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Supplementary Material: Proofs

Proof of Lemma 2. Based on Problem (3) and Remark 1 under Assumption 2 (¢ = e) we have

min 6%(g,D) = min_ {ngz — (3f), ;(1 —gi) =79 €{0,1},Vi € I} >0. (A1)
Recall also that 6%(e, D) = ming q¢{>;c; pi | (3b) — (30)}.

If there exists a feasible solution for the set of constraints (3b) to (3f) such that »°,_; p; < v, then
clearly 6% (e, D) < ~; additionally, for this feasible solution and every plant i such that p; = 1 let g; = 0,
then mingey, 6°¢(g, D) = (6*‘(e, D) — 'y)+ =0.

Now, suppose that ) ,.;p; > « for all feasible solutions of the set of constraints (3b) to (3f).
Then since ) ;.;(1 — g;) = v, in any optimal solution of (Al), we have g; = 0 exactly for v plants
that p; = 1. Hence, all the optimal solutions of (A1) satisfy p; + g; > 1. Next, we show that
mingey, 6*¢(g, D) = 6%*(e, D) —

iy (0. )

= min { Zyz (3f), ;(1 —9:) =79 € {0,1},
yi<gi,yi<pi,y¢>pi+gi—l,y¢>O,WGI} (A2)

= min { Z (pi +9i = 1)" | (3b) — (3f), %(1 —9i) =79 €{0,1},Vi € f} (A3)

= min { Z; pi+gi—1)[(3b) - (3f),;(1 — i) =7,9i €{0,1},Vi € I} (Ad)

~ min { z; —~ | (3b) — (3f)} = §k(e, D) — . (A5)

Equation (A2) holds by linearizing the bilinear terms g;p;, where g;, p; € {0,1} for all i € I, using the
standard techniques (see, e.g., Glover and Woolsey 1974) in the objective function of the optimization
problem on the right-hand side of (A1l). Equation (A3) holds since the optimization problem is in the
minimization form; thus, the lower bounds of y are sufficient, i.e., y; > max{p; + ¢g; — 1,0} for all i € I.
Equation (A4) is correct since p; + g; > 1 for any optimal solution. Finally, Equation (A5) holds by
substitution of >, ;(1 — g;) =7 in the objective function. O



Proof of Lemma 3. To prove Relation (11) and Equations (12) and (13), separately for each one,
we first derive 6%‘(e, LCg). Then by applying Lemma 2, we obtain the desired result. Recall that the
term 6%*(e, LCq) is PCID without any plant disruptions, i.e., the minimum number of plants (under

the assumption c?) = e) required to create a vertex cover that includes k products after ignoring ¢ arcs.

Proof of Relation (11). We evaluate §**(e, LCg) for any 0 < k < n and 0 < £ < n- Q. Design
LCq has n - Q arcs, that exactly k - Q) arcs are covered by k products. Among @ - (n — k) uncovered
arcs, ¢ arcs are ignored by Equations (3c) and (3d). If Q- (n — k) < ¢, then n — k — Léj < 0. Thus,
54, LCq) = (n— k — | 5])* =

Otherwise, there remain @ - (n — k) — £ uncovered arcs. Since each plant can cover @) uncovered arcs
at most, we have §%*(e, LCq) > W. Moreover, since 0%(e, £LCq) € Z we have §%(e, LCq) >
[W} =n-—k-— L%J Therefore, based on Lemma 2, we obtain that mingey, skt(g, LCq) =
(n—Fk— Léj —)T forany 0 < k<nand 0 </ <n-Q.

Proof of Equation (12). For k = 0, the proof is trivial since by Remark 3 part (i) we know that
§90(e, £LCq) = n. Then we evaluate 5k70(e,£CQ) for 1 < k < n—1. Under the assumption c) = e
by Remark 3 part (vi) we get 6"9(e, LCq) = SCB |5| |N(B \ S, LCq)|. Evidently, on the basis of the
definition of @-long chain we have [N(V, LCq)| > min{n, |[V|+ Q — 1} for any V' C B, V # (). Hence,
§80(e, LCq) = min{n, |B\ S| + Q — 1} = min{n,n — k + @ — 1}; this minimum value can be obtained

by letting S be a set of products with consecutive indices.

Proof of Equation (13). First, note that by Inequality (11) and Lemma 2 we have

(e, LCQ) =n —k — ng (A6)

Second, if nQ < kQ + ¢, then among nQ arcs of LCq, exactly kQ arcs are covered by k£ products and the
remaining arcs all are ignored; as a consequence, 6**(e, LCq) = (n — k — Léj)+ = 0. Then we evaluate
§F*(e, LCq) for all 0 < k < n and (Q —1)2 < £ < Q- n such that nQ > kQ + ¢ for two cases Q = 2 and

@ > 3 separately as follows.

o Let Q = 2, then in the following for any 0 < £ < n and 1 < ¢ < 2-n such that 2n > 2k + £, we create
a vertex cover necessitating n — k — L%J > 0 plants. Thus, based on Inequality (A6), the created

vertex cover is the minimum and we have 6**(e, LC3) =n — k — L%J

If £ =0, then we temporarily put all n plants in the vertex cover. Next, by ignoring every two arcs

connected to a plant in £Co, we can exclude exactly one plant from the vertex cover (in total, L%J

plants are excluded). Thus, 6%¢(e, £C2) =n — 0 — L%J =n— L%J

For0 < k <mn,let S C B, |S| = k be a set of products with consecutive indices, e.g., S = {1,2,...,k}.

After putting S in the vertex cover, 2n — 2k uncovered arcs remain. By the selection of S and the



structure of L£Cs exactly two uncovered arcs emanate from N (S, LC2), i.e., arcs with an endpoint in

B\ S. Next, consider two cases where ¢ is either even or odd.

Case 1: if £ is even, let us first ignore 2 uncovered arcs of N (S, LC3), and then (if £ > 2) ignore £ — 2
uncovered arcs which are connected to % of plants in A\ N (S, £LC3). Thus, there remain 2n — 2k — /¢

uncovered arcs. The number of plants in A \ N (S, LC2) that are still connected to two uncovered

2"%2’“4 =n—k— % =n—k-— ng, and we need all of them to create a vertex cover with S.

Therefore, by Inequality (A6) we get 6%*(e, LC2) =n — k — ng

arcs 1s

Case 2: if ¢ is odd, let us first ignore uncovered arc(s) of N (S,LCz), and then (if ¢ > 2) ignore
¢ — 2 uncovered arcs which are connected to [%52] of plants in A\ N(S, £Cs). After ignoring ¢
arcs, all plants in A \ N (S, LC3) except one are connected to either 0 or 2 uncovered arcs and
only one plant is connected to a single uncovered arc. Thus, §%¢(e, £LC3) < 2"%%_[ + 1. Since
%t (e, LCo) € Zy we get 67 (e, LCo) < [22=2E=L + 1] =n — k — | 5]. As a result, by Inequality (A6)

we get 05¢(e, LCo) =n —k — | 5].

Therefore, Equation (13) holds true for Q = 2 by using Lemma 2.

Let Q > 3, then for any 0 < k < n and (Q—1)% < ¢ < Q-n such that nQ > kQ+/ it suffices to demon-
strate that there exist S C B, |S| =k and E C LCq, |E| = ¢ such that [N (B\S,LCo\ E)| =n—k—
Léj It implies that 6%¢(e, LCo) = n—k — Léj due to Remark 3 part (vi) and Inequality (A6). Then
by applying Lemma 2, we obtain the desired result, that is mingey, 6%‘(g, £LCq) = (n—k— Léj —y)".

To this end, let S be a set of k products with consecutive indices, e.g., S = {1,...,k} and Z :=
B\ S={k+1,...,n}. Clearly, |S| =k and |Z| = n — k. Put S in the vertex cover. Hence, all arcs
connected to S are covered and all uncovered arcs have an endpoint in products of set Z. We define
n; as the number of uncovered arcs (with an endpoint in Z) connected to plant i € A. It should be
noted that n; > 0 for all i € N(Z,LCq) and n; = 0 for all i € A\ N (Z,LCq). Without excluding
E from LCq the set N'(Z, LCq) is required to create a vertex cover along with S. We continue our
discussion by considering two cases |Z| < Q — 2 and |Z]| > @ — 1, separately.

Case 1: If | Z]| < Q — 2, then [Z|Q < (@ —2)Q < (Q —1)2 < L. For any £ > (Q —1)? let E C LCq
such that {(i,j) € LCq | j € Z} C E, and |E| = (. Clearly, |{(i,j) € LCq | j € Z}| = |Z|Q < |E| = ¢
and E includes all |Z|@Q arcs connected to Z. Thus, |IN(Z,LCq \ E)| = 0. It should be observed
that £ > |Z|Q = (n — k)Q; hence, (n — k — Léj)* = 0. Therefore, there exist S C B, |S| = k and
E C LCq, |E| = { such that |N(Z,LCo \ E)| = (n—k — |§5])* =0.

Case 2: If |Z| > Q — 1, then define i, = |[{i € A | n; = t}
with 7; = ¢, and @ = (|[Z]| + @ — 1 — n)". By the definition of L£C;, we observe that either
n;, = 0ormn > x+1. Additionally, 7,41 = x+2, 7w =2 fort € {z +2,2+3,...,Q — 1}, and
1@ =|N(Z,£C0)| —2(Q —1—(1+2)) — (z+2) = |N(Z,LCy)| — 2Q + x + 2. We first show that,

, that is the number of plants



Fact 1. forany T € {z+ 1,2+ 2,...,Q — 1},

T
d (mt)-T=T" (A7)
t=x+1
We prove Equality (A7) by induction on T'. Let T' = z + 1, then since 7,41 = = + 2 we
get Zfixlﬂ(n )= (z+1)=(x+2)(x+1) = (x+1) = (z + 1) Next, we need to prove

that if Equality (A7) holds true for 7', then it also holds true for 7'+ 1. Suppose that
Equality (A7) is true for some T' € {z + 1,2+ 2,...,Q — 2}, then by induction hypothesis,

T
> (n-t)-T=T" (A8)
t=z+1
Additionally, since 7p41 =2 for T € {z + 1,2+ 2,...,Q — 2}, we have ZtTi;lJrl(Tt 1) =
ZtT:z 41(7¢ - 1) +2(T + 1); by using this equality and also Equality (A8), starting from the
left-hand side of (A7) for 7'+ 1 we get

T+1 T
-ty -(T+1)= > (m-t)+T+1=T>+T+T+1=(T+1)~
t=z+1 t=z+1

Therefore, Equality (A7) is valid for any T € {x + 1,z + 2,...,Q — 1}.

Next, recall that |N(Z, LCq)| plants are required to create a vertex cover along with S. By the defi-
nition of Q-long chain design and since Z includes products with consecutive indices, |[N'(Z, LCq)| =

min{n, |Z| + Q — 1}. Next, we continue the discussion for different values of £ > (Q — 1)2.

Cfor = (Q— 1) let By = {(i,J) € £Cq | 1 € 2,0 < 1 < Q— 1\ {(1.1) € £Cq | j € Zumi = Q—1,i €
I, C I, |I| = 1}. In fact, set Ey includes uncovered arcs connected to plants i € N'(Z, LCq) except
those with n; = Q, and one of two plants with n; = Q — 1, i.e., Ey is the set of arcs with an endpoint
in Z and connected to |[N(Z,LCq)| — 79 — 1 = 2Q — x — 3 plants with the smallest 7, > 0. Let
T = Q-1 in Equality (A7). Then, by Fact 1 we have |Eo| = Y91 (7-1) = (Q—1) = (Q—1)> = £.

Thus, by excluding Ey from £C¢ the number of plants required to create a vertex cover, [N (Z, LCq)],
along with S reduces by 2Q — z — 3, i.e.,

IN(Z, £8q \ Eo)| = IN(Z, £C)| — (2Q -z — 3) = min{n, |Z| + Q — 1} — (2Q —z—3).  (A9)
If|Z|+Q—12>=n, then z =|Z]|+ @ — 1 —n and from Equality (A9),

\N(Z,LCo\ Ep)|=n—-2Q+ (|Z|+Q—1—n)+3

(@—1)

=1Zl-(@=-2)=|2]-| o)

J=n—k=lg) >0



else, x = 0 and from Equality (A9),

IN(Z, LCQ \ Eo)l = (12] + Q@ —1) = (2Q - 0-3) = |Z] - (@ - 2)
(@—1) ¢

=2l - 0 J=n—-k- Léj > 0.
AS a consequence,
IN(Z, £LCo \ Eo)| = n — k — Léj >0, (A10)

Note that the value of n; for i € N(Z,LCq \ Ep), the remaining required plants for the vertex
cover after ignoring arcs in Fp, is @ —1,Q,Q,...,Q, i.e.,7s = 0 for t < Q — 2, 7g—1 = 1 and still
TQ = |N(Z,ECQ)’ —2Q +z+2.

for (Q—1)%2 < € < (Q—1)*+(Q—1)let By = EgU{(i,7) € LCq | j € Z, (i,]) ¢ Eo} such that |E| = £.
Excluding F; from £Cq does not remove any more plants from N (Z, LCq) than by excluding Ej.
Because |E1\ Eg| < Q—1, but n; = Q—1or Q fori € N(Z, LCq\ Ep). Thus, based on (A10), we get

Q

2
IN(Z,£00\ B)| = W(Z. £\ Bo)| = 121 - 19 = — k= 1 ) >0,

3
Q
for any (Q —1)2 << (Q—1)2+(Q —1).

for { = (Q—-1)2+(Q—1)+t-Q = Q(Q—1+t), where t € Z,U{0}. Let By = U;ea{(i,j) € LCo | j €
Z,(i,j) ¢ Eo,mi = Q—1or n; = Q} U Ey such that |Ey| = £. Subsequently, excluding Es from £Cq
removes ¢+ 1 plant(s) from N'(Z, LCq) more than Ey, because E3\ Ey includes arcs with an endpoint
in Z and connected to a plant with n; = @ — 1 and ¢ plants with 7; = Q. Hence, by (A10), we get

02
IN(Z, £Co \ o)) = IN(Z,£Co \ Bo)| — (t+1) = |z] — | @=L

Q
Q-1+t . ¢t
o l=n—k=lgl (A11)

for £ = Q(Q —1+1t). It should be noted that 7; = Q for i € N (Z, LCq \ E»), i.e., for the remaining

plants to create the vertex cover after ignoring arcs in Fs.

| =(@t+1)

—12]- |

for QQ—1+1t) <l <Q(Q—-1+t)+r, wheret € Z; U{0} and 1 <r < Q. Let E3 = E2U{(7,j) €
LCo | j€ Z,(i,j) ¢ Eo} such that |Es| = £. It can be clearly seen that excluding E3 from L£Cq
removes no more plants from N (Z,LCq) than excluding E3, because |E3 \ Es| = r < Q, while
ni = Q for i € N(Z,LCq \ E). Thus, by (All) we have
O(Q -1+t ¢
IN(Z, £0q \ By)l = W(Z £Co \ E)| = 12 - | X210 =

forany Q(Q —1+1) << Q(Q—1+1t)+.



Therefore, there exist S C B, |S| =k and E C LCq, |E| = ¢ in a manner that [N (Z,LCq \ E)| =
n—k—|§] for|Z| > (Q—1) and any £ > (Q — 1)*.

Finally, according to the discussion above for Q > 3, Remark 3 part (vi), and Inequality (A6) we
have 6%f(e, LCq) = [N (Z,LCo\ E)| =n—k — Léj Thus, Equation (13) holds true for ) > 3 by using
Lemma 2. ]

Proof of Lemma 4. We prove Lemma 4 by using a double induction on z and ¢ in the following three

steps including the base case, induction over z for £ = 1, and induction over £ for fixed z.

Base case. We show that Lemma 4 is true for z = 1 and £ = 1, i.e., there exist some T'C B, |T'| = 1 and
E C D, |E| =1 such that |N(T,D\ E)|<1. Toward this goal, for any u € B, consider T'= {u}. Note
that there exist a,a’ € A such that [N (u, D)| = [{a,d’}| = 2. Let E = {(a,u)}, then |N'(T,D\E)| = 1.

Induction over z for £ = 1. We need to prove that if Lemma 4 holds true for z < |B| and ¢ = 1, then
it also holds true for z 4+ 1 and ¢ = 1 (note that | 5| = 0 for £ = 1). Suppose that Lemma 4 is true
for some z < |B| and ¢ = 1, then by induction hypothesis, there exist sets 7% C B, |T%| = z, and
E* ={(a,b)} C D, |E*| =1 such that |[N(T%,D\ E?)| < z. We consider the following two cases:

Case 1: let B = {(a,b)} € DN{N(T* D) x T?}. It should be noted that the vertices in AU B
over D form a connected graph, and 7% C B. Therefore, there exists some v € N (7% D \ E?) and
v ¢ N(T? D\ E?) such that (v,u) and (v',u) are arcs for some u ¢ T?. Let T°"' = T% U {u} and
E**l = E# subsequently, we get |[N(T**1, D\ E#1)| < 2+ 1.

Case 2: let B = {(a,b)} ¢ DN{N(T*,D)xT*}. Since D is connected, there exists u € B\T? such that
N (u, D)NN(T?,D) # 0. Thus, for T** = T*U{u} and E*T! = E* we get [N (T*1, D\ E#"1)| < z+1.

|B| and
1 < ¢ < 2n, then it also holds true for z and £+ 1. Suppose that Lemma 4 is true for some 1 < z < | B
and 1 < £ < 2n, then by induction hypothesis there exist sets T¢ C B, |T¢| = z, and E C D, |E¢| =/
such that [N(T% D\ E)| < (z — |£])*. Construct B! = E* U {(a,b)} such that (a,b) € D\ E and
T = Tt subsequently, we consider the following three cases when z — L%J > 0 (the proof is trivial
for (z — [£])T = 0):

Case 1: if IN(T%, D\ E*)| < z— | 4], then either |N(T*!, D\ EY)| = |N(T*, D\ EY)| or |N(T*1, D\
EYY)| = |N(T¢ D\ EY)|-1. Similarly, either z— 1| = z— | £] or z— | &L | = 2— | £] — 1. Therefore,
we have [N(T1, D\ EY)| < 2 — |,

Induction over ¢ for fired z. We need to prove that if Lemma 4 holds true for some 1 < z

NN

Case 2: if [N(T%, D\ EY)| = z— | £] and ¢ is even, then either |N(T**!, D\ E“Y)| = |N(T*, D\ EY)| or
V(T D\ EAY)| = |IN(T, D\ EY)| -1, but 2 — |52 ] = 2 — [ £]. As aresult, |[NV(T*, D\ B[ <

z—L“TlJ.



Case 3: if IN(T*, D\ EY)| = 2 — | 5] and £ is odd, i.e., £ =2t — 1, t € {1,2,...,n}, then 2 — | 5| =
z — |5] — 1. Next, we demonstrate that there exists a € N'(T%, D\ EY) which is connected to T* by

only one arc:

Set N'(T*, D) is connected to T* by 2z arcs. Thus, all i € N(T*, D\ E*) cannot be connected to T* by 2
or more than 2 arcs, i.e., there exists at least a plant a € N(T*, D\ E*) that is connected to T* by only

one arc. Otherwise, the number of arcs connecting 7* to N'(T*, D) would be greater than 2z because

2AN(T!, D\ E")|+t=2"(2— L%%J) +2t—1

=2-(z—t+1)+2t—1> 2z, vt e {1,2,...,n}.

Therefore, by ignoring an odd number of arcs connecting T* to N'(T*%, D) such that |N(T¢, D\ E*)| =
(z — ng)ﬂ there exists plant a € N(T*, D\ EY) connected to T* by one arc. Let (a,b) be the arc
connecting b € T* to a and set Bt = E* U {(a,b)} and T = T*. Thus, N (T, D\ EFY)| =
IN(T*, D\ E°)| — 1, and we have |N(T*!, D\ E“4Y)| =2 — | 5] a

Proof of Theorem 2. If we show that 6”(e, D) < 5k’e(e, LCy) for all 0 < k < nand 0 < £ < 2n, then
by using Lemma 2 and Theorem 1 it is proved that Theorem 2 holds. If £ = 0, we refer to Simchi-Levi
and Wei (2015, Theorem 5). In addition, observe that if 2n < 2k + £, then 6%¢(-,-) = 0. Thus, we only
consider the case wherein 2k 4 ¢ < 2n.

For any 0 < k <n and 1 < ¢ < 2n such that 2k 4+ £ < 2n, it suffices to show that we can find some
sets S C B,|S| = k and E C D,|E| = ¢ such that [N(B\ S,D\ E)] <n—k— [£]. Then based on
Remark 3 part (vi), Equation (13), and Lemma 2,

IN(B\ S,D\ E)| = 6" (e, D) < 6"(e, LCo) =n — k — Léj.

Assume that design D comprises ¢ connected components named Di,...,D. such that A, C A
and B, C B, w € {1,2,...,c}, denote the sets of plants and products of the w-th component, respec-
tively. Without loss of generality, let us suppose that |A,| — |By| is nondecreasing with w. Because
5S¢ 1 (JAw| — |Bw|) = 0, this assumption implies that % | |A,| < 3% _, |Bu| for any ¢ < c.

For any 0 < k < n and 1 < ¢ < 2n such that 2k + ¢ < 2n, we have n — k — L%J > 0. Let tge
denote the largest possible ¢ such that >0 _, [By| + | 52| < n— k. By our choice of t4, we get ty < c
and n —k — Y% |B,| — |52 ] < |Bty,+1]- Moreover, define Ty C UfU:terBw with |Ty| = [52], and
Ey={(i,j) € D | j € To}; hence, |Ep| = 2|51 ] because [N (u,D)| = 2 for all u € B.

Based on Lemma 4, in the connected component By, ,41, we can find some sets 77 and FEq, where
Ty C Byyyt1, |Ti| =n—k—>"% |By| - |5t], and By C N(T1, D) x Ty, |Er| = (— |Eo| = ((—2|5F]) €
{1,2} such that



IN(Ty, D\ E1)| <n—k— Z]B |- 1J_UE21’J

tke o1 4—1 tre
=n—k— Z|B| J [e 22L2J =n—Fk— Z|B|—LJ (A12)

Next, we select predefined Ty such that Ty N7} = (@, this is possible because it can simply be verified

that for Ty € Uy,—,, ., Bw and T1 C By, , we have [To| +|T1] < [Ugy,,,,Buwl; by this selection we also

C
have Fop N Ey = (). Finally, let S:= |J By \ (ToUT1), and E = EyU Ey; thus, |E| = ¢, and by (A12)
w=tge41
we get,

Lre
IN(B\ S, D\ E)| < [N(T1,D\ E)| + 3 |Au]
t=1
tie tke

<n—k-— ZyB |—|= +Z]B |—n—k:—LJ

We know that |Ty| = |52, S € B and

¢ lke
1S|=1] | Bu\ (TUT)| =n—>_ |Bu| - |To| - |T4|
w=tgr41 w=1

tke tke

—n—Z|B \— —— - (n—k- Z|B | — —J):k.

Since |S| = k, thus |B \ S| =n — k, and the proof is complete. O

Proof of Theorem 3. Let 7 be the size of the smallest system for which there exists a counter example
D to the statement of Theorem 3. For n = 2, D is the same as LCo; thus, we must have n > 3. Moreover,
we must have 2k 4 ¢ < 2n; otherwise §%¢(-,.) = 0.

For ¢ = 0 refer to Simchi-Levi and Wei (2015, Theorem 6). According to Equality (13) and Lemma
2, 6%(e, LCs) =n —k — [£] for 2n > 2k + ¢ and ¢ > 1. Since D is a counterexample, there exists some
0 <k <nand 1</ < 2nsuch that 5’%’é(e,75) >h—k— L%j > 0. Moreover, we can find u € B such that
IN (u, D)| = 1; otherwise, by the proof of Theorem 2, we have 6**(e, D) < 6%(e, LCy) = n — k — 1£]
for all n, k and £. Let {v} = N'(u, D). Since D is connected, we have [N (v, D)| > 2.

Next, we define design D’ with the set of plants and products A\ {v} and B\ {u}, respectively, such
that D' = {(v/,«) | (v/,u) € D,u’ # u,v' # v}. Design D’ is not necessarily connected. If D has ¢
components, then [N (v, D)| > ¢+ 1. By adding ¢ — 1 arcs to D’ we can make it connected. Define D"
as the arc set that contains D’ and ¢ — 1 added arcs. Hence, D" is connected. It should be noted that

D" is defined on a system with size 7 — 1 and |D”| < 2(n — 1).



Based on the minimality assumption on 7, 5'%’é(e, D) < h—k— ng —1. Thus, by Remark 3 part (vi),
there exists some S C B\ {u}, E C D", |E| =/, and |S| = 7 — k — 1 such that |N(S, D"\ E)| <
A —k—| L] —1. This implies that SU{u} C B, |SU{u}| = a—k and |N(SU{u}, D\ E)| < A —k— £].
Hence, by Remark 3 part (vi) we have 5’;7@(e, D)< h—k— ng This contradicts the assumption that
ke, D) > a —k—|L]. 0

Proof of Lemma 5. Let {1,...,c} and z1,..., 2. represent the components of SCy and their sizes,
respectively. For each of Relation (14) and Equation (15), we first derive §¥*(e,SCq), that is PCID
without plant disruptions or (under the assumption cP) = e) the minimum required number of plants
to create a vertex cover along with k products after ignoring ¢ arcs. Then by applying Lemma 2 we
obtain the desired results.

Before we proceed, similar to the proof of Lemma 3 part 1, we can demonstrate that

n— k= lg) < 8(e.SCo), (A13)

forany 0 < k<nand 0</<n-Q.

Proof of Relation (14) for ¢ =0. We consider two cases k = >, #; for some Iy C {1,...,c}
and k # > .2 for any I C {1,...,c}, separately, as follows.

Case 1: let k = ) ,c; # for some Iy C {1,...,c}; then we put all products of components in
I; in the vertex cover. Clearly, all arcs of components in I; are covered. Thus, we need all plants of
components in {1,...,c}\ I to create a vertex cover that isn—» ;. 2; = n—k. By Inequality (A13) we
conclude that, for £ = 0, this constructed vertex cover is the minimum one. Hence, §*%(e,SCq) = n—k.

Additionally, by Equation (11) for £Cq we have n — k < §%9(e, £Cg). Thus,
n—k =00, SCq) < ", LCg). (A14)

Case 2: let k # > ,c;2 for any I C {1,...,c}, then let Iy C {1,...,c} be the largest subset of

components such that » ;. 2; <k and ky := ), 2. Thus, there exists component z € {1,...,c}\ I

i€l
such that z, > ko, where ko := k — k1. Now, we put all products of components of I; and k9 products

of component x into the vertex cover. Since component x is a Q-long chain, by Equation (12) we need

min{z,, 2, — k2 + @ — 1} plants from component x for the vertex cover. Thus,
5*9(e,8Cq) < n — ki — 2z + min{zy, 2, — ko + Q — 1} = min{n — ky,n — k +Q — 1}. (A15)
Moreover, by Equation (12) for £LCg we have

o*0(e, LCo) = min{n,n — k+Q — 1}. (A16)



By (A15) and (A16), we get
§*0(e, SCqo) < 6"%(e, LCg) = min{n,n — k+Q — 1}. (A17)

Therefore, by (A13), (A14), (A17) and Lemma 2 for £ = 0 we have

(n—k=7)" < min *9(g,5Cq) < min §*%(g, LCQ).

Proof of Relation (15) for (Q —1)> < ¢ < n-Q. First, note that by Equation (13), we have
mingeyy, skt(g, LCq) = (n—k— Léj —v)". Hence, we only need to demonstrate that mingey, skt(g, SCq)
(n—k— Léj —v)*, as well. The proof is trivial if kQ+£ > nQ because in this case, mingey, §kt(g, D) =0
for any design D; thus, in the following we let kQ + ¢ < nQ. Next, we consider two cases k = > ;.1 2
for some Iy C {1,...,c} and k # >, ;% for any I C {1,...,c}, separately, as follows.

Case 1: let k = Y ,cp,
the vertex cover. Moreover, let I denote the largest subset in {1,...,c} \ I such that Q> 2 < ¢

z; for some I; C {1,...,c}; then we put all products of components in I; in

then ignore all arcs in Is. Thus, all arcs of components in [; U Iy are either covered or ignored.
Define £, = £ — Q) ¢y, zi- Since Q) ,cp, 2 < ¢, we have £, > 0. Hence, there exists component
y € {Ll,...,c}\ ([1 Uly) such that z,Q > ¢,. The minimum number of plants required from component
Y is zy — L%j Because, no products of component y are included in the vertex cover and by ignoring
each batch of @ arcs from y we can exclude only one plant of y from the vertex cover. Therefore, the

total number of required plants is

by _
n—Zzi—Zzi—Laj—

i€l i€lq

= QY icr, % ¢
n—k—Y» z—|————2—|=n—-k—|—=].
iez]:Q Q Q

By Inequality (A13), we conclude that the aforementioned constructed vertex cover is the minimum
one, and we get 0%/(e,SCq) =n — k — Léj

Case 2: let k # >, ;2 for any I C {1,...,c}, then let Iy C {1,...,c} be the largest subset of
components such that ) ;c; 2z; < k and define k1 := ) ,.; 2. Next, we create a vertex cover in the
following manner. Put all products of components in I; into the vertex cover (all arcs in I; are covered
by ki1 products). There exists component x € {1,...,¢c} \ I such that z, > ko, ko := k — k1. We also
put kg products of = (with consecutive indices) in the vertex cover. Observe that Q(z; — k2) arcs of
competent = remain uncovered. Then consider the two following cases where either ¢ < Q(z; — k2) or
0> Q2 — k2).

If / < Q(zz — ko), then since component  is a Q-long chain and (Q — 1)? < ¢, by Equation (13),
the number of plants required from x to put into the vertex cover is z, — ko — Léj In addition,

we need all plants in components i € {1,...,¢} \ (I3 U {z}) for the vertex cover. Thus, we need
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(n—Fk1—23)+ (2o — k2 — Léj) =n—k— Léj plants along with the specified products to create a vertex
cover. By Inequality (A13) we arrive at a minimum vertex cover. Therefore, §¥(e,SCq) =n—k— Léj

If £ > Q(z; — ko), then ignore all uncovered arcs of x. Let I» denote the largest subset in
{1,...,e} \ (I1 U {z}) such that Q) ,c;, 2 < € — Q(zz — ko). If so, we can ignore all arcs in Is.
Clearly, all arcs of components in I; U I, U {z} are either covered or ignored.

Next, define £, := (—Q Z’ielz 2i—Q (2, —k2). We observe that £, > 0 since Q Zielz 2i < A—Q(zp—k2).
Thus, there exists component y € {1,...,c} \ (I1 U I, U{z}) such that z,Q > ¢,. It should be noted
that no product of component y is in the vertex cover. Moreover, by ignoring each batch of @ arcs
connected to a plant only one plant of y is excluded from the vertex cover. Thus, the required number
of plants from component y in the vertex cover is z, — L%J Therefore, by (A13) the minimum number

of plants required to create a vertex cover is

14

5k’£(e,SCQ) Zn—zzi—zzi_zx_zy+(zy_ Lij)
i€l 1€l Q
:n_kl_zzi_zx— LQ—QZiefzzé_Q(zz_kQ)J —n—k— I_éJ
i€l

Therefore, based on Equation (13) and applying Lemma 2 for 5k’£(e,SCQ) discussed above, we
conclude that Equality (13) holds for any 0 < k <mand (Q —1)? </ <n-Q. O

Proof of Proposition 3. If a = 0, then by Assumption 1 we have ¢* = a = 0 in Equation (10).
Moreover, from Inequality (14) we have mingey, 6%%(g,SCq) < mingey, 6¥°(g, £LCq) at any 0 < k < n.
Therefore, R(Ug,Up, Uy, SCq) < R(Ug,Up,Uq, LCq) by Theorem 1.

Similarly, if @ > (Q — 1)% then ¢* = a > (Q — 1)2. Furthermore, mingey, 67%(g,8Co) =
mingey, sk (g, LCq) by Equality (15). Consequently, from Theorem 1 we obtain R(Uyg, Uy, Us, SCq) =
R(Uq,Up, Uy, LCg) for any (Q —1)2 < a<n-Q. O

Proof of Proposition 5. Under Assumption 1, we conclude that /* = a in Equation (10) for any

design D. Moreover, for a > (Q — 1)? based on Equation (15), we have

. k,a (1) — : k,a (2) .
;&25 (9,5Cy") ;25;5 (9,8C3") Vk e {1,...,n};

the latter equation leads to R(Ug, Uy, Uy, SC(Ql)) = R(Uq, Uy, Ua, SC(QQ)) by Theorem 1. Next, we ascertain

the relationship between the performances without any disruptions, i.e., R(Uy, SCS )) and R(Uy, ch)).
To this end, if we demonstrate that 5k’0(e,SC8)) < R0, SCS)) holds true for any 0 < k& < n, then we
get R(Uy, SCS)) < R(Z/{d,ch)) according to Lemma 2 and Theorem 1.

Recall that 6*0(e, D) is the minimum number of plants that is required to create a vertex cover along
with & products on design D. Notably, based on Inequality (14) and Lemma 2 we have 6% (e, SCS)) >

n—k, t € {1,2}. It is clear that 5k70(e,868)) = 5k70(e,868)) for k € {0,n}. Additionally, let

11



(1) (1)

2005 2

and z%Q), . ,Zé?Q)), denote the component sizes of SCS) and SC(Q2), respectively. In order

to evaluate 6% (e, SCS)), t € {1,2} for 1 < k < n, we consider the following four disjoint cases:

Case 1: there exist some Iy C {1,...,¢qq)}and o C {1,...,¢(9)}, such that ), ;. zi(l) = icl zZ@) =
k. Thus, in SCS), t € {1,2}, in addition to k products of components in I;, we need n — k plants of
components in {1,..., c(t)}\It to create a vertex cover. This is the minimum vertex cover for a particular
k since by Inequality (14), we have 5k’0(e,ch)) >n—k, t € {1,2}. Therefore, 5k’0(e,868)) =
§+0(e,SC) = n — k.

Case 2: there exists I; C {1,...,0(1)} such that Zz’ell zl-(l) = k; however, there does not exist
any Iy C {1,...,¢@)} such that ), zi(Z) = k. Thus, by the argument given in above, we have
(5k’0(e,SC(Ql)) = n — k. By Inequality (14) for any k, we have 5k’0(e,SC(Q2)) > n — k. Therefore,
+0(e,5CY)) < 870(e,5C3)).

Case 3: the cases where there exists no Iy C {1,...,¢)} such that k = >, zi(l), but there is
Iy C{1,...,¢2)} such that k =3,/ Z?), are not considered. These cases are impossible due to the
fact that the components of SCS) are decomposition of the components of ch ),

Case 4: there does not exist any Iy C {1,...,¢(1)} such that k = (1)

ien, % - Likewise, there is no
Iy C{1,...,¢c(2)} such that k =3, 1 zlm.

Fact 1. Consider an arbitrary SCq in {SCq} with the set of components {1,...,c} and
component sizes {z1,..., 2.}. For any given k, let k; < k represent the number of products
of component i € {1,...,c} in a vertex cover. Then we define J as the subset of components
that have all of their products within the vertex cover (k; = z; for all ¢ € J), and k; :=
Y ics % = Y icyki. By the definition of J, it is clear that we have 0 < k; < z; for all
i €{1,...,¢}\ J. It should also be noted that we must have k; + 3 ;cr; 4\ ki = k. By
the assumption there does not exist any I C {1,...,c} such that k = ). ; 2; it implies
that ky < k and Zie{l,...,c}\J ki=k—k;>0.

We demonstrate that for any given k, a minimum vertex cover for SCq in {SCq} can be

-----

exactly one component has at least one (0 < k;), but not all of its products (k; < z;) within

the vertex cover.

It is observed that all arcs of the components in J are covered by k; products. On the other
hand, since each component i € {1,...,c}\ J is a Q-long chain, by Equation (12) we require
min{z;, z; — k; + @ — 1} of its plants along with its k; products to cover all its arcs. Thus,

the total number of plants that are required to create a vertex cover is

(n—Fky)— Z (zi —min{z, 2z — ki +Q — 1})

i€{1,...c]\J

=n—k;+ Y minf0,—k+Q—1}. (A18)
i€{l,....,c}\J

12



To obtain a minimum vertex cover we need to minimize the right-hand side of (A18) that is
strictly decreasing in k; and is non-increasing in k; for each i € {1,...,¢}\ J. In particular,
the unit increase of k; and k; decreases the right-hand side of (A18) by exactly 1 unit and

at the most 1 unit, respectively. Hence, we set k; at its maximum possible value.

Recall that Zi€{17.“7c}\(] ki = k —kjy > 0. The minimum quantum of the right-hand side
of (A18) is obtained when along with the largest value of k, for exactly one component, say
te{l,...,c}\J,0 <kt < z,ie,ky=k—kjand k;=0foralli e {1,...,c}\ (JU{t}). To
elaborate it further, it should be observed that min{0, —k; + @ — 1} = —k; + min{k;, Q — 1}.
Then we get

S (ki min{k, Q@ -1} =—(k—ks)+ Y. min{k;,Q -1}

1€{1,...,c}\J 1€{1,....,c}\J

—ki + min{k;, Q — 1},

or equivalently Zie{l,...,a}\J min{k;, @ — 1} > min{k;, Q — 1} from the last inequality. This
is true because if k; < Q — 1 for all i € {1,...,c} \ J, then 3 ;. 4\ ymin{k;, @ — 1} =
Zie{l,...,a}\] k; = k —kj > min{k;, @ — 1}. On the other hand, if k; > Q — 1 for i € I where
TCA{L,...,cp\ J, then [I]-(Q = 1) + X seqq, oy (yur min{k;, @ — 1} > min{ky, @ — 1}. It
should be noted that there may exist multiple minimum vertex covers; we can obtain one of

them in this manner.

Now, by using Fact 1, we create a minimum vertex cover in SCS ). Let J1 be the largest subset of
{1,...,¢cq)} such that ), ;. zl-(l) <kandky, =) ) zi(l). Next, select component z € {1,..., ¢y }\J1
and k; := k — kj,. Put all products of J; and k, products of z within the vertex cover. By (A18), we
can see that the minimum number of required plants is 6% (e, SCS)) =n—ky +min{0, -k, +Q —1} =

min{n — kj,n—k+Q — 1}.

Similarly, in SC(QQ) let Jo denote the largest subset of {1,...,¢()} such that », ; 2 ) < k and
ki, =2 icr zi(z). Then we can select component y € {1,.. .,0(2)} \ Jy and ky =k — kj,. By (A18),

the minimum number of required plants is 6*°(e, SCS)) =n —ky, + min{0, -k, + Q@ — 1} = min{n —
kj,,m—k+Q—1}.

It should be noted that k;, > kj, because by assumption, the components of SCS) are decomposition
of SCS) components. Thus, min{n — kj,n —k+ Q — 1} < min{n — kj,,n —k+ Q — 1}. As a result,
§+0(e,5¢5)) < 8%0(e,SCS)).

Therefore base on the discussion provided above we have 6k’0(e,SC(Q1)) < 5k*0(e,SC(QQ)), for all
0 < k < n, and by using Lemma 2 and Theorem 1, we get R(Ud,SC(Ql)) R(L{d,SC(QQ)). Recalling that

R(Ua,Up,Ua, SCY)) = R(Ua,Up, Ua, SC)), the proof is complete. O
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Proof of Proposition 6. For general design D, let (k%,,(3,,dp) and (k7,,d}) denote optimal solutions
of the optimization problems (10) and (19) — which represent the worst-case performances with and
without disruptions — respectively. Since there are no arc disruptions (« = 0), by Assumption 1, we have
07, = 0. Next, we consider four disjoint cases on kgcQ and kZCQ € {0,...,n} including: kl*SCQ , kZCQ < n;

* * — . * i * — . * * —
k‘SCQ < kﬁcQ =n; kch = kﬁcQ = n; and kzﬁcQ < k:SCQ =n.

o Let k:gCQ < n and kZCQ < n. Any vertex cover of general design D can be represented by sets
S C B and N(B\ S,D). In addition, let S* C B, |S*| = kg‘cQ < n and N(B\ §*,8Cq) > 0

denote a minimum vertex cover of SCq without disruptions. Hence, by Remark 3 part (vi), we have

5k§cQ’0(e,SCQ) =|N(B\ §*,8Cq)| and by Equation (19), we get
Kscq kseq,
Rty SCa) = N\ 5%, SCQ)| + 3 min' (dicq) = WIB\$"5Co)l + g 3~ - (410

The second equality in (A19) follows by fixing k;gcQ in Equation (19). A single plant disruption
makes the capacity of a plant zero. We claim that sets S* and N (B '\ §*,SCq) are also a minimum
vertex cover of SCo with a plant disruption. If our claim holds true, then |S*| = kse, = kseps as a

consequence, by Equation (10) we have

Keq
R(Ua, Up,Us, SC) = (6"50"(,8Cq) — 1)* + 3 min(d3e,)
j=1
kgCQ
= B * - 1 i ). A2
NV (B\ 5%, 8Cq) +gég;];dg (A20)

The second equality in (A20) is obtained by fixing kgCQ in Equation (10), and due to the fact
that 5k‘§CQ’0(e,SCQ) = |N(B\ §*,8Cq)| > 0. Thus, by considering (A19) and (A20), we get
Fr(SCq) = R(Uq, SCq) — R(Ug, Uy, U,,SCq) = 1.

We prove the validity of our claim by contradiction. Suppose S* UN (B \ S*,S8Cq) is the minimum
vertex cover of SCq without the disruption, but it is not the minimum vertex cover of SCg with the
disruption, and sets S C B, |S| = kgCQ, and V(B '\ S,8Cq) corresponds to the minimum vertex
cover of SCq with the disruption. In this case,

kgCQ

_ +
R(Uy, Uy, Uy, SCo) = (\N(B\S,SCQ)\ - 1) +min 37 d; < IN(B\§.8Cq)| ~ 1+ min 3 d.
j=1 j=1

k:gCQ

As a result, by (A19) o

SCQ

IV(B\ S,8Cq)| + min ; dj < R(Ug,SCo). (A21)
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Both S*UN(B\S*,S8Cg) and SUN (B\S, SCq) represent vertex covers for SC¢. Thus, Relation (A21)
contradicts the minimality of vertex cover S* UN (B \ S*,8Cq) for SC¢ without disruption.

Indeed, the proof above holds for any design D (i.e., if £, < n, then Fr(D) = 1) since we did not
exploit the structure of SCq. Therefore, Fr(LCq) = Fr(SCq) = 1 when Ksc, <nand kze, <mn.

Let k‘*SCQ < kZCQ = n, then by the discussion above, we have Fr(SCq) = 1 because k}gCQ < n. In
addition, by Equation (19) we have R(Uy, LCq) = D7, df req- Next, we evaluate F r(LCq) to prove
that Fr(L£Cq) < 1. Toward this goal, let By denote the set of products whose demands are larger
than 1 in dz¢,,, i.e., By ={j € B | s e, > 1} and Ay := N(By,£LCq). Clearly, |Bi| < |A1] and set
(B\ B1)U A is a vertex cover for LCg.

Fact 1. The inequality

n—|B1]| n
A+ Y mind(dZe,) Z ,LCq (A22)
j=1

is true since (B \ B1) U A creates a vertex cover in £LCq that corresponds to the feasible
. o Bi|

solution (k = n — |Bi[,dz¢,,) with the objective function value |A;| + Z l 1l min/ ( )

for Equation (19). If (A22) does not hold true, then for this feasible solution we have

|Ax| + D002 ‘Bl min ( reo) < 2j=1d5 pe, = R(Ua, LCq), that contradicts the optimality

of (Fze, = s dzey)-

0 +
Fact 2. By Equation (10), we have R(Ug,Up, Uq, LCq) = <5k“@70(e,ECQ) - 1) +
kﬁC

> = 2 min (dz:c ). Forany k € {0,...,n}, we define G(k) = G1(k)+G2(k), where G (k) =
(5k70(e,£cQ) - 1) ,and Ga(k) = Y8 mind(dge, ). Observe that R(Us,Up,Us, LCq) =
ming<k<n G(K).

Evidently, G1(k) and G2(k) are non-increasing and non-decreasing functions of k, respec-
tively. Moreover, each value of k corresponds to a vertex cover that is associated with G(k)
with the total capacity G1(k) and the total demand G (k), respectively. Note that G1(k) is
minimized when products with consecutive indices are selected in the vertex cover; hence,
without loss of generality, for each k& we suppose that the vertex cover includes product set
S =1{1,2,...,k} and plant set N'(B\ S, LCq).

Next, we demonstrate that the value of any local minimum of G(k) is the same as G(k) at
one of the points k € {0,n — |B1|,n}. As a result, it is sufficient to compute G(k) only at
k € {0,n —|Bi|,n} and consider the minimum one as R(Uyg, Uy, Uq, LCQ).

Specifically, define k" as the largest value of k such that Gy(k) = n — 1 for all k < K. If
kK <n—|Bj| — 1, then we show that

(a) G(n—|B1]) <G(n—|B1|+1)<...<G(n—-1)

15



(b) G(K)
(c) G(0)

>...2Gn—1|B1|-2)>G(n—|B1|—1)
<G(1)<...<G(K)
Hence, k = 0 is a local minimum of G(k). Moreover, if G(n — |B1| —1) > G(n — |B1]), then

k =n —|Bj| is a also local minimum.

In case k' > n — |Bi|, we only need to demonstrate that

(d) GO)<G1)<...<GK)<...<G(n-1)

Thus, k£ = 0 is a local minimum of G(k). It should be noted that for k =n, if G(n — 1) >
G(n), then k = n is also a local minimum. In the following, we prove Relations (a) to (d).
Relation (a) holds true for any k € {n—|B1|+1,...,n—1} because G1(k—1) —G1(k) = 1,
and Go(k—1)— Ga(k) = — mink(domQ) < —1; therefore, G(k—1) — G(k) < 0. To elaborate
further, utilizing the structure of £Cq, product k (k > k') has a different neighbor plant
from product k—1; i.e., Gi(k—1)—G1(k) = [N (k, LCQ)\N (k—1,LCq)| = 1. Furthermore,
by the definition of set By we have min®( reo) > 1for n—[Bi| <k < n. As a consequence,
Ga(k —1) — Ga(k) < —1.

Relation (b) holds true for any k € {k’,...,n —|B1|} because G1(k — 1) — G1(k) = 1 and
Gao(k —1) — Ga(k) = —mink(doﬁcQ) > —1; therefore G(k — 1) — G(k) > 0. By the struc-
ture of LCq, product k (k > k') has one different neighbor plant from product k — 1, i.e.,
Gi(k—1)—Gi(k) = |N(k,LCQ)\N(k—1,LCq)| = 1. Furthermore, since mink(d%CQ) <1
for k < n —|Bil|, we have Ga(k — 1) — Ga(k) = —mink(doﬁcQ) > —1.

Relation (c) holds true for any k& € {0,...,k'} because Gi(k — 1) — Gi(k) = 0 and
Ga(k — 1) — Ga(k) = —mink(d2CQ) < 0; therefore, G(k — 1) — G(k) < 0. We get
Gi(k — 1) — G1(k) = 0 because G1(k) = n — 1 for all &k < k’. Since there are no neg-
ative demands, it follows that Ga(k — 1) — Ga(k) < 0.

Relation (d) holds true since Relations (a) and (c¢) are true. If & > n — |B;|, we have
Gk —1) < G(k) for k € {K' +1,...,n — 1} by Relation (a) and G(k — 1) < G(k) for
k € {0,...,k'} by Relation (c).

It should be noted that G(k) may have local minimums other than set {0,n — |B|,n}. However, on
the basis of Fact 2, any local minimum takes the value of G(k) at one of the points {0,n — |Bi|,n}.

By considering Fact 2 and since R(Uy,Uy,U,, LCq) = ming<i<y, G(k), in the following we evaluate

Fr(LCq) only for kzc € {0,n — |By],n}. Recall that it is supposed kze, =n-

Let kZCQ = n, then we have kZCQ = kZCQ = n.
R(Uq, LCq) = > 54 o, and R(Ua,Up, Ua, LCQ) = 3774 d5 rc,,» respectively. Thus, R(Uq, LCg) =
R(Uy, Uy, Uy, LCg) because it is clear that R(Uq, Uy, U,, LCo) < R(Uy, LCg) < Z?:l d;?’,:CQ and since
(k:ZCQ = n,dj rc,,) is a feasible solution for (19). Hence, Fr(LCq) = 0. Recall that Fr(SCq) = 1

because k:ZCQ < n. Therefore, Fr(LCqg) < Fr(SCq) = 1.

16
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Let kzp, = n— | B1|, then the corresponding minimum vertex cover for kze, =n— |B1|is AjU(B\ By).
By Equation (10) we have R(Uq,Up, Uy, LCq) = |A1] —1+ Z ‘Bl min’ (dze,,)- According to the def-
inition of fragility coupled with Relation (A22) in Fact 1, we get

n n—|B|
Fr(£Cq) = R(Ua, £Cq) — R(Ua,Up,Ua, £LCQ) =D dire, — (|41 =1+ D mind(dge,)) < 1.
j=1 Jj=1

Therefore, Fr(LCq) < Fr(SCq) = 1.

Let kch = 0, then R(Uy,U,,U,,LCq) = n — 1 by Equation (10). Importantly, R(Uy, LCq) =
Z?:l d; £co < n because kZCQ = n; otherwise, one can select all plants as the vertex cover and as a
result R(Uy, LCq) = n. Hence,

ECQ ZdJ‘CCQ n—l) 1.

Therefore, Fr(LCq) < Fr(SCq) = 1 when kfch < kZCQ =n.

other hand, based on (16) we have R(Uq,Up,U,,SCq) < R(Uq,Up,U,, LCq). Therefore, Fr(LCq) <
Fr(SCq).

o Let kZCQ < kgCQ = n. Since k’gcQ = n, based on Equation (19), we get R(Uy, SCq) = > 7, dj*.’SCQ.
Then by considering Inequality (14) and Theorem 1, we have R(Uy,SCq) < R(Uq, LCq). Hence,
> =1 ds scq S R(Ug, LCq). Additionally, note that (k = n,ds, o) is a feasible solution of (19) for
LCq with the objective function value of Z;;l d; sCo-

If 70 d;SCQ < R(Uq,LCq), then we have a feasible solution (k = n,d%. o) With the objective
function value Z?Zl dg*',ch being less than the optimal value R(Uy, £LCq); hence, Z?Zl d;‘ch <
R(Ug, LCq) cannot occur. If Z?Zl d;ch = R(Ugy, LCq), then (k = n, dgcQ) is an optimal solution

for (19). Thus, kZZCQ = kgcQ = n and refer to the corresponding discussion above for this case.

Therefore, on the basis of the discussions above, Proposition 6 is proved. (|
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