we have

mBrD + cB R mArD + cA (F.4)

Action A is optimal if RHS of Equation (F.4) is smaller, and action B is optimal if LHS is smaller.

When equality holds, either of the actions is optimal. Note that both the left- and right-hand

side of Equation (F.4) can be seen as a linear function of rD (rD > 0), where mk is the slope

and ck is its intercept. r∗, declared in the Proposition, can be written as cA−cB
mB−mA

, and it makes

equality hold in Equation (F.4). Graphically, it is where where the two lines represented by the

LHS and RHS intersect.

(i) If µAwAhB = µBwBhA, mB = mA and we have

hB

wB
+

1

µB
R
hA

wA
+

1

µA
. (F.5)

Thus, an optimal action can be determined by comparing LHS and RHS of Equation (F.5) and

choosing the one with a smaller value. Graphical interpretation is that since the two lines have

the same slope, we only need to compare their intercepts and choose the one with a smaller

intercept.

(ii) If r∗ = 0, µBwB(hAµA+wA) = µAwA(hBµB+wB), which gives cB = cA. Then Equation

(F.5) reduces to
1

µB
hB

wB
rD R

1

µA
hA

wA
rD. (F.6)

Thus, an optimal action can be determined by comparing LHS and RHS of Equation (F.6)
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and choosing the one with a smaller value. Graphically, we have two lines that have the same

intercepts, and thus we only need to compare their slopes to choose the one with a smaller slope.

(iii) If r∗ = cA−cB
mB−mA

< 0, it requires either of the followings to be true: (mB > mA and

cB > cA) or (mB < mA and cB < cA).

For (mB > mA and cB > cA), since rD > 0, Equation (F.4) holds true with the following

inequality:

mBrD + cB > mArD + cA. (F.7)

Therefore, action A is optimal under these conditions. Graphically, both the slope and intercept

of the RHS line are smaller than the LHS line, and therefore the RHS line lies below the LHS

line for all rD > 0.

Similarly, for (mB < mA and cB < cA),

mBrD + cB < mArD + cA, (F.8)

making action B optimal.

From the conditions, (mB > mA and cB > cA) and (mB < mA and cB < cA), we see that

optimal action is determined by only comparing cA and cB, which is Equation (F.5).

(iv) If 0 < rD ≤ r∗ = cA−cB
mB−mA

, it requires either of the following to be true: (mB > mA and

cB < cA) or (mB < mA and cB > cA).

For (mB > mA and cB < cA), we have

mBrD + cB ≤ mArD + cA, (F.9)

and action B is optimal. Similarly, it easy to see action A is optimal when (mB < mA and

cB > cA). Thus, as in (iii), an optimal action can be determined by only comparing cA and

cB, which is Equation (F.5). Graphical explanation is that smaller/larger relationship at the

intercept between the two lines remains the same for interval from 0 to the intersect r∗.

(v) If rD > r∗ = cA−cB
mB−mA

> 0, it requires either (mB > mA and cB < cA) or (mB < m1 and

cB > cA).

If (mB > mA and cB < cA),

mBrD + cB > mArD + cA, (F.10)
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and if (mB < mA and cB > cA),

mBrD + cB < mArD + cA. (F.11)

Thus, in this case, an optimal action is the one with larger intercept, which is the opposite to the

result in (iv). Graphically, when rD is beyond the intercept of the two lines, the smaller/larger

relationship is the inverse of that at the intercept.

The optimal action for state (1, 0, hA, hB, a) can be derived in exactly the same way. This

completes the proof of Proposition 1. �

G Derivation of Equation (7)

When policy πI2D1 is executed in state s = (1, 1, h1, h2, a
1
j ), the value obtained by this policy is

as follows:

VπI2D1(s) =

(
µ2w2

(h2rI + w2)(rI + µ2)

)
+

(
µ22

(µ2 + w1 + rD)2
× µ1w1

(h1rD + w1)(rD + µ1)

)
+

(
2µ22w1

(µ2 + w1 + rD)3
× µ1w1

((h1 − 1)rD + w1)(rD + µ1)

)
+ · · · . (G.1)

where the first term in parentheses is the reward for transporting a class-I patient to a tier-2

hospital;terms in the second, third and thereafter parentheses represent the future value of (D, 1)

portion of the policy. That is, we compute the reward for sending the class-D patient to a tier-1

hospital under each possible state of the tier-1 hospital. In each set of parentheses, the second

term is the immediate reward for sending the class-D patient to a tier-1 hospital in a certain

state, whereas the first term is the probability that the tier-1 hospital is in that particular state.

For example, the first term in the second set of parentheses is the probability that the class-D

patient lives and there is no patient discharged from the tier-1 hospital during the round trip of

the ambulance’s earlier transportation task (i.e., taking a class-I patient to the tier-2 hospital

and returning to the site to pick up the class-D patient). Then, the immediate reward of taking

the class-D patient to the tier-1 hospital is expressed by the second term in the parentheses.

We can further simplify Equation (G.1). First, the fourth and later terms can be ignored

because the probabilities are very small under the assumption of µ > 2w. Second, as rD is very

small, the reward terms in the second and third sets of parentheses are approximately the same:

13



µ1w1

(h1rD+w1)(rD+µ1)
≈ µ1w1

((h1−1)rD+w1)(rD+µ1)
. Thus, we can rewrite Equation (G.1) as:

VπI2D1(s) ≈
(

µ2w2

(h2rI + w2)(rI + µ2)

)
+

(
µ22

(µ2 + w1 + rD)2
+

2µ22w1

(µ2 + w1 + rD)3

)
× µ1w1

(h1rD + w1)(rD + µ1)
. (G.2)

The summation of the probabilities shown in parentheses on the second line is approximately

the same as the probability that the class-D patient lives. Therefore, the value when policy πI2D1

is executed in the current state s = (1, 1, ·, ·, a1j ) can be approximated as follows:

VπI2D1(s) =
µ2w2

(h2rI + w2)(rI + µ2)
+

µ22
(µ2 + rD)2

× µ1w1

(h1rD + w1)(rD + µ1)
. (G.3)

The opposite case of VπD1I2 is derived similarly as:

VπD1I2(s) =
µ1w1

(h1rD + w1)(rD + µ1)
+

µ21
(µ1 + rI)2

× µ2w2

(h2rI + w2)(rI + µ2)
, (G.4)

where πD1I2 denotes the policy in which the class-D patient is first transported to the tier-1

hospital, and then the class-I patient is transported to the tier-2 hospital.

We now compare VπI2D1 and VπD1I2 to derive a condition for which πI2D1 is superior to πD1I2:

µ2w2

(h2rI + w2)(rI + µ2)
+

µ22
(µ2 + rD)2

× µ1w1

(h1rD + w1)(rD + µ1)

>
µ1w1

(h1rD + w1)(rD + µ1)
+

µ21
(µ1 + rI)2

× µ2w2

(h2rI + w2)(rI + µ2)
. (G.5)

After rearranging Equation (G.5) and applying the assumption that ri for i ∈ {I,D} is very

small, we obtain the following approximate condition:

µ2w2

µ1w1
h1 +

w2

rD

(
µ2
µ1
− rD
rI

)
> h2. (G.6)

Finally, as ri is very small for i ∈ {I,D}, µ1 × rD ≈ µ2 × rI , and we finally state the condition

for which πI2D1 is superior to πD1I2 as:

µ2w2

µ1w1
h1 > h2. (G.7)
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H Derivation of Equation (8)

We follow the same procedure as in Section G to derive Equation (8). The value function when

policy πI2D2 is executed in the current state s = (1, 1, h1, h2, a
1
j ) is:

VπI2D2(s) =
µ2w2

(h2rI + w2)(rI + µ2)
+

µ22
(µ2 + w2 + rD)2

× µ2w2

((h2 + 1)rD + w2)(rD + µ2)

+
2µ22w2

(µ2 + w2 + rD)3
× µ2w2

(h2rD + w2)(rD + µ2)
+ · · · . (H.1)

Using the same argument as in Section G, Equation (H.1) can be approximated as follows:

VπI2D2(s) =
µ2w2

(h2rI + w2)(rI + µ2)
+

µ22
(µ2 + rD)2

× µ2w2

(h2rD + w2)(rD + µ2)
. (H.2)

That is, if the class-D patient at the accident site remains alive while the ambulance transports

the patient and returns, the reward for the next decision can be approximated as µ2w2

(h2rD+w2)(rD+µ2)

and the probability of this condition is µ22
(µ2+rD)2

. Likewise, VπD2I2 is given by:

VπD2I2(s) =
µ2w2

(h2rD + w2)(rD + µ2)
+

µ22
(µ2 + rI)2

× µ2w2

(h2rI + w2)(rI + µ2)
. (H.3)

Thus, the condition under which πI2D2 is superior to πD2I2 is:

µ2w2

(h2rI + w2)(rI + µ2)
+

µ22
(µ2 + rD)2

× µ2w2

(h2rD + w2)(rD + µ2)

>
µ2w2

(h2rD + w2)(rD + µ2)
+

µ22
(µ2 + rI)2

× µ2w2

(h2rI + w2)(rI + µ2)
. (H.4)

Finally, rearranging Equation (H.4) and applying the assumption that ri for i ∈ {I,D} is

very small, Equation (H.4) can be simplified as follows:

w2

rIrD
> h2. (H.5)
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