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S.1 Determination of the Number of PCs

This section provides more information on how to select the number of PCs K discussed in Section

2.5. As our HSMFPCA is performed sequentially (see Figure 3), after updating X by X−Xv̂v̂T , a

hypothesis test based on the Tracy-Widom convergence is used to check if the covariance matrix of

the updated data xi is an identity matrix. If rejected, we believe more signals exist in the new data

matrix X and continue looking for the next PC. Specifically, if xi
i.i.d∼ N(0, I), N1 = max(N,P )− 1,

P1 = min(N,P ) and e1 is the largest eigenvalue of XTX, then we have the following theorem (El

Karoui 2003, Akemann et al. 2011):

Theorem S.1. If N,P → ∞, and P/N → ρ ∈ (0,∞), then (e1 − µNP )/σNP
d→ TW1, where

µNP = (
√
N1 +

√
P1)

2, σNP = (
√
N1 +

√
P1)(1/

√
N1 + 1/

√
P1)

1/2 and TW1 is the Tracy-Widom

distribution.

We take the single factor model in Section 3.1 for example where L = 1, σ2ε = 1 and v1 is

the eigenvector in Case 1 (see Figure 4). The results for the eigenvectors in Case 2-7 (see Figure

6 and 8) are also very similar. The signal size σ1 ∈ {1.0, 1.1, . . . , 5.0} and the sample size N ∈

{20, 50, 100, 200}. For each combination of σ1 and N , R = 500 random data sets are simulated, and

for each data set, our proposed HSMFPCA is applied repeatedly as long as e1/σ̂
2
ε > QTW1(0.95)×

σNP + µNP , where σ̂2ε = Median
(
{
∑N

i=1(xi,sjt − µsjt)
2/N}s,j,t

)
(Ma 2013) and QTW1(0.95) is the

95% quantile of the Tracy-Widom distribution. The correct rate of the selected number of PCs in
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these simulated data sets is defined as CR = #(K = L)/R, which is plotted in Figure S.1. The CR

gets higher as the sample size or signal size increases. Even though N ≤ P , it can be seen in Figure

S.1 that the true number of PCs can still be correctly inferred at a high probability whenever the

signal size is significantly larger than the noise size.

Figure S.1: Correct rates of the selected number of PCs for different sample and signal sizes.

S.2 Selection of the Tuning Parameters

We now verify that selecting the tuning parameters by the AIC(λ3) in Section 2.5 is comparable

to that by the AIC(λ1, λ2, λ3), taking the single factor model in Section 3.1 again for example. In

our fast AIC(λ3), we set λ3 ∈ {0.0, 0.1, . . . , 10.0} and for each λ3, λ2 = 10λ3, λ1 = 50λ3, while in

the exact AIC(λ1, λ2, λ3), we let λ3 ∈ {0.0, 0.1, . . . , 10.0}, λ2 ∈ {0, 1, . . . , 100}, λ1 ∈ {0, 5, . . . , 500}.

For one simulated date set, the best AIC is searched in the two configured grids above, the results

of which are shown in Table S.1. It can be clearly seen that the optimal values of the AIC(λ3)

and the AIC(λ1, λ2, λ3) are approximately the same. Actually, the minimum value of AIC(λ3) is

smaller than the 99.84% of the grid values of AIC(λ1, λ2, λ3) in our simulations. Additionally, the

selected tuning parameters λ1, λ2, λ3 and the performance in terms of the criteria in Table 1 are

also very similar. The estimated eigenvectors with the optimal tuning parameters are displayed in

Figure S.2, where there is no obvious visual difference between the results of the AIC(λ3) and the

AIC(λ1, λ2, λ3).

Table S.1: Comparison results of the AIC(λ3) and the AIC(λ1, λ2, λ3).

Minimum value df (λ1 λ2 λ3) ZM F1 Angle (10−2) RMSE (10−3) EV

AIC(λ3) 10009.54 31 (340, 68, 6.8) 0.9650 0.8772 7.0312 7.8058 0.2563

AIC(λ1, λ2, λ3) 10007.91 31 (370, 88, 6.8) 0.9650 0.8772 7.0307 7.8052 0.2563
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AIC(𝜆1, 𝜆2, 𝜆3)

AIC(𝜆3)

Figure S.2: Estimated eigenvectors by the AIC(λ3) and the AIC(λ1, λ2, λ3).

S.3 HSMFPCA Performance for Different Sample and Signal Sizes

We evaluate the performance of our proposed HSMFPCA in terms of the criteria in Table 1 as

the sample size N and the signal size σ1 vary in Case 1-7 (see Figure 4, 6 and 8). Table S.2 and

Figure S.3 show the results in Case 2, where it can be seen that as N and σ1 increase, ZM and

F1 get higher, indicating that the sparsity pattern of the eigenvector is more correctly identified,

and Angle and RMSE become lower, implying that the element values of the eigenvector is more

accurately estimated. For each value of σ1, the variances of the results, shown as the lengths of

the boxplots in Figure S.3, are also reduced when N gets larger. The results of the other cases are

very similar, which are thus not shown here for saving space.

Table S.2: Performance of the HSMFPCA for different sample and signal sizes in Case 2.

N σ1 = 2 σ1 = 5 σ1 = 8 σ1 = 10 N σ1 = 2 σ1 = 5 σ1 = 8 σ1 = 10

ZM

20

0.7617 0.9300 0.9420 0.9498

50

0.8458 0.9467 0.9554 0.9612

F1 0.4994 0.8322 0.8564 0.8737 0.6850 0.8659 0.8858 0.8993

Angle 0.7107 0.2247 0.1349 0.1071 0.4272 0.1348 0.0826 0.0653

RMSE 0.0707 0.0248 0.0150 0.0119 0.0461 0.0148 0.0092 0.0072

EV 0.0525 0.1292 0.2526 0.3400 0.0358 0.1206 0.2492 0.3384

ZM

100

0.8848 0.9440 0.9687 0.9782

200

0.8913 0.9590 0.9783 0.9834

F1 0.7490 0.8604 0.9172 0.9414 0.7591 0.8951 0.9424 0.9555

Angle 0.2951 0.0959 0.0560 0.0436 0.2102 0.0665 0.0394 0.0310

RMSE 0.0325 0.0106 0.0062 0.0048 0.0232 0.0074 0.0044 0.0034

EV 0.0295 0.1165 0.2446 0.3338 0.0267 0.1157 0.2449 0.3346
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Figure S.3: Boxplots of the HSMFPCA Performance for different sample and signal sizes in Case

2. Row 1-4 correspond to N = 20, 50, 100, 200.

S.4 Real Example Study

The 120 samples of the original profile data of each process variable from the three stages in our

real example (see Section 4) are plotted individually in Figure S.4. Please note that that different

process variables are recorded by different measurement units and scales and they are also plotted

by different ranges in the vertical axis in Figure S.4, so the observations of the data variance

directly from Figure S.4 is very misleading. We follow the guidelines in Section 2.5 to perform data
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preprocessing, and the centered and standardized profile data have been shown in Figure 10.
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Figure S.4: Profile data of process variables from all stages. Row 1-3 correspond to Stage 1-3.

We also apply the VPCA, SSPCA, ESMFPCA and PSMFPCA to the real example data set, the

results of which are plotted in Figure S.5-S.8, respectively. Compared to these competing methods,

though the percents of explained variance are reduced a little bit, our HSMFPCA in Figure 11 is

shown to be much better in generating much more sparse and more interpretable eigenvectors.

ො𝐯2, 𝑑𝑓 = 375, EV = 0.1104

ො𝐯1, 𝑑𝑓 = 375, EV = 0.3216

Figure S.5: Estimated eigenvectors by the VPCA.
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ො𝐯2, 𝑑𝑓 = 128, EV = 0.1078

ො𝐯1, 𝑑𝑓 = 91, EV = 0.3199

Figure S.6: Estimated eigenvectors by the SSPCA.

ො𝐯2, 𝑑𝑓 = 165, EV = 0.1072

ො𝐯1, 𝑑𝑓 = 254, EV = 0.3199

Figure S.7: Estimated eigenvectors by the ESMFPCA.

ො𝐯2, 𝑑𝑓 = 154, EV = 0.1067

ො𝐯1, 𝑑𝑓 = 128, EV = 0.3012

Figure S.8: Estimated eigenvectors by the PSMFPCA.
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