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Abstract

Information visualization significantly enhances human perception by graphically represent-

ing complex data sets. The variety of visualization designs makes it challenging to efficiently

evaluate all possible designs catering to users’ preferences and characteristics. Most of existing

evaluation methods perform user studies to obtain multivariate qualitative responses from users

via questionnaires and interviews. However, these methods cannot support online evaluation of

designs as they are often time-consuming. A statistical model is desired to predict users’ pref-

erences on visualization designs based on non-interference measurements (i.e., wearable sensor

signals). In this work, we propose a multivariate regression of mixed responses (MRMR) to

facilitate quantitative evaluation of visualization designs. The proposed MRMR method is able

to provide accurate model prediction with meaningful variable selection. A simulation study

and a user study of evaluating visualization designs with 14 effective participants are conducted

to illustrate the merits of the proposed model.

Keywords: Generalized linear regression; Glasso; Information visualization; Mixed responses; Quan-

titative evaluation; Wearable sensors.
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1 Introduction

Comprehending complex data sets is a cognitive challenge yet important task for human-machine

collaborations. To reduce the mental workload and to facilitate fast comprehension of data, infor-

mation visualization techniques have been widely applied to graphically represent complex data sets

using different visualization designs. For example, visualization techniques have been adopted for

visualizing manufacturing simulations (Rohrer 2000), sequence management (Sackett et al. 2006),

and virtual design of factories (Lindskog et al. 2013). As a mix-up of reality and virtual objects,

Chen et al. (2016) proposed an augmented reality (AR)-based visualization platform to visualize

real-time data streams online and incorporated an online quality-process model for a fused depo-

sition modeling process. Besides, AR-based and virtual reality (VR)-based visualization systems

have also been developed for various applications in human-machine collaboration, such as facility

planning (Dangelmaier et al. 2005), production control (Damiani et al. 2018), and workforce train-

ing (Wang et al. 2017). With a large amount of visualization design candidates, it remains an open

challenge on how to efficiently evaluate designs and select the best visualization designs catering to

users’ characteristics (e.g., preferences, perceptual, and cognitive capabilities) and contexts (e.g.,

tasks, devices, and environments).

This research concerns the online evaluation of visualization designs considering users’ char-

acteristics and contexts. In human-computer interaction (HCI) as well as human factors and

ergonomics (HFE) communities, visualization designs have been evaluated from different perspec-

tives by using various well-established instruments. Generally, qualitative evaluation methods have

been proposed based on multivariate evaluation metrics that are collected by using questionnaires,

think-aloud protocol, and interviews (Salvendy 2012). However, these methods are typically time-

consuming due to the data collection methods. Therefore, existing qualitative methods are not

very suitable to support online evaluation of visualization designs. Most of these methods also

fail to quantify individual differences in users’ characteristics and contexts. Although quantitative

methods have been proposed to evaluate visualization designs by collecting objective data in an

unobtrusive manner, most of them either fail to consider users’ status (Ivory and Hearst 2001), or

could only provide univariate response that provids limited insights for the investigators (Chen and

Jin 2017).

Obviously, a single response may not be as informative as multivariate responses to support in-

depth evaluation of visualization designs from multiple perspectives. As shown in the information
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Figure 1: A graphical illustration of data collection methods based on wireless EEG device, eye
tracking device, and a browsing behavior logging system. Three types of covariates and six re-
sponses were extracted. (This figure is partially redrawn from Chen and Jin (2017) with authors’
permission)

visualization example in Figure 1, multivariate responses are commonly collected with mixed types

(i.e., continuous, counting, and binary responses). Specifically, Figure 1 shows a visualization eval-

uation user study by using unobtrusive data collection devices (i.e., wireless EEG device, remote

eye tracking device, and a browsing behavior logging system). After collecting the data, three types

of measurements (i.e., EEG signals, eye movements, and behavioral logs) with six mixed responses

were extracted, including three continuous responses (i.e., CompletionTime, HitExploreRatio, and

MeanTimeInAOIs), two counting responses (i.e., ExploredAOIs and MaxRe-exploration), and one

binary response (i.e., AttendMoreThan5Times) (see details in Section 6). To evaluate the visu-

alization designs in a comprehensive manner, it calls for a multivariate regression for the mixed

responses. Such a data-driven model should be able to 1) predict mixed responses by considering

the associations between themselves, and 2) select significant predictor variables with meaningful

interpretations.

In this work, we focus on developing a new multivariate regression for mixed responses (MRMR),

which is to jointly model the mixed responses, and hence to improve the quantitative evaluation

of the online visualization designs in accuracy. The proposed method properly exploits the hidden

associations among the multiple mixed responses, which draws a clear contrast to existing methods

with separate model for each response. Clearly, ignoring the dependency among multiple responses

may lose information from data. For the proposed MRMR method, we have considered a joint

multivariate generalized linear model to fit data with mixed responses. The key idea is to cap-

ture the associations between multiple responses via graphical model and improve the prediction

performance via penalized regression. It is thus able to select significant predictor variables such
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that the model is interpretable. The Monte Carlo EM (MCEM) algorithm is adopted for efficient

parameter estimation.

The rest of this paper is organized as follows. Section 2 provides a literature review. Section 3

introduces the proposed MRMR model and derives the objective function. The MCEM algorithm is

developed to solve the proposed estimate in Section 4. Section 5 validates and stresses the proposed

MRMR model by the numerical study. An application of a visualization evaluation user study is

thoroughly discussed in Section 6. We conclude this work with some discussion in Section 7.

2 Literature Review

In this section, we review the existing literature related to the qualitative and quantitative visual-

ization design evaluation methods, as well as the mixed response modeling, respectively, in three

subsections.

2.1 Qualitative Visualization Design Evaluation

Generally, existing methods for visualization design evaluation can be categorized into two groups:

qualitative and quantitative evaluation methods. Qualitative methods typically provide multivari-

ate evaluation metrics which are subjectively rated by users and can be used for the generation of

insightful conclusions for investigators. For example, testbed evaluation (Bowman et al. 1999) and

sequential evaluation (Gabbard et al. 1999) methods were proposed for usability evaluation by using

heuristics. The responses collected from user studies effectively identified usability issues against

design principles from multiple perspectives (Bowman et al. 2002). As another example, pluralistic

walkthrough (Bias 1994) and cognitive walkthrough (Rieman et al. 1995) evaluated visualization

designs by collecting users’ subjective responses in a series of pre-defined tasks according to their

perceptual and cognitive workload. Most of the aforementioned qualitative methods collect data

based on well-designed questionnaires, think-aloud protocol, and interviews (Salvendy 2012). They

typically take hours to collect data and days to extract informative data from records manually, thus

being time-consuming to support visualization evaluation in a timely and online manner. Besides

these qualitative evaluation methods, various instruments such as NASA task load index (TLX)

(Hart and Staveland 1988), subjective workload assessment technique (SWAT) (Reid and Nygren

1988), and software usability measurement inventory (SUMI) (Kirakowski and Corbett 1993) have

been widely adopted in collecting the subjective feedback from user studies to provide multivariate
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evaluation scores. Although these methods and instruments can support in-depth evaluation of

visualization designs, they need a large amount of time for user studies and response collection,

and they bring interference to the human-computer interactions.

2.2 Quantitative Visualization Design Evaluation

On the other hand, quantitative methods have been reported to evaluate visualization designs by

collecting objective data in an unobtrusive manner. For example, controlled experiments such as

A/B testing were reported to evaluate the causal relationship between changes and their influence

on measurable behaviors (Kohavi et al. 2009). Besides, an automated usability evaluating approach

was proposed by using the background logging system to record relevant interaction information

about users and visualization designs (Ivory and Hearst 2001). These quantitative methods provide

objective evaluations with minimal interference, but they fail to consider the users’ characteristics,

which may have significant impact on the evaluation conclusions and insights. In contrast, some

recent studies in HFE started to investigate data fusion and statistical models to predict subjective

responses based on unobtrusive measures (e.g., physiological sensor signals, mouse and keyboard

tracking, etc.). For instance, Chen and Jin (2017) employed a regularized linear regression model

to accurately predict users’ subjective rating of task complexities based on wearable sensor sig-

nals (i.e., electroencephalogram (EEG) signals, eye movements, and browsing behaviors). Their

method provided an online and quantitative evaluation model which yielded the first attempt to

link unobtrusive measurements and subjective ratings. As another example, Maman et al. (2017)

built a regression model to predict subjective rating of physical fatigue by using wearable sensor

signals (i.e., heart rate and vibrations of human bodies). Note that the aforementioned data-driven

models often consider a single response based upon wearable sensor signals (i.e., objective data)

to predict subjective ratings. Therefore, it is relatively difficult for these data-driven methods to

provide insights as informative as multivariate responses in qualitative methods.

2.3 Mixed Response Modeling

In the literature, there are some works on joint modeling of multiple responses. However, most

related works limited their investigation on the joint modeling for mixed responses of only contin-

uous and binary responses (Fitzmaurice and Laird 1997; Qiu 2008; Song et al. 2009; Chen et al.

2014; Deng and Jin 2015; Kang et al. 2018). They often considered a conditional model of one-type
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variables conditioned on the other-type variables. Besides, Hapugoda et al. (2017) studied a set

of poultry industry data with one continuous response and one counting response. They formu-

lated a joint model by combining the discrete time hazard model (Hapugoda and Sooriyarachchi

2016) and Poisson regression model. The generalized linear models were used to form marginal

models for each response. Then the two responses were linked by structuring a covariance ma-

trix to account for the potential correlations. However, such a covariance matrix contains a user

specified covariance structure. Additionally, Wu et al. (2018) proposed to jointly model data with

only multivariate counting responses by the latent variables. The R pacakge SabreR (Berridge

and Crouchley 2011) can model data with mixed responses by using the marginal likelihood but is

limited to dealing with at most three response variables. Bonat and Jørgensen (2016) proposed a

multivariate covariance generalized linear model to fit mixed responses and capture the relationship

between response variables by the generalized Kronecker product. However, their method needs to

pre-specify a covariance link function and several known matrices to reflect the covariance structure

of responses, and obviously such known matrices are subjectively defined by the users. Therefore,

based on our best knowledge, few works have contributed to the analysis of mixed responses data

with continuous, counting and binary outcomes together. A mixed response model is desired to

consider the dependency among multiple responses with mixed types to support insightful online

visualization evaluation.

3 The Proposed Model with Exponential Family

In this section, we construct the proposed model and derive its likelihood function. Suppose

U = (U (1), U (2), . . . , U (l))T is a random vector of l dimensions and each U (i) is a normal random

variable representing continuous response. Similarly, Z = (Z(1), Z(2), . . . , Z(m))T is a random vector

of m dimensions and each Z(i) is a Poisson random variable representing counting response, and

W = (W (1),W (2), . . . ,W (k))T is a random vector of k dimensions and each W (i) is a Bernoulli

random variable representing binary response. Then, we have

U (i)|µ(i), σ(i) ∼ N
(
µ(i), σ(i)2)

Z(i)|β(i) ∼ Poisson
(
β(i)

)
(1)

W (i)|γ(i) ∼ Bernoulli
(
γ(i)

)
,
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where µ(i), σ(i)2
, β(i) and γ(i) are the corresponding distribution parameters. Given such param-

eters, the model in (1) implies that the variables U (i), Z(i) and W (i) are conditionally inde-

pendent from each other. Let ξG = (µ(1), . . . , µ(l))T , ξP = (log β(1), . . . , log β(m))T and ξB =

(log γ(1)

1−γ(1) , . . . , log γ(k)

1−γ(k) )T . Consequently, we connect the vector of parameters ξ = (ξTG, ξTP , ξTB)T

with the p-dimensional vector of predictor variables x via the linear model

ξ = BTx+ ε

ε ∼ N(0,Σ),

where B is a p × (l + m + k) coefficient matrix, and Σ is the covariance matrix of the error term

ε, which characterizes the dependency between multiple responses. From a Bayesian perspective,

the parameter vector ξ is given a normal distribution with mean BTx and covariance matrix Σ.

Denote the parameter vector by θ = (µ(1), . . . , µ(l), β(1), . . . , β(m), γ(1), . . . , γ(k))T . Accordingly, we

have an element-wise mapping π such that θ = π(ξ). Specifically, π is a mapping on an (l+m+k)

dimensional vector. For the first l components of the vector: ξ π→ ξ; for the next m components of

the vector: ξ π→ exp (ξ); for the last k components of the vector: ξ π→ exp (ξ)
1+exp (ξ) . Hence, we propose

the following multivariate regression model

Y ∼ Exponential Family(θ)

θ = π(BTx+ ε) (2)

ε ∼ N(0,Σ),

where Y = [UT ,ZT ,W T ]T represents the vector of the response variables. Through the parameter

vector θ, we are able to model the covariance structure of the variable Y indirectly.

Before diving into the derivation of the likelihood of model (2), we first examine the normal

component in the regression model

U ∼ N(µ,ΣU )

µ = BT
Ux+ ε (3)

ε ∼ N(0,Σ),

where BU and ΣU are corresponding coefficient and covariance matrices that are related to con-
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tinuous responses. Note that in this sub-model (3), the covariance structure ΣU of the responses

U is coupled with that of the error term ε. To avoid the model identifiability issue, we simplify

the normal sub-model as follows

U = µ

µ = BT
Ux+ ε

ε ∼ N(0,ΣU ).

In this way, the covariance structure of responses U can be modeled via the normally distributed

error term ε, which reduces the number of parameters in the multivariate regression model.

With the simplification of the normal component in the regression model, its likelihood function

can be derived. Under the conditional independence assumption that each dimension of Y is

independent of each other given θ, the joint distribution of Y is

p(Y | θ) =
l∏

i=1
p(U (i) = u(i) | θ) ·

m∏
i=1

p(Z(i) = z(i) | θ) ·
k∏
i=1

p(W (i) = w(i) | θ)

=
m∏
i=1

(β(i))z(i) exp (−β(i))
z(i)!

·
k∏
i=1

(γ(i))w(i)(1− γ(i))1−w(i)
.

From ξ = BTx+ ε and ε ∼ N(0,Σ), it is easy to derive the density function of ξ | x as

p(ξ | x) = 1
(2π)(l+m+k)/2|Σ|1/2 exp

(
−1

2(ξ −BTx)TΣ−1(ξ −BTx)
)
.

As a result, the density function of θ | x can be written as

p(θ | x) =
exp

(
−1

2 [π−1(θ)−BTx]TΣ−1[π−1(θ)−BTx]
)

(2π)(l+m+k)/2|Σ|1/2∏m
i=1 β

(i)∏k
i=1 γ

(i)(1− γ(i))
,

where π−1 is the inverse of mapping π. Hence, the data distribution for Y | x is

p(Y | x) =
∫
θ
p(Y ,θ | x)dθ =

∫
θ
p(Y | θ)p(θ | x)dθ. (4)

Given the training data (x1,y1), (x2,y2), . . . , (xn,yn), we write the log-likelihood of the regression
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model (2) as follows

L(B,Σ) =
n∑
j=1

log p(yj | xj).

To jointly enforce the sparsity in the estimated model parameters, the LASSO-type regulariza-

tion (Tibshirani 1996) is imposed on the matrices B and Σ simultaneously. The penalty for B can

recover the sparse structures on model coefficients and the penalty for Σ−1 is to enhance model

prediction by incorporating the dependent relationship among the mixed responses. Consequently,

the regularized negative log-likelihood is

Lp(B,Σ) = −L(B,Σ) + λ1||B||1 + λ2||Σ−1||1,

where λ1 > 0 and λ2 > 0 are two tuning parameters, and || · ||1 stands for the L1 matrix norm,

defined as ||A||1 = ∑
i,j |aij | for matrix A with aij being its elements. Our proposed estimates B̂

and Σ̂ are the solution to the following optimization problem

(B̂, Σ̂) = arg min
B,Σ

Lp(B,Σ). (5)

4 MCEM Algorithm for Parameter Estimation

In this section, we apply the MCEM algorithm to handle the parameter estimation in (5). The

MCEM algorithm is a modified version of the EM algorithm where the expectation in the E-step

is not available in a closed form. Alternatively, we approximate the expectation in the E-step by

the numerical computation through Monte Carlo simulations.

4.1 MCEM Algorithm

In order to obtain the proposed estimates in (5), one needs to minimize the regularized negative

log-likelihood function Lp(B,Σ). However, it is a difficult task due to the complicated integral

in (4). Therefore, we employ the EM algorithm for the parameter estimation with θ treated as

a latent variable. The following gives an overview of EM algorithm applying to the optimization

problem (5), and the detailed procedure is provided in Section 4.2 and 4.3.

9



E-step: At iteration t+ 1, the conditional distribution of θ given x, Y , B(t) and Σ(t) is

p(θ | x,Y ,B(t),Σ(t)) = p(Y ,θ | x,B(t),Σ(t))
p(Y | x,B(t),Σ(t))

,

where B(t) and Σ(t) are the estimates of B and Σ at iteration t in the E-step. Then the expected

log-likelihood is

Q(B,Σ | B(t),Σ(t)) = Eθ|x,Y [L(B,Σ)] (6)

=
n∑
j=1

Eθj |xj ,yj
[log p(yj ,θj | xj ,B(t),Σ(t))].

M-step: Find the estimates of B and Σ at iteration t+1 by solving the following optimization

problem

(B(t+1),Σ(t+1)) = arg min
B,Σ

{−Q(B,Σ | B(t),Σ(t)) + λ1||B||1 + λ2||Σ−1||1}

The E-step and M-step are repeated until the estimates of both B and Σ are converged.

4.2 E-step

In this step, we take the expectation of the log-likelihood function as in (6). However, it is difficult to

derive its analytical form due to the integral in (4). Hence, the Markov Chain Monte Carlo (MCMC)

technique is employed in the E-step to approximate the expected log-likelihood Q(B,Σ | B(t),Σ(t))

in (6). That is, the MCMC samples of θj are drawn from

p(θj | xj ,yj ,B(t),Σ(t))

∝p(yj ,θj | xj ,B(t),Σ(t))

∝ exp
(
−1

2[π−1(θ)−BTx]TΣ−1[π−1(θ)−BTx]
)

exp
(
−

m∑
i=1

β(i)
)

m∏
i=1

[β(i)](z(i)−1)
k∏
i=1

[γ(i)](w(i)−1)[1− γ(i)]−w(i)
. (7)
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Then the expected log-likelihood function (6) is approximately computed by

Q̃(B,Σ | B(t),Σ(t)) =
n∑
j=1

1
h

h∑
ν=1

log p(yj ,θ
(ν)
j | xj ,B

(t),Σ(t)), (8)

where h is the size of MCMC samples after burn-in period. In our implementation, we set the

length of MCMC chain to be 1000 with the burn-in size 300. The MCMC chain usually converges

in one or two hundred iterations.

4.3 M-step

In this step, we seek for the estimates of B and Σ to minimize the expected negative log-likelihood

function (up to some constant)

1
n

n∑
j=1

1
h

h∑
ν=1

{
[π−1(θ(ν)

j )−BTxj ]TΩ[π−1(θ(ν)
j )−BTxj ]− log |Ω|

}
,

where Ω = Σ−1. That is, we solve the following optimization problem

(B(t+1),Ω(t+1)) = arg min
B,Ω

{ 1
nh

tr(ΦTΦΩ)− log |Ω|+ λ1||B||1 + λ2||Ω||1
}
, (9)

where Φ =



Ψ(Θ1)− X1B

Ψ(Θ2)− X2B
...

Ψ(Θn)− XnB


, Θj = (θ(1)

j ,θ
(2)
j , . . . ,θ

(h)
j )T is an (nh)×(l+m+k) matrix contain-

ing all the samples of θj drawn from MCMC in E-step. Here Ψ(Θj) = [π−1(θ(1)
j ), π−1(θ(2)

j ), . . . , π−1(θ(h)
j )]T ,

and Xj is an h× p matrix with each of its row being xj . Notice that the optimization problem (9)

has two parameters B and Ω, and it is convex with respect to one parameter when the other is

fixed. Hence, the profile technique is used to solve the optimization problem (9). More precisely,

for a known estimate B0,

Ω(B0) = arg min
Ω

{ 1
nh

tr(ΦTΦΩ)− log |Ω|+ λ2||Ω||1
}
.

It has the same form as Graphical Lasso (Glasso), which has been studied in many literature such as

Yuan and Lin (2007), Friedman et al. (2008), Rocha et al. (2008), Rothman et al. (2008), Raskutti
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et al. (2009), Lam and Fan (2009), Deng and Yuan (2009), and Yuan (2010). On the other hand,

for a known estimate Ω0,

B(Ω0) = arg min
B

{ 1
nh

tr(ΦTΦΩ0) + λ1||B||1
}
. (10)

To solve the optimization problem (10), we approximate the L1 matrix norm ||B||1 by a quadratic

form in order to reduce the computational burden. Such a quadratic approximation technique is

commonly used in the literature of sparse regressions, such as the SCAD penalty in Fan and Li

(2001) and Zou and Li (2008). Denote by B̂ the current estimate of B. Let 1/
√
|B̂| be a matrix

each of whose entries is the inverse of the squared root of the absolute value for the corresponding

entry in matrix B̂. Then we have

λ1||B||1 ≈ λ1tr(B̃T
B̃), with B̃ = B ◦ 1√

|B̂|
,

where ◦ represents the Hadamard product (Horn and Johnson 1985). Accordingly, the optimization

problem (10) can be written as

η(B) = 1
nh

tr(ΦTΦΩ0) + λ1tr(B̃T
B̃)

= 1
nh

n∑
j=1

tr
{

[Ψ(Θj)− XjB]T [Ψ(Θj)− XjB]Ω0
}

+ λ1tr(B̃T
B̃).

Taking derivative of η(B) with respect to B and setting to 0, we have

2
nh

n∑
j=1

[
XTj XjBΩ0 − XTj Ψ(Θj)Ω0

]
+ 2λ1

|B̂|
◦B = 0

 n∑
j=1

XTj Xj

BΩ0 + λ1nh

|B̂|
◦B =

 n∑
j=1

XTj Ψ(Θj)

Ω0. (11)

Applying the matrix vectorization operator vec(·) for both sides of (11) yields

Ω0 ⊗

 n∑
j=1

XTj Xj

 vec(B) + vec(λ1nh

|B̂|
) ◦ vec(B) = vec

 n∑
j=1

XTj Ψ(Θj)

Ω0

 ,
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where ⊗ represents the Kronecker product. As a result, we obtain the solution to the optimization

problem (10)

vec(B) =

Ω0 ⊗

 n∑
j=1

XTj Xj

+ diag
(

vec(λ1nh

|B̂|
)
)−1

vec

 n∑
j=1

XTj Ψ(Θj)

Ω0

 .
Based on the above discussion, the estimation procedure for the proposed model is thus summarized

in Algorithm 1 as follows:

Algorithm 1.

Step 1: Input initial values Σinit, Binit, λ1 and λ2.

Step 2: Use the Metropolis-Hasting algorithm to draw samples of θj from (7).

Step 3: Φ(t+1) =



Ψ(Θ1)− X1B
(t)

Ψ(Θ2)− X2B
(t)

...

Ψ(Θn)− XnB(t)


.

Step 4: Obtain Ω(t+1) = Graphical Lasso (Φ(t+1), λ2).

Step 5: Obtain B(t+1) as

vec(B(t+1)) =
[
Ω(t+1) ⊗

(∑n
j=1 XTj Xj

)
+ diag

(
vec( λ1nh

|B(t)|
)
)]−1

vec
([∑n

j=1 XTj Ψ(Θj)
]
Ω(t+1)

)
.

Step 6: Repeat Step 2 - 5 till convergence.

To choose the optimal values for the tuning parameters λ1 and λ2, we use the extended Bayesian

information criterion (EBIC) (Chen and Chen 2008) which is to balance the tradeoff between the

fitting of the likelihood function and the sparsity of the estimates. The EBIC is commonly used

in the Gaussian graphical models with sparsity when dimensions are large. Denote by B̂λ1,λ2 and

Ω̂λ1,λ2 the estimates ofB and Ω under the tuning parameters (λ1, λ2). Then the EBIC is computed

as

EBIC(λ1, λ2) =− 2Q̃(B̂λ1,λ2 , Ω̂λ1,λ2) + [υ(B̂λ1,λ2) + υ(Ω̂λ1,λ2)] logn

+ 2τυ(B̂λ1,λ2) log[p(l +m+ k)] + 4τυ(Ω̂λ1,λ2) log(l +m+ k),

where Q̃(B̂λ1,λ2 , Ω̂λ1,λ2) can be approaximated by (8). Here υ(B̂λ1,λ2) and υ(Ω̂λ1,λ2) represent the

number of non-zeros in the estimates B̂λ1,λ2 and Ω̂λ1,λ2 , respectively. τ is set to be 0.5 as suggested

by Foygel and Drton (2010). The optimal values for (λ1, λ2) are chosen to minimize the EBIC.
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5 Numerical Simulation

In this section, the performance of the proposed method is examined by comparing with the separate

models for each response without considering the dependency between response variables. We use

the following three structures for matrix Ω:

Example 1. Ω1 = LTL. The elements of matrix L are randomly generated from uniform

distribution Unif(−1, 1).

Example 2. Ω2 = MA(0.8, 0.6, 0.4, 0.2). The main diagonal elements are 1 with the ith

sub-diagonal elements 0.2 ∗ (5− i), i = 1, 2, 3, 4.

Example 3. Ω3 is generated by randomly permuting rows and corresponding columns of Ω2.

Example 1 is a dense matrix, which can be considered as the most common matrix for the

real-world data, such as social, financial and economic data. Example 2 has a banded sparse

structure taking ones on its diagonal and decreasing values on several sub-diagonals with the rest

elements being zeros. It implies that the variables far apart are weakly correlated. This type

of matrix usually occurs in longitudinal, spatial and time series data. Example 3 considers an

unstructured sparse matrix, which is often the case for the high-dimensional data, such as gene

expressions and image data. For each example, two scenarios of dimensions are considered: (1)

p = 30, l = 3, m = 3 and k = 3; (2) p = 70, l = 5, m = 5 and k = 5. We independently generate

n = 50 training observations and 30 testing observations of the predictor matrix from multivariate

normal distribution Np(0, σXI). The true values of the coefficient matrix B are sampled from

uniform distribution Unif(aB, bB). To enforce the sparsity, a proportion of zeros, denoted by sB,

is randomly placed into each column of matrix B. The observations in the response matrix are

generated based on the models (1) and (2). In order to investigate the impact of the variation in

the predictor data on the performance of the proposed method, we scale the matrix Σ such that

the largest element in Σ equals different values ϕ = (1, 1.8, 2.6, 3.4). By tuning the data generation

parameters σX , aB, bB and sB, we could make sure that the counting observations in the response

matrix are within a reasonable range.

We compare the performance of the proposed method (Proposed) with the separate generalized

linear model (SGLM), which models each response separately using LASSO-penalized generalized

linear regression (Park and Hastie 2007; Koh et al. 2007). Note that the SGLM ignores the asso-

ciations between responses. We implement the SGLM using glmnet package in R program. The

Bayesian Information Criterion (BIC) is used to choose the optimal tuning parameters for SGLM.
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Table 1: The averages and standard errors (in parenthesis) of loss measures for estimates.

L(B̂) L(Ω̂)
p = 30 p = 70 p = 30 p = 70

ϕ SGLM Proposed SGLM Proposed Proposed Proposed

Ω1

1.0 9.622 (1.244) 5.800 (0.047) 11.13 (0.209) 9.561 (0.076) 11.76 (0.075) 27.31 (0.041)
1.8 18.42 (1.636) 5.652 (0.058) 13.81 (0.289) 9.458 (0.065) 11.83 (0.105) 24.02 (0.041)
2.6 35.40 (2.104) 5.590 (0.085) 17.62 (0.781) 9.570 (0.054) 10.58 (0.058) 21.63 (0.044)
3.4 47.09 (1.819) 5.917 (0.055) 21.43 (0.632) 9.700 (0.070) 12.76 (0.041) 27.33 (0.173)

Ω2

1.0 10.84 (0.537) 5.736 (0.080) 11.21 (0.161) 9.508 (0.070) 5.503 (0.104) 8.012 (0.008)
1.8 13.50 (0.924) 5.690 (0.057) 13.56 (0.162) 9.446 (0.070) 5.299 (0.093) 8.035 (0.004)
2.6 18.67 (1.549) 5.720 (0.049) 16.56 (0.277) 9.649 (0.058) 5.195 (0.092) 8.043 (0.004)
3.4 35.64 (2.283) 5.968 (0.059) 22.02 (0.463) 9.709 (0.075) 5.422 (0.100) 8.031 (0.007)

Ω3

1.0 9.511 (0.849) 5.823 (0.113) 11.07 (0.145) 9.397 (0.062) 5.332 (0.104) 8.061 (0.007)
1.8 14.07 (1.285) 5.780 (0.060) 13.45 (0.160) 9.402 (0.069) 5.375 (0.109) 8.050 (0.005)
2.6 23.50 (2.070) 5.796 (0.047) 17.62 (0.286) 9.596 (0.076) 5.447 (0.107) 8.071 (0.005)
3.4 32.50 (2.536) 5.930 (0.094) 21.81 (0.479) 9.771 (0.065) 5.681 (0.120) 8.067 (0.008)

To evaluate the estimation accuracy of the proposed method with respect to the coefficient

matrix B and precision matrix Ω, we consider the loss measures as follows

L(B̂) = ||B − B̂||2F and L(Ω̂) = ||Ω− Ω̂||2F ,

where || · ||F represents the Frobenius norm. Here, B̂ and Ω̂ stand for estimates of B and Ω,

respectively. Table 1 reports the averages and corresponding standard errors of the loss measures

for the estimates B̂ and Ω̂ over 50 replicates. It is clear to see that the proposed method consistently

outperforms the SGLM in all settings. As the variation in the simulated data increases (ϕ increases),

the traditional method SGLM produces large loss measures regarding L(B̂), while the proposed

method shows a more stable performance. In addition, the proposed model is designated to be

able to capture the sparse structure in the underlying matrix. Thus, it can provide more accurate

estimation if the underlying matrix is sparse, which is evidenced by the results of L(Ω̂) that the

losses for Ω2 and Ω3 are relatively smaller than those for Ω1. Such results demonstrate that the

proposed MRMR model improves the estimation accuracy by modeling the dependency structure

between the multivariate mixed responses.

To further investigate the performance of the proposed method, we evaluate its prediction

accuracy using the root-mean-square error (RMSE) for the continuous and counting responses over

the testing data. With respect to the binary response, we compare the misclassification errors (ME)
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Table 2: The averages and standard errors (in parenthesis) of RMSE and ME when p = 30.

L(Norm) L(Poisson) L(Binary)
ϕ SGLM Proposed SGLM Proposed SGLM Proposed

Ω1

1.0 1.393 (0.020) 1.499 (0.017) 22.01 (3.275) 10.25 (1.303) 0.321 (0.004) 0.263 (0.004)
1.8 1.664 (0.021) 1.754 (0.019) 75.21 (6.590) 11.42 (1.199) 0.325 (0.006) 0.265 (0.005)
2.6 1.977 (0.035) 1.951 (0.024) 178.2 (37.13) 17.02 (1.634) 0.325 (0.004) 0.265 (0.005)
3.4 2.293 (0.042) 2.111 (0.050) 633.9 (176.9) 25.10 (1.650) 0.326 (0.005) 0.266 (0.007)

Ω2

1.0 1.362 (0.018) 1.503 (0.017) 18.13 (2.943) 8.540 (0.720) 0.317 (0.006) 0.260 (0.005)
1.8 1.640 (0.020) 1.726 (0.021) 122.1 (34.63) 14.47 (1.553) 0.322 (0.005) 0.263 (0.004)
2.6 2.031 (0.035) 1.958 (0.025) 219.7 (61.37) 17.81 (1.499) 0.321 (0.005) 0.262 (0.004)
3.4 2.356 (0.037) 2.142 (0.024) 844.9 (195.4) 25.20 (1.695) 0.323 (0.005) 0.270 (0.004)

Ω3

1.0 1.360 (0.019) 1.488 (0.020) 15.89 (3.713) 7.833 (0.831) 0.314 (0.004) 0.259 (0.004)
1.8 1.674 (0.022) 1.728 (0.021) 138.9 (32.26) 12.54 (1.160) 0.302 (0.004) 0.259 (0.004)
2.6 1.979 (0.030) 1.936 (0.021) 248.7 (52.80) 19.90 (1.537) 0.316 (0.005) 0.264 (0.004)
3.4 2.303 (0.040) 2.132 (0.023) 779.7 (132.9) 23.94 (1.946) 0.313 (0.005) 0.267 (0.004)

produced by two models on the testing data. Let L(Norm) and L(Poisson) denote the RMSE for

the estimates of continuous responses and counting responses. Let L(Binary) be the ME for the

estimates of binary responses. The cut-off point for the binary response estimates is 0.5. Tables 2

and 3 display the averages and corresponding standard errors of RMSE and ME for settings p = 30

and p = 70 over 50 replicates. For the continuous responses, although the proposed method is

slightly inferior to the SGLM when the variation in the data is small (ϕ = 1, 1.8), it has better

performance when the variation becomes larger (ϕ = 2.6, 3.4). Under L(Binary), the prediction

performance of the proposed method is consistently superior over that of the SGLM. As for the

RMSE of counting responses, the proposed method substantially outperforms the SGLM, especially

when ϕ is large. These results demonstrate that the proposed MRMR model improves the prediction

performance by incorporating the dependent relationship between the mixed responses. Besides,

the proposed method is more robust than the SGLM regarding the variation in the data. Here,

we also notice that the SGLM for counting responses has numeric convergence issues sometimes in

the setting of p = 30, especially when ϕ is large, which is also observed in Wu et al. (2018). This

explains the large values of L(Poisson) for SGLM in Table 2.

In the proposed model, the Metropolis-Hasting method is employed to draw samples of θj from

(7) in the E-step of MCEM algorithm. Note that the length of MCMC chain and the choice of burn-

in size need to be pre-specified, while there is no general rule on the number of MCMC samples

and burn-in period. In our numerical examples, we often observe that the MCMC chain would
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Table 3: The averages and standard errors (in parenthesis) of RMSE and ME when p = 70.

L(Norm) L(Poisson) L(Binary)
ϕ SGLM Proposed SGLM Proposed SGLM Proposed

Ω1

1.0 1.448 (0.017) 1.511 (0.017) 9.886 (0.778) 8.270 (0.661) 0.387 (0.004) 0.343 (0.004)
1.8 1.696 (0.019) 1.721 (0.017) 18.06 (1.740) 13.61 (1.192) 0.382 (0.005) 0.353 (0.006)
2.6 2.133 (0.047) 1.962 (0.024) 28.30 (2.625) 19.81 (1.676) 0.395 (0.005) 0.367 (0.005)
3.4 2.500 (0.058) 2.136 (0.036) 55.09 (3.344) 28.04 (1.740) 0.399 (0.006) 0.357 (0.004)

Ω2

1.0 1.452 (0.016) 1.520 (0.016) 11.62 (0.731) 8.026 (0.698) 0.372 (0.004) 0.333 (0.004)
1.8 1.743 (0.019) 1.748 (0.018) 20.70 (1.584) 14.10 (0.942) 0.372 (0.006) 0.332 (0.004)
2.6 2.074 (0.028) 1.972 (0.024) 28.99 (2.338) 19.44 (1.110) 0.366 (0.004) 0.336 (0.004)
3.4 2.536 (0.043) 2.164 (0.022) 41.92 (3.230) 26.26 (1.595) 0.383 (0.004) 0.340 (0.003)

Ω3

1.0 1.408 (0.012) 1.467 (0.013) 13.25 (0.742) 7.565 (0.527) 0.370 (0.005) 0.330 (0.005)
1.8 1.726 (0.016) 1.736 (0.016) 18.76 (2.338) 13.22 (1.057) 0.361 (0.004) 0.325 (0.004)
2.6 2.154 (0.029) 1.985 (0.019) 27.42 (2.224) 18.71 (1.306) 0.379 (0.005) 0.341 (0.004)
3.4 2.520 (0.032) 2.161 (0.016) 42.33 (3.170) 25.03 (1.228) 0.378 (0.004) 0.337 (0.004)

converge in one or two hundred iterations. Considering the computational burden, we suggest

1000 MCMC draws with the first 300 samples as burn-in period for the proposed model. Figure 2

displays the trace plots and corresponding autocorrelation function (ACF) plots for six randomly

chosen parameters from one replicate of Example 1 with p = 30 and ϕ = 1, The results from the

figure indicate that the 1000 MCMC samples and 300 burn-in size appear to be reasonable choices.

The rest of parameters have the similar patterns of trace plots and ACF plots, and hence omitted

here.

Table 4: The averages and standard errors (in parenthesis) of loss measures when p = 5.

ϕ = 1 ϕ = 1.8 ϕ = 2.6 ϕ = 3.4

L(B̂)
SGLM 1.052(0.061) 1.505(0.034) 1.808(0.050) 2.241(0.073)

MCGLM 0.858(0.022) 1.372(0.031) 1.675(0.050) 2.194(0.053)
Proposed 0.478(0.012) 0.477(0.010) 0.485(0.010) 0.509(0.011)

L(Ω̂) MCGLM 6.008(0.017) 4.559(0.013) 8.233(0.016) 5.660(0.117)
Proposed 5.033(0.026) 3.411(0.014) 6.501(0.022) 4.697(0.032)

L(Norm)
SGLM 1.051(0.018) 1.418(0.021) 1.728(0.033) 1.885(0.049)

MCGLM 1.043(0.017) 1.397(0.021) 1.681(0.031) 1.877(0.032)
Proposed 1.045(0.018) 1.398(0.021) 1.649(0.028) 1.826(0.029)

L(Poisson)
SGLM 2.981(0.342) 6.202(0.449) 10.48(1.096) 19.53(2.154)

MCGLM 2.649(0.113) 6.087(0.433) 9.779(0.948) 17.78(1.612)
Proposed 2.666(0.121) 5.858(0.419) 8.846(0.785) 14.21(1.328)

L(Binary)
SGLM 0.264(0.009) 0.282(0.007) 0.289(0.006) 0.292(0.008)

MCGLM 0.243(0.007) 0.257(0.006) 0.267(0.006) 0.272(0.006)
Proposed 0.237(0.007) 0.241(0.006) 0.243(0.006) 0.251(0.006)
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Figure 2: Trace plots and ACF plots for the randomly selected parameters of one replicate from
Example 1 when p = 30 and ϕ = 1. (a) trace plots; (b) ACF plots.

To further enhance the scope of the proposed method, we conduct a simulation setting with the

comparison method of multivariate covariance generalized linear model (MCGLM) by Bonat and

Jørgensen (2016), which is implemented using R package mcglm. The MCGLM takes into account

the possible association between the multivariate mixed responses when fitting them within the

framework of generalized linear models. It can provide an estimate of inverse covariance matrix

characterizing the relationship between responses. However, the MCGLM needs selecting a proper

covariance link function and several known matrices before data analysis, which reflects the asso-

ciation structure of responses. The choice of a proper covariance link function is often subjectively

made based on users’s experience. Additionally, the MCGLM encounters the algorithm convergence

issue for large p. A possible explanation is that their algorithm does not incorporate the regulariza-

tion technique. In contrast, the proposed model takes advantage of the well-developed techniques of

Lasso and Glasso to circumvent the computational convergence for high-dimensional data. We thus

run a numerical simulation on a small sale of p = 5, l = 2, m = 2 and k = 1 for Example 1. The

generation of training set, testing set, the true coefficient matrix B, the covariance matrix Σ, the

values of ϕ and other relevant parameters remains the same as above. Table 4 reports the averages

and corresponding standard errors of all the loss measures of L(B̂), L(Ω̂), L(Norm), L(Poisson)
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Figure 3: Example of three visualization designs for user study, where (a) is the static node-link
tree to map names and hierarchical relationships to the circles, texts, and edges, respectively; (b)
is the collapsible node-link tree, which is an interactive variant of (a) with collapsible branches;
and (c) is the zoomable pack layout to map the names and hierarchical relationships to nested and
zommable circles (Redrawn from Chen and Jin (2017) with authors’ permission).

and L(Binary) for three methods over 50 replicates. Clearly, it is seen that the proposed model is

overall the best compared with the SGLM and MCGLM approaches. It dominates the other two

methods in terms of L(B̂) and produces lower values of L(Ω̂). Although the proposed model is

comparable to the MCGLM regarding L(Norm), L(Poisson) and L(Binary) when ϕ = 1 and 1.8,

it performs better as the value of variation parameter ϕ increases. The SGLM, overlooking the

dependency between response variables, is inferior to the MCGLM and the proposed model.

6 Case Study

In this section, we demonstrate the merits of the proposed method through the case study of in-

formation visualization described in Section 1. This data set was collected from a user study to

quantitatively evaluate three interactive visualization designs (Chen and Jin 2017), namely, the

static node-link tree diagram, the collapsible node-link tree, and the zoomable layout (see Fig-

ure 3). In this user study, 15 participants were recruited to evaluate three interactive visualization

designs by performing 11 pre-defined visual searching tasks for each design. Note that data for one

participant was removed due to missing values.

During performing tasks, as presented in Figure 1, all participants’ electroencephalogram (EEG)

signals, eye movements, and browsing behaviors were collected by using an ABM® B-Alert 10-

channel wireless EEG device, a SMI® REDn remote eye tracker, and a background logging system,

respectively. Following the feature extraction methods described in Chen and Jin (2017), 481 pre-

dictor variables were extracted from these sensor signals and browsing behaviors. Some exploratory
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data analysis has been conducted to screen out the unimportant predictors, which resulted in 58

predictor variables for use.

In total, the data set contains n = 462 (14×11×3) observations with three continuous response

variables (Y1, Y2, Y3), two counting response variables (Y4, Y5), and one binary response variable

(Y6). The Y1 is CompletionTime, which identifies the total time consumption for one participant

to perform a task. The Y2 is HitExploreRatio, a ratio of number of visually reached targets over

number of explored area of interests (AOIs). Here AOI is referred as a node in a node-link tree

diagram, which associates with eye fixation for more than 0.5 second. The Y3 is MeanTimeInAOIs

as average time spent in AOIs, which can be used to measure the level of confusion the AOIs

caused for participants. The counting response Y4 is ExploredAOIs, which counts the total number

of explored AOIs in performing a task; and the Y5 is MaxReexploration as the highest number of re-

explorations at one AOI in performing a task. The binary response is Y6, AttendMoreThan5Times,

which has value 1 when MaxReexploration is higher than five, and 0 otherwise. These six response

variables are to represent the efficiency of the visualization design from different perspectives.

We compare the performances of the proposed method with SGLM by considering two manners

of data partition for training and testing. The first manner is random splits: the whole data set

is randomly partitioned into a training set with sample size 200 and a testing set with the rest

262 observations; The second manner is leave-one-participant-out cross-validation (CV): one (33

observations) out of 14 participants is iteratively left out for testing, and the rest are used for

training (429 observations). Note that the leave-one-participant-out CV is investigated to stress

the proposed model, since individual differences may easily lead to the violation of assumptions

for linear model in a usability test that evaluates a user interface (Nielsen and Molich 1990).

The training set is used to fit the proposed model and SGLM, and the loss measures L(Norm),

L(Poisson) and L(Binary) are computed from the testing data. Table 5 summarizes the averages

of loss measures and corresponding standard errors from the random splits of 50 times, and the

leave-one-participant-out CV.

From the table, it is seen that the proposed model generally outperforms the SGLM in terms

of each loss measure for both random splits and leave-one-participant-out CV. In particular, the

proposed model largely improves the prediction accuracy for the counting responses with much

smaller prediction error and standard error compared with the SGLM. The proposed model is also

superior in the prediction to the SGLM with respect to the continuous responses, and slightly
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Table 5: The averages and standard errors (in parenthesis) of loss measures from 50 random splits
of data and leave-one-participant-out cross-validation.

L(Norm) L(Poisson) L(Binary)

Random Splits SGLM 3.001 (0.015) 115.3 (21.89) 0.189 (0.003)
Proposed 2.808 (0.019) 36.72 (0.311) 0.183 (0.004)

Leave-one-participant-out SGLM 2.966 (0.121) 47.82 (11.97) 0.186 (0.014)
Proposed 2.769 (0.146) 36.38 (2.098) 0.178 (0.016)
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Figure 4: Radar maps for the predictions of the proposed MRMR and SGLM from randomly
selected four samples of a testing data. The hexagons represent the testing samples; the black solid
lines are the predictions of the proposed MRMR; the red dashed lines indicate the predictions of
the SGLM.

better regarding the binary response. These results demonstrate the advantage of the proposed

MRMR model over the SGLM by considering the dependency relation between multiple responses.

In addition, to further evaluate the prediction ability with respect to the overall mixed responses,

Figure 4 displays four radar maps corresponding to four testing data points randomly selected

from one split of data. The hexagons, solid lines and dashed lines stand for the testing data

values, the prediction values from the proposed MRMR and the prediction values from the SGLM,

respectively. Hence, the closeness of the graphs composed of the solid or dashed lines to the

hexagons illustrates the prediction ability of the corresponding models. From Figure 4, it can be

seen that although the proposed MRMR model with solid lines may be inferior sometimes with

certain response (Y1 for the first panel, and Y2 for the fourth panel), it generally performs better

than the SGLM. Furthermore, another advantage is that the proposed method is able to provide the

estimate of correlation matrix of response variables, which captures the dependency relationship

between responses. Table 6 reports such an estimate from one random split of data. Although
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Table 6: The estimated correlation matrix of responses obtained by the proposed model from one
random split of data.

Y1 Y2 Y3 Y4 Y5 Y6
Y1 1
Y2 -0.193 1
Y3 0.060 0.143 1
Y4 0.036 -0.011 -0.046 1
Y5 0.252 -0.085 0.009 0.256 1
Y6 0.670 -0.224 0.027 0.119 0.397 1

there are some variables having weak correlations, several relatively strong correlations exist in

variables Y1 and Y6, Y5 and Y6, Y4 and Y5, Y1 and Y5, which cannot be ignored. Besides, we also

check each estimate of Ω obtained from 50 splits of data and find that most estimates are dense

matrices. The mean of the largest absolute value in Σ is 1.72 with its standard deviation being

0.044. Hence, the underlying matrix Ω of the data might be closely represented by the Example

1 with variation ϕ = 1.8 in Section 5.

In addition to the statistical performance, several interesting findings from a human-computer

interaction (HCI) perspective can be identified from the superior performance of the proposed

MRMR model. Firstly, the proposed model provides accurate prediction for subjective responses

in a visualization evaluation user study merely based on objective and unobtrusive measurements

and a logging system. In literature, interviews and questionnaires are typically adopted to provide

subjective responses regarding the effectiveness and efficiency of the visualization designs (Bowman

et al. 2002). But they typically lead to interference in participants’ subjective responses and require

huge amount of time to conduct the interviews and questionnaires. As an enhancement to Chen

and Jin (2017), which firstly proved the feasibility for quantitative and unobtrusive evaluation, the

proposed MRMR method enables the joint modeling of multiple mixed responses, providing more

realistic techniques to support efficient evaluation studies in HCI.

Secondly, the results from leave-one-participant-out CV indicate that the proposed model can

better address the individual differences in the user study since it provides better prediction perfor-

mance for all three types of responses. Such an advantage can be explained by the quantification of

correlation among the responses. In a user interface evaluation study, the investigators typically de-

sign a few highly correlated questions for one evaluation criterion to reduce the effects of individual

differences and randomness in participants’ responses, e.g., NASA TLX (Hart and Staveland 1988),
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SWAT (Reid and Nygren 1988), etc. The proposed MRMR model benefits from the quantification

of the designed correlations among responses. Therefore, it can serve as an analytical tool for HCI

researchers and practitioners to investigate the individual differences.

On the other hand, the proposed MRMR method also provides good model interpretation

because of the variable selection. Based on the 95% confidence intervals constructed from 50

estimates obtained from 50 random splits of data, we found that the selected variables for Y4

include “the average length of frequent eye movement trajectories”, “the alpha and gamma band of

EEG signals”, “variance of mouse moving over/out duration”, etc. The variable “average length of

frequent eye movement trajectories” can reflect participants’ different scanning paths. Specifically,

a higher value indicates continuous and fluent visual searching, and a lower value indicates that the

participants may be confused with the visualization layout. The selection of EEG-related variables

aligns well with some research findings in literature. For example, the variables “alpha and gamma

band of EEG signals” was reported to be significantly correlated with sustained attention during

performing the visual searching tasks (Huang et al. 2007). Therefore, the estimated coefficients

of these selected variables can help to understand how the visualization designs help participants

concentrate on the contents. Besides, the variable “variance of mouse moving over/out durations”

reflects the participants’ visual search strategy of using the mouse to direct their attention, which

is intuitively correlated with their total numbers of explored AOIs in different visualization designs.

These insightful understandings generated by the variable selection results of the proposed MRMR

model can further improve the visualization designs.

7 Discussion

In this paper, we study the online evaluation problem for interactive information visualization

designs based on non-invasive measurements (i.e., wearable sensor signals). This research aims at

evaluating designs online catering to users’ preferences and characteristics with mixed subjective

responses by using non-interference measurements. In this case, a joint model is able to improve

the estimation and prediction results than modeling the responses separately when responses are

correlated. Therefore, a generalized linear model with mixed (i.e., continuous, counting, and binary)

responses is proposed to quantify the correlation between mixed responses by using a graphical

model. The penalty terms are imposed on the negative likelihood function to encourage the sparsity

in the estimated coefficient and precision matrices, such that the model is interpretable. Both the
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numerical study and a user study in visualization evaluation show the advantages of the proposed

MRMR method over the separate models.

The proposed MRMR model can be readily applied to the design and evaluation of information

visualization in smart manufacturing, which can help novices understand complex process data

sets and help experts generating insights from visualized data streams. For example, the MRMR

method can be directly applied to efficiently evaluate and improve the AR-based visualization

platform proposed in Chen et al. (2016). Specifically, when manufacturing users (e.g., operators,

engineers, and managers) are performing tasks by exploring data in AR visualization platform,

their cognitive status can be quantified by MRMR model and thus supporting online adaptive

visualization. Furthermore, the applications of MRMR model are not limited to evaluation of

visualization designs. It can also be easily extended to support evaluation studies in human factors

and ergonomics and human-computer interaction when multiple subjective responses are collected

for in-depth understanding of human behaviors. In addition, by taking advantage of the model

structure of generalized linear models, the proposed method is able to accommodate other common

types of response variables with exponential-family distributions. For example, the negative inverse

link function can be used if the responses follow exponential and Gamma distributions. The logit

link function is used if the responses are from Binomial distribution. The derivation of the likelihood

function and the objective in Section 3 can be obtained in a similar fashion. However, the proposed

modeling framework can not cover all distributions from the exponential family, such as the Chi-

square distribution and Wishart distribution. For such distributions, it is not straightforward to

construct the link functions used in the generalized linear models.

There are a few directions for future work. First, to better understand and optimize the human

decision making process in interacting with visualization designs, an online learning method for

multi-step and multi-scale decision making will be studied. Second, when some response variables

inherently have very high dimensions compared to other responses, one can seek for the condi-

tional models which are constructed by fitting high-dimensional responses conditional on other

responses. Such a conditional modeling approach would properly reflect the importance of the

high-dimensional responses. The techniques of modified Cholesky decomposition (Kang et al. 2019;

Kang and Deng 2020) can be potentially useful for dealing with the conditional modeling for high-

dimensional responses. Third, one can extend the proposed MRMR model to accommodate the

missing data, of which the parameter estimation can still be addressed under the EM framework.
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In particular, when different response variables have different sampling intervals, the sampling bias

would potentially cause inefficiency and inaccuracy in parameter estimation. To address such an

issue, one solution is to treat the unsampled data points as the missing values. Then the proposed

method can be extended under the framework of missing-data imputation where the EM algorithm

is commonly used for dealing with missing data. Another possible solution is to borrow strength

from the seemingly unrelated regressions (SUR) (Zellner 1962) to allow different sampling intervals

for different responses. However, the conventional SUR can only deal with multiple continuous

responses. It will be an interesting future research to integrate the proposed modeling technique

with seemingly unrelated regressions for the mixed responses data.
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