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Supplementary Material: Proofs

Proof of Lemma 2. Based on Problem (3) and Remark 1 under Assumption 2 (c(p) = e) we have

min
g∈Up

δk,`(g ,D) = min
p,q,t,g

{∑
i∈I

gipi | (3b)− (3f),
∑
i∈I

(1− gi) = γ, gi ∈ {0, 1},∀i ∈ I
}
> 0. (A1)

Recall also that δk,`(e,D) = minp,q,t{
∑

i∈I pi | (3b)− (3f)}.
If there exists a feasible solution for the set of constraints (3b) to (3f) such that

∑
i∈I pi 6 γ, then

clearly δk,`(e,D) 6 γ; additionally, for this feasible solution and every plant i such that pi = 1 let gi = 0,

then ming∈Up δ
k,`(g ,D) =

(
δk,`(e,D)− γ

)+
= 0.

Now, suppose that
∑

i∈I pi > γ for all feasible solutions of the set of constraints (3b) to (3f).

Then since
∑

i∈I(1 − gi) = γ, in any optimal solution of (A1), we have gi = 0 exactly for γ plants

that pi = 1. Hence, all the optimal solutions of (A1) satisfy pi + gi > 1. Next, we show that

ming∈Up δ
k,`(g ,D) = δk,`(e,D)− γ.

min
g∈Up

δk,`(g ,D)

= min
p,q,t,g,y

{∑
i∈I

yi | (3b)− (3f),
∑
i∈I

(1− gi) = γ, gi ∈ {0, 1},

yi 6 gi, yi 6 pi, yi > pi + gi − 1, yi > 0, ∀i ∈ I
}

(A2)

= min
p,q,t,g

{∑
i∈I

(pi + gi − 1)+ | (3b)− (3f),
∑
i∈I

(1− gi) = γ, gi ∈ {0, 1}, ∀i ∈ I
}

(A3)

= min
p,q,t,g

{∑
i∈I

(pi + gi − 1) | (3b)− (3f),
∑
i∈I

(1− gi) = γ, gi ∈ {0, 1},∀i ∈ I
}

(A4)

= min
p,q,t

{∑
i∈I

pi − γ | (3b)− (3f)
}

= δk,`(e,D)− γ. (A5)

Equation (A2) holds by linearizing the bilinear terms gipi, where gi, pi ∈ {0, 1} for all i ∈ I, using the

standard techniques (see, e.g., Glover and Woolsey 1974) in the objective function of the optimization

problem on the right-hand side of (A1). Equation (A3) holds since the optimization problem is in the

minimization form; thus, the lower bounds of y are sufficient, i.e., yi > max{pi + gi − 1, 0} for all i ∈ I.

Equation (A4) is correct since pi + gi > 1 for any optimal solution. Finally, Equation (A5) holds by

substitution of
∑

i∈I(1− gi) = γ in the objective function. �
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Proof of Lemma 3. To prove Relation (11) and Equations (12) and (13), separately for each one,

we first derive δk,`(e,LCQ). Then by applying Lemma 2, we obtain the desired result. Recall that the

term δk,`(e,LCQ) is PCID without any plant disruptions, i.e., the minimum number of plants (under

the assumption c(p) = e) required to create a vertex cover that includes k products after ignoring ` arcs.

Proof of Relation (11). We evaluate δk,`(e,LCQ) for any 0 6 k 6 n and 0 6 ` 6 n ·Q. Design

LCQ has n · Q arcs, that exactly k · Q arcs are covered by k products. Among Q · (n − k) uncovered

arcs, ` arcs are ignored by Equations (3c) and (3d). If Q · (n − k) 6 `, then n − k − b `Qc 6 0. Thus,

δk,`(e,LCQ) = (n− k − b `Qc)
+ = 0.

Otherwise, there remain Q · (n− k)− ` uncovered arcs. Since each plant can cover Q uncovered arcs

at most, we have δk,`(e,LCQ) > Q·(n−k)−`
Q . Moreover, since δk,`(e,LCQ) ∈ Z+ we have δk,`(e,LCQ) >⌈Q·(n−k)−`

Q

⌉
= n − k − b `Qc. Therefore, based on Lemma 2, we obtain that ming∈Up δ

k,`(g,LCQ) >

(n− k − b `Qc − γ)+ for any 0 6 k 6 n and 0 6 ` 6 n ·Q.

Proof of Equation (12). For k = 0, the proof is trivial since by Remark 3 part (i) we know that

δ0,0(e,LCQ) = n. Then we evaluate δk,0(e,LCQ) for 1 6 k 6 n − 1. Under the assumption c(p) = e

by Remark 3 part (vi) we get δk,0(e,LCQ) = min
S⊆B,|S|=k

|N (B \ S,LCQ)|. Evidently, on the basis of the

definition of Q-long chain we have |N (V,LCQ)| > min{n, |V | + Q − 1} for any V ⊆ B, V 6= ∅. Hence,

δk,0(e,LCQ) = min{n, |B \ S|+Q− 1} = min{n, n− k +Q− 1}; this minimum value can be obtained

by letting S be a set of products with consecutive indices.

Proof of Equation (13). First, note that by Inequality (11) and Lemma 2 we have

δk,`(e,LCQ) > n− k − b `
Q
c. (A6)

Second, if nQ 6 kQ+`, then among nQ arcs of LCQ, exactly kQ arcs are covered by k products and the

remaining arcs all are ignored; as a consequence, δk,`(e,LCQ) = (n− k− b `Qc)
+ = 0. Then we evaluate

δk,`(e,LCQ) for all 0 6 k 6 n and (Q− 1)2 6 ` 6 Q · n such that nQ > kQ+ ` for two cases Q = 2 and

Q > 3 separately as follows.

• Let Q = 2, then in the following for any 0 6 k 6 n and 1 6 ` 6 2 ·n such that 2n > 2k+ `, we create

a vertex cover necessitating n − k − b `2c > 0 plants. Thus, based on Inequality (A6), the created

vertex cover is the minimum and we have δk,`(e,LC2) = n− k − b `2c.

If k = 0, then we temporarily put all n plants in the vertex cover. Next, by ignoring every two arcs

connected to a plant in LC2, we can exclude exactly one plant from the vertex cover (in total, b `2c
plants are excluded). Thus, δ0,`(e,LC2) = n− 0− b `2c = n− b `2c.

For 0 < k < n, let S ⊂ B, |S| = k be a set of products with consecutive indices, e.g., S = {1, 2, . . . , k}.
After putting S in the vertex cover, 2n − 2k uncovered arcs remain. By the selection of S and the
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structure of LC2 exactly two uncovered arcs emanate from N (S,LC2), i.e., arcs with an endpoint in

B \ S. Next, consider two cases where ` is either even or odd.

Case 1: if ` is even, let us first ignore 2 uncovered arcs of N (S,LC2), and then (if ` > 2) ignore `− 2

uncovered arcs which are connected to `−2
2 of plants in A\N (S,LC2). Thus, there remain 2n−2k− `

uncovered arcs. The number of plants in A \ N (S,LC2) that are still connected to two uncovered

arcs is 2n−2k−`
2 = n− k − `

2 = n− k − b `2c, and we need all of them to create a vertex cover with S.

Therefore, by Inequality (A6) we get δk,`(e,LC2) = n− k − b `2c.

Case 2: if ` is odd, let us first ignore uncovered arc(s) of N (S,LC2), and then (if ` > 2) ignore

` − 2 uncovered arcs which are connected to d `−22 e of plants in A \ N (S,LC2). After ignoring `

arcs, all plants in A \ N (S,LC2) except one are connected to either 0 or 2 uncovered arcs and

only one plant is connected to a single uncovered arc. Thus, δk,`(e,LC2) 6 2n−2k−`
2 + 1. Since

δk,`(e,LC2) ∈ Z+ we get δk,`(e,LC2) 6 b2n−2k−`2 + 1c = n− k − b `2c. As a result, by Inequality (A6)

we get δk,`(e,LC2) = n− k − b `2c.

Therefore, Equation (13) holds true for Q = 2 by using Lemma 2.

• Let Q > 3, then for any 0 6 k 6 n and (Q−1)2 6 ` 6 Q·n such that nQ > kQ+` it suffices to demon-

strate that there exist S ⊆ B, |S| = k and E ⊆ LCQ, |E| = ` such that |N (B \S,LCQ \E)| = n−k−
b `Qc. It implies that δk,`(e,LCQ) = n−k−b `Qc due to Remark 3 part (vi) and Inequality (A6). Then

by applying Lemma 2, we obtain the desired result, that is ming∈Up δ
k,`(g ,LCQ) = (n−k−b `Qc−γ)+.

To this end, let S be a set of k products with consecutive indices, e.g., S = {1, . . . , k} and Z :=

B \ S = {k + 1, . . . , n}. Clearly, |S| = k and |Z| = n− k. Put S in the vertex cover. Hence, all arcs

connected to S are covered and all uncovered arcs have an endpoint in products of set Z. We define

ηi as the number of uncovered arcs (with an endpoint in Z) connected to plant i ∈ A. It should be

noted that ηi > 0 for all i ∈ N (Z,LCQ) and ηi = 0 for all i ∈ A \ N (Z,LCQ). Without excluding

E from LCQ the set N (Z,LCQ) is required to create a vertex cover along with S. We continue our

discussion by considering two cases |Z| 6 Q− 2 and |Z| > Q− 1, separately.

Case 1: If |Z| 6 Q − 2, then |Z|Q 6 (Q − 2)Q < (Q − 1)2 6 `. For any ` > (Q − 1)2 let E ⊆ LCQ
such that {(i, j) ∈ LCQ | j ∈ Z} ⊆ E, and |E| = `. Clearly, |{(i, j) ∈ LCQ | j ∈ Z}| = |Z|Q < |E| = `

and E includes all |Z|Q arcs connected to Z. Thus, |N (Z,LCQ \ E)| = 0. It should be observed

that ` > |Z|Q = (n − k)Q; hence, (n − k − b `Qc)
+ = 0. Therefore, there exist S ⊆ B, |S| = k and

E ⊆ LCQ, |E| = ` such that |N (Z,LCQ \ E)| = (n− k − b `Qc)
+ = 0.

Case 2: If |Z| > Q − 1, then define τt =
∣∣{i ∈ A | ηi = t}

∣∣, that is the number of plants

with ηi = t, and x = (|Z| + Q − 1 − n)+. By the definition of LCQ, we observe that either

ηi = 0 or ηi > x + 1. Additionally, τx+1 = x + 2, τt = 2 for t ∈ {x + 2, x + 3, . . . , Q − 1}, and

τQ = |N (Z,LCQ)| − 2
(
Q− 1− (1 + x)

)
− (x+ 2) = |N (Z,LCQ)| − 2Q+ x+ 2. We first show that,
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Fact 1. for any T ∈ {x+ 1, x+ 2, . . . , Q− 1},

T∑
t=x+1

(τt · t)− T = T 2. (A7)

We prove Equality (A7) by induction on T . Let T = x + 1, then since τx+1 = x + 2 we

get
∑x+1

t=x+1(τt · t)− (x+ 1) = (x+ 2)(x+ 1)− (x+ 1) = (x+ 1)2. Next, we need to prove

that if Equality (A7) holds true for T , then it also holds true for T + 1. Suppose that

Equality (A7) is true for some T ∈ {x+ 1, x+ 2, . . . , Q− 2}, then by induction hypothesis,

T∑
t=x+1

(τt · t)− T = T 2. (A8)

Additionally, since τT+1 = 2 for T ∈ {x + 1, x + 2, . . . , Q − 2}, we have
∑T+1

t=x+1(τt · t) =∑T
t=x+1(τt · t) + 2(T + 1); by using this equality and also Equality (A8), starting from the

left-hand side of (A7) for T + 1 we get

T+1∑
t=x+1

(τt · t)− (T + 1) =

T∑
t=x+1

(τt · t) + T + 1 = T 2 + T + T + 1 = (T + 1)2.

Therefore, Equality (A7) is valid for any T ∈ {x+ 1, x+ 2, . . . , Q− 1}.

Next, recall that |N (Z,LCQ)| plants are required to create a vertex cover along with S. By the defi-

nition of Q-long chain design and since Z includes products with consecutive indices, |N (Z,LCQ)| =
min{n, |Z|+Q− 1}. Next, we continue the discussion for different values of ` > (Q− 1)2.

- for ` = (Q−1)2 let E0 = {(i, j) ∈ LCQ | j ∈ Z, 0 < ηi 6 Q−1}\{(i, j) ∈ LCQ | j ∈ Z, ηi = Q−1, i ∈
I1 ⊂ I, |I1| = 1}. In fact, set E0 includes uncovered arcs connected to plants i ∈ N (Z,LCQ) except

those with ηi = Q, and one of two plants with ηi = Q−1, i.e., E0 is the set of arcs with an endpoint

in Z and connected to |N (Z,LCQ)| − τQ − 1 = 2Q − x − 3 plants with the smallest ηi > 0. Let

T = Q−1 in Equality (A7). Then, by Fact 1 we have |E0| =
∑Q−1

t=x+1(τt · t)−(Q−1) = (Q−1)2 = `.

Thus, by excluding E0 from LCQ the number of plants required to create a vertex cover, |N (Z,LCQ)|,
along with S reduces by 2Q− x− 3, i.e.,

|N (Z,LCQ \ E0)| = |N (Z,LCQ)| − (2Q− x− 3) = min{n, |Z|+Q− 1} − (2Q− x− 3). (A9)

If |Z|+Q− 1 > n, then x = |Z|+Q− 1− n and from Equality (A9),

|N (Z,LCQ \ E0)| = n− 2Q+ (|Z|+Q− 1− n) + 3

= |Z| − (Q− 2) = |Z| − b(Q− 1)2

Q
c = n− k − b `

Q
c > 0;
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else, x = 0 and from Equality (A9),

|N (Z,LCQ \ E0)| = (|Z|+Q− 1)− (2Q− 0− 3) = |Z| − (Q− 2)

= |Z| − b(Q− 1)2

Q
c = n− k − b `

Q
c > 0.

As a consequence,

|N (Z,LCQ \ E0)| = n− k − b `
Q
c > 0. (A10)

Note that the value of ηi for i ∈ N (Z,LCQ \ E0), the remaining required plants for the vertex

cover after ignoring arcs in E0, is Q − 1, Q,Q, . . . , Q, i.e.,τt = 0 for t 6 Q − 2, τQ−1 = 1 and still

τQ = |N (Z,LCQ)| − 2Q+ x+ 2.

- for (Q−1)2 < ` < (Q−1)2+(Q−1) let E1 = E0∪{(i, j) ∈ LCQ | j ∈ Z, (i, j) /∈ E0} such that |E1| = `.

Excluding E1 from LCQ does not remove any more plants from N (Z,LCQ) than by excluding E0.

Because |E1\E0| < Q−1, but ηi = Q−1 or Q for i ∈ N (Z,LCQ\E0). Thus, based on (A10), we get

|N (Z,LCQ \ E1)| = |N (Z,LCQ \ E0)| = |Z| − b
(Q− 1)2

Q
c = n− k − b `

Q
c > 0,

for any (Q− 1)2 < ` < (Q− 1)2 + (Q− 1).

- for ` = (Q−1)2+(Q−1)+t·Q = Q(Q−1+t), where t ∈ Z+∪{0}. Let E2 = ∪i∈A{(i, j) ∈ LCQ | j ∈
Z, (i, j) /∈ E0, ηi = Q− 1 or ηi = Q}∪E0 such that |E2| = `. Subsequently, excluding E2 from LCQ
removes t+1 plant(s) from N (Z,LCQ) more than E0, because E2\E0 includes arcs with an endpoint

in Z and connected to a plant with ηi = Q− 1 and t plants with ηi = Q. Hence, by (A10), we get

|N (Z,LCQ \ E2)| = |N (Z,LCQ \ E0)| − (t+ 1) = |Z| − b(Q− 1)2

Q
c − (t+ 1)

= |Z| − bQ(Q− 1 + t)

Q
c = n− k − b `

Q
c, (A11)

for ` = Q(Q− 1 + t). It should be noted that ηi = Q for i ∈ N (Z,LCQ \E2), i.e., for the remaining

plants to create the vertex cover after ignoring arcs in E2.

- for Q(Q− 1 + t) < ` < Q(Q− 1 + t) + r, where t ∈ Z+ ∪{0} and 1 6 r < Q. Let E3 = E2 ∪{(i, j) ∈
LCQ | j ∈ Z, (i, j) /∈ E2} such that |E3| = `. It can be clearly seen that excluding E3 from LCQ
removes no more plants from N (Z,LCQ) than excluding E2, because |E3 \ E2| = r < Q, while

ηi = Q for i ∈ N (Z,LCQ \ E2). Thus, by (A11) we have

|N (Z,LCQ \ E3)| = |N (Z,LCQ \ E2)| = |Z| − b
Q(Q− 1 + t)

Q
c = n− k − b `

Q
c

for any Q(Q− 1 + t) < ` < Q(Q− 1 + t) + r.
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Therefore, there exist S ⊆ B, |S| = k and E ⊆ LCQ, |E| = ` in a manner that |N (Z,LCQ \ E)| =

n− k − b `Qc for |Z| > (Q− 1) and any ` > (Q− 1)2.

Finally, according to the discussion above for Q > 3, Remark 3 part (vi), and Inequality (A6) we

have δk,`(e,LCQ) = |N (Z,LCQ \E)| = n− k−b `Qc. Thus, Equation (13) holds true for Q > 3 by using

Lemma 2. �

Proof of Lemma 4. We prove Lemma 4 by using a double induction on z and ` in the following three

steps including the base case, induction over z for ` = 1, and induction over ` for fixed z.

Base case. We show that Lemma 4 is true for z = 1 and ` = 1, i.e., there exist some T ⊆ B, |T | = 1 and

E ⊆ D, |E| = 1 such that |N (T,D \E)|61. Toward this goal, for any u ∈ B, consider T = {u}. Note

that there exist a, a′ ∈ A such that |N (u,D)| = |{a, a′}| = 2. Let E = {(a, u)}, then
∣∣N (T,D\E)∣∣ = 1.

Induction over z for ` = 1. We need to prove that if Lemma 4 holds true for z < |B| and ` = 1, then

it also holds true for z + 1 and ` = 1 (note that b `2c = 0 for ` = 1). Suppose that Lemma 4 is true

for some z < |B| and ` = 1, then by induction hypothesis, there exist sets T z ⊂ B, |T z| = z, and

Ez = {(a, b)} ⊂ D, |Ez| = 1 such that |N (T z,D \ Ez)| 6 z. We consider the following two cases:

Case 1: let Ez = {(a, b)} ∈ D ∩ {N (T z,D) × T z}. It should be noted that the vertices in A ∪ B
over D form a connected graph, and T z ⊂ B. Therefore, there exists some v ∈ N (T z,D \ Ez) and

v′ /∈ N (T z,D \ Ez) such that (v, u) and (v′, u) are arcs for some u /∈ T z. Let T z+1 = T z ∪ {u} and

Ez+1 = Ez, subsequently, we get |N (T z+1,D \ Ez+1)| 6 z + 1.

Case 2: let Ez = {(a, b)} /∈ D∩{N (T z,D)×T z}. Since D is connected, there exists u ∈ B\T z such that

N (u,D)∩N (T z,D) 6= ∅. Thus, for T z+1 = T z∪{u} and Ez+1 = Ez we get |N (T z+1,D\Ez+1)| 6 z+1.

Induction over ` for fixed z. We need to prove that if Lemma 4 holds true for some 1 6 z 6 |B| and

1 6 ` < 2n, then it also holds true for z and `+ 1. Suppose that Lemma 4 is true for some 1 6 z 6 |B|
and 1 6 ` < 2n, then by induction hypothesis there exist sets T ` ⊆ B, |T `| = z, and E` ⊂ D, |E`| = `

such that |N (T `,D \E`)| 6 (z − b `2c)
+. Construct E`+1 = E` ∪ {(a, b)} such that (a, b) ∈ D \E` and

T `+1 = T `; subsequently, we consider the following three cases when z − b `2c > 0 (the proof is trivial

for (z − b `2c)
+ = 0):

Case 1: if |N (T `,D\E`)| < z−b `2c, then either |N (T `+1,D\E`+1)| = |N (T `,D\E`)| or |N (T `+1,D\
E`+1)| = |N (T `,D\E`)|−1. Similarly, either z−b `+1

2 c = z−b `2c or z−b `+1
2 c = z−b `2c−1. Therefore,

we have |N (T `+1,D \ E`+1)| 6 z − b `+1
2 c.

Case 2: if |N (T `,D\E`)| = z−b `2c and ` is even, then either |N (T `+1,D\E`+1)| = |N (T `,D\E`)| or

|N (T `+1,D\E`+1)| = |N (T `,D\E`)|−1, but z−b `+1
2 c = z−b `2c. As a result, |N (T `+1,D\E`+1)| 6

z − b `+1
2 c.
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Case 3: if |N (T `,D \ E`)| = z − b `2c and ` is odd, i.e., ` = 2t− 1, t ∈ {1, 2, . . . , n}, then z − b `+1
2 c =

z − b `2c − 1. Next, we demonstrate that there exists a ∈ N (T `,D \ E`) which is connected to T ` by

only one arc:

Set N (T `,D) is connected to T ` by 2z arcs. Thus, all i ∈ N (T `,D\E`) cannot be connected to T ` by 2

or more than 2 arcs, i.e., there exists at least a plant a ∈ N (T `,D\E`) that is connected to T ` by only

one arc. Otherwise, the number of arcs connecting T ` to N (T `,D) would be greater than 2z because

2
∣∣N (T `,D \ E`)

∣∣+ ` = 2 ·
(
z −

⌊2t− 1

2

⌋)
+ 2t− 1

= 2 · (z − t+ 1) + 2t− 1 > 2z, ∀t ∈ {1, 2, . . . , n}.

Therefore, by ignoring an odd number of arcs connecting T ` to N (T `,D) such that |N (T `,D \E`)| =
(z − b `2c)

+, there exists plant a ∈ N (T `,D \ E`) connected to T ` by one arc. Let (a, b) be the arc

connecting b ∈ T ` to a and set E`+1 = E` ∪ {(a, b)} and T `+1 = T `. Thus, |N (T `+1,D \ E`+1)| =

|N (T `,D \ E`)| − 1, and we have |N (T `+1,D \ E`+1)| = z − b `+1
2 c. �

Proof of Theorem 2. If we show that δk,`(e,D) 6 δk,`(e,LC2) for all 0 6 k 6 n and 0 6 ` 6 2n, then

by using Lemma 2 and Theorem 1 it is proved that Theorem 2 holds. If ` = 0, we refer to Simchi-Levi

and Wei (2015, Theorem 5). In addition, observe that if 2n 6 2k + `, then δk,`(·, ·) = 0. Thus, we only

consider the case wherein 2k + ` < 2n.

For any 0 6 k 6 n and 1 6 ` 6 2n such that 2k + ` < 2n, it suffices to show that we can find some

sets S ⊆ B, |S| = k and E ⊆ D, |E| = ` such that |N (B \ S,D \ E)| 6 n − k − b `2c. Then based on

Remark 3 part (vi), Equation (13), and Lemma 2,

|N (B \ S,D \ E)| = δk,`(e,D) 6 δk,`(e,LC2) = n− k − b `
2
c.

Assume that design D comprises c connected components named D1, . . . ,Dc such that Aw ⊂ A

and Bw ⊂ B, w ∈ {1, 2, . . . , c}, denote the sets of plants and products of the w-th component, respec-

tively. Without loss of generality, let us suppose that |Aw| − |Bw| is nondecreasing with w. Because∑c
w=1(|Aw| − |Bw|) = 0, this assumption implies that

∑t
w=1 |Aw| 6

∑t
w=1 |Bw| for any t 6 c.

For any 0 6 k < n and 1 6 ` < 2n such that 2k + ` < 2n, we have n − k − b `2c > 0. Let tk`

denote the largest possible t such that
∑t

w=1 |Bw|+ b
`−1
2 c < n− k. By our choice of tk`, we get tk` < c

and n− k −
∑tk`

w=1 |Bw| − b `−12 c 6 |Btk`+1|. Moreover, define T0 ⊆
⋃c
w=tk`+1

Bw with |T0| = b `−12 c, and

E0 = {(i, j) ∈ D | j ∈ T0}; hence, |E0| = 2b `−12 c because |N (u,D)| = 2 for all u ∈ B.

Based on Lemma 4, in the connected component Btk`+1, we can find some sets T1 and E1, where

T1 ⊆ Btk`+1, |T1| = n−k−
∑tk`

w=1 |Bw|−b `−12 c, and E1 ⊆ N (T1,D)×T1, |E1| = `−|E0| = (`−2b `−12 c) ∈
{1, 2} such that
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|N (T1,D \ E1)| 6 n− k −
tk∑̀
w=1

|Bw| − b
`− 1

2
c −

⌊ |E1|
2

⌋
= n− k −

tk∑̀
w=1

|Bw| − b
`− 1

2
c −

⌊`− 2b `−12 c
2

⌋
= n− k −

tk∑̀
w=1

|Bw| − b
`

2
c. (A12)

Next, we select predefined T0 such that T0∩T1 = ∅, this is possible because it can simply be verified

that for T0 ⊆
⋃c
w=tk`+1

Bw and T1 ⊆ Btk`+1
we have |T0|+ |T1| 6 |

⋃c
w=tk`+1

Bw|; by this selection we also

have E0 ∩E1 = ∅. Finally, let S :=
c⋃

w=tk`+1

Bw \ (T0 ∪ T1), and E = E0 ∪E1; thus, |E| = `, and by (A12)

we get

∣∣N (B \ S,D \ E)
∣∣ 6 ∣∣N (T1,D \ E1)

∣∣+

tk∑̀
t=1

∣∣Aw∣∣
6 n− k −

tk∑̀
w=1

|Bw| − b
`

2
c+

tk∑̀
w=1

|Bw| = n− k − b `
2
c.

We know that |T0| = b `−12 c, S ⊂ B and

|S| =
∣∣ c⋃
w=tk`+1

Bw \ (T0 ∪ T1)
∣∣ = n−

tk∑̀
w=1

|Bw| − |T0| − |T1|

= n−
tk∑̀
w=1

|Bw| − b
`− 1

2
c −

(
n− k −

tk∑̀
w=1

|Bw| − b
`− 1

2
c
)

= k.

Since |S| = k, thus |B \ S| = n− k, and the proof is complete. �

Proof of Theorem 3. Let n̂ be the size of the smallest system for which there exists a counter example

D̂ to the statement of Theorem 3. For n = 2, D is the same as LC2; thus, we must have n̂ > 3. Moreover,

we must have 2k + ` < 2n; otherwise δk,`(·, ·) = 0.

For ` = 0 refer to Simchi-Levi and Wei (2015, Theorem 6). According to Equality (13) and Lemma

2, δk,`(e,LC2) = n− k− b `2c for 2n > 2k+ ` and ` > 1. Since D̂ is a counterexample, there exists some

0 6 k̂ < n̂ and 1 6 ˆ̀< 2n̂ such that δk̂,
ˆ̀
(e, D̂) > n̂− k̂−b ˆ̀2c > 0. Moreover, we can find u ∈ B such that

|N (u, D̂)| = 1; otherwise, by the proof of Theorem 2, we have δk,`(e,D) 6 δk,`(e,LC2) = n − k − b `2c
for all n, k and `. Let {v} = N (u, D̂). Since D̂ is connected, we have |N (v, D̂)| > 2.

Next, we define design D′ with the set of plants and products A\{v} and B \{u}, respectively, such

that D′ = {(v′, u′) | (v′, u′) ∈ D̂, u′ 6= u, v′ 6= v}. Design D′ is not necessarily connected. If D′ has c

components, then |N (v, D̂)| > c+ 1. By adding c− 1 arcs to D′ we can make it connected. Define D′′

as the arc set that contains D′ and c− 1 added arcs. Hence, D′′ is connected. It should be noted that

D′′ is defined on a system with size n̂− 1 and |D′′| 6 2(n̂− 1).
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Based on the minimality assumption on n̂, δk̂,
ˆ̀
(e,D′′) 6 n̂−k̂−b ˆ̀2c−1. Thus, by Remark 3 part (vi),

there exists some S ⊂ B \ {u}, E ⊂ D′′, |E| = ˆ̀, and |S| = n̂ − k̂ − 1 such that |N (S,D′′ \ E)| 6
n̂− k̂−b ˆ̀2c−1. This implies that S∪{u} ⊆ B, |S∪{u}| = n̂− k̂ and |N (S∪{u}, D̂ \E)| 6 n̂− k̂−b ˆ̀2c.
Hence, by Remark 3 part (vi) we have δk̂,

ˆ̀
(e, D̂) 6 n̂− k̂ − b ˆ̀2c. This contradicts the assumption that

δk̂,
ˆ̀
(e, D̂) > n̂− k̂ − b ˆ̀2c. �

Proof of Lemma 5. Let {1, . . . , c} and z1, . . . , zc represent the components of SCQ and their sizes,

respectively. For each of Relation (14) and Equation (15), we first derive δk,`(e,SCQ), that is PCID

without plant disruptions or (under the assumption c(p) = e) the minimum required number of plants

to create a vertex cover along with k products after ignoring ` arcs. Then by applying Lemma 2 we

obtain the desired results.

Before we proceed, similar to the proof of Lemma 3 part 1, we can demonstrate that

n− k − b `
Q
c 6 δk,`(e,SCQ), (A13)

for any 0 6 k 6 n and 0 6 ` 6 n ·Q.

Proof of Relation (14) for ` = 0. We consider two cases k =
∑

i∈I1 zi for some I1 ⊆ {1, . . . , c}
and k 6=

∑
i∈I zi for any I ⊆ {1, . . . , c}, separately, as follows.

Case 1: let k =
∑

i∈I1 zi for some I1 ⊆ {1, . . . , c}; then we put all products of components in

I1 in the vertex cover. Clearly, all arcs of components in I1 are covered. Thus, we need all plants of

components in {1, . . . , c}\I1 to create a vertex cover that is n−
∑

i∈I1 zi = n−k. By Inequality (A13) we

conclude that, for ` = 0, this constructed vertex cover is the minimum one. Hence, δk,0(e,SCQ) = n−k.

Additionally, by Equation (11) for LCQ we have n− k 6 δk,0(e,LCQ). Thus,

n− k = δk,0(e,SCQ) 6 δk,0(e,LCQ). (A14)

Case 2: let k 6=
∑

i∈I zi for any I ⊆ {1, . . . , c}, then let I1 ⊂ {1, . . . , c} be the largest subset of

components such that
∑

i∈I1 zi < k and k1 :=
∑

i∈I1 zi. Thus, there exists component x ∈ {1, . . . , c}\ I1
such that zx > k2, where k2 := k − k1. Now, we put all products of components of I1 and k2 products

of component x into the vertex cover. Since component x is a Q-long chain, by Equation (12) we need

min{zx, zx − k2 +Q− 1} plants from component x for the vertex cover. Thus,

δk,0(e,SCQ) 6 n− k1 − zx + min{zx, zx − k2 +Q− 1} = min{n− k1, n− k +Q− 1}. (A15)

Moreover, by Equation (12) for LCQ we have

δk,0(e,LCQ) = min{n, n− k +Q− 1}. (A16)
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By (A15) and (A16), we get

δk,0(e,SCQ) 6 δk,0(e,LCQ) = min{n, n− k +Q− 1}. (A17)

Therefore, by (A13), (A14), (A17) and Lemma 2 for ` = 0 we have

(n− k − γ)+ 6 min
g∈Up

δk,0(g,SCQ) 6 min
g∈Up

δk,0(g,LCQ).

Proof of Relation (15) for (Q − 1)2 6 ` 6 n · Q. First, note that by Equation (13), we have

ming∈Up δ
k,`(g ,LCQ) = (n−k−b `Qc−γ)+. Hence, we only need to demonstrate that ming∈Up δ

k,`(g ,SCQ) =

(n−k−b `Qc−γ)+, as well. The proof is trivial if kQ+` > nQ because in this case, ming∈Up δ
k,`(g ,D) = 0

for any design D; thus, in the following we let kQ+ ` < nQ. Next, we consider two cases k =
∑

i∈I1 zi

for some I1 ⊆ {1, . . . , c} and k 6=
∑

i∈I zi for any I ⊆ {1, . . . , c}, separately, as follows.

Case 1: let k =
∑

i∈I1 zi for some I1 ⊆ {1, . . . , c}; then we put all products of components in I1 in

the vertex cover. Moreover, let I2 denote the largest subset in {1, . . . , c} \ I1 such that Q
∑

i∈I2 zi < `;

then ignore all arcs in I2. Thus, all arcs of components in I1 ∪ I2 are either covered or ignored.

Define `y = ` − Q
∑

i∈I2 zi. Since Q
∑

i∈I2 zi < `, we have `y > 0. Hence, there exists component

y ∈ {1, . . . , c} \ (I1 ∪ I2) such that zyQ > `y. The minimum number of plants required from component

y is zy − b `yQ c. Because, no products of component y are included in the vertex cover and by ignoring

each batch of Q arcs from y we can exclude only one plant of y from the vertex cover. Therefore, the

total number of required plants is

n−
∑
i∈I1

zi −
∑
i∈I2

zi − b
`y
Q
c =

n− k −
∑
i∈I2

zi − b
`−Q

∑
i∈I2 zi

Q
c = n− k − b `

Q
c.

By Inequality (A13), we conclude that the aforementioned constructed vertex cover is the minimum

one, and we get δk,`(e,SCQ) = n− k − b `Qc.
Case 2: let k 6=

∑
i∈I zi for any I ⊆ {1, . . . , c}, then let I1 ⊂ {1, . . . , c} be the largest subset of

components such that
∑

i∈I1 zi < k and define k1 :=
∑

i∈I1 zi. Next, we create a vertex cover in the

following manner. Put all products of components in I1 into the vertex cover (all arcs in I1 are covered

by k1 products). There exists component x ∈ {1, . . . , c} \ I1 such that zx > k2, k2 := k − k1. We also

put k2 products of x (with consecutive indices) in the vertex cover. Observe that Q(zx − k2) arcs of

competent x remain uncovered. Then consider the two following cases where either ` 6 Q(zx − k2) or

` > Q(zx − k2).
If ` 6 Q(zx − k2), then since component x is a Q-long chain and (Q − 1)2 6 `, by Equation (13),

the number of plants required from x to put into the vertex cover is zx − k2 − b `Qc. In addition,

we need all plants in components i ∈ {1, . . . , c} \ (I1 ∪ {x}) for the vertex cover. Thus, we need
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(n−k1− zx) + (zx−k2−b `Qc) = n−k−b `Qc plants along with the specified products to create a vertex

cover. By Inequality (A13) we arrive at a minimum vertex cover. Therefore, δk,`(e,SCQ) = n−k−b `Qc.
If ` > Q(zx − k2), then ignore all uncovered arcs of x. Let I2 denote the largest subset in

{1, . . . , c} \ (I1 ∪ {x}) such that Q
∑

i∈I2 zi < ` − Q(zx − k2). If so, we can ignore all arcs in I2.

Clearly, all arcs of components in I1 ∪ I2 ∪ {x} are either covered or ignored.

Next, define `y := `−Q
∑

i∈I2 zi−Q(zx−k2). We observe that `y > 0 sinceQ
∑

i∈I2 zi < `−Q(zx−k2).
Thus, there exists component y ∈ {1, . . . , c} \ (I1 ∪ I2 ∪ {x}) such that zyQ > `y. It should be noted

that no product of component y is in the vertex cover. Moreover, by ignoring each batch of Q arcs

connected to a plant only one plant of y is excluded from the vertex cover. Thus, the required number

of plants from component y in the vertex cover is zy − b `yQ c. Therefore, by (A13) the minimum number

of plants required to create a vertex cover is

δk,`(e,SCQ) = n−
∑
i∈I1

zi −
∑
i∈I2

zi − zx − zy + (zy − b
`y
Q
c)

= n− k1 −
∑
i∈I2

zi − zx − b
`−Q

∑
i∈I2 zi −Q(zx − k2)

Q
c = n− k − b `

Q
c.

Therefore, based on Equation (13) and applying Lemma 2 for δk,`(e,SCQ) discussed above, we

conclude that Equality (13) holds for any 0 6 k 6 n and (Q− 1)2 6 ` 6 n ·Q. �

Proof of Proposition 3. If α = 0, then by Assumption 1 we have `? = α = 0 in Equation (10).

Moreover, from Inequality (14) we have ming∈Up δ
k,0(g,SCQ) 6 ming∈Up δ

k,0(g,LCQ) at any 0 6 k 6 n.

Therefore, R(Ud,Up,Ua,SCQ) 6 R(Ud,Up,Ua,LCQ) by Theorem 1.

Similarly, if α > (Q − 1)2, then `? = α > (Q − 1)2. Furthermore, ming∈Up δ
k,α(g,SCQ) =

ming∈Up δ
k,α(g,LCQ) by Equality (15). Consequently, from Theorem 1 we obtain R(Ud,Up,Ua,SCQ) =

R(Ud,Up,Ua,LCQ) for any (Q− 1)2 6 α 6 n ·Q. �

Proof of Proposition 5. Under Assumption 1, we conclude that `? = α in Equation (10) for any

design D. Moreover, for α > (Q− 1)2 based on Equation (15), we have

min
g∈Up

δk,α(g,SC(1)Q ) = min
g∈Up

δk,α(g,SC(2)Q ) ∀k ∈ {1, . . . , n};

the latter equation leads to R(Ud,Up,Ua,SC
(1)
Q ) = R(Ud,Up,Ua,SC

(2)
Q ) by Theorem 1. Next, we ascertain

the relationship between the performances without any disruptions, i.e., R(Ud,SC
(1)
Q ) and R(Ud,SC

(2)
Q ).

To this end, if we demonstrate that δk,0(e,SC(1)Q ) 6 δk,0(e,SC(2)Q ) holds true for any 0 6 k 6 n, then we

get R(Ud,SC
(1)
Q ) 6 R(Ud,SC

(2)
Q ) according to Lemma 2 and Theorem 1.

Recall that δk,0(e,D) is the minimum number of plants that is required to create a vertex cover along

with k products on design D. Notably, based on Inequality (14) and Lemma 2 we have δk,0(e,SC(t)Q ) >

n − k, t ∈ {1, 2}. It is clear that δk,0(e,SC(1)Q ) = δk,0(e,SC(2)Q ) for k ∈ {0, n}. Additionally, let
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z
(1)
1 , . . . , z

(1)
c(1) and z

(2)
1 , . . . , z

(2)
c(2) , denote the component sizes of SC(1)Q and SC(2)Q , respectively. In order

to evaluate δk,0(e,SC(t)Q ), t ∈ {1, 2} for 1 6 k < n, we consider the following four disjoint cases:

Case 1: there exist some I1 ⊂ {1, . . . , c(1)} and I2 ⊂ {1, . . . , c(2)}, such that
∑

i∈I1 z
(1)
i =

∑
i∈I2 z

(2)
i =

k. Thus, in SC(t)Q , t ∈ {1, 2}, in addition to k products of components in It, we need n − k plants of

components in {1, . . . , c(t)}\It to create a vertex cover. This is the minimum vertex cover for a particular

k since by Inequality (14), we have δk,0(e,SC(t)Q ) > n − k, t ∈ {1, 2}. Therefore, δk,0(e,SC(1)Q ) =

δk,0(e,SC(2)Q ) = n− k.

Case 2: there exists I1 ⊂ {1, . . . , c(1)} such that
∑

i∈I1 z
(1)
i = k; however, there does not exist

any I2 ⊂ {1, . . . , c(2)} such that
∑

i∈I2 z
(2)
i = k. Thus, by the argument given in above, we have

δk,0(e,SC(1)Q ) = n − k. By Inequality (14) for any k, we have δk,0(e,SC(2)Q ) > n − k. Therefore,

δk,0(e,SC(1)Q ) 6 δk,0(e,SC(2)Q ).

Case 3: the cases where there exists no I1 ⊂ {1, . . . , c(1)} such that k =
∑

i∈I1 z
(1)
i , but there is

I2 ⊂ {1, . . . , c(2)} such that k =
∑

i∈I2 z
(2)
i , are not considered. These cases are impossible due to the

fact that the components of SC(1)Q are decomposition of the components of SC(2)Q .

Case 4: there does not exist any I1 ⊂ {1, . . . , c(1)} such that k =
∑

i∈I1 z
(1)
i . Likewise, there is no

I2 ⊂ {1, . . . , c(2)} such that k =
∑

i∈I2 z
(2)
i .

Fact 1. Consider an arbitrary SCQ in {SCQ} with the set of components {1, . . . , c} and

component sizes {z1, . . . , zc}. For any given k, let ki 6 k represent the number of products

of component i ∈ {1, . . . , c} in a vertex cover. Then we define J as the subset of components

that have all of their products within the vertex cover (ki = zi for all i ∈ J), and kJ :=∑
i∈J zi =

∑
i∈J ki. By the definition of J , it is clear that we have 0 6 ki < zi for all

i ∈ {1, . . . , c} \ J . It should also be noted that we must have kJ +
∑

i∈{1,...,c}\J ki = k. By

the assumption there does not exist any I ⊂ {1, . . . , c} such that k =
∑

i∈I zi; it implies

that kJ < k and
∑

i∈{1,...,c}\J ki = k − kJ > 0.

We demonstrate that for any given k, a minimum vertex cover for SCQ in {SCQ} can be

obtained when kJ has the maximum possible value and
∑

i∈{1,...,c}\J 1{0<ki<zi} = 1; i.e.,

exactly one component has at least one (0 < ki), but not all of its products (ki < zi) within

the vertex cover.

It is observed that all arcs of the components in J are covered by kJ products. On the other

hand, since each component i ∈ {1, . . . , c}\J is a Q-long chain, by Equation (12) we require

min{zi, zi − ki + Q − 1} of its plants along with its ki products to cover all its arcs. Thus,

the total number of plants that are required to create a vertex cover is

(n− kJ)−
∑

i∈{1,...,c}\J

(
zi −min{zi, zi − ki +Q− 1}

)
= n− kJ +

∑
i∈{1,...,c}\J

min{0,−ki +Q− 1}. (A18)
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To obtain a minimum vertex cover we need to minimize the right-hand side of (A18) that is

strictly decreasing in kJ and is non-increasing in ki for each i ∈ {1, . . . , c} \J . In particular,

the unit increase of kJ and ki decreases the right-hand side of (A18) by exactly 1 unit and

at the most 1 unit, respectively. Hence, we set kJ at its maximum possible value.

Recall that
∑

i∈{1,...,c}\J ki = k − kJ > 0. The minimum quantum of the right-hand side

of (A18) is obtained when along with the largest value of kJ , for exactly one component, say

t ∈ {1, . . . , c}\J , 0 < kt < zt, i.e., kt = k−kJ and ki = 0 for all i ∈ {1, . . . , c}\ (J ∪{t}). To

elaborate it further, it should be observed that min{0,−ki +Q− 1} = −ki + min{ki, Q− 1}.
Then we get

∑
i∈{1,...,c}\J

(−ki + min{ki, Q− 1}) = −(k − kJ) +
∑

i∈{1,...,c}\J

min{ki, Q− 1}

> −kt + min{kt, Q− 1},

or equivalently
∑

i∈{1,...,c}\J min{ki, Q− 1} > min{kt, Q− 1} from the last inequality. This

is true because if ki 6 Q − 1 for all i ∈ {1, . . . , c} \ J , then
∑

i∈{1,...,c}\J min{ki, Q − 1} =∑
i∈{1,...,c}\J ki = k− kJ > min{kt, Q− 1}. On the other hand, if ki > Q− 1 for i ∈ I where

I ⊆ {1, . . . , c} \ J , then |I| · (Q− 1) +
∑

i∈{1,...,c}\(J∪I) min{ki, Q− 1} > min{kt, Q− 1}. It

should be noted that there may exist multiple minimum vertex covers; we can obtain one of

them in this manner.

Now, by using Fact 1, we create a minimum vertex cover in SC(1)Q . Let J1 be the largest subset of

{1, . . . , c(1)} such that
∑

i∈J1 z
(1)
i 6 k and kJ1 :=

∑
i∈J1 z

(1)
i . Next, select component x ∈ {1, . . . , c(1)}\J1

and kx := k − kJ1 . Put all products of J1 and kx products of x within the vertex cover. By (A18), we

can see that the minimum number of required plants is δk,0(e,SC(1)Q ) = n−kJ1 +min{0,−kx+Q−1} =

min{n− kJ1 , n− k +Q− 1}.
Similarly, in SC(2)Q let J2 denote the largest subset of {1, . . . , c(2)} such that

∑
i∈J2 z

(2)
i 6 k and

kJ2 :=
∑

i∈J2 z
(2)
i . Then we can select component y ∈ {1, . . . , c(2)} \ J2 and ky := k − kJ2 . By (A18),

the minimum number of required plants is δk,0(e,SC(1)Q ) = n − kJ2 + min{0,−ky + Q − 1} = min{n −
kJ2 , n− k +Q− 1}.

It should be noted that kJ1 > kJ2 because by assumption, the components of SC(1)Q are decomposition

of SC(2)Q components. Thus, min{n − kJ1 , n − k + Q − 1} 6 min{n − kJ2 , n − k + Q − 1}. As a result,

δk,0(e,SC(1)Q ) 6 δk,0(e,SC(2)Q ).

Therefore base on the discussion provided above we have δk,0(e,SC(1)Q ) 6 δk,0(e,SC(2)Q ), for all

0 6 k 6 n, and by using Lemma 2 and Theorem 1, we get R(Ud,SC
(1)
Q ) 6 R(Ud,SC

(2)
Q ). Recalling that

R(Ud,Up,Ua,SC
(1)
Q ) = R(Ud,Up,Ua,SC

(2)
Q ), the proof is complete. �
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Proof of Proposition 6. For general design D, let (k◦D,`◦D,d◦D) and (k?D,d?D) denote optimal solutions

of the optimization problems (10) and (19) – which represent the worst-case performances with and

without disruptions – respectively. Since there are no arc disruptions (α = 0), by Assumption 1, we have

`◦D = 0. Next, we consider four disjoint cases on k?SCQ and k?LCQ ∈ {0, . . . , n} including: k?SCQ , k
?
LCQ < n;

k?SCQ < k?LCQ = n; k?SCQ = k?LCQ = n; and k?LCQ < k?SCQ = n.

• Let k?SCQ < n and k?LCQ < n. Any vertex cover of general design D can be represented by sets

S ⊆ B and N (B \ S,D). In addition, let S? ⊂ B, |S?| = k?SCQ < n and N (B \ S?,SCQ) > 0

denote a minimum vertex cover of SCQ without disruptions. Hence, by Remark 3 part (vi), we have

δ
k?SCQ

,0
(e,SCQ) = |N (B \ S?,SCQ)| and by Equation (19), we get

R(Ud,SCQ) = |N (B \ S?,SCQ)|+
k?SCQ∑
j=1

minj(d?SCQ) = |N (B \ S?,SCQ)|+ min
d∈Ud

k?SCQ∑
j=1

dj . (A19)

The second equality in (A19) follows by fixing k?SCQ in Equation (19). A single plant disruption

makes the capacity of a plant zero. We claim that sets S? and N (B \ S?,SCQ) are also a minimum

vertex cover of SCQ with a plant disruption. If our claim holds true, then |S?| = k?SCQ = k◦SCQ ; as a

consequence, by Equation (10) we have

R(Ud,Up,Ua,SCQ) = (δ
k?SCQ

,0
(e,SCQ)− 1)+ +

k?SCQ∑
j=1

minj(d◦SCQ)

= |N (B \ S?,SCQ)| − 1 + min
d∈Ud

k?SCQ∑
j=1

dj . (A20)

The second equality in (A20) is obtained by fixing k?SCQ in Equation (10), and due to the fact

that δ
k?SCQ

,0
(e,SCQ) = |N (B \ S?,SCQ)| > 0. Thus, by considering (A19) and (A20), we get

Fr(SCQ) = R(Ud,SCQ)−R(Ud,Up,Ua,SCQ) = 1.

We prove the validity of our claim by contradiction. Suppose S? ∪ N (B \ S?,SCQ) is the minimum

vertex cover of SCQ without the disruption, but it is not the minimum vertex cover of SCQ with the

disruption, and sets S̄ ⊆ B, |S̄| = k◦SCQ , and N (B \ S̄,SCQ) corresponds to the minimum vertex

cover of SCQ with the disruption. In this case,

R(Ud,Up,Ua,SCQ) =
(
|N (B \ S̄,SCQ)| − 1

)+
+ min

d∈Ud

k◦SCQ∑
j=1

dj < |N (B \ S?,SCQ)| − 1 + min
d∈Ud

k?SCQ∑
j=1

dj .

As a result, by (A19)

|N (B \ S̄,SCQ)|+ min
d∈Ud

k◦SCQ∑
j=1

dj < R(Ud,SCQ). (A21)
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Both S?∪N (B\S?,SCQ) and S̄∪N (B\S̄,SCQ) represent vertex covers for SCQ. Thus, Relation (A21)

contradicts the minimality of vertex cover S? ∪N (B \ S?,SCQ) for SCQ without disruption.

Indeed, the proof above holds for any design D (i.e., if k?D < n, then Fr(D) = 1) since we did not

exploit the structure of SCQ. Therefore, Fr(LCQ) = Fr(SCQ) = 1 when k?SCQ < n and k?LCQ < n.

• Let k?SCQ < k?LCQ = n, then by the discussion above, we have Fr(SCQ) = 1 because k?SCQ < n. In

addition, by Equation (19) we have R(Ud,LCQ) =
∑n

j=1 d
?
j,LCQ . Next, we evaluate Fr(LCQ) to prove

that Fr(LCQ) 6 1. Toward this goal, let B1 denote the set of products whose demands are larger

than 1 in d◦LCQ , i.e., B1 = {j ∈ B | d◦j,LCQ > 1} and A1 := N (B1,LCQ). Clearly, |B1| 6 |A1| and set

(B \B1) ∪A1 is a vertex cover for LCQ.

Fact 1. The inequality

|A1|+
n−|B1|∑
j=1

minj(d◦LCQ) >
n∑
j=1

d?j,LCQ , (A22)

is true since (B \ B1) ∪ A1 creates a vertex cover in LCQ that corresponds to the feasible

solution (k = n− |B1|,d◦LCQ) with the objective function value |A1|+
∑n−|B1|

j=1 minj(d◦LCQ)

for Equation (19). If (A22) does not hold true, then for this feasible solution we have

|A1| +
∑n−|B1|

j=1 minj(d◦LCQ) <
∑n

j=1 d
?
j,LCQ = R(Ud,LCQ), that contradicts the optimality

of (k?LCQ = n,d?LCQ).

Fact 2. By Equation (10), we have R(Ud,Up,Ua,LCQ) =
(
δ
k◦LCQ

,0
(e,LCQ) − 1

)+
+∑k◦LCQ

j=1 minj(d◦LCQ). For any k ∈ {0, . . . , n}, we defineG(k) = G1(k)+G2(k), whereG1(k) =(
δk,0(e,LCQ) − 1

)+
, and G2(k) =

∑k
j=1 minj(d◦LCQ). Observe that R(Ud,Up,Ua,LCQ) =

min06k6nG(k).

Evidently, G1(k) and G2(k) are non-increasing and non-decreasing functions of k, respec-

tively. Moreover, each value of k corresponds to a vertex cover that is associated with G(k)

with the total capacity G1(k) and the total demand G2(k), respectively. Note that G1(k) is

minimized when products with consecutive indices are selected in the vertex cover; hence,

without loss of generality, for each k we suppose that the vertex cover includes product set

S = {1, 2, . . . , k} and plant set N (B \ S,LCQ).

Next, we demonstrate that the value of any local minimum of G(k) is the same as G(k̄) at

one of the points k̄ ∈ {0, n− |B1|, n}. As a result, it is sufficient to compute G(k) only at

k ∈ {0, n− |B1|, n} and consider the minimum one as R(Ud,Up,Ua,LCQ).

Specifically, define k′ as the largest value of k such that G1(k) = n − 1 for all k 6 k′. If

k′ 6 n− |B1| − 1, then we show that

(a) G(n− |B1|) < G(n− |B1|+ 1) < . . . < G(n− 1)
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(b) G(k′) > . . . > G(n− |B1| − 2) > G(n− |B1| − 1)

(c) G(0) 6 G(1) 6 . . . 6 G(k′)

Hence, k = 0 is a local minimum of G(k). Moreover, if G(n− |B1| − 1) > G(n− |B1|), then

k = n− |B1| is a also local minimum.

In case k′ > n− |B1|, we only need to demonstrate that

(d) G(0) 6 G(1) 6 . . . 6 G(k′) < . . . < G(n− 1)

Thus, k = 0 is a local minimum of G(k). It should be noted that for k = n, if G(n− 1) >

G(n), then k = n is also a local minimum. In the following, we prove Relations (a) to (d).

Relation (a) holds true for any k ∈ {n−|B1|+ 1, . . . , n−1} because G1(k−1)−G1(k) = 1,

and G2(k−1)−G2(k) = −mink(d◦LCQ) < −1; therefore, G(k−1)−G(k) < 0. To elaborate

further, utilizing the structure of LCQ, product k (k > k′) has a different neighbor plant

from product k−1; i.e., G1(k−1)−G1(k) = |N (k,LCQ)\N (k−1,LCQ)| = 1. Furthermore,

by the definition of set B1 we have mink(d◦LCQ) > 1 for n−|B1| < k 6 n. As a consequence,

G2(k − 1)−G2(k) < −1.

Relation (b) holds true for any k ∈ {k′, . . . , n − |B1|} because G1(k − 1) − G1(k) = 1 and

G2(k − 1) − G2(k) = −mink(d◦LCQ) > −1; therefore G(k − 1) − G(k) > 0. By the struc-

ture of LCQ, product k (k > k′) has one different neighbor plant from product k − 1, i.e.,

G1(k− 1)−G1(k) = |N (k,LCQ) \N (k− 1,LCQ)| = 1. Furthermore, since mink(d◦LCQ) 6 1

for k 6 n− |B1|, we have G2(k − 1)−G2(k) = −mink(d◦LCQ) > −1.

Relation (c) holds true for any k ∈ {0, . . . , k′} because G1(k − 1) − G1(k) = 0 and

G2(k − 1) − G2(k) = −mink(d◦LCQ) 6 0; therefore, G(k − 1) − G(k) 6 0. We get

G1(k − 1) − G1(k) = 0 because G1(k) = n − 1 for all k 6 k′. Since there are no neg-

ative demands, it follows that G2(k − 1)−G2(k) 6 0.

Relation (d) holds true since Relations (a) and (c) are true. If k′ > n − |B1|, we have

G(k − 1) < G(k) for k ∈ {k′ + 1, . . . , n − 1} by Relation (a) and G(k − 1) 6 G(k) for

k ∈ {0, . . . , k′} by Relation (c).

It should be noted that G(k) may have local minimums other than set {0, n− |B1|, n}. However, on

the basis of Fact 2, any local minimum takes the value of G(k) at one of the points {0, n− |B1|, n}.
By considering Fact 2 and since R(Ud,Up,Ua,LCQ) = min06k6nG(k), in the following we evaluate

Fr(LCQ) only for k◦LCQ ∈ {0, n− |B1|, n}. Recall that it is supposed k?LCQ = n.

Let k◦LCQ = n, then we have k?LCQ = k◦LCQ = n. Using Equations (10) and (19), we obtain

R(Ud,LCQ) =
∑n

j=1 d
?
j,LCQ and R(Ud,Up,Ua,LCQ) =

∑n
j=1 d

◦
j,LCQ , respectively. Thus, R(Ud,LCQ) =

R(Ud,Up,Ua,LCQ) because it is clear that R(Ud,Up,Ua,LCQ) 6 R(Ud,LCQ) 6
∑n

j=1 d
◦
j,LCQ and since

(k?LCQ = n,d◦j,LCQ) is a feasible solution for (19). Hence, Fr(LCQ) = 0. Recall that Fr(SCQ) = 1

because k?LCQ < n. Therefore, Fr(LCQ) 6 Fr(SCQ) = 1.
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Let k◦LCQ = n−|B1|, then the corresponding minimum vertex cover for k◦LCQ = n−|B1| is A1∪(B\B1).

By Equation (10) we have R(Ud,Up,Ua,LCQ) = |A1|−1+
∑n−|B1|

j=1 minj(d◦LCQ). According to the def-

inition of fragility coupled with Relation (A22) in Fact 1, we get

Fr(LCQ) = R(Ud,LCQ)−R(Ud,Up,Ua,LCQ) =
n∑
j=1

d?j,LCQ −
(
|A1| − 1 +

n−|B1|∑
j=1

minj(d◦LCQ)
)
6 1.

Therefore, Fr(LCQ) 6 Fr(SCQ) = 1.

Let k◦LCQ = 0, then R(Ud,Up,Ua,LCQ) = n − 1 by Equation (10). Importantly, R(Ud,LCQ) =∑n
j=1 d

?
j,LCQ 6 n because k?LCQ = n; otherwise, one can select all plants as the vertex cover and as a

result R(Ud,LCQ) = n. Hence,

Fr(LCQ) =

n∑
j=1

d?j,LCQ − (n− 1) 6 1.

Therefore, Fr(LCQ) 6 Fr(SCQ) = 1 when k?SCQ < k?LCQ = n.

• Let k?SCQ = k?LCQ = n, then R(Ud,SCQ) = R(Ud,LCQ) =
∑n

j=1 d
?
j,SCQ =

∑n
j=1 d

?
j,LCQ . On the

other hand, based on (16) we have R(Ud,Up,Ua,SCQ) 6 R(Ud,Up,Ua,LCQ). Therefore, Fr(LCQ) 6

Fr(SCQ).

• Let k?LCQ < k?SCQ = n. Since k?SCQ = n, based on Equation (19), we get R(Ud,SCQ) =
∑n

j=1 d
?
j,SCQ .

Then by considering Inequality (14) and Theorem 1, we have R(Ud,SCQ) 6 R(Ud,LCQ). Hence,∑n
j=1 d

?
j,SCQ 6 R(Ud,LCQ). Additionally, note that (k = n,d?SCQ) is a feasible solution of (19) for

LCQ with the objective function value of
∑n

j=1 d
?
j,SCQ .

If
∑n

j=1 d
?
j,SCQ < R(Ud,LCQ), then we have a feasible solution (k = n,d?SCQ) with the objective

function value
∑n

j=1 d
?
j,SCQ being less than the optimal value R(Ud,LCQ); hence,

∑n
j=1 d

?
j,SCQ <

R(Ud,LCQ) cannot occur. If
∑n

j=1 d
?
j,SCQ = R(Ud,LCQ), then (k = n,d?SCQ) is an optimal solution

for (19). Thus, k?LCQ = k?SCQ = n and refer to the corresponding discussion above for this case.

Therefore, on the basis of the discussions above, Proposition 6 is proved. �
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