Analysis of Process Flexibility Designs under Disruptions

Erfan Mehmanchi, Hoda Bidkhori, Oleg A. Prokopyev

Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA, 15261

Supplementary Material: Proofs

Proof of Lemma 2. Based on Problem (3) and Remark 1 under Assumption 2 ($\mathbf{c}^{(p)} = \mathbf{e}$) we have

$$\min_{\boldsymbol{g}\in\mathcal{U}_p}\delta^{k,\ell}(\boldsymbol{g},\mathcal{D}) = \min_{\mathbf{p},\mathbf{q},\mathbf{t},\boldsymbol{g}}\left\{\sum_{i\in I}g_ip_i \mid (3\mathbf{b}) - (3\mathbf{f}), \sum_{i\in I}(1-g_i) = \gamma, g_i \in \{0,1\}, \forall i \in I\right\} \ge 0.$$
(A1)

Recall also that $\delta^{k,\ell}(\mathbf{e}, \mathcal{D}) = \min_{\mathbf{p},\mathbf{q},\mathbf{t}} \{ \sum_{i \in I} p_i \mid (3\mathbf{b}) - (3\mathbf{f}) \}.$

If there exists a feasible solution for the set of constraints (3b) to (3f) such that $\sum_{i \in I} p_i \leq \gamma$, then clearly $\delta^{k,\ell}(\mathbf{e}, \mathcal{D}) \leq \gamma$; additionally, for this feasible solution and every plant *i* such that $p_i = 1$ let $g_i = 0$, then $\min_{\boldsymbol{g} \in \mathcal{U}_p} \delta^{k,\ell}(\boldsymbol{g}, \mathcal{D}) = (\delta^{k,\ell}(\mathbf{e}, \mathcal{D}) - \gamma)^+ = 0.$

Now, suppose that $\sum_{i \in I} p_i > \gamma$ for all feasible solutions of the set of constraints (3b) to (3f). Then since $\sum_{i \in I} (1 - g_i) = \gamma$, in any optimal solution of (A1), we have $g_i = 0$ exactly for γ plants that $p_i = 1$. Hence, all the optimal solutions of (A1) satisfy $p_i + g_i \ge 1$. Next, we show that $\min_{\boldsymbol{g} \in \mathcal{U}_p} \delta^{k,\ell}(\boldsymbol{g}, \mathcal{D}) = \delta^{k,\ell}(\mathbf{e}, \mathcal{D}) - \gamma$.

$$\min_{\boldsymbol{g}\in\mathcal{U}_p} \delta^{k,\ell}(\boldsymbol{g},\mathcal{D}) = \min_{\boldsymbol{p},\boldsymbol{q},\boldsymbol{t},\boldsymbol{g},\boldsymbol{y}} \left\{ \sum_{i\in I} y_i \mid (3b) - (3f), \sum_{i\in I} (1-g_i) = \gamma, g_i \in \{0,1\}, \\ y_i \leqslant g_i, y_i \leqslant p_i, y_i \geqslant p_i + g_i - 1, y_i \geqslant 0, \forall i \in I \right\}$$
(A2)

$$= \min_{\mathbf{p},\mathbf{q},\mathbf{t},\mathbf{g}} \left\{ \sum_{i \in I} (p_i + g_i - 1)^+ \mid (3\mathbf{b}) - (3\mathbf{f}), \sum_{i \in I} (1 - g_i) = \gamma, g_i \in \{0,1\}, \forall i \in I \right\}$$
(A3)

$$= \min_{\mathbf{p},\mathbf{q},\mathbf{t},\mathbf{g}} \left\{ \sum_{i \in I} (p_i + g_i - 1) \mid (3\mathbf{b}) - (3\mathbf{f}), \sum_{i \in I} (1 - g_i) = \gamma, g_i \in \{0, 1\}, \forall i \in I \right\}$$
(A4)

$$= \min_{\mathbf{p},\mathbf{q},\mathbf{t}} \left\{ \sum_{i \in I} p_i - \gamma \mid (3\mathbf{b}) - (3\mathbf{f}) \right\} = \delta^{k,\ell}(\mathbf{e},\mathcal{D}) - \gamma.$$
(A5)

Equation (A2) holds by linearizing the bilinear terms $g_i p_i$, where $g_i, p_i \in \{0, 1\}$ for all $i \in I$, using the standard techniques (see, e.g., Glover and Woolsey 1974) in the objective function of the optimization problem on the right-hand side of (A1). Equation (A3) holds since the optimization problem is in the minimization form; thus, the lower bounds of y are sufficient, i.e., $y_i \ge \max\{p_i + g_i - 1, 0\}$ for all $i \in I$. Equation (A4) is correct since $p_i + g_i \ge 1$ for any optimal solution. Finally, Equation (A5) holds by substitution of $\sum_{i \in I} (1 - g_i) = \gamma$ in the objective function.

Proof of Lemma 3. To prove Relation (11) and Equations (12) and (13), separately for each one, we first derive $\delta^{k,\ell}(\mathbf{e}, \mathcal{LC}_Q)$. Then by applying Lemma 2, we obtain the desired result. Recall that the term $\delta^{k,\ell}(\mathbf{e}, \mathcal{LC}_Q)$ is PCID without any plant disruptions, i.e., the minimum number of plants (under the assumption $\mathbf{c}^{(p)} = \mathbf{e}$) required to create a vertex cover that includes k products after ignoring ℓ arcs.

Proof of Relation (11). We evaluate $\delta^{k,\ell}(\mathbf{e}, \mathcal{LC}_Q)$ for any $0 \leq k \leq n$ and $0 \leq \ell \leq n \cdot Q$. Design \mathcal{LC}_Q has $n \cdot Q$ arcs, that exactly $k \cdot Q$ arcs are covered by k products. Among $Q \cdot (n-k)$ uncovered arcs, ℓ arcs are ignored by Equations (3c) and (3d). If $Q \cdot (n-k) \leq \ell$, then $n-k-\lfloor \frac{\ell}{Q} \rfloor \leq 0$. Thus, $\delta^{k,\ell}(\mathbf{e}, \mathcal{LC}_Q) = (n-k-\lfloor \frac{\ell}{Q} \rfloor)^+ = 0$.

Otherwise, there remain $Q \cdot (n-k) - \ell$ uncovered arcs. Since each plant can cover Q uncovered arcs at most, we have $\delta^{k,\ell}(\mathbf{e}, \mathcal{LC}_Q) \ge \frac{Q \cdot (n-k) - \ell}{Q}$. Moreover, since $\delta^{k,\ell}(\mathbf{e}, \mathcal{LC}_Q) \in \mathbb{Z}_+$ we have $\delta^{k,\ell}(\mathbf{e}, \mathcal{LC}_Q) \ge \left\lceil \frac{Q \cdot (n-k) - \ell}{Q} \right\rceil = n - k - \lfloor \frac{\ell}{Q} \rfloor$. Therefore, based on Lemma 2, we obtain that $\min_{g \in \mathcal{U}_p} \delta^{k,\ell}(g, \mathcal{LC}_Q) \ge (n-k - \lfloor \frac{\ell}{Q} \rfloor - \gamma)^+$ for any $0 \le k \le n$ and $0 \le \ell \le n \cdot Q$.

Proof of Equation (12). For k = 0, the proof is trivial since by Remark 3 part (*i*) we know that $\delta^{0,0}(\mathbf{e}, \mathcal{LC}_Q) = n$. Then we evaluate $\delta^{k,0}(\mathbf{e}, \mathcal{LC}_Q)$ for $1 \leq k \leq n-1$. Under the assumption $\mathbf{c}^{(p)} = \mathbf{e}$ by Remark 3 part (*vi*) we get $\delta^{k,0}(\mathbf{e}, \mathcal{LC}_Q) = \min_{\substack{S \subseteq B, |S| = k \\ S \subseteq B, |S| = k \\}} |\mathcal{N}(B \setminus S, \mathcal{LC}_Q)|$. Evidently, on the basis of the definition of Q-long chain we have $|\mathcal{N}(V, \mathcal{LC}_Q)| \geq \min\{n, |V| + Q - 1\}$ for any $V \subseteq B, V \neq \emptyset$. Hence, $\delta^{k,0}(\mathbf{e}, \mathcal{LC}_Q) = \min\{n, |B \setminus S| + Q - 1\} = \min\{n, n - k + Q - 1\}$; this minimum value can be obtained by letting S be a set of products with consecutive indices.

Proof of Equation (13). First, note that by Inequality (11) and Lemma 2 we have

$$\delta^{k,\ell}(\mathbf{e},\mathcal{LC}_Q) \ge n-k-\lfloor \frac{\ell}{Q} \rfloor.$$
(A6)

Second, if $nQ \leq kQ + \ell$, then among nQ arcs of \mathcal{LC}_Q , exactly kQ arcs are covered by k products and the remaining arcs all are ignored; as a consequence, $\delta^{k,\ell}(\mathbf{e}, \mathcal{LC}_Q) = (n - k - \lfloor \frac{\ell}{Q} \rfloor)^+ = 0$. Then we evaluate $\delta^{k,\ell}(\mathbf{e}, \mathcal{LC}_Q)$ for all $0 \leq k \leq n$ and $(Q-1)^2 \leq \ell \leq Q \cdot n$ such that $nQ > kQ + \ell$ for two cases Q = 2 and $Q \geq 3$ separately as follows.

• Let Q = 2, then in the following for any $0 \le k \le n$ and $1 \le \ell \le 2 \cdot n$ such that $2n > 2k + \ell$, we create a vertex cover necessitating $n - k - \lfloor \frac{\ell}{2} \rfloor > 0$ plants. Thus, based on Inequality (A6), the created vertex cover is the minimum and we have $\delta^{k,\ell}(\mathbf{e}, \mathcal{LC}_2) = n - k - \lfloor \frac{\ell}{2} \rfloor$.

If k = 0, then we temporarily put all n plants in the vertex cover. Next, by ignoring every two arcs connected to a plant in \mathcal{LC}_2 , we can exclude exactly one plant from the vertex cover (in total, $\lfloor \frac{\ell}{2} \rfloor$ plants are excluded). Thus, $\delta^{0,\ell}(\mathbf{e}, \mathcal{LC}_2) = n - 0 - \lfloor \frac{\ell}{2} \rfloor = n - \lfloor \frac{\ell}{2} \rfloor$.

For 0 < k < n, let $S \subset B$, |S| = k be a set of products with consecutive indices, e.g., $S = \{1, 2, ..., k\}$. After putting S in the vertex cover, 2n - 2k uncovered arcs remain. By the selection of S and the structure of \mathcal{LC}_2 exactly two uncovered arcs emanate from $\mathcal{N}(S, \mathcal{LC}_2)$, i.e., arcs with an endpoint in $B \setminus S$. Next, consider two cases where ℓ is either even or odd.

Case 1: if ℓ is even, let us first ignore 2 uncovered arcs of $\mathcal{N}(S, \mathcal{LC}_2)$, and then (if $\ell > 2$) ignore $\ell - 2$ uncovered arcs which are connected to $\frac{\ell-2}{2}$ of plants in $A \setminus \mathcal{N}(S, \mathcal{LC}_2)$. Thus, there remain $2n - 2k - \ell$ uncovered arcs. The number of plants in $A \setminus \mathcal{N}(S, \mathcal{LC}_2)$ that are still connected to two uncovered arcs is $\frac{2n-2k-\ell}{2} = n - k - \frac{\ell}{2} = n - k - \lfloor \frac{\ell}{2} \rfloor$, and we need all of them to create a vertex cover with S. Therefore, by Inequality (A6) we get $\delta^{k,\ell}(\mathbf{e}, \mathcal{LC}_2) = n - k - \lfloor \frac{\ell}{2} \rfloor$.

Case 2: if ℓ is odd, let us first ignore uncovered arc(s) of $\mathcal{N}(S, \mathcal{LC}_2)$, and then (if $\ell > 2$) ignore $\ell - 2$ uncovered arcs which are connected to $\lceil \frac{\ell-2}{2} \rceil$ of plants in $A \setminus \mathcal{N}(S, \mathcal{LC}_2)$. After ignoring ℓ arcs, all plants in $A \setminus \mathcal{N}(S, \mathcal{LC}_2)$ except one are connected to either 0 or 2 uncovered arcs and only one plant is connected to a single uncovered arc. Thus, $\delta^{k,\ell}(\mathbf{e}, \mathcal{LC}_2) \leq \frac{2n-2k-\ell}{2} + 1$. Since $\delta^{k,\ell}(\mathbf{e}, \mathcal{LC}_2) \in \mathbb{Z}_+$ we get $\delta^{k,\ell}(\mathbf{e}, \mathcal{LC}_2) \leq \lfloor \frac{2n-2k-\ell}{2} + 1 \rfloor = n - k - \lfloor \frac{\ell}{2} \rfloor$. As a result, by Inequality (A6) we get $\delta^{k,\ell}(\mathbf{e}, \mathcal{LC}_2) = n - k - \lfloor \frac{\ell}{2} \rfloor$.

Therefore, Equation (13) holds true for Q = 2 by using Lemma 2.

Let Q ≥ 3, then for any 0 ≤ k ≤ n and (Q-1)² ≤ ℓ ≤ Q ⋅ n such that nQ > kQ+ℓ it suffices to demonstrate that there exist S ⊆ B, |S| = k and E ⊆ LC_Q, |E| = ℓ such that |N(B \ S, LC_Q \ E)| = n - k - [ℓ/Q]. It implies that δ^{k,ℓ}(e, LC_Q) = n - k - [ℓ/Q] due to Remark 3 part (vi) and Inequality (A6). Then by applying Lemma 2, we obtain the desired result, that is min_{g∈U_p} δ^{k,ℓ}(g, LC_Q) = (n - k - [ℓ/Q] - γ)⁺. To this end, let S be a set of k products with consecutive indices, e.g., S = {1,...,k} and Z := B \ S = {k + 1,...,n}. Clearly, |S| = k and |Z| = n - k. Put S in the vertex cover. Hence, all arcs connected to S are covered and all uncovered arcs have an endpoint in products of set Z. We define η_i as the number of uncovered arcs (with an endpoint in Z) connected to plant i ∈ A. It should be noted that η_i > 0 for all i ∈ N(Z, LC_Q) and η_i = 0 for all i ∈ A \ N(Z, LC_Q). Without excluding

E from \mathcal{LC}_Q the set $\mathcal{N}(Z, \mathcal{LC}_Q)$ is required to create a vertex cover along with S. We continue our discussion by considering two cases $|Z| \leq Q - 2$ and $|Z| \geq Q - 1$, separately.

Case 1: If $|Z| \leq Q - 2$, then $|Z|Q \leq (Q - 2)Q < (Q - 1)^2 \leq \ell$. For any $\ell \geq (Q - 1)^2$ let $E \subseteq \mathcal{LC}_Q$ such that $\{(i, j) \in \mathcal{LC}_Q \mid j \in Z\} \subseteq E$, and $|E| = \ell$. Clearly, $|\{(i, j) \in \mathcal{LC}_Q \mid j \in Z\}| = |Z|Q < |E| = \ell$ and E includes all |Z|Q arcs connected to Z. Thus, $|\mathcal{N}(Z, \mathcal{LC}_Q \setminus E)| = 0$. It should be observed that $\ell > |Z|Q = (n - k)Q$; hence, $(n - k - \lfloor \frac{\ell}{Q} \rfloor)^+ = 0$. Therefore, there exist $S \subseteq B$, |S| = k and $E \subseteq \mathcal{LC}_Q$, $|E| = \ell$ such that $|\mathcal{N}(Z, \mathcal{LC}_Q \setminus E)| = (n - k - \lfloor \frac{\ell}{Q} \rfloor)^+ = 0$.

Case 2: If $|Z| \ge Q - 1$, then define $\tau_t = |\{i \in A \mid \eta_i = t\}|$, that is the number of plants with $\eta_i = t$, and $x = (|Z| + Q - 1 - n)^+$. By the definition of \mathcal{LC}_Q , we observe that either $\eta_i = 0$ or $\eta_i \ge x + 1$. Additionally, $\tau_{x+1} = x + 2$, $\tau_t = 2$ for $t \in \{x + 2, x + 3, \dots, Q - 1\}$, and $\tau_Q = |\mathcal{N}(Z, \mathcal{LC}_Q)| - 2(Q - 1 - (1 + x)) - (x + 2) = |\mathcal{N}(Z, \mathcal{LC}_Q)| - 2Q + x + 2$. We first show that, Fact 1. for any $T \in \{x + 1, x + 2, \dots, Q - 1\}$,

$$\sum_{t=x+1}^{T} (\tau_t \cdot t) - T = T^2.$$
(A7)

We prove Equality (A7) by induction on T. Let T = x + 1, then since $\tau_{x+1} = x + 2$ we get $\sum_{t=x+1}^{x+1} (\tau_t \cdot t) - (x+1) = (x+2)(x+1) - (x+1) = (x+1)^2$. Next, we need to prove that if Equality (A7) holds true for T, then it also holds true for T + 1. Suppose that Equality (A7) is true for some $T \in \{x+1, x+2, \ldots, Q-2\}$, then by induction hypothesis,

$$\sum_{t=x+1}^{T} (\tau_t \cdot t) - T = T^2.$$
(A8)

Additionally, since $\tau_{T+1} = 2$ for $T \in \{x + 1, x + 2, \dots, Q - 2\}$, we have $\sum_{t=x+1}^{T+1} (\tau_t \cdot t) = \sum_{t=x+1}^{T} (\tau_t \cdot t) + 2(T+1)$; by using this equality and also Equality (A8), starting from the left-hand side of (A7) for T + 1 we get

$$\sum_{t=x+1}^{T+1} (\tau_t \cdot t) - (T+1) = \sum_{t=x+1}^{T} (\tau_t \cdot t) + T + 1 = T^2 + T + T + 1 = (T+1)^2.$$

Therefore, Equality (A7) is valid for any $T \in \{x + 1, x + 2, \dots, Q - 1\}$.

Next, recall that $|\mathcal{N}(Z, \mathcal{LC}_Q)|$ plants are required to create a vertex cover along with S. By the definition of Q-long chain design and since Z includes products with consecutive indices, $|\mathcal{N}(Z, \mathcal{LC}_Q)| = \min\{n, |Z| + Q - 1\}$. Next, we continue the discussion for different values of $\ell \ge (Q - 1)^2$.

- for $\ell = (Q-1)^2$ let $E_0 = \{(i,j) \in \mathcal{LC}_Q \mid j \in Z, 0 < \eta_i \leq Q-1\} \setminus \{(i,j) \in \mathcal{LC}_Q \mid j \in Z, \eta_i = Q-1, i \in I_1 \subset I, |I_1| = 1\}$. In fact, set E_0 includes uncovered arcs connected to plants $i \in \mathcal{N}(Z, \mathcal{LC}_Q)$ except those with $\eta_i = Q$, and one of two plants with $\eta_i = Q-1$, i.e., E_0 is the set of arcs with an endpoint in Z and connected to $|\mathcal{N}(Z, \mathcal{LC}_Q)| - \tau_Q - 1 = 2Q - x - 3$ plants with the smallest $\eta_i > 0$. Let T = Q-1 in Equality (A7). Then, by Fact 1 we have $|E_0| = \sum_{t=x+1}^{Q-1} (\tau_t \cdot t) - (Q-1) = (Q-1)^2 = \ell$. Thus, by excluding E_0 from \mathcal{LC}_Q the number of plants required to create a vertex cover, $|\mathcal{N}(Z, \mathcal{LC}_Q)|$, along with S reduces by 2Q - x - 3, i.e.,

$$|\mathcal{N}(Z, \mathcal{LC}_Q \setminus E_0)| = |\mathcal{N}(Z, \mathcal{LC}_Q)| - (2Q - x - 3) = \min\{n, |Z| + Q - 1\} - (2Q - x - 3).$$
(A9)

If $|Z| + Q - 1 \ge n$, then x = |Z| + Q - 1 - n and from Equality (A9),

$$|\mathcal{N}(Z, \mathcal{LC}_Q \setminus E_0)| = n - 2Q + (|Z| + Q - 1 - n) + 3$$

= |Z| - (Q - 2) = |Z| - \bigl[\frac{(Q - 1)^2}{Q} \bigr] = n - k - \bigl[\frac{\ell}{Q} \bigr] > 0;

else, x = 0 and from Equality (A9),

$$|\mathcal{N}(Z, \mathcal{LC}_Q \setminus E_0)| = (|Z| + Q - 1) - (2Q - 0 - 3) = |Z| - (Q - 2)$$
$$= |Z| - \lfloor \frac{(Q - 1)^2}{Q} \rfloor = n - k - \lfloor \frac{\ell}{Q} \rfloor > 0.$$

As a consequence,

$$|\mathcal{N}(Z, \mathcal{LC}_Q \setminus E_0)| = n - k - \lfloor \frac{\ell}{Q} \rfloor > 0.$$
(A10)

Note that the value of η_i for $i \in \mathcal{N}(Z, \mathcal{LC}_Q \setminus E_0)$, the remaining required plants for the vertex cover after ignoring arcs in E_0 , is $Q - 1, Q, Q, \ldots, Q$, i.e., $\tau_t = 0$ for $t \leq Q - 2$, $\tau_{Q-1} = 1$ and still $\tau_Q = |\mathcal{N}(Z, \mathcal{LC}_Q)| - 2Q + x + 2$.

- for $(Q-1)^2 < \ell < (Q-1)^2 + (Q-1)$ let $E_1 = E_0 \cup \{(i,j) \in \mathcal{LC}_Q \mid j \in Z, (i,j) \notin E_0\}$ such that $|E_1| = \ell$. Excluding E_1 from \mathcal{LC}_Q does not remove any more plants from $\mathcal{N}(Z, \mathcal{LC}_Q)$ than by excluding E_0 . Because $|E_1 \setminus E_0| < Q-1$, but $\eta_i = Q-1$ or Q for $i \in \mathcal{N}(Z, \mathcal{LC}_Q \setminus E_0)$. Thus, based on (A10), we get

$$|\mathcal{N}(Z,\mathcal{LC}_Q \setminus E_1)| = |\mathcal{N}(Z,\mathcal{LC}_Q \setminus E_0)| = |Z| - \lfloor \frac{(Q-1)^2}{Q} \rfloor = n - k - \lfloor \frac{\ell}{Q} \rfloor > 0,$$

for any $(Q-1)^2 < \ell < (Q-1)^2 + (Q-1)$.

- for $\ell = (Q-1)^2 + (Q-1) + t \cdot Q = Q(Q-1+t)$, where $t \in \mathbb{Z}_+ \cup \{0\}$. Let $E_2 = \bigcup_{i \in A} \{(i, j) \in \mathcal{LC}_Q \mid j \in Z, (i, j) \notin E_0, \eta_i = Q - 1 \text{ or } \eta_i = Q\} \cup E_0$ such that $|E_2| = \ell$. Subsequently, excluding E_2 from \mathcal{LC}_Q removes t+1 plant(s) from $\mathcal{N}(Z, \mathcal{LC}_Q)$ more than E_0 , because $E_2 \setminus E_0$ includes arcs with an endpoint in Z and connected to a plant with $\eta_i = Q - 1$ and t plants with $\eta_i = Q$. Hence, by (A10), we get

$$|\mathcal{N}(Z, \mathcal{LC}_Q \setminus E_2)| = |\mathcal{N}(Z, \mathcal{LC}_Q \setminus E_0)| - (t+1) = |Z| - \lfloor \frac{(Q-1)^2}{Q} \rfloor - (t+1)$$
$$= |Z| - \lfloor \frac{Q(Q-1+t)}{Q} \rfloor = n - k - \lfloor \frac{\ell}{Q} \rfloor,$$
(A11)

for $\ell = Q(Q - 1 + t)$. It should be noted that $\eta_i = Q$ for $i \in \mathcal{N}(Z, \mathcal{LC}_Q \setminus E_2)$, i.e., for the remaining plants to create the vertex cover after ignoring arcs in E_2 .

- for $Q(Q-1+t) < \ell < Q(Q-1+t) + r$, where $t \in \mathbb{Z}_+ \cup \{0\}$ and $1 \leq r < Q$. Let $E_3 = E_2 \cup \{(i, j) \in \mathcal{LC}_Q \mid j \in Z, (i, j) \notin E_2\}$ such that $|E_3| = \ell$. It can be clearly seen that excluding E_3 from \mathcal{LC}_Q removes no more plants from $\mathcal{N}(Z, \mathcal{LC}_Q)$ than excluding E_2 , because $|E_3 \setminus E_2| = r < Q$, while $\eta_i = Q$ for $i \in \mathcal{N}(Z, \mathcal{LC}_Q \setminus E_2)$. Thus, by (A11) we have

$$|\mathcal{N}(Z,\mathcal{LC}_Q \setminus E_3)| = |\mathcal{N}(Z,\mathcal{LC}_Q \setminus E_2)| = |Z| - \lfloor \frac{Q(Q-1+t)}{Q} \rfloor = n - k - \lfloor \frac{\ell}{Q} \rfloor$$

for any $Q(Q - 1 + t) < \ell < Q(Q - 1 + t) + r$.

Therefore, there exist $S \subseteq B$, |S| = k and $E \subseteq \mathcal{LC}_Q$, $|E| = \ell$ in a manner that $|\mathcal{N}(Z, \mathcal{LC}_Q \setminus E)| = n - k - \lfloor \frac{\ell}{Q} \rfloor$ for $|Z| \ge (Q-1)$ and any $\ell \ge (Q-1)^2$.

Finally, according to the discussion above for $Q \ge 3$, Remark 3 part (vi), and Inequality (A6) we have $\delta^{k,\ell}(\mathbf{e}, \mathcal{LC}_Q) = |\mathcal{N}(Z, \mathcal{LC}_Q \setminus E)| = n - k - \lfloor \frac{\ell}{Q} \rfloor$. Thus, Equation (13) holds true for $Q \ge 3$ by using Lemma 2.

Proof of Lemma 4. We prove Lemma 4 by using a double induction on z and ℓ in the following three steps including the base case, induction over z for $\ell = 1$, and induction over ℓ for fixed z.

Base case. We show that Lemma 4 is true for z = 1 and $\ell = 1$, i.e., there exist some $T \subseteq B$, |T| = 1 and $E \subseteq D$, |E| = 1 such that $|\mathcal{N}(T, \mathcal{D} \setminus E)| \leq 1$. Toward this goal, for any $u \in B$, consider $T = \{u\}$. Note that there exist $a, a' \in A$ such that $|\mathcal{N}(u, \mathcal{D})| = |\{a, a'\}| = 2$. Let $E = \{(a, u)\}$, then $|\mathcal{N}(T, \mathcal{D} \setminus E)| = 1$.

Induction over z for $\ell = 1$. We need to prove that if Lemma 4 holds true for z < |B| and $\ell = 1$, then it also holds true for z + 1 and $\ell = 1$ (note that $\lfloor \frac{\ell}{2} \rfloor = 0$ for $\ell = 1$). Suppose that Lemma 4 is true for some z < |B| and $\ell = 1$, then by induction hypothesis, there exist sets $T^z \subset B$, $|T^z| = z$, and $E^z = \{(a,b)\} \subset \mathcal{D}, |E^z| = 1$ such that $|\mathcal{N}(T^z, \mathcal{D} \setminus E^z)| \leq z$. We consider the following two cases:

Case 1: let $E^z = \{(a,b)\} \in \mathcal{D} \cap \{\mathcal{N}(T^z, \mathcal{D}) \times T^z\}$. It should be noted that the vertices in $A \cup B$ over \mathcal{D} form a connected graph, and $T^z \subset B$. Therefore, there exists some $v \in \mathcal{N}(T^z, \mathcal{D} \setminus E^z)$ and $v' \notin \mathcal{N}(T^z, \mathcal{D} \setminus E^z)$ such that (v, u) and (v', u) are arcs for some $u \notin T^z$. Let $T^{z+1} = T^z \cup \{u\}$ and $E^{z+1} = E^z$, subsequently, we get $|\mathcal{N}(T^{z+1}, \mathcal{D} \setminus E^{z+1})| \leq z+1$.

Case 2: let $E^z = \{(a, b)\} \notin \mathcal{D} \cap \{\mathcal{N}(T^z, \mathcal{D}) \times T^z\}$. Since \mathcal{D} is connected, there exists $u \in B \setminus T^z$ such that $\mathcal{N}(u, \mathcal{D}) \cap \mathcal{N}(T^z, \mathcal{D}) \neq \emptyset$. Thus, for $T^{z+1} = T^z \cup \{u\}$ and $E^{z+1} = E^z$ we get $|\mathcal{N}(T^{z+1}, \mathcal{D} \setminus E^{z+1})| \leq z+1$.

Induction over ℓ for fixed z. We need to prove that if Lemma 4 holds true for some $1 \leq z \leq |B|$ and $1 \leq \ell < 2n$, then it also holds true for z and $\ell + 1$. Suppose that Lemma 4 is true for some $1 \leq z \leq |B|$ and $1 \leq \ell < 2n$, then by induction hypothesis there exist sets $T^{\ell} \subseteq B$, $|T^{\ell}| = z$, and $E^{\ell} \subset \mathcal{D}$, $|E^{\ell}| = \ell$ such that $|\mathcal{N}(T^{\ell}, \mathcal{D} \setminus E^{\ell})| \leq (z - \lfloor \frac{\ell}{2} \rfloor)^+$. Construct $E^{\ell+1} = E^{\ell} \cup \{(a, b)\}$ such that $(a, b) \in \mathcal{D} \setminus E^{\ell}$ and $T^{\ell+1} = T^{\ell}$; subsequently, we consider the following three cases when $z - \lfloor \frac{\ell}{2} \rfloor > 0$ (the proof is trivial for $(z - \lfloor \frac{\ell}{2} \rfloor)^+ = 0$):

Case 1: if $|\mathcal{N}(T^{\ell}, \mathcal{D} \setminus E^{\ell})| < z - \lfloor \frac{\ell}{2} \rfloor$, then either $|\mathcal{N}(T^{\ell+1}, \mathcal{D} \setminus E^{\ell+1})| = |\mathcal{N}(T^{\ell}, \mathcal{D} \setminus E^{\ell})|$ or $|\mathcal{N}(T^{\ell+1}, \mathcal{D} \setminus E^{\ell+1})| = |\mathcal{N}(T^{\ell}, \mathcal{D} \setminus E^{\ell})| - 1$. Similarly, either $z - \lfloor \frac{\ell+1}{2} \rfloor = z - \lfloor \frac{\ell}{2} \rfloor$ or $z - \lfloor \frac{\ell+1}{2} \rfloor = z - \lfloor \frac{\ell}{2} \rfloor - 1$. Therefore, we have $|\mathcal{N}(T^{\ell+1}, \mathcal{D} \setminus E^{\ell+1})| \leq z - \lfloor \frac{\ell+1}{2} \rfloor$.

Case 2: if $|\mathcal{N}(T^{\ell}, \mathcal{D} \setminus E^{\ell})| = z - \lfloor \frac{\ell}{2} \rfloor$ and ℓ is even, then either $|\mathcal{N}(T^{\ell+1}, \mathcal{D} \setminus E^{\ell+1})| = |\mathcal{N}(T^{\ell}, \mathcal{D} \setminus E^{\ell})|$ or $|\mathcal{N}(T^{\ell+1}, \mathcal{D} \setminus E^{\ell+1})| = |\mathcal{N}(T^{\ell}, \mathcal{D} \setminus E^{\ell})| - 1$, but $z - \lfloor \frac{\ell+1}{2} \rfloor = z - \lfloor \frac{\ell}{2} \rfloor$. As a result, $|\mathcal{N}(T^{\ell+1}, \mathcal{D} \setminus E^{\ell+1})| \leq z - \lfloor \frac{\ell+1}{2} \rfloor$.

Case 3: if $|\mathcal{N}(T^{\ell}, \mathcal{D} \setminus E^{\ell})| = z - \lfloor \frac{\ell}{2} \rfloor$ and ℓ is odd, i.e., $\ell = 2t - 1$, $t \in \{1, 2, ..., n\}$, then $z - \lfloor \frac{\ell+1}{2} \rfloor = z - \lfloor \frac{\ell}{2} \rfloor - 1$. Next, we demonstrate that there exists $a \in \mathcal{N}(T^{\ell}, \mathcal{D} \setminus E^{\ell})$ which is connected to T^{ℓ} by only one arc:

Set $\mathcal{N}(T^{\ell}, \mathcal{D})$ is connected to T^{ℓ} by 2z arcs. Thus, all $i \in \mathcal{N}(T^{\ell}, \mathcal{D} \setminus E^{\ell})$ cannot be connected to T^{ℓ} by 2 or more than 2 arcs, i.e., there exists at least a plant $a \in \mathcal{N}(T^{\ell}, \mathcal{D} \setminus E^{\ell})$ that is connected to T^{ℓ} by only one arc. Otherwise, the number of arcs connecting T^{ℓ} to $\mathcal{N}(T^{\ell}, \mathcal{D})$ would be greater than 2z because

$$2\left|\mathcal{N}(T^{\ell}, \mathcal{D} \setminus E^{\ell})\right| + \ell = 2 \cdot \left(z - \left\lfloor \frac{2t - 1}{2} \right\rfloor\right) + 2t - 1$$
$$= 2 \cdot (z - t + 1) + 2t - 1 > 2z, \qquad \forall t \in \{1, 2, \dots, n\}$$

Therefore, by ignoring an odd number of arcs connecting T^{ℓ} to $\mathcal{N}(T^{\ell}, \mathcal{D})$ such that $|\mathcal{N}(T^{\ell}, \mathcal{D} \setminus E^{\ell})| = (z - \lfloor \frac{\ell}{2} \rfloor)^+$, there exists plant $a \in \mathcal{N}(T^{\ell}, \mathcal{D} \setminus E^{\ell})$ connected to T^{ℓ} by one arc. Let (a, b) be the arc connecting $b \in T^{\ell}$ to a and set $E^{\ell+1} = E^{\ell} \cup \{(a, b)\}$ and $T^{\ell+1} = T^{\ell}$. Thus, $|\mathcal{N}(T^{\ell+1}, \mathcal{D} \setminus E^{\ell+1})| = |\mathcal{N}(T^{\ell}, \mathcal{D} \setminus E^{\ell})| - 1$, and we have $|\mathcal{N}(T^{\ell+1}, \mathcal{D} \setminus E^{\ell+1})| = z - \lfloor \frac{\ell+1}{2} \rfloor$.

Proof of Theorem 2. If we show that $\delta^{k,\ell}(\mathbf{e}, \mathcal{D}) \leq \delta^{k,\ell}(\mathbf{e}, \mathcal{LC}_2)$ for all $0 \leq k \leq n$ and $0 \leq \ell \leq 2n$, then by using Lemma 2 and Theorem 1 it is proved that Theorem 2 holds. If $\ell = 0$, we refer to Simchi-Levi and Wei (2015, Theorem 5). In addition, observe that if $2n \leq 2k + \ell$, then $\delta^{k,\ell}(\cdot, \cdot) = 0$. Thus, we only consider the case wherein $2k + \ell < 2n$.

For any $0 \leq k \leq n$ and $1 \leq \ell \leq 2n$ such that $2k + \ell < 2n$, it suffices to show that we can find some sets $S \subseteq B, |S| = k$ and $E \subseteq D, |E| = \ell$ such that $|\mathcal{N}(B \setminus S, D \setminus E)| \leq n - k - \lfloor \frac{\ell}{2} \rfloor$. Then based on Remark 3 part (vi), Equation (13), and Lemma 2,

$$|\mathcal{N}(B \setminus S, \mathcal{D} \setminus E)| = \delta^{k,\ell}(\mathbf{e}, \mathcal{D}) \leqslant \delta^{k,\ell}(\mathbf{e}, \mathcal{LC}_2) = n - k - \lfloor \frac{\ell}{2} \rfloor.$$

Assume that design \mathcal{D} comprises c connected components named $\mathcal{D}_1, \ldots, \mathcal{D}_c$ such that $A_w \subset A$ and $B_w \subset B, w \in \{1, 2, \ldots, c\}$, denote the sets of plants and products of the w-th component, respectively. Without loss of generality, let us suppose that $|A_w| - |B_w|$ is nondecreasing with w. Because $\sum_{w=1}^{c} (|A_w| - |B_w|) = 0$, this assumption implies that $\sum_{w=1}^{t} |A_w| \leq \sum_{w=1}^{t} |B_w|$ for any $t \leq c$.

For any $0 \leq k < n$ and $1 \leq \ell < 2n$ such that $2k + \ell < 2n$, we have $n - k - \lfloor \frac{\ell}{2} \rfloor > 0$. Let $t_{k\ell}$ denote the largest possible t such that $\sum_{w=1}^{t} |B_w| + \lfloor \frac{\ell-1}{2} \rfloor < n-k$. By our choice of $t_{k\ell}$, we get $t_{k\ell} < c$ and $n - k - \sum_{w=1}^{t_{k\ell}} |B_w| - \lfloor \frac{\ell-1}{2} \rfloor \leq |B_{t_{k\ell}+1}|$. Moreover, define $T_0 \subseteq \bigcup_{w=t_{k\ell+1}}^c B_w$ with $|T_0| = \lfloor \frac{\ell-1}{2} \rfloor$, and $E_0 = \{(i, j) \in \mathcal{D} \mid j \in T_0\}$; hence, $|E_0| = 2\lfloor \frac{\ell-1}{2} \rfloor$ because $|\mathcal{N}(u, \mathcal{D})| = 2$ for all $u \in B$.

Based on Lemma 4, in the connected component $B_{t_{k\ell}+1}$, we can find some sets T_1 and E_1 , where $T_1 \subseteq B_{t_{k\ell}+1}$, $|T_1| = n - k - \sum_{w=1}^{t_{k\ell}} |B_w| - \lfloor \frac{\ell-1}{2} \rfloor$, and $E_1 \subseteq \mathcal{N}(T_1, \mathcal{D}) \times T_1$, $|E_1| = \ell - |E_0| = (\ell - 2\lfloor \frac{\ell-1}{2} \rfloor) \in \{1, 2\}$ such that

$$|\mathcal{N}(T_1, \mathcal{D} \setminus E_1)| \leq n - k - \sum_{w=1}^{t_{k\ell}} |B_w| - \lfloor \frac{\ell - 1}{2} \rfloor - \lfloor \frac{|E_1|}{2} \rfloor$$
$$= n - k - \sum_{w=1}^{t_{k\ell}} |B_w| - \lfloor \frac{\ell - 1}{2} \rfloor - \lfloor \frac{\ell - 2\lfloor \frac{\ell - 1}{2} \rfloor}{2} \rfloor = n - k - \sum_{w=1}^{t_{k\ell}} |B_w| - \lfloor \frac{\ell}{2} \rfloor.$$
(A12)

Next, we select predefined T_0 such that $T_0 \cap T_1 = \emptyset$, this is possible because it can simply be verified that for $T_0 \subseteq \bigcup_{w=t_{k\ell+1}}^c B_w$ and $T_1 \subseteq B_{t_{k\ell+1}}$ we have $|T_0| + |T_1| \leq |\bigcup_{w=t_{k\ell+1}}^c B_w|$; by this selection we also have $E_0 \cap E_1 = \emptyset$. Finally, let $S := \bigcup_{w=t_{k\ell+1}}^c B_w \setminus (T_0 \cup T_1)$, and $E = E_0 \cup E_1$; thus, $|E| = \ell$, and by (A12) we get

$$\left| \mathcal{N}(B \setminus S, \mathcal{D} \setminus E) \right| \leq \left| \mathcal{N}(T_1, \mathcal{D} \setminus E_1) \right| + \sum_{t=1}^{t_{k\ell}} \left| A_w \right|$$
$$\leq n - k - \sum_{w=1}^{t_{k\ell}} |B_w| - \lfloor \frac{\ell}{2} \rfloor + \sum_{w=1}^{t_{k\ell}} |B_w| = n - k - \lfloor \frac{\ell}{2} \rfloor.$$

We know that $|T_0| = \lfloor \frac{\ell-1}{2} \rfloor$, $S \subset B$ and

$$|S| = \left| \bigcup_{w=t_{k\ell+1}}^{c} B_w \setminus (T_0 \cup T_1) \right| = n - \sum_{w=1}^{t_{k\ell}} |B_w| - |T_0| - |T_1|$$

= $n - \sum_{w=1}^{t_{k\ell}} |B_w| - \lfloor \frac{\ell - 1}{2} \rfloor - \left(n - k - \sum_{w=1}^{t_{k\ell}} |B_w| - \lfloor \frac{\ell - 1}{2} \rfloor\right) = k.$

Since |S| = k, thus $|B \setminus S| = n - k$, and the proof is complete.

Proof of Theorem 3. Let \hat{n} be the size of the smallest system for which there exists a counter example $\hat{\mathcal{D}}$ to the statement of Theorem 3. For n = 2, \mathcal{D} is the same as \mathcal{LC}_2 ; thus, we must have $\hat{n} \ge 3$. Moreover, we must have $2k + \ell < 2n$; otherwise $\delta^{k,\ell}(\cdot, \cdot) = 0$.

For $\ell = 0$ refer to Simchi-Levi and Wei (2015, Theorem 6). According to Equality (13) and Lemma 2, $\delta^{k,\ell}(\mathbf{e}, \mathcal{LC}_2) = n - k - \lfloor \frac{\ell}{2} \rfloor$ for $2n > 2k + \ell$ and $\ell \ge 1$. Since $\hat{\mathcal{D}}$ is a counterexample, there exists some $0 \le \hat{k} < \hat{n}$ and $1 \le \hat{\ell} < 2\hat{n}$ such that $\delta^{\hat{k},\hat{\ell}}(\mathbf{e},\hat{\mathcal{D}}) > \hat{n} - \hat{k} - \lfloor \frac{\hat{\ell}}{2} \rfloor > 0$. Moreover, we can find $u \in B$ such that $|\mathcal{N}(u,\hat{\mathcal{D}})| = 1$; otherwise, by the proof of Theorem 2, we have $\delta^{k,\ell}(\mathbf{e},\mathcal{D}) \le \delta^{k,\ell}(\mathbf{e},\mathcal{LC}_2) = n - k - \lfloor \frac{\ell}{2} \rfloor$ for all n, k and ℓ . Let $\{v\} = \mathcal{N}(u,\hat{\mathcal{D}})$. Since $\hat{\mathcal{D}}$ is connected, we have $|\mathcal{N}(v,\hat{\mathcal{D}})| \ge 2$.

Next, we define design \mathcal{D}' with the set of plants and products $A \setminus \{v\}$ and $B \setminus \{u\}$, respectively, such that $\mathcal{D}' = \{(v', u') \mid (v', u') \in \hat{\mathcal{D}}, u' \neq u, v' \neq v\}$. Design \mathcal{D}' is not necessarily connected. If \mathcal{D}' has c components, then $|\mathcal{N}(v, \hat{\mathcal{D}})| \ge c + 1$. By adding c - 1 arcs to \mathcal{D}' we can make it connected. Define \mathcal{D}'' as the arc set that contains \mathcal{D}' and c - 1 added arcs. Hence, \mathcal{D}'' is connected. It should be noted that \mathcal{D}'' is defined on a system with size $\hat{n} - 1$ and $|\mathcal{D}''| \le 2(\hat{n} - 1)$.

			п.
			L
н.	_	_	1

Based on the minimality assumption on \hat{n} , $\delta^{\hat{k},\hat{\ell}}(\mathbf{e},\mathcal{D}'') \leq \hat{n}-\hat{k}-\lfloor\frac{\hat{\ell}}{2}\rfloor-1$. Thus, by Remark 3 part (vi), there exists some $S \subset B \setminus \{u\}$, $E \subset \mathcal{D}''$, $|E| = \hat{\ell}$, and $|S| = \hat{n} - \hat{k} - 1$ such that $|\mathcal{N}(S,\mathcal{D}'' \setminus E)| \leq \hat{n} - \hat{k} - \lfloor\frac{\hat{\ell}}{2}\rfloor - 1$. This implies that $S \cup \{u\} \subseteq B$, $|S \cup \{u\}| = \hat{n} - \hat{k}$ and $|\mathcal{N}(S \cup \{u\}, \hat{\mathcal{D}} \setminus E)| \leq \hat{n} - \hat{k} - \lfloor\frac{\hat{\ell}}{2}\rfloor$. Hence, by Remark 3 part (vi) we have $\delta^{\hat{k},\hat{\ell}}(\mathbf{e},\hat{\mathcal{D}}) \leq \hat{n} - \hat{k} - \lfloor\frac{\hat{\ell}}{2}\rfloor$. This contradicts the assumption that $\delta^{\hat{k},\hat{\ell}}(\mathbf{e},\hat{\mathcal{D}}) > \hat{n} - \hat{k} - \lfloor\frac{\hat{\ell}}{2}\rfloor$.

Proof of Lemma 5. Let $\{1, \ldots, c\}$ and z_1, \ldots, z_c represent the components of \mathcal{SC}_Q and their sizes, respectively. For each of Relation (14) and Equation (15), we first derive $\delta^{k,\ell}(\mathbf{e}, \mathcal{SC}_Q)$, that is PCID without plant disruptions or (under the assumption $\mathbf{c}^{(p)} = \mathbf{e}$) the minimum required number of plants to create a vertex cover along with k products after ignoring ℓ arcs. Then by applying Lemma 2 we obtain the desired results.

Before we proceed, similar to the proof of Lemma 3 part 1, we can demonstrate that

$$n - k - \lfloor \frac{\ell}{Q} \rfloor \leqslant \delta^{k,\ell}(\mathbf{e}, \mathcal{SC}_Q), \tag{A13}$$

for any $0 \leq k \leq n$ and $0 \leq \ell \leq n \cdot Q$.

Proof of Relation (14) for $\ell = 0$. We consider two cases $k = \sum_{i \in I_1} z_i$ for some $I_1 \subseteq \{1, \ldots, c\}$ and $k \neq \sum_{i \in I} z_i$ for any $I \subseteq \{1, \ldots, c\}$, separately, as follows.

Case 1: let $k = \sum_{i \in I_1} z_i$ for some $I_1 \subseteq \{1, \ldots, c\}$; then we put all products of components in I_1 in the vertex cover. Clearly, all arcs of components in I_1 are covered. Thus, we need all plants of components in $\{1, \ldots, c\} \setminus I_1$ to create a vertex cover that is $n - \sum_{i \in I_1} z_i = n - k$. By Inequality (A13) we conclude that, for $\ell = 0$, this constructed vertex cover is the minimum one. Hence, $\delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q) = n - k$. Additionally, by Equation (11) for \mathcal{LC}_Q we have $n - k \leq \delta^{k,0}(\mathbf{e}, \mathcal{LC}_Q)$. Thus,

$$n - k = \delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q) \leqslant \delta^{k,0}(\mathbf{e}, \mathcal{LC}_Q).$$
(A14)

Case 2: let $k \neq \sum_{i \in I} z_i$ for any $I \subseteq \{1, \ldots, c\}$, then let $I_1 \subset \{1, \ldots, c\}$ be the largest subset of components such that $\sum_{i \in I_1} z_i < k$ and $k_1 := \sum_{i \in I_1} z_i$. Thus, there exists component $x \in \{1, \ldots, c\} \setminus I_1$ such that $z_x > k_2$, where $k_2 := k - k_1$. Now, we put all products of components of I_1 and k_2 products of component x into the vertex cover. Since component x is a Q-long chain, by Equation (12) we need $\min\{z_x, z_x - k_2 + Q - 1\}$ plants from component x for the vertex cover. Thus,

$$\delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q) \leq n - k_1 - z_x + \min\{z_x, z_x - k_2 + Q - 1\} = \min\{n - k_1, n - k + Q - 1\}.$$
 (A15)

Moreover, by Equation (12) for \mathcal{LC}_Q we have

$$\delta^{k,0}(\mathbf{e}, \mathcal{LC}_Q) = \min\{n, n-k+Q-1\}.$$
(A16)

By (A15) and (A16), we get

$$\delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q) \leqslant \delta^{k,0}(\mathbf{e}, \mathcal{LC}_Q) = \min\{n, n-k+Q-1\}.$$
(A17)

Therefore, by (A13), (A14), (A17) and Lemma 2 for $\ell = 0$ we have

$$(n-k-\gamma)^+ \leqslant \min_{\boldsymbol{g} \in \mathcal{U}_p} \delta^{k,0}(\boldsymbol{g}, \mathcal{SC}_Q) \leqslant \min_{\boldsymbol{g} \in \mathcal{U}_p} \delta^{k,0}(\boldsymbol{g}, \mathcal{LC}_Q).$$

Proof of Relation (15) for $(Q-1)^2 \leq \ell \leq n \cdot Q$. First, note that by Equation (13), we have $\min_{\boldsymbol{g} \in \mathcal{U}_p} \delta^{k,\ell}(\boldsymbol{g}, \mathcal{L}\mathcal{C}_Q) = (n-k-\lfloor \frac{\ell}{Q} \rfloor - \gamma)^+$. Hence, we only need to demonstrate that $\min_{\boldsymbol{g} \in \mathcal{U}_p} \delta^{k,\ell}(\boldsymbol{g}, \mathcal{S}\mathcal{C}_Q) = (n-k-\lfloor \frac{\ell}{Q} \rfloor - \gamma)^+$, as well. The proof is trivial if $kQ+\ell \geq nQ$ because in this case, $\min_{\boldsymbol{g} \in \mathcal{U}_p} \delta^{k,\ell}(\boldsymbol{g}, \mathcal{D}) = 0$ for any design \mathcal{D} ; thus, in the following we let $kQ+\ell < nQ$. Next, we consider two cases $k = \sum_{i \in I_1} z_i$ for some $I_1 \subseteq \{1, \ldots, c\}$ and $k \neq \sum_{i \in I} z_i$ for any $I \subseteq \{1, \ldots, c\}$, separately, as follows.

Case 1: let $k = \sum_{i \in I_1} z_i$ for some $I_1 \subseteq \{1, \ldots, c\}$; then we put all products of components in I_1 in the vertex cover. Moreover, let I_2 denote the largest subset in $\{1, \ldots, c\} \setminus I_1$ such that $Q \sum_{i \in I_2} z_i < \ell$; then ignore all arcs in I_2 . Thus, all arcs of components in $I_1 \cup I_2$ are either covered or ignored. Define $\ell_y = \ell - Q \sum_{i \in I_2} z_i$. Since $Q \sum_{i \in I_2} z_i < \ell$, we have $\ell_y > 0$. Hence, there exists component $y \in \{1, \ldots, c\} \setminus (I_1 \cup I_2)$ such that $z_y Q \ge \ell_y$. The minimum number of plants required from component y is $z_y - \lfloor \frac{\ell_y}{Q} \rfloor$. Because, no products of component y are included in the vertex cover and by ignoring each batch of Q arcs from y we can exclude only one plant of y from the vertex cover. Therefore, the total number of required plants is

$$n - \sum_{i \in I_1} z_i - \sum_{i \in I_2} z_i - \lfloor \frac{\ell_y}{Q} \rfloor =$$
$$n - k - \sum_{i \in I_2} z_i - \lfloor \frac{\ell - Q \sum_{i \in I_2} z_i}{Q} \rfloor = n - k - \lfloor \frac{\ell}{Q} \rfloor.$$

By Inequality (A13), we conclude that the aforementioned constructed vertex cover is the minimum one, and we get $\delta^{k,\ell}(\mathbf{e}, \mathcal{SC}_Q) = n - k - \lfloor \frac{\ell}{Q} \rfloor$.

Case 2: let $k \neq \sum_{i \in I} z_i$ for any $I \subseteq \{1, \ldots, c\}$, then let $I_1 \subset \{1, \ldots, c\}$ be the largest subset of components such that $\sum_{i \in I_1} z_i < k$ and define $k_1 := \sum_{i \in I_1} z_i$. Next, we create a vertex cover in the following manner. Put all products of components in I_1 into the vertex cover (all arcs in I_1 are covered by k_1 products). There exists component $x \in \{1, \ldots, c\} \setminus I_1$ such that $z_x > k_2$, $k_2 := k - k_1$. We also put k_2 products of x (with consecutive indices) in the vertex cover. Observe that $Q(z_x - k_2)$ arcs of competent x remain uncovered. Then consider the two following cases where either $\ell \leq Q(z_x - k_2)$ or $\ell > Q(z_x - k_2)$.

If $\ell \leq Q(z_x - k_2)$, then since component x is a Q-long chain and $(Q - 1)^2 \leq \ell$, by Equation (13), the number of plants required from x to put into the vertex cover is $z_x - k_2 - \lfloor \frac{\ell}{Q} \rfloor$. In addition, we need all plants in components $i \in \{1, \ldots, c\} \setminus (I_1 \cup \{x\})$ for the vertex cover. Thus, we need $(n-k_1-z_x)+(z_x-k_2-\lfloor\frac{\ell}{Q}\rfloor)=n-k-\lfloor\frac{\ell}{Q}\rfloor$ plants along with the specified products to create a vertex cover. By Inequality (A13) we arrive at a minimum vertex cover. Therefore, $\delta^{k,\ell}(\mathbf{e},\mathcal{SC}_Q)=n-k-\lfloor\frac{\ell}{Q}\rfloor$.

If $\ell > Q(z_x - k_2)$, then ignore all uncovered arcs of x. Let I_2 denote the largest subset in $\{1, \ldots, c\} \setminus (I_1 \cup \{x\})$ such that $Q \sum_{i \in I_2} z_i < \ell - Q(z_x - k_2)$. If so, we can ignore all arcs in I_2 . Clearly, all arcs of components in $I_1 \cup I_2 \cup \{x\}$ are either covered or ignored.

Next, define $\ell_y := \ell - Q \sum_{i \in I_2} z_i - Q(z_x - k_2)$. We observe that $\ell_y > 0$ since $Q \sum_{i \in I_2} z_i < \ell - Q(z_x - k_2)$. Thus, there exists component $y \in \{1, \ldots, c\} \setminus (I_1 \cup I_2 \cup \{x\})$ such that $z_y Q \ge \ell_y$. It should be noted that no product of component y is in the vertex cover. Moreover, by ignoring each batch of Q arcs connected to a plant only one plant of y is excluded from the vertex cover. Thus, the required number of plants from component y in the vertex cover is $z_y - \lfloor \frac{\ell_y}{Q} \rfloor$. Therefore, by (A13) the minimum number of plants required to create a vertex cover is

$$\delta^{k,\ell}(\mathbf{e}, \mathcal{SC}_Q) = n - \sum_{i \in I_1} z_i - \sum_{i \in I_2} z_i - z_x - z_y + (z_y - \lfloor \frac{\ell_y}{Q} \rfloor)$$

= $n - k_1 - \sum_{i \in I_2} z_i - z_x - \lfloor \frac{\ell - Q \sum_{i \in I_2} z_i - Q(z_x - k_2)}{Q} \rfloor = n - k - \lfloor \frac{\ell}{Q} \rfloor.$

Therefore, based on Equation (13) and applying Lemma 2 for $\delta^{k,\ell}(\mathbf{e}, \mathcal{SC}_Q)$ discussed above, we conclude that Equality (13) holds for any $0 \leq k \leq n$ and $(Q-1)^2 \leq \ell \leq n \cdot Q$.

Proof of Proposition 3. If $\alpha = 0$, then by Assumption 1 we have $\ell^* = \alpha = 0$ in Equation (10). Moreover, from Inequality (14) we have $\min_{\boldsymbol{g}\in\mathcal{U}_p} \delta^{k,0}(\boldsymbol{g},\mathcal{SC}_Q) \leq \min_{\boldsymbol{g}\in\mathcal{U}_p} \delta^{k,0}(\boldsymbol{g},\mathcal{LC}_Q)$ at any $0 \leq k \leq n$. Therefore, $R(\mathcal{U}_d,\mathcal{U}_p,\mathcal{U}_a,\mathcal{SC}_Q) \leq R(\mathcal{U}_d,\mathcal{U}_p,\mathcal{U}_a,\mathcal{LC}_Q)$ by Theorem 1.

Similarly, if $\alpha \ge (Q-1)^2$, then $\ell^* = \alpha \ge (Q-1)^2$. Furthermore, $\min_{\boldsymbol{g}\in\mathcal{U}_p} \delta^{k,\alpha}(\boldsymbol{g},\mathcal{SC}_Q) = \min_{\boldsymbol{g}\in\mathcal{U}_p} \delta^{k,\alpha}(\boldsymbol{g},\mathcal{LC}_Q)$ by Equality (15). Consequently, from Theorem 1 we obtain $R(\mathcal{U}_d,\mathcal{U}_p,\mathcal{U}_a,\mathcal{SC}_Q) = R(\mathcal{U}_d,\mathcal{U}_p,\mathcal{U}_a,\mathcal{LC}_Q)$ for any $(Q-1)^2 \le \alpha \le n \cdot Q$.

Proof of Proposition 5. Under Assumption 1, we conclude that $\ell^* = \alpha$ in Equation (10) for any design \mathcal{D} . Moreover, for $\alpha \ge (Q-1)^2$ based on Equation (15), we have

$$\min_{\boldsymbol{g}\in\mathcal{U}_p}\delta^{k,\alpha}(\boldsymbol{g},\mathcal{SC}_Q^{(1)}) = \min_{\boldsymbol{g}\in\mathcal{U}_p}\delta^{k,\alpha}(\boldsymbol{g},\mathcal{SC}_Q^{(2)}) \qquad \forall k\in\{1,\ldots,n\};$$

the latter equation leads to $R(\mathcal{U}_d, \mathcal{U}_p, \mathcal{U}_a, \mathcal{SC}_Q^{(1)}) = R(\mathcal{U}_d, \mathcal{U}_p, \mathcal{U}_a, \mathcal{SC}_Q^{(2)})$ by Theorem 1. Next, we ascertain the relationship between the performances without any disruptions, i.e., $R(\mathcal{U}_d, \mathcal{SC}_Q^{(1)})$ and $R(\mathcal{U}_d, \mathcal{SC}_Q^{(2)})$. To this end, if we demonstrate that $\delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q^{(1)}) \leq \delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q^{(2)})$ holds true for any $0 \leq k \leq n$, then we get $R(\mathcal{U}_d, \mathcal{SC}_Q^{(1)}) \leq R(\mathcal{U}_d, \mathcal{SC}_Q^{(2)})$ according to Lemma 2 and Theorem 1.

Recall that $\delta^{k,0}(\mathbf{e}, \mathcal{D})$ is the minimum number of plants that is required to create a vertex cover along with k products on design \mathcal{D} . Notably, based on Inequality (14) and Lemma 2 we have $\delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q^{(t)}) \ge$ $n-k, t \in \{1,2\}$. It is clear that $\delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q^{(1)}) = \delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q^{(2)})$ for $k \in \{0,n\}$. Additionally, let $z_1^{(1)}, \ldots, z_{c_{(1)}}^{(1)}$ and $z_1^{(2)}, \ldots, z_{c_{(2)}}^{(2)}$, denote the component sizes of $\mathcal{SC}_Q^{(1)}$ and $\mathcal{SC}_Q^{(2)}$, respectively. In order to evaluate $\delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q^{(t)}), t \in \{1, 2\}$ for $1 \leq k < n$, we consider the following four disjoint cases:

Case 1: there exist some $I_1 \subset \{1, \ldots, c_{(1)}\}$ and $I_2 \subset \{1, \ldots, c_{(2)}\}$, such that $\sum_{i \in I_1} z_i^{(1)} = \sum_{i \in I_2} z_i^{(2)} = k$. Thus, in $\mathcal{SC}_Q^{(t)}$, $t \in \{1, 2\}$, in addition to k products of components in I_t , we need n - k plants of components in $\{1, \ldots, c_{(t)}\}\setminus I_t$ to create a vertex cover. This is the minimum vertex cover for a particular k since by Inequality (14), we have $\delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q^{(t)}) \ge n - k$, $t \in \{1, 2\}$. Therefore, $\delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q^{(1)}) = \delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q^{(2)}) = n - k$.

Case 2: there exists $I_1 \subset \{1, \ldots, c_{(1)}\}$ such that $\sum_{i \in I_1} z_i^{(1)} = k$; however, there does not exist any $I_2 \subset \{1, \ldots, c_{(2)}\}$ such that $\sum_{i \in I_2} z_i^{(2)} = k$. Thus, by the argument given in above, we have $\delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q^{(1)}) = n - k$. By Inequality (14) for any k, we have $\delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q^{(2)}) \ge n - k$. Therefore, $\delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q^{(1)}) \le \delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q^{(2)})$.

Case 3: the cases where there exists no $I_1 \subset \{1, \ldots, c_{(1)}\}$ such that $k = \sum_{i \in I_1} z_i^{(1)}$, but there is $I_2 \subset \{1, \ldots, c_{(2)}\}$ such that $k = \sum_{i \in I_2} z_i^{(2)}$, are not considered. These cases are impossible due to the fact that the components of $\mathcal{SC}_Q^{(1)}$ are decomposition of the components of $\mathcal{SC}_Q^{(2)}$.

Case 4: there does not exist any $I_1 \subset \{1, \ldots, c_{(1)}\}$ such that $k = \sum_{i \in I_1} z_i^{(1)}$. Likewise, there is no $I_2 \subset \{1, \ldots, c_{(2)}\}$ such that $k = \sum_{i \in I_2} z_i^{(2)}$.

Fact 1. Consider an arbitrary SC_Q in $\{SC_Q\}$ with the set of components $\{1, \ldots, c\}$ and component sizes $\{z_1, \ldots, z_c\}$. For any given k, let $k_i \leq k$ represent the number of products of component $i \in \{1, \ldots, c\}$ in a vertex cover. Then we define J as the subset of components that have all of their products within the vertex cover $(k_i = z_i \text{ for all } i \in J)$, and $k_J :=$ $\sum_{i \in J} z_i = \sum_{i \in J} k_i$. By the definition of J, it is clear that we have $0 \leq k_i < z_i$ for all $i \in \{1, \ldots, c\} \setminus J$. It should also be noted that we must have $k_J + \sum_{i \in \{1, \ldots, c\} \setminus J} k_i = k$. By the assumption there does not exist any $I \subset \{1, \ldots, c\}$ such that $k = \sum_{i \in I} z_i$; it implies that $k_J < k$ and $\sum_{i \in \{1, \ldots, c\} \setminus J} k_i = k - k_J > 0$.

We demonstrate that for any given k, a minimum vertex cover for SC_Q in $\{SC_Q\}$ can be obtained when k_J has the maximum possible value and $\sum_{i \in \{1,...,c\} \setminus J} \mathbb{1}_{\{0 < k_i < z_i\}} = 1$; i.e., exactly one component has at least one $(0 < k_i)$, but not all of its products $(k_i < z_i)$ within the vertex cover.

It is observed that all arcs of the components in J are covered by k_J products. On the other hand, since each component $i \in \{1, ..., c\} \setminus J$ is a Q-long chain, by Equation (12) we require $\min\{z_i, z_i - k_i + Q - 1\}$ of its plants along with its k_i products to cover all its arcs. Thus, the total number of plants that are required to create a vertex cover is

$$(n - k_J) - \sum_{i \in \{1, \dots, c\} \setminus J} \left(z_i - \min\{z_i, z_i - k_i + Q - 1\} \right)$$

= $n - k_J + \sum_{i \in \{1, \dots, c\} \setminus J} \min\{0, -k_i + Q - 1\}.$ (A18)

To obtain a minimum vertex cover we need to minimize the right-hand side of (A18) that is strictly decreasing in k_J and is non-increasing in k_i for each $i \in \{1, \ldots, c\} \setminus J$. In particular, the unit increase of k_J and k_i decreases the right-hand side of (A18) by exactly 1 unit and at the most 1 unit, respectively. Hence, we set k_J at its maximum possible value.

Recall that $\sum_{i \in \{1,...,c\} \setminus J} k_i = k - k_J > 0$. The minimum quantum of the right-hand side of (A18) is obtained when along with the largest value of k_J , for exactly one component, say $t \in \{1,...,c\} \setminus J, 0 < k_t < z_t$, i.e., $k_t = k - k_J$ and $k_i = 0$ for all $i \in \{1,...,c\} \setminus (J \cup \{t\})$. To elaborate it further, it should be observed that $\min\{0, -k_i + Q - 1\} = -k_i + \min\{k_i, Q - 1\}$. Then we get

$$\sum_{i \in \{1, \dots, c\} \setminus J} (-k_i + \min\{k_i, Q - 1\}) = -(k - k_J) + \sum_{i \in \{1, \dots, c\} \setminus J} \min\{k_i, Q - 1\}$$
$$\ge -k_t + \min\{k_t, Q - 1\},$$

or equivalently $\sum_{i \in \{1,...,c\} \setminus J} \min\{k_i, Q-1\} \ge \min\{k_t, Q-1\}$ from the last inequality. This is true because if $k_i \le Q-1$ for all $i \in \{1,...,c\} \setminus J$, then $\sum_{i \in \{1,...,c\} \setminus J} \min\{k_i, Q-1\} =$ $\sum_{i \in \{1,...,c\} \setminus J} k_i = k - k_J \ge \min\{k_t, Q-1\}$. On the other hand, if $k_i > Q-1$ for $i \in I$ where $I \subseteq \{1,...,c\} \setminus J$, then $|I| \cdot (Q-1) + \sum_{i \in \{1,...,c\} \setminus (J \cup I)} \min\{k_i, Q-1\} \ge \min\{k_t, Q-1\}$. It should be noted that there may exist multiple minimum vertex covers; we can obtain one of them in this manner.

Now, by using Fact 1, we create a minimum vertex cover in $\mathcal{SC}_Q^{(1)}$. Let J_1 be the largest subset of $\{1, \ldots, c_{(1)}\}$ such that $\sum_{i \in J_1} z_i^{(1)} \leq k$ and $k_{J_1} := \sum_{i \in J_1} z_i^{(1)}$. Next, select component $x \in \{1, \ldots, c_{(1)}\} \setminus J_1$ and $k_x := k - k_{J_1}$. Put all products of J_1 and k_x products of x within the vertex cover. By (A18), we can see that the minimum number of required plants is $\delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q^{(1)}) = n - k_{J_1} + \min\{0, -k_x + Q - 1\} = \min\{n - k_{J_1}, n - k + Q - 1\}.$

Similarly, in $\mathcal{SC}_Q^{(2)}$ let J_2 denote the largest subset of $\{1, \ldots, c_{(2)}\}$ such that $\sum_{i \in J_2} z_i^{(2)} \leq k$ and $k_{J_2} := \sum_{i \in J_2} z_i^{(2)}$. Then we can select component $y \in \{1, \ldots, c_{(2)}\} \setminus J_2$ and $k_y := k - k_{J_2}$. By (A18), the minimum number of required plants is $\delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q^{(1)}) = n - k_{J_2} + \min\{0, -k_y + Q - 1\} = \min\{n - k_{J_2}, n - k + Q - 1\}$.

It should be noted that $k_{J_1} \ge k_{J_2}$ because by assumption, the components of $\mathcal{SC}_Q^{(1)}$ are decomposition of $\mathcal{SC}_Q^{(2)}$ components. Thus, $\min\{n - k_{J_1}, n - k + Q - 1\} \le \min\{n - k_{J_2}, n - k + Q - 1\}$. As a result, $\delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q^{(1)}) \le \delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q^{(2)})$.

Therefore base on the discussion provided above we have $\delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q^{(1)}) \leq \delta^{k,0}(\mathbf{e}, \mathcal{SC}_Q^{(2)})$, for all $0 \leq k \leq n$, and by using Lemma 2 and Theorem 1, we get $R(\mathcal{U}_d, \mathcal{SC}_Q^{(1)}) \leq R(\mathcal{U}_d, \mathcal{SC}_Q^{(2)})$. Recalling that $R(\mathcal{U}_d, \mathcal{U}_p, \mathcal{U}_a, \mathcal{SC}_Q^{(1)}) = R(\mathcal{U}_d, \mathcal{U}_p, \mathcal{U}_a, \mathcal{SC}_Q^{(2)})$, the proof is complete.

Proof of Proposition 6. For general design \mathcal{D} , let $(k_{\mathcal{D}}^{\circ}, \ell_{\mathcal{D}}^{\circ}, \mathbf{d}_{\mathcal{D}}^{\circ})$ and $(k_{\mathcal{D}}^{\star}, \mathbf{d}_{\mathcal{D}}^{\star})$ denote optimal solutions of the optimization problems (10) and (19) – which represent the worst-case performances with and without disruptions – respectively. Since there are no arc disruptions ($\alpha = 0$), by Assumption 1, we have $\ell_{\mathcal{D}}^{\circ} = 0$. Next, we consider four disjoint cases on $k_{\mathcal{SC}_Q}^{\star}$ and $k_{\mathcal{LC}_Q}^{\star} \in \{0, \ldots, n\}$ including: $k_{\mathcal{SC}_Q}^{\star}, k_{\mathcal{LC}_Q}^{\star} < n$; $k_{\mathcal{SC}_Q}^{\star} < k_{\mathcal{LC}_Q}^{\star} = n$; $k_{\mathcal{SC}_Q}^{\star} = n$; and $k_{\mathcal{LC}_Q}^{\star} < k_{\mathcal{SC}_Q}^{\star} = n$.

• Let $k^{\star}_{\mathcal{SC}_Q} < n$ and $k^{\star}_{\mathcal{LC}_Q} < n$. Any vertex cover of general design \mathcal{D} can be represented by sets $S \subseteq B$ and $\mathcal{N}(B \setminus S, \mathcal{D})$. In addition, let $S^{\star} \subset B$, $|S^{\star}| = k^{\star}_{\mathcal{SC}_Q} < n$ and $\mathcal{N}(B \setminus S^{\star}, \mathcal{SC}_Q) > 0$ denote a minimum vertex cover of \mathcal{SC}_Q without disruptions. Hence, by Remark 3 part (vi), we have $\delta^{k^{\star}_{\mathcal{SC}_Q},0}(\mathbf{e}, \mathcal{SC}_Q) = |\mathcal{N}(B \setminus S^{\star}, \mathcal{SC}_Q)|$ and by Equation (19), we get

$$R(\mathcal{U}_d, \mathcal{SC}_Q) = |\mathcal{N}(B \setminus S^\star, \mathcal{SC}_Q)| + \sum_{j=1}^{k_{\mathcal{SC}_Q}^\star} \min^j(\mathbf{d}_{\mathcal{SC}_Q}^\star) = |\mathcal{N}(B \setminus S^\star, \mathcal{SC}_Q)| + \min_{\mathbf{d} \in \mathcal{U}_d} \sum_{j=1}^{k_{\mathcal{SC}_Q}^\star} d_j.$$
(A19)

The second equality in (A19) follows by fixing $k^{\star}_{SC_Q}$ in Equation (19). A single plant disruption makes the capacity of a plant zero. We claim that sets S^{\star} and $\mathcal{N}(B \setminus S^{\star}, SC_Q)$ are also a minimum vertex cover of SC_Q with a plant disruption. If our claim holds true, then $|S^{\star}| = k^{\star}_{SC_Q} = k^{\circ}_{SC_Q}$; as a consequence, by Equation (10) we have

$$R(\mathcal{U}_d, \mathcal{U}_p, \mathcal{U}_a, \mathcal{SC}_Q) = (\delta^{k_{\mathcal{SC}_Q}^{\star}, 0}(\mathbf{e}, \mathcal{SC}_Q) - 1)^+ + \sum_{j=1}^{k_{\mathcal{SC}_Q}^{\star}} \min^j(\mathbf{d}_{\mathcal{SC}_Q}^{\circ})$$
$$= |\mathcal{N}(B \setminus S^{\star}, \mathcal{SC}_Q)| - 1 + \min_{\mathbf{d} \in \mathcal{U}_d} \sum_{j=1}^{k_{\mathcal{SC}_Q}^{\star}} d_j.$$
(A20)

The second equality in (A20) is obtained by fixing $k_{\mathcal{SC}_Q}^{\star}$ in Equation (10), and due to the fact that $\delta^{k_{\mathcal{SC}_Q}^{\star},0}(\mathbf{e},\mathcal{SC}_Q) = |\mathcal{N}(B \setminus S^{\star},\mathcal{SC}_Q)| > 0$. Thus, by considering (A19) and (A20), we get $Fr(\mathcal{SC}_Q) = R(\mathcal{U}_d,\mathcal{SC}_Q) - R(\mathcal{U}_d,\mathcal{U}_p,\mathcal{U}_a,\mathcal{SC}_Q) = 1$.

We prove the validity of our claim by contradiction. Suppose $S^* \cup \mathcal{N}(B \setminus S^*, \mathcal{SC}_Q)$ is the minimum vertex cover of \mathcal{SC}_Q without the disruption, but it is not the minimum vertex cover of \mathcal{SC}_Q with the disruption, and sets $\bar{S} \subseteq B$, $|\bar{S}| = k^{\circ}_{\mathcal{SC}_Q}$, and $\mathcal{N}(B \setminus \bar{S}, \mathcal{SC}_Q)$ corresponds to the minimum vertex cover of \mathcal{SC}_Q with the disruption. In this case,

$$R(\mathcal{U}_d, \mathcal{U}_p, \mathcal{U}_a, \mathcal{SC}_Q) = \left(|\mathcal{N}(B \setminus \bar{S}, \mathcal{SC}_Q)| - 1\right)^+ + \min_{\mathbf{d} \in \mathcal{U}_d} \sum_{j=1}^{k_{\mathcal{SC}_Q}^*} d_j < |\mathcal{N}(B \setminus S^\star, \mathcal{SC}_Q)| - 1 + \min_{\mathbf{d} \in \mathcal{U}_d} \sum_{j=1}^{k_{\mathcal{SC}_Q}^*} d_j.$$

As a result, by (A19)

$$|\mathcal{N}(B \setminus \bar{S}, \mathcal{SC}_Q)| + \min_{\mathbf{d} \in \mathcal{U}_d} \sum_{j=1}^{k_{\mathcal{SC}_Q}^\circ} d_j < R(\mathcal{U}_d, \mathcal{SC}_Q).$$
(A21)

Both $S^* \cup \mathcal{N}(B \setminus S^*, \mathcal{SC}_Q)$ and $\bar{S} \cup \mathcal{N}(B \setminus \bar{S}, \mathcal{SC}_Q)$ represent vertex covers for \mathcal{SC}_Q . Thus, Relation (A21) contradicts the minimality of vertex cover $S^* \cup \mathcal{N}(B \setminus S^*, \mathcal{SC}_Q)$ for \mathcal{SC}_Q without disruption.

Indeed, the proof above holds for any design \mathcal{D} (i.e., if $k_{\mathcal{D}}^{\star} < n$, then $Fr(\mathcal{D}) = 1$) since we did not exploit the structure of \mathcal{SC}_Q . Therefore, $Fr(\mathcal{LC}_Q) = Fr(\mathcal{SC}_Q) = 1$ when $k_{\mathcal{SC}_Q}^{\star} < n$ and $k_{\mathcal{LC}_Q}^{\star} < n$.

• Let $k_{\mathcal{SC}_Q}^{\star} < k_{\mathcal{LC}_Q}^{\star} = n$, then by the discussion above, we have $Fr(\mathcal{SC}_Q) = 1$ because $k_{\mathcal{SC}_Q}^{\star} < n$. In addition, by Equation (19) we have $R(\mathcal{U}_d, \mathcal{LC}_Q) = \sum_{j=1}^n d_{j,\mathcal{LC}_Q}^{\star}$. Next, we evaluate $Fr(\mathcal{LC}_Q)$ to prove that $Fr(\mathcal{LC}_Q) \leq 1$. Toward this goal, let B_1 denote the set of products whose demands are larger than 1 in $\mathbf{d}_{\mathcal{LC}_Q}^{\circ}$, i.e., $B_1 = \{j \in B \mid d_{j,\mathcal{LC}_Q}^{\circ} > 1\}$ and $A_1 := \mathcal{N}(B_1, \mathcal{LC}_Q)$. Clearly, $|B_1| \leq |A_1|$ and set $(B \setminus B_1) \cup A_1$ is a vertex cover for \mathcal{LC}_Q .

Fact 1. The inequality

$$|A_1| + \sum_{j=1}^{n-|B_1|} \min^j(\mathbf{d}_{\mathcal{LC}_Q}^\circ) \geqslant \sum_{j=1}^n d_{j,\mathcal{LC}_Q}^\star,$$
(A22)

is true since $(B \setminus B_1) \cup A_1$ creates a vertex cover in \mathcal{LC}_Q that corresponds to the feasible solution $(k = n - |B_1|, \mathbf{d}_{\mathcal{LC}_Q}^{\circ})$ with the objective function value $|A_1| + \sum_{j=1}^{n-|B_1|} \min^j(\mathbf{d}_{\mathcal{LC}_Q}^{\circ})$ for Equation (19). If (A22) does not hold true, then for this feasible solution we have $|A_1| + \sum_{j=1}^{n-|B_1|} \min^j(\mathbf{d}_{\mathcal{LC}_Q}^{\circ}) < \sum_{j=1}^n d_{j,\mathcal{LC}_Q}^* = R(\mathcal{U}_d, \mathcal{LC}_Q)$, that contradicts the optimality of $(k_{\mathcal{LC}_Q}^* = n, \mathbf{d}_{\mathcal{LC}_Q}^*)$.

Fact 2. By Equation (10), we have $R(\mathcal{U}_d, \mathcal{U}_p, \mathcal{U}_a, \mathcal{LC}_Q) = \left(\delta^{k^\circ_{\mathcal{LC}_Q}, 0}(\mathbf{e}, \mathcal{LC}_Q) - 1\right)^+ + \sum_{j=1}^{k^\circ_{\mathcal{LC}_Q}} \min^j(\mathbf{d}^\circ_{\mathcal{LC}_Q})$. For any $k \in \{0, \ldots, n\}$, we define $G(k) = G_1(k) + G_2(k)$, where $G_1(k) = \left(\delta^{k,0}(\mathbf{e}, \mathcal{LC}_Q) - 1\right)^+$, and $G_2(k) = \sum_{j=1}^k \min^j(\mathbf{d}^\circ_{\mathcal{LC}_Q})$. Observe that $R(\mathcal{U}_d, \mathcal{U}_p, \mathcal{U}_a, \mathcal{LC}_Q) = \min_{0 \leq k \leq n} G(k)$.

Evidently, $G_1(k)$ and $G_2(k)$ are non-increasing and non-decreasing functions of k, respectively. Moreover, each value of k corresponds to a vertex cover that is associated with G(k)with the total capacity $G_1(k)$ and the total demand $G_2(k)$, respectively. Note that $G_1(k)$ is minimized when products with consecutive indices are selected in the vertex cover; hence, without loss of generality, for each k we suppose that the vertex cover includes product set $S = \{1, 2, \ldots, k\}$ and plant set $\mathcal{N}(B \setminus S, \mathcal{LC}_Q)$.

Next, we demonstrate that the value of any local minimum of G(k) is the same as G(k) at one of the points $\bar{k} \in \{0, n - |B_1|, n\}$. As a result, it is sufficient to compute G(k) only at $k \in \{0, n - |B_1|, n\}$ and consider the minimum one as $R(\mathcal{U}_d, \mathcal{U}_p, \mathcal{U}_a, \mathcal{LC}_Q)$.

Specifically, define k' as the largest value of k such that $G_1(k) = n - 1$ for all $k \leq k'$. If $k' \leq n - |B_1| - 1$, then we show that

(a)
$$G(n - |B_1|) < G(n - |B_1| + 1) < \dots < G(n - 1)$$

- (b) $G(k') \ge ... \ge G(n |B_1| 2) \ge G(n |B_1| 1)$
- (c) $G(0) \leq G(1) \leq \ldots \leq G(k')$

Hence, k = 0 is a local minimum of G(k). Moreover, if $G(n - |B_1| - 1) \ge G(n - |B_1|)$, then $k = n - |B_1|$ is a also local minimum.

In case $k' \ge n - |B_1|$, we only need to demonstrate that

(d) $G(0) \leq G(1) \leq \ldots \leq G(k') < \ldots < G(n-1)$

Thus, k = 0 is a local minimum of G(k). It should be noted that for k = n, if $G(n-1) \ge G(n)$, then k = n is also a local minimum. In the following, we prove Relations (a) to (d). Relation (a) holds true for any $k \in \{n - |B_1| + 1, ..., n - 1\}$ because $G_1(k-1) - G_1(k) = 1$, and $G_2(k-1) - G_2(k) = -\min^k(\mathbf{d}_{\mathcal{L}\mathcal{C}_Q}^\circ) < -1$; therefore, G(k-1) - G(k) < 0. To elaborate further, utilizing the structure of $\mathcal{L}\mathcal{C}_Q$, product k (k > k') has a different neighbor plant from product k - 1; i.e., $G_1(k-1) - G_1(k) = |\mathcal{N}(k, \mathcal{L}\mathcal{C}_Q) \setminus \mathcal{N}(k-1, \mathcal{L}\mathcal{C}_Q)| = 1$. Furthermore, by the definition of set B_1 we have $\min^k(\mathbf{d}_{\mathcal{L}\mathcal{C}_Q}^\circ) > 1$ for $n - |B_1| < k \le n$. As a consequence, $G_2(k-1) - G_2(k) < -1$.

Relation (b) holds true for any $k \in \{k', \ldots, n - |B_1|\}$ because $G_1(k-1) - G_1(k) = 1$ and $G_2(k-1) - G_2(k) = -\min^k(\mathbf{d}_{\mathcal{LC}_Q}^\circ) \ge -1$; therefore $G(k-1) - G(k) \ge 0$. By the structure of \mathcal{LC}_Q , product k (k > k') has one different neighbor plant from product k - 1, i.e., $G_1(k-1) - G_1(k) = |\mathcal{N}(k, \mathcal{LC}_Q) \setminus \mathcal{N}(k-1, \mathcal{LC}_Q)| = 1$. Furthermore, since $\min^k(\mathbf{d}_{\mathcal{LC}_Q}^\circ) \le 1$ for $k \le n - |B_1|$, we have $G_2(k-1) - G_2(k) = -\min^k(\mathbf{d}_{\mathcal{LC}_Q}^\circ) \ge -1$.

Relation (c) holds true for any $k \in \{0, \ldots, k'\}$ because $G_1(k-1) - G_1(k) = 0$ and $G_2(k-1) - G_2(k) = -\min^k(\mathbf{d}_{\mathcal{LC}_Q}^\circ) \leq 0$; therefore, $G(k-1) - G(k) \leq 0$. We get $G_1(k-1) - G_1(k) = 0$ because $G_1(k) = n-1$ for all $k \leq k'$. Since there are no negative demands, it follows that $G_2(k-1) - G_2(k) \leq 0$.

Relation (d) holds true since Relations (a) and (c) are true. If $k' \ge n - |B_1|$, we have G(k-1) < G(k) for $k \in \{k'+1, \ldots, n-1\}$ by Relation (a) and $G(k-1) \le G(k)$ for $k \in \{0, \ldots, k'\}$ by Relation (c).

It should be noted that G(k) may have local minimums other than set $\{0, n - |B_1|, n\}$. However, on the basis of Fact 2, any local minimum takes the value of G(k) at one of the points $\{0, n - |B_1|, n\}$. By considering Fact 2 and since $R(\mathcal{U}_d, \mathcal{U}_p, \mathcal{U}_a, \mathcal{LC}_Q) = \min_{0 \leq k \leq n} G(k)$, in the following we evaluate $Fr(\mathcal{LC}_Q)$ only for $k^{\circ}_{\mathcal{LC}_Q} \in \{0, n - |B_1|, n\}$. Recall that it is supposed $k^{\star}_{\mathcal{LC}_Q} = n$.

Let $k_{\mathcal{LC}_Q}^{\circ} = n$, then we have $k_{\mathcal{LC}_Q}^{\star} = k_{\mathcal{LC}_Q}^{\circ} = n$. Using Equations (10) and (19), we obtain $R(\mathcal{U}_d, \mathcal{LC}_Q) = \sum_{j=1}^n d_{j,\mathcal{LC}_Q}^{\star}$ and $R(\mathcal{U}_d, \mathcal{U}_p, \mathcal{U}_a, \mathcal{LC}_Q) = \sum_{j=1}^n d_{j,\mathcal{LC}_Q}^{\circ}$, respectively. Thus, $R(\mathcal{U}_d, \mathcal{LC}_Q) = R(\mathcal{U}_d, \mathcal{U}_p, \mathcal{U}_a, \mathcal{LC}_Q)$ because it is clear that $R(\mathcal{U}_d, \mathcal{U}_p, \mathcal{U}_a, \mathcal{LC}_Q) \leq R(\mathcal{U}_d, \mathcal{LC}_Q) \leq \sum_{j=1}^n d_{j,\mathcal{LC}_Q}^{\circ}$ and since $(k_{\mathcal{LC}_Q}^{\star} = n, \mathbf{d}_{j,\mathcal{LC}_Q}^{\circ})$ is a feasible solution for (19). Hence, $Fr(\mathcal{LC}_Q) = 0$. Recall that $Fr(\mathcal{SC}_Q) = 1$ because $k_{\mathcal{LC}_Q}^{\star} < n$. Therefore, $Fr(\mathcal{LC}_Q) \leq Fr(\mathcal{SC}_Q) = 1$.

Let $k_{\mathcal{LC}_Q}^{\circ} = n - |B_1|$, then the corresponding minimum vertex cover for $k_{\mathcal{LC}_Q}^{\circ} = n - |B_1|$ is $A_1 \cup (B \setminus B_1)$. By Equation (10) we have $R(\mathcal{U}_d, \mathcal{U}_p, \mathcal{U}_a, \mathcal{LC}_Q) = |A_1| - 1 + \sum_{j=1}^{n-|B_1|} \min^j(\mathbf{d}_{\mathcal{LC}_Q}^{\circ})$. According to the definition of fragility coupled with Relation (A22) in Fact 1, we get

$$Fr(\mathcal{LC}_Q) = R(\mathcal{U}_d, \mathcal{LC}_Q) - R(\mathcal{U}_d, \mathcal{U}_p, \mathcal{U}_a, \mathcal{LC}_Q) = \sum_{j=1}^n d^{\star}_{j, \mathcal{LC}_Q} - \left(|A_1| - 1 + \sum_{j=1}^{n-|B_1|} \min^j(\mathbf{d}^{\circ}_{\mathcal{LC}_Q})\right) \leqslant 1.$$

Therefore, $Fr(\mathcal{LC}_Q) \leq Fr(\mathcal{SC}_Q) = 1.$

Let $k_{\mathcal{LC}_Q}^{\circ} = 0$, then $R(\mathcal{U}_d, \mathcal{U}_p, \mathcal{U}_a, \mathcal{LC}_Q) = n - 1$ by Equation (10). Importantly, $R(\mathcal{U}_d, \mathcal{LC}_Q) = \sum_{j=1}^{n} d_{j,\mathcal{LC}_Q}^{\star} \leq n$ because $k_{\mathcal{LC}_Q}^{\star} = n$; otherwise, one can select all plants as the vertex cover and as a result $R(\mathcal{U}_d, \mathcal{LC}_Q) = n$. Hence,

$$Fr(\mathcal{LC}_Q) = \sum_{j=1}^n d_{j,\mathcal{LC}_Q}^{\star} - (n-1) \leqslant 1.$$

Therefore, $Fr(\mathcal{LC}_Q) \leq Fr(\mathcal{SC}_Q) = 1$ when $k^{\star}_{\mathcal{SC}_Q} < k^{\star}_{\mathcal{LC}_Q} = n$.

- Let $k_{\mathcal{SC}_Q}^{\star} = k_{\mathcal{LC}_Q}^{\star} = n$, then $R(\mathcal{U}_d, \mathcal{SC}_Q) = R(\mathcal{U}_d, \mathcal{LC}_Q) = \sum_{j=1}^n d_{j,\mathcal{SC}_Q}^{\star} = \sum_{j=1}^n d_{j,\mathcal{LC}_Q}^{\star}$. On the other hand, based on (16) we have $R(\mathcal{U}_d, \mathcal{U}_p, \mathcal{U}_a, \mathcal{SC}_Q) \leq R(\mathcal{U}_d, \mathcal{U}_p, \mathcal{U}_a, \mathcal{LC}_Q)$. Therefore, $Fr(\mathcal{LC}_Q) \leq Fr(\mathcal{SC}_Q)$.
- Let $k_{\mathcal{LC}_Q}^{\star} < k_{\mathcal{SC}_Q}^{\star} = n$. Since $k_{\mathcal{SC}_Q}^{\star} = n$, based on Equation (19), we get $R(\mathcal{U}_d, \mathcal{SC}_Q) = \sum_{j=1}^n d_{j,\mathcal{SC}_Q}^{\star}$. Then by considering Inequality (14) and Theorem 1, we have $R(\mathcal{U}_d, \mathcal{SC}_Q) \leq R(\mathcal{U}_d, \mathcal{LC}_Q)$. Hence, $\sum_{j=1}^n d_{j,\mathcal{SC}_Q}^{\star} \leq R(\mathcal{U}_d, \mathcal{LC}_Q)$. Additionally, note that $(k = n, \mathbf{d}_{\mathcal{SC}_Q}^{\star})$ is a feasible solution of (19) for \mathcal{LC}_Q with the objective function value of $\sum_{j=1}^n d_{j,\mathcal{SC}_Q}^{\star}$.

If $\sum_{j=1}^{n} d_{j,SC_Q}^{\star} < R(\mathcal{U}_d, \mathcal{L}C_Q)$, then we have a feasible solution $(k = n, \mathbf{d}_{SC_Q}^{\star})$ with the objective function value $\sum_{j=1}^{n} d_{j,SC_Q}^{\star}$ being less than the optimal value $R(\mathcal{U}_d, \mathcal{L}C_Q)$; hence, $\sum_{j=1}^{n} d_{j,SC_Q}^{\star} < R(\mathcal{U}_d, \mathcal{L}C_Q)$ cannot occur. If $\sum_{j=1}^{n} d_{j,SC_Q}^{\star} = R(\mathcal{U}_d, \mathcal{L}C_Q)$, then $(k = n, \mathbf{d}_{SC_Q}^{\star})$ is an optimal solution for (19). Thus, $k_{\mathcal{L}C_Q}^{\star} = k_{SC_Q}^{\star} = n$ and refer to the corresponding discussion above for this case.

Therefore, on the basis of the discussions above, Proposition 6 is proved.