Analysis of Process Flexibility Designs under Disruptions

Erfan Mehmanchi, Hoda Bidkhori, Oleg A. Prokopyev

Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA, 15261

Supplementary Material: Proofs

Proof of Lemma 2. Based on Problem (3) and Remark 1 under Assumption $2\left(\mathbf{c}^{(p)}=\mathbf{e}\right)$ we have

$$
\begin{equation*}
\min _{\boldsymbol{g} \in \mathcal{U}_{p}} \delta^{k, \ell}(\boldsymbol{g}, \mathcal{D})=\min _{\mathbf{p}, \mathbf{q}, \mathbf{t}, g}\left\{\sum_{i \in I} g_{i} p_{i} \mid(3 \mathrm{~b})-(3 \mathbf{f}), \sum_{i \in I}\left(1-g_{i}\right)=\gamma, g_{i} \in\{0,1\}, \forall i \in I\right\} \geqslant 0 . \tag{A1}
\end{equation*}
$$

Recall also that $\delta^{k, \ell}(\mathbf{e}, \mathcal{D})=\min _{\mathbf{p}, \mathbf{q}, \mathbf{t}}\left\{\sum_{i \in I} p_{i} \mid(3 \mathrm{~b})-(3 \mathrm{f})\right\}$.
If there exists a feasible solution for the set of constraints (3b) to (3f) such that $\sum_{i \in I} p_{i} \leqslant \gamma$, then clearly $\delta^{k, \ell}(\mathbf{e}, \mathcal{D}) \leqslant \gamma$; additionally, for this feasible solution and every plant i such that $p_{i}=1$ let $g_{i}=0$, then $\min _{\boldsymbol{g} \in \mathcal{U}_{p}} \delta^{k, \ell}(\boldsymbol{g}, \mathcal{D})=\left(\delta^{k, \ell}(\mathbf{e}, \mathcal{D})-\gamma\right)^{+}=0$.

Now, suppose that $\sum_{i \in I} p_{i}>\gamma$ for all feasible solutions of the set of constraints (3b) to (3f). Then since $\sum_{i \in I}\left(1-g_{i}\right)=\gamma$, in any optimal solution of (A1), we have $g_{i}=0$ exactly for γ plants that $p_{i}=1$. Hence, all the optimal solutions of (A1) satisfy $p_{i}+g_{i} \geqslant 1$. Next, we show that $\min _{\boldsymbol{g} \in \mathcal{U}_{p}} \delta^{k, \ell}(\boldsymbol{g}, \mathcal{D})=\delta^{k, \ell}(\mathbf{e}, \mathcal{D})-\gamma$.

$$
\begin{align*}
& \min _{g \in \mathcal{U}_{p}} \delta^{k, \ell}(\boldsymbol{g}, \mathcal{D}) \\
& =\min _{\mathbf{p}, \mathbf{q}, \mathbf{t}, \boldsymbol{g}, \mathbf{y}}\left\{\sum_{i \in I} y_{i} \mid(3 \mathrm{~b})-(3 \mathrm{f}), \sum_{i \in I}\left(1-g_{i}\right)=\gamma, g_{i} \in\{0,1\},\right. \\
& \left.\qquad y_{i} \leqslant g_{i}, y_{i} \leqslant p_{i}, y_{i} \geqslant p_{i}+g_{i}-1, y_{i} \geqslant 0, \forall i \in I\right\} \tag{A2}\\
& =\min _{\mathbf{p}, \mathbf{q}, \mathbf{t}, g}\left\{\sum_{i \in I}\left(p_{i}+g_{i}-1\right)^{+} \mid(3 \mathrm{~b})-(3 \mathrm{f}), \sum_{i \in I}\left(1-g_{i}\right)=\gamma, g_{i} \in\{0,1\}, \forall i \in I\right\} \tag{A3}\\
& =\min _{\mathbf{p}, \mathbf{q}, \mathbf{t}, g}\left\{\sum_{i \in I}\left(p_{i}+g_{i}-1\right) \mid(3 \mathrm{~b})-(3 \mathrm{f}), \sum_{i \in I}\left(1-g_{i}\right)=\gamma, g_{i} \in\{0,1\}, \forall i \in I\right\} \tag{A4}\\
& =\min _{\mathbf{p}, \mathbf{q}, \mathbf{t}}\left\{\sum_{i \in I} p_{i}-\gamma \mid(3 \mathrm{~b})-(3 \mathbf{f})\right\}=\delta^{k, \ell}(\mathbf{e}, \mathcal{D})-\gamma . \tag{A5}
\end{align*}
$$

Equation (A2) holds by linearizing the bilinear terms $g_{i} p_{i}$, where $g_{i}, p_{i} \in\{0,1\}$ for all $i \in I$, using the standard techniques (see, e.g., Glover and Woolsey 1974) in the objective function of the optimization problem on the right-hand side of (A1). Equation (A3) holds since the optimization problem is in the minimization form; thus, the lower bounds of y are sufficient, i.e., $y_{i} \geqslant \max \left\{p_{i}+g_{i}-1,0\right\}$ for all $i \in I$. Equation (A4) is correct since $p_{i}+g_{i} \geqslant 1$ for any optimal solution. Finally, Equation (A5) holds by substitution of $\sum_{i \in I}\left(1-g_{i}\right)=\gamma$ in the objective function.

Proof of Lemma 3. To prove Relation (11) and Equations (12) and (13), separately for each one, we first derive $\delta^{k, \ell}\left(\mathbf{e}, \mathcal{L C}_{Q}\right)$. Then by applying Lemma 2, we obtain the desired result. Recall that the term $\delta^{k, \ell}\left(\mathbf{e}, \mathcal{L C}_{Q}\right)$ is PCID without any plant disruptions, i.e., the minimum number of plants (under the assumption $\mathbf{c}^{(p)}=\mathbf{e}$) required to create a vertex cover that includes k products after ignoring ℓ arcs.

Proof of Relation (11). We evaluate $\delta^{k, \ell}\left(\mathbf{e}, \mathcal{L C}_{Q}\right)$ for any $0 \leqslant k \leqslant n$ and $0 \leqslant \ell \leqslant n \cdot Q$. Design $\mathcal{L C}_{Q}$ has $n \cdot Q$ arcs, that exactly $k \cdot Q$ arcs are covered by k products. Among $Q \cdot(n-k)$ uncovered arcs, ℓ arcs are ignored by Equations (3c) and (3d). If $Q \cdot(n-k) \leqslant \ell$, then $n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor \leqslant 0$. Thus, $\delta^{k, \ell}\left(\mathbf{e}, \mathcal{L C}_{Q}\right)=\left(n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor\right)^{+}=0$.

Otherwise, there remain $Q \cdot(n-k)-\ell$ uncovered arcs. Since each plant can cover Q uncovered arcs at most, we have $\delta^{k, \ell}\left(\mathbf{e}, \mathcal{L C}{ }_{Q}\right) \geqslant \frac{Q \cdot(n-k)-\ell}{Q}$. Moreover, since $\delta^{k, \ell}\left(\mathbf{e}, \mathcal{L C}{ }_{Q}\right) \in \mathbb{Z}_{+}$we have $\delta^{k, \ell}\left(\mathbf{e}, \mathcal{L C}{ }_{Q}\right) \geqslant$ $\left\lceil\frac{Q \cdot(n-k)-\ell}{Q}\right\rceil=n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor$. Therefore, based on Lemma 2, we obtain that $\min _{\boldsymbol{g} \in \mathcal{U}_{p}}{ }^{k, \ell}\left(\boldsymbol{g}, \mathcal{L C}_{Q}\right) \geqslant$ $\left(n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor-\gamma\right)^{+}$for any $0 \leqslant k \leqslant n$ and $0 \leqslant \ell \leqslant n \cdot Q$.

Proof of Equation (12). For $k=0$, the proof is trivial since by Remark 3 part (i) we know that $\delta^{0,0}\left(\mathbf{e}, \mathcal{L C}_{Q}\right)=n$. Then we evaluate $\delta^{k, 0}\left(\mathbf{e}, \mathcal{L C}{ }_{Q}\right)$ for $1 \leqslant k \leqslant n-1$. Under the assumption $\mathbf{c}^{(p)}=\mathbf{e}$ by Remark 3 part (vi) we get $\delta^{k, 0}\left(\mathbf{e}, \mathcal{L C}_{Q}\right)=\min _{S \subseteq B,|S|=k}\left|\mathcal{N}\left(B \backslash S, \mathcal{L} C_{Q}\right)\right|$. Evidently, on the basis of the definition of Q-long chain we have $\left|\mathcal{N}\left(V, \mathcal{L C}_{Q}\right)\right| \geqslant \min \{n,|V|+Q-1\}$ for any $V \subseteq B, V \neq \emptyset$. Hence, $\delta^{k, 0}\left(\mathbf{e}, \mathcal{L C}_{Q}\right)=\min \{n,|B \backslash S|+Q-1\}=\min \{n, n-k+Q-1\}$; this minimum value can be obtained by letting S be a set of products with consecutive indices.

Proof of Equation (13). First, note that by Inequality (11) and Lemma 2 we have

$$
\begin{equation*}
\delta^{k, \ell}\left(\mathbf{e}, \mathcal{L C}_{Q}\right) \geqslant n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor . \tag{A6}
\end{equation*}
$$

Second, if $n Q \leqslant k Q+\ell$, then among $n Q$ arcs of $\mathcal{L C} C_{Q}$, exactly $k Q$ arcs are covered by k products and the remaining arcs all are ignored; as a consequence, $\delta^{k, \ell}\left(\mathbf{e}, \mathcal{L C}_{Q}\right)=\left(n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor\right)^{+}=0$. Then we evaluate
 $Q \geqslant 3$ separately as follows.

- Let $Q=2$, then in the following for any $0 \leqslant k \leqslant n$ and $1 \leqslant \ell \leqslant 2 \cdot n$ such that $2 n>2 k+\ell$, we create a vertex cover necessitating $n-k-\left\lfloor\frac{\ell}{2}\right\rfloor>0$ plants. Thus, based on Inequality (A6), the created vertex cover is the minimum and we have $\delta^{k, \ell}\left(\mathbf{e}, \mathcal{L C}_{2}\right)=n-k-\left\lfloor\frac{\ell}{2}\right\rfloor$.
If $k=0$, then we temporarily put all n plants in the vertex cover. Next, by ignoring every two arcs connected to a plant in $\mathcal{L \mathcal { C } _ { 2 }}$, we can exclude exactly one plant from the vertex cover (in total, $\left\lfloor\frac{\ell}{2}\right\rfloor$ plants are excluded). Thus, $\delta^{0, \ell}\left(\mathbf{e}, \mathcal{L C}_{2}\right)=n-0-\left\lfloor\frac{\ell}{2}\right\rfloor=n-\left\lfloor\frac{\ell}{2}\right\rfloor$.
For $0<k<n$, let $S \subset B,|S|=k$ be a set of products with consecutive indices, e.g., $S=\{1,2, \ldots, k\}$. After putting S in the vertex cover, $2 n-2 k$ uncovered arcs remain. By the selection of S and the
structure of $\mathcal{L C}$ 2 exactly two uncovered arcs emanate from $\mathcal{N}\left(S, \mathcal{L C}_{2}\right)$, i.e., arcs with an endpoint in $B \backslash S$. Next, consider two cases where ℓ is either even or odd.

Case 1: if ℓ is even, let us first ignore 2 uncovered arcs of $\mathcal{N}\left(S, \mathcal{L C}_{2}\right)$, and then (if $\ell>2$) ignore $\ell-2$ uncovered arcs which are connected to $\frac{\ell-2}{2}$ of plants in $A \backslash \mathcal{N}\left(S, \mathcal{L C}_{2}\right)$. Thus, there remain $2 n-2 k-\ell$ uncovered arcs. The number of plants in $A \backslash \mathcal{N}\left(S, \mathcal{L C}_{2}\right)$ that are still connected to two uncovered arcs is $\frac{2 n-2 k-\ell}{2}=n-k-\frac{\ell}{2}=n-k-\left\lfloor\frac{\ell}{2}\right\rfloor$, and we need all of them to create a vertex cover with S. Therefore, by Inequality (A6) we get $\delta^{k, \ell}\left(\mathbf{e}, \mathcal{L C}_{2}\right)=n-k-\left\lfloor\frac{\ell}{2}\right\rfloor$.
Case 2: if ℓ is odd, let us first ignore uncovered $\operatorname{arc}(\mathrm{s})$ of $\mathcal{N}\left(S, \mathcal{L C}_{2}\right)$, and then (if $\ell>2$) ignore $\ell-2$ uncovered arcs which are connected to $\left\lceil\frac{\ell-2}{2}\right\rceil$ of plants in $A \backslash \mathcal{N}\left(S, \mathcal{L C}_{2}\right)$. After ignoring ℓ arcs, all plants in $A \backslash \mathcal{N}\left(S, \mathcal{L C}_{2}\right)$ except one are connected to either 0 or 2 uncovered arcs and only one plant is connected to a single uncovered arc. Thus, $\delta^{k, \ell}\left(\mathbf{e}, \mathcal{L C}_{2}\right) \leqslant \frac{2 n-2 k-\ell}{2}+1$. Since $\delta^{k, \ell}\left(\mathbf{e}, \mathcal{L C}_{2}\right) \in \mathbb{Z}_{+}$we get $\delta^{k, \ell}\left(\mathbf{e}, \mathcal{L C}_{2}\right) \leqslant\left\lfloor\frac{2 n-2 k-\ell}{2}+1\right\rfloor=n-k-\left\lfloor\frac{\ell}{2}\right\rfloor$. As a result, by Inequality (A6) we get $\delta^{k, \ell}\left(\mathbf{e}, \mathcal{L C}_{2}\right)=n-k-\left\lfloor\frac{\ell}{2}\right\rfloor$.
Therefore, Equation (13) holds true for $Q=2$ by using Lemma 2.

- Let $Q \geqslant 3$, then for any $0 \leqslant k \leqslant n$ and $(Q-1)^{2} \leqslant \ell \leqslant Q \cdot n$ such that $n Q>k Q+\ell$ it suffices to demonstrate that there exist $S \subseteq B,|S|=k$ and $E \subseteq \mathcal{L C}_{Q},|E|=\ell$ such that $\left|\mathcal{N}\left(B \backslash S, \mathcal{L C}_{Q} \backslash E\right)\right|=n-k-$ $\left\lfloor\frac{\ell}{Q}\right\rfloor$. It implies that $\delta^{k, \ell}\left(\mathbf{e}, \mathcal{L C}_{Q}\right)=n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor$ due to Remark 3 part (vi) and Inequality (A6). Then by applying Lemma 2, we obtain the desired result, that is $\min _{\boldsymbol{g} \in \mathcal{U}_{p}} \delta^{k, \ell}\left(\boldsymbol{g}, \mathcal{L} \mathcal{C}_{Q}\right)=\left(n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor-\gamma\right)^{+}$. To this end, let S be a set of k products with consecutive indices, e.g., $S=\{1, \ldots, k\}$ and $Z:=$ $B \backslash S=\{k+1, \ldots, n\}$. Clearly, $|S|=k$ and $|Z|=n-k$. Put S in the vertex cover. Hence, all arcs connected to S are covered and all uncovered arcs have an endpoint in products of set Z. We define η_{i} as the number of uncovered arcs (with an endpoint in Z) connected to plant $i \in A$. It should be noted that $\eta_{i}>0$ for all $i \in \mathcal{N}\left(Z, \mathcal{L C}_{Q}\right)$ and $\eta_{i}=0$ for all $i \in A \backslash \mathcal{N}\left(Z, \mathcal{L C}_{Q}\right)$. Without excluding E from $\mathcal{L C}_{Q}$ the set $\mathcal{N}\left(Z, \mathcal{L C}_{Q}\right)$ is required to create a vertex cover along with S. We continue our discussion by considering two cases $|Z| \leqslant Q-2$ and $|Z| \geqslant Q-1$, separately.

Case 1: If $|Z| \leqslant Q-2$, then $|Z| Q \leqslant(Q-2) Q<(Q-1)^{2} \leqslant \ell$. For any $\ell \geqslant(Q-1)^{2}$ let $E \subseteq \mathcal{L C}_{Q}$ such that $\left\{(i, j) \in \mathcal{L C}_{Q} \mid j \in Z\right\} \subseteq E$, and $|E|=\ell$. Clearly, $\left|\left\{(i, j) \in \mathcal{L C}_{Q} \mid j \in Z\right\}\right|=|Z| Q<|E|=\ell$ and E includes all $|Z| Q$ arcs connected to Z. Thus, $\left|\mathcal{N}\left(Z, \mathcal{L C} \mathcal{C}_{Q} \backslash E\right)\right|=0$. It should be observed that $\ell>|Z| Q=(n-k) Q$; hence, $\left(n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor\right)^{+}=0$. Therefore, there exist $S \subseteq B,|S|=k$ and $E \subseteq \mathcal{L C}_{Q},|E|=\ell$ such that $\left|\mathcal{N}\left(Z, \mathcal{L C}_{Q} \backslash E\right)\right|=\left(n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor\right)^{+}=0$.
Case 2: If $|Z| \geqslant Q-1$, then define $\tau_{t}=\left|\left\{i \in A \mid \eta_{i}=t\right\}\right|$, that is the number of plants with $\eta_{i}=t$, and $x=(|Z|+Q-1-n)^{+}$. By the definition of $\mathcal{L C} Q$, we observe that either $\eta_{i}=0$ or $\eta_{i} \geqslant x+1$. Additionally, $\tau_{x+1}=x+2, \tau_{t}=2$ for $t \in\{x+2, x+3, \ldots, Q-1\}$, and $\tau_{Q}=\left|\mathcal{N}\left(Z, \mathcal{L C}_{Q}\right)\right|-2(Q-1-(1+x))-(x+2)=\left|\mathcal{N}\left(Z, \mathcal{L C} C_{Q}\right)\right|-2 Q+x+2$. We first show that,

Fact 1. for any $T \in\{x+1, x+2, \ldots, Q-1\}$,

$$
\begin{equation*}
\sum_{t=x+1}^{T}\left(\tau_{t} \cdot t\right)-T=T^{2} \tag{A7}
\end{equation*}
$$

We prove Equality (A7) by induction on T. Let $T=x+1$, then since $\tau_{x+1}=x+2$ we get $\sum_{t=x+1}^{x+1}\left(\tau_{t} \cdot t\right)-(x+1)=(x+2)(x+1)-(x+1)=(x+1)^{2}$. Next, we need to prove that if Equality (A7) holds true for T, then it also holds true for $T+1$. Suppose that Equality (A7) is true for some $T \in\{x+1, x+2, \ldots, Q-2\}$, then by induction hypothesis,

$$
\begin{equation*}
\sum_{t=x+1}^{T}\left(\tau_{t} \cdot t\right)-T=T^{2} \tag{A8}
\end{equation*}
$$

Additionally, since $\tau_{T+1}=2$ for $T \in\{x+1, x+2, \ldots, Q-2\}$, we have $\sum_{t=x+1}^{T+1}\left(\tau_{t} \cdot t\right)=$ $\sum_{t=x+1}^{T}\left(\tau_{t} \cdot t\right)+2(T+1)$; by using this equality and also Equality (A8), starting from the left-hand side of (A7) for $T+1$ we get

$$
\sum_{t=x+1}^{T+1}\left(\tau_{t} \cdot t\right)-(T+1)=\sum_{t=x+1}^{T}\left(\tau_{t} \cdot t\right)+T+1=T^{2}+T+T+1=(T+1)^{2}
$$

Therefore, Equality (A7) is valid for any $T \in\{x+1, x+2, \ldots, Q-1\}$.
Next, recall that $\left|\mathcal{N}\left(Z, \mathcal{L C} \mathcal{C}_{Q}\right)\right|$ plants are required to create a vertex cover along with S. By the definition of Q-long chain design and since Z includes products with consecutive indices, $\left|\mathcal{N}\left(Z, \mathcal{L C} Q_{Q}\right)\right|=$ $\min \{n,|Z|+Q-1\}$. Next, we continue the discussion for different values of $\ell \geqslant(Q-1)^{2}$.

- for $\ell=(Q-1)^{2}$ let $E_{0}=\left\{(i, j) \in \mathcal{L C}_{Q} \mid j \in Z, 0<\eta_{i} \leqslant Q-1\right\} \backslash\left\{(i, j) \in \mathcal{L C} C_{Q} \mid j \in Z, \eta_{i}=Q-1, i \in\right.$ $\left.I_{1} \subset I,\left|I_{1}\right|=1\right\}$. In fact, set E_{0} includes uncovered arcs connected to plants $i \in \mathcal{N}\left(Z, \mathcal{L C} C_{Q}\right)$ except those with $\eta_{i}=Q$, and one of two plants with $\eta_{i}=Q-1$, i.e., E_{0} is the set of arcs with an endpoint in Z and connected to $\left|\mathcal{N}\left(Z, \mathcal{L C}_{Q}\right)\right|-\tau_{Q}-1=2 Q-x-3$ plants with the smallest $\eta_{i}>0$. Let $T=Q-1$ in Equality (A7). Then, by Fact 1 we have $\left|E_{0}\right|=\sum_{t=x+1}^{Q-1}\left(\tau_{t} \cdot t\right)-(Q-1)=(Q-1)^{2}=\ell$. Thus, by excluding E_{0} from $\mathcal{L C} \mathcal{C}_{Q}$ the number of plants required to create a vertex cover, $\left|\mathcal{N}\left(Z, \mathcal{L C} \mathcal{C}_{Q}\right)\right|$, along with S reduces by $2 Q-x-3$, i.e.,

$$
\begin{equation*}
\left|\mathcal{N}\left(Z, \mathcal{L C}_{Q} \backslash E_{0}\right)\right|=\left|\mathcal{N}\left(Z, \mathcal{L C} C_{Q}\right)\right|-(2 Q-x-3)=\min \{n,|Z|+Q-1\}-(2 Q-x-3) \tag{A9}
\end{equation*}
$$

If $|Z|+Q-1 \geqslant n$, then $x=|Z|+Q-1-n$ and from Equality (A9),

$$
\begin{aligned}
\left|\mathcal{N}\left(Z, \mathcal{L C}_{Q} \backslash E_{0}\right)\right| & =n-2 Q+(|Z|+Q-1-n)+3 \\
& =|Z|-(Q-2)=|Z|-\left\lfloor\frac{(Q-1)^{2}}{Q}\right\rfloor=n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor>0
\end{aligned}
$$

else, $x=0$ and from Equality (A9),

$$
\begin{aligned}
\left|\mathcal{N}\left(Z, \mathcal{L C}_{Q} \backslash E_{0}\right)\right| & =(|Z|+Q-1)-(2 Q-0-3)=|Z|-(Q-2) \\
& =|Z|-\left\lfloor\frac{(Q-1)^{2}}{Q}\right\rfloor=n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor>0 .
\end{aligned}
$$

As a consequence,

$$
\begin{equation*}
\left|\mathcal{N}\left(Z, \mathcal{L C}_{Q} \backslash E_{0}\right)\right|=n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor>0 . \tag{A10}
\end{equation*}
$$

Note that the value of η_{i} for $i \in \mathcal{N}\left(Z, \mathcal{L C} C_{Q} \backslash E_{0}\right)$, the remaining required plants for the vertex cover after ignoring arcs in E_{0}, is $Q-1, Q, Q, \ldots, Q$, i.e., $\tau_{t}=0$ for $t \leqslant Q-2, \tau_{Q-1}=1$ and still $\tau_{Q}=\left|\mathcal{N}\left(Z, \mathcal{L C} C_{Q}\right)\right|-2 Q+x+2$.

- for $(Q-1)^{2}<\ell<(Q-1)^{2}+(Q-1)$ let $E_{1}=E_{0} \cup\left\{(i, j) \in \mathcal{L} C_{Q} \mid j \in Z,(i, j) \notin E_{0}\right\}$ such that $\left|E_{1}\right|=\ell$. Excluding E_{1} from $\mathcal{L C} C_{Q}$ does not remove any more plants from $\mathcal{N}\left(Z, \mathcal{L C} C_{Q}\right)$ than by excluding E_{0}. Because $\left|E_{1} \backslash E_{0}\right|<Q-1$, but $\eta_{i}=Q-1$ or Q for $i \in \mathcal{N}\left(Z, \mathcal{L C}{ }_{Q} \backslash E_{0}\right)$. Thus, based on (A10), we get

$$
\left|\mathcal{N}\left(Z, \mathcal{L C}_{Q} \backslash E_{1}\right)\right|=\left|\mathcal{N}\left(Z, \mathcal{L C} C_{Q} \backslash E_{0}\right)\right|=|Z|-\left\lfloor\frac{(Q-1)^{2}}{Q}\right\rfloor=n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor>0
$$

for any $(Q-1)^{2}<\ell<(Q-1)^{2}+(Q-1)$.

- for $\ell=(Q-1)^{2}+(Q-1)+t \cdot Q=Q(Q-1+t)$, where $t \in \mathbb{Z}_{+} \cup\{0\}$. Let $E_{2}=\cup_{i \in A}\left\{(i, j) \in \mathcal{L C} C_{Q} \mid j \in\right.$ $Z,(i, j) \notin E_{0}, \eta_{i}=Q-1$ or $\left.\eta_{i}=Q\right\} \cup E_{0}$ such that $\left|E_{2}\right|=\ell$. Subsequently, excluding E_{2} from $\mathcal{L C}{ }_{Q}$ removes $t+1$ plant(s) from $\mathcal{N}\left(Z, \mathcal{L C} Q_{Q}\right)$ more than E_{0}, because $E_{2} \backslash E_{0}$ includes arcs with an endpoint in Z and connected to a plant with $\eta_{i}=Q-1$ and t plants with $\eta_{i}=Q$. Hence, by (A10), we get

$$
\begin{align*}
\left|\mathcal{N}\left(Z, \mathcal{L C}_{Q} \backslash E_{2}\right)\right| & =\left|\mathcal{N}\left(Z, \mathcal{L C}_{Q} \backslash E_{0}\right)\right|-(t+1)=|Z|-\left\lfloor\frac{(Q-1)^{2}}{Q}\right\rfloor-(t+1) \\
& =|Z|-\left\lfloor\frac{Q(Q-1+t)}{Q}\right\rfloor=n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor \tag{A11}
\end{align*}
$$

for $\ell=Q(Q-1+t)$. It should be noted that $\eta_{i}=Q$ for $i \in \mathcal{N}\left(Z, \mathcal{L C}{ }_{Q} \backslash E_{2}\right)$, i.e., for the remaining plants to create the vertex cover after ignoring arcs in E_{2}.

- for $Q(Q-1+t)<\ell<Q(Q-1+t)+r$, where $t \in \mathbb{Z}_{+} \cup\{0\}$ and $1 \leqslant r<Q$. Let $E_{3}=E_{2} \cup\{(i, j) \in$ $\left.\mathcal{L C}_{Q} \mid j \in Z,(i, j) \notin E_{2}\right\}$ such that $\left|E_{3}\right|=\ell$. It can be clearly seen that excluding E_{3} from $\mathcal{L C}{ }_{Q}$ removes no more plants from $\mathcal{N}\left(Z, \mathcal{L C}_{Q}\right)$ than excluding E_{2}, because $\left|E_{3} \backslash E_{2}\right|=r<Q$, while $\eta_{i}=Q$ for $i \in \mathcal{N}\left(Z, \mathcal{L C}_{Q} \backslash E_{2}\right)$. Thus, by (A11) we have

$$
\left|\mathcal{N}\left(Z, \mathcal{L C}_{Q} \backslash E_{3}\right)\right|=\left|\mathcal{N}\left(Z, \mathcal{L C} C_{Q} \backslash E_{2}\right)\right|=|Z|-\left\lfloor\frac{Q(Q-1+t)}{Q}\right\rfloor=n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor
$$

for any $Q(Q-1+t)<\ell<Q(Q-1+t)+r$.

Therefore, there exist $S \subseteq B,|S|=k$ and $E \subseteq \mathcal{L C}_{Q},|E|=\ell$ in a manner that $\left|\mathcal{N}\left(Z, \mathcal{L C} Q_{Q} \backslash E\right)\right|=$ $n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor$ for $|Z| \geqslant(Q-1)$ and any $\ell \geqslant(Q-1)^{2}$.

Finally, according to the discussion above for $Q \geqslant 3$, Remark 3 part (vi), and Inequality (A6) we have $\delta^{k, \ell}\left(\mathbf{e}, \mathcal{L C}_{Q}\right)=\left|\mathcal{N}\left(Z, \mathcal{L C}{ }_{Q} \backslash E\right)\right|=n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor$. Thus, Equation (13) holds true for $Q \geqslant 3$ by using Lemma 2.

Proof of Lemma 4. We prove Lemma 4 by using a double induction on z and ℓ in the following three steps including the base case, induction over z for $\ell=1$, and induction over ℓ for fixed z.

Base case. We show that Lemma 4 is true for $z=1$ and $\ell=1$, i.e., there exist some $T \subseteq B,|T|=1$ and $E \subseteq \mathcal{D},|E|=1$ such that $|\mathcal{N}(T, \mathcal{D} \backslash E)| \leqslant 1$. Toward this goal, for any $u \in B$, consider $T=\{u\}$. Note that there exist $a, a^{\prime} \in A$ such that $|\mathcal{N}(u, \mathcal{D})|=\left|\left\{a, a^{\prime}\right\}\right|=2$. Let $E=\{(a, u)\}$, then $|\mathcal{N}(T, \mathcal{D} \backslash E)|=1$.

Induction over z for $\ell=1$. We need to prove that if Lemma 4 holds true for $z<|B|$ and $\ell=1$, then it also holds true for $z+1$ and $\ell=1$ (note that $\left\lfloor\frac{\ell}{2}\right\rfloor=0$ for $\ell=1$). Suppose that Lemma 4 is true for some $z<|B|$ and $\ell=1$, then by induction hypothesis, there exist sets $T^{z} \subset B,\left|T^{z}\right|=z$, and $E^{z}=\{(a, b)\} \subset \mathcal{D},\left|E^{z}\right|=1$ such that $\left|\mathcal{N}\left(T^{z}, \mathcal{D} \backslash E^{z}\right)\right| \leqslant z$. We consider the following two cases:
Case 1: let $E^{z}=\{(a, b)\} \in \mathcal{D} \cap\left\{\mathcal{N}\left(T^{z}, \mathcal{D}\right) \times T^{z}\right\}$. It should be noted that the vertices in $A \cup B$ over \mathcal{D} form a connected graph, and $T^{z} \subset B$. Therefore, there exists some $v \in \mathcal{N}\left(T^{z}, \mathcal{D} \backslash E^{z}\right)$ and $v^{\prime} \notin \mathcal{N}\left(T^{z}, \mathcal{D} \backslash E^{z}\right)$ such that (v, u) and $\left(v^{\prime}, u\right)$ are arcs for some $u \notin T^{z}$. Let $T^{z+1}=T^{z} \cup\{u\}$ and $E^{z+1}=E^{z}$, subsequently, we get $\left|\mathcal{N}\left(T^{z+1}, \mathcal{D} \backslash E^{z+1}\right)\right| \leqslant z+1$.

Case 2: let $E^{z}=\{(a, b)\} \notin \mathcal{D} \cap\left\{\mathcal{N}\left(T^{z}, \mathcal{D}\right) \times T^{z}\right\}$. Since \mathcal{D} is connected, there exists $u \in B \backslash T^{z}$ such that $\mathcal{N}(u, \mathcal{D}) \cap \mathcal{N}\left(T^{z}, \mathcal{D}\right) \neq \emptyset$. Thus, for $T^{z+1}=T^{z} \cup\{u\}$ and $E^{z+1}=E^{z}$ we get $\left|\mathcal{N}\left(T^{z+1}, \mathcal{D} \backslash E^{z+1}\right)\right| \leqslant z+1$.

Induction over ℓ for fixed z. We need to prove that if Lemma 4 holds true for some $1 \leqslant z \leqslant|B|$ and $1 \leqslant \ell<2 n$, then it also holds true for z and $\ell+1$. Suppose that Lemma 4 is true for some $1 \leqslant z \leqslant|B|$ and $1 \leqslant \ell<2 n$, then by induction hypothesis there exist sets $T^{\ell} \subseteq B,\left|T^{\ell}\right|=z$, and $E^{\ell} \subset \mathcal{D},\left|E^{\ell}\right|=\ell$ such that $\left|\mathcal{N}\left(T^{\ell}, \mathcal{D} \backslash E^{\ell}\right)\right| \leqslant\left(z-\left\lfloor\frac{\ell}{2}\right\rfloor\right)^{+}$. Construct $E^{\ell+1}=E^{\ell} \cup\{(a, b)\}$ such that $(a, b) \in \mathcal{D} \backslash E^{\ell}$ and $T^{\ell+1}=T^{\ell}$; subsequently, we consider the following three cases when $z-\left\lfloor\frac{\ell}{2}\right\rfloor>0$ (the proof is trivial for $\left.\left(z-\left\lfloor\frac{\ell}{2}\right\rfloor\right)^{+}=0\right)$:
Case 1: if $\left|\mathcal{N}\left(T^{\ell}, \mathcal{D} \backslash E^{\ell}\right)\right|<z-\left\lfloor\frac{\ell}{2}\right\rfloor$, then either $\left|\mathcal{N}\left(T^{\ell+1}, \mathcal{D} \backslash E^{\ell+1}\right)\right|=\left|\mathcal{N}\left(T^{\ell}, \mathcal{D} \backslash E^{\ell}\right)\right|$ or $\mid \mathcal{N}\left(T^{\ell+1}, \mathcal{D} \backslash\right.$ $\left.E^{\ell+1}\right)\left|=\left|\mathcal{N}\left(T^{\ell}, \mathcal{D} \backslash E^{\ell}\right)\right|-1\right.$. Similarly, either $z-\left\lfloor\frac{\ell+1}{2}\right\rfloor=z-\left\lfloor\frac{\ell}{2}\right\rfloor$ or $z-\left\lfloor\frac{\ell+1}{2}\right\rfloor=z-\left\lfloor\frac{\ell}{2}\right\rfloor-1$. Therefore, we have $\left|\mathcal{N}\left(T^{\ell+1}, \mathcal{D} \backslash E^{\ell+1}\right)\right| \leqslant z-\left\lfloor\frac{\ell+1}{2}\right\rfloor$.
Case 2: if $\left|\mathcal{N}\left(T^{\ell}, \mathcal{D} \backslash E^{\ell}\right)\right|=z-\left\lfloor\frac{\ell}{2}\right\rfloor$ and ℓ is even, then either $\left|\mathcal{N}\left(T^{\ell+1}, \mathcal{D} \backslash E^{\ell+1}\right)\right|=\left|\mathcal{N}\left(T^{\ell}, \mathcal{D} \backslash E^{\ell}\right)\right|$ or $\left|\mathcal{N}\left(T^{\ell+1}, \mathcal{D} \backslash E^{\ell+1}\right)\right|=\left|\mathcal{N}\left(T^{\ell}, \mathcal{D} \backslash E^{\ell}\right)\right|-1$, but $z-\left\lfloor\frac{\ell+1}{2}\right\rfloor=z-\left\lfloor\frac{\ell}{2}\right\rfloor$. As a result, $\left|\mathcal{N}\left(T^{\ell+1}, \mathcal{D} \backslash E^{\ell+1}\right)\right| \leqslant$ $z-\left\lfloor\frac{\ell+1}{2}\right\rfloor$.

Case 3: if $\left|\mathcal{N}\left(T^{\ell}, \mathcal{D} \backslash E^{\ell}\right)\right|=z-\left\lfloor\frac{\ell}{2}\right\rfloor$ and ℓ is odd, i.e., $\ell=2 t-1, t \in\{1,2, \ldots, n\}$, then $z-\left\lfloor\frac{\ell+1}{2}\right\rfloor=$ $z-\left\lfloor\frac{\ell}{2}\right\rfloor-1$. Next, we demonstrate that there exists $a \in \mathcal{N}\left(T^{\ell}, \mathcal{D} \backslash E^{\ell}\right)$ which is connected to T^{ℓ} by only one arc:

Set $\mathcal{N}\left(T^{\ell}, \mathcal{D}\right)$ is connected to T^{ℓ} by $2 z$ arcs. Thus, all $i \in \mathcal{N}\left(T^{\ell}, \mathcal{D} \backslash E^{\ell}\right)$ cannot be connected to T^{ℓ} by 2 or more than 2 arcs, i.e., there exists at least a plant $a \in \mathcal{N}\left(T^{\ell}, \mathcal{D} \backslash E^{\ell}\right)$ that is connected to T^{ℓ} by only one arc. Otherwise, the number of arcs connecting T^{ℓ} to $\mathcal{N}\left(T^{\ell}, \mathcal{D}\right)$ would be greater than $2 z$ because

$$
\begin{aligned}
2\left|\mathcal{N}\left(T^{\ell}, \mathcal{D} \backslash E^{\ell}\right)\right|+\ell & =2 \cdot\left(z-\left\lfloor\frac{2 t-1}{2}\right\rfloor\right)+2 t-1 \\
& =2 \cdot(z-t+1)+2 t-1>2 z, \quad \forall t \in\{1,2, \ldots, n\} .
\end{aligned}
$$

Therefore, by ignoring an odd number of arcs connecting T^{ℓ} to $\mathcal{N}\left(T^{\ell}, \mathcal{D}\right)$ such that $\left|\mathcal{N}\left(T^{\ell}, \mathcal{D} \backslash E^{\ell}\right)\right|=$ $\left(z-\left\lfloor\frac{\ell}{2}\right\rfloor\right)^{+}$, there exists plant $a \in \mathcal{N}\left(T^{\ell}, \mathcal{D} \backslash E^{\ell}\right)$ connected to T^{ℓ} by one arc. Let (a, b) be the arc connecting $b \in T^{\ell}$ to a and set $E^{\ell+1}=E^{\ell} \cup\{(a, b)\}$ and $T^{\ell+1}=T^{\ell}$. Thus, $\left|\mathcal{N}\left(T^{\ell+1}, \mathcal{D} \backslash E^{\ell+1}\right)\right|=$ $\left|\mathcal{N}\left(T^{\ell}, \mathcal{D} \backslash E^{\ell}\right)\right|-1$, and we have $\left|\mathcal{N}\left(T^{\ell+1}, \mathcal{D} \backslash E^{\ell+1}\right)\right|=z-\left\lfloor\frac{\ell+1}{2}\right\rfloor$.
 by using Lemma 2 and Theorem 1 it is proved that Theorem 2 holds. If $\ell=0$, we refer to Simchi-Levi and Wei (2015, Theorem 5). In addition, observe that if $2 n \leqslant 2 k+\ell$, then $\delta^{k, \ell}(\cdot, \cdot)=0$. Thus, we only consider the case wherein $2 k+\ell<2 n$.

For any $0 \leqslant k \leqslant n$ and $1 \leqslant \ell \leqslant 2 n$ such that $2 k+\ell<2 n$, it suffices to show that we can find some sets $S \subseteq B,|S|=k$ and $E \subseteq \mathcal{D},|E|=\ell$ such that $|\mathcal{N}(B \backslash S, \mathcal{D} \backslash E)| \leqslant n-k-\left\lfloor\frac{\ell}{2}\right\rfloor$. Then based on Remark 3 part ($v i$), Equation (13), and Lemma 2,

$$
|\mathcal{N}(B \backslash S, \mathcal{D} \backslash E)|=\delta^{k, \ell}(\mathbf{e}, \mathcal{D}) \leqslant \delta^{k, \ell}\left(\mathbf{e}, \mathcal{L C}_{2}\right)=n-k-\left\lfloor\frac{\ell}{2}\right\rfloor .
$$

Assume that design \mathcal{D} comprises c connected components named $\mathcal{D}_{1}, \ldots, \mathcal{D}_{c}$ such that $A_{w} \subset A$ and $B_{w} \subset B, w \in\{1,2, \ldots, c\}$, denote the sets of plants and products of the w-th component, respectively. Without loss of generality, let us suppose that $\left|A_{w}\right|-\left|B_{w}\right|$ is nondecreasing with w. Because $\sum_{w=1}^{c}\left(\left|A_{w}\right|-\left|B_{w}\right|\right)=0$, this assumption implies that $\sum_{w=1}^{t}\left|A_{w}\right| \leqslant \sum_{w=1}^{t}\left|B_{w}\right|$ for any $t \leqslant c$.

For any $0 \leqslant k<n$ and $1 \leqslant \ell<2 n$ such that $2 k+\ell<2 n$, we have $n-k-\left\lfloor\frac{\ell}{2}\right\rfloor>0$. Let $t_{k \ell}$ denote the largest possible t such that $\sum_{w=1}^{t}\left|B_{w}\right|+\left\lfloor\frac{\ell-1}{2}\right\rfloor<n-k$. By our choice of $t_{k \ell}$, we get $t_{k \ell}<c$ and $n-k-\sum_{w=1}^{t_{k \ell}}\left|B_{w}\right|-\left\lfloor\frac{\ell-1}{2}\right\rfloor \leqslant\left|B_{t_{k \ell}+1}\right|$. Moreover, define $T_{0} \subseteq \bigcup_{w=t_{k \ell+1}}^{c} B_{w}$ with $\left|T_{0}\right|=\left\lfloor\frac{\ell-1}{2}\right\rfloor$, and $E_{0}=\left\{(i, j) \in \mathcal{D} \mid j \in T_{0}\right\}$; hence, $\left|E_{0}\right|=2\left\lfloor\frac{\ell-1}{2}\right\rfloor$ because $|\mathcal{N}(u, \mathcal{D})|=2$ for all $u \in B$.

Based on Lemma 4, in the connected component $B_{t_{k \ell}+1}$, we can find some sets T_{1} and E_{1}, where $T_{1} \subseteq B_{t_{k \ell+1}},\left|T_{1}\right|=n-k-\sum_{w=1}^{t_{k \ell}}\left|B_{w}\right|-\left\lfloor\frac{\ell-1}{2}\right\rfloor$, and $E_{1} \subseteq \mathcal{N}\left(T_{1}, \mathcal{D}\right) \times T_{1},\left|E_{1}\right|=\ell-\left|E_{0}\right|=\left(\ell-2\left\lfloor\frac{\ell-1}{2}\right\rfloor\right) \in$ $\{1,2\}$ such that

$$
\begin{align*}
\left|\mathcal{N}\left(T_{1}, \mathcal{D} \backslash E_{1}\right)\right| & \leqslant n-k-\sum_{w=1}^{t_{k \ell}}\left|B_{w}\right|-\left\lfloor\frac{\ell-1}{2}\right\rfloor-\left\lfloor\frac{\left|E_{1}\right|}{2}\right\rfloor \\
& =n-k-\sum_{w=1}^{t_{k \ell}}\left|B_{w}\right|-\left\lfloor\frac{\ell-1}{2}\right\rfloor-\left\lfloor\frac{\ell-2\left\lfloor\frac{\ell-1}{2}\right\rfloor}{2}\right\rfloor=n-k-\sum_{w=1}^{t_{k \ell}}\left|B_{w}\right|-\left\lfloor\frac{\ell}{2}\right\rfloor . \tag{A12}
\end{align*}
$$

Next, we select predefined T_{0} such that $T_{0} \cap T_{1}=\emptyset$, this is possible because it can simply be verified that for $T_{0} \subseteq \bigcup_{w=t_{k \ell+1}}^{c} B_{w}$ and $T_{1} \subseteq B_{t_{k \ell+1}}$ we have $\left|T_{0}\right|+\left|T_{1}\right| \leqslant\left|\bigcup_{w=t_{k \ell+1}}^{c} B_{w}\right|$; by this selection we also have $E_{0} \cap E_{1}=\emptyset$. Finally, let $S:=\bigcup_{w=t_{k l+1}}^{c} B_{w} \backslash\left(T_{0} \cup T_{1}\right)$, and $E=E_{0} \cup E_{1}$; thus, $|E|=\ell$, and by (A12) we get

$$
\begin{aligned}
|\mathcal{N}(B \backslash S, \mathcal{D} \backslash E)| & \leqslant\left|\mathcal{N}\left(T_{1}, \mathcal{D} \backslash E_{1}\right)\right|+\sum_{t=1}^{t_{k \ell}}\left|A_{w}\right| \\
& \leqslant n-k-\sum_{w=1}^{t_{k \ell}}\left|B_{w}\right|-\left\lfloor\frac{\ell}{2}\right\rfloor+\sum_{w=1}^{t_{k \ell}}\left|B_{w}\right|=n-k-\left\lfloor\frac{\ell}{2}\right\rfloor .
\end{aligned}
$$

We know that $\left|T_{0}\right|=\left\lfloor\frac{\ell-1}{2}\right\rfloor, S \subset B$ and

$$
\begin{aligned}
|S| & =\left|\bigcup_{w=t_{k \ell+1}}^{c} B_{w} \backslash\left(T_{0} \cup T_{1}\right)\right|=n-\sum_{w=1}^{t_{k \ell}}\left|B_{w}\right|-\left|T_{0}\right|-\left|T_{1}\right| \\
& =n-\sum_{w=1}^{t_{k \ell}}\left|B_{w}\right|-\left\lfloor\frac{\ell-1}{2}\right\rfloor-\left(n-k-\sum_{w=1}^{t_{k \ell}}\left|B_{w}\right|-\left\lfloor\frac{\ell-1}{2}\right\rfloor\right)=k .
\end{aligned}
$$

Since $|S|=k$, thus $|B \backslash S|=n-k$, and the proof is complete.

Proof of Theorem 3. Let \hat{n} be the size of the smallest system for which there exists a counter example $\hat{\mathcal{D}}$ to the statement of Theorem 3. For $n=2, \mathcal{D}$ is the same as $\mathcal{L C}$; thus, we must have $\hat{n} \geqslant 3$. Moreover, we must have $2 k+\ell<2 n$; otherwise $\delta^{k, \ell}(\cdot, \cdot)=0$.

For $\ell=0$ refer to Simchi-Levi and Wei (2015, Theorem 6). According to Equality (13) and Lemma $2, \delta^{k, \ell}\left(\mathbf{e}, \mathcal{L C}_{2}\right)=n-k-\left\lfloor\frac{\ell}{2}\right\rfloor$ for $2 n>2 k+\ell$ and $\ell \geqslant 1$. Since $\hat{\mathcal{D}}$ is a counterexample, there exists some $0 \leqslant \hat{k}<\hat{n}$ and $1 \leqslant \hat{\ell}<2 \hat{n}$ such that $\delta^{\hat{k}, \hat{\ell}}(\mathbf{e}, \hat{\mathcal{D}})>\hat{n}-\hat{k}-\left\lfloor\frac{\hat{\ell}}{2}\right\rfloor>0$. Moreover, we can find $u \in B$ such that $|\mathcal{N}(u, \hat{\mathcal{D}})|=1$; otherwise, by the proof of Theorem 2, we have $\delta^{k, \ell}(\mathbf{e}, \mathcal{D}) \leqslant \delta^{k, \ell}\left(\mathbf{e}, \mathcal{L C _ { 2 }}\right)=n-k-\left\lfloor\frac{\ell}{2}\right\rfloor$ for all n, k and ℓ. Let $\{v\}=\mathcal{N}(u, \hat{\mathcal{D}})$. Since $\hat{\mathcal{D}}$ is connected, we have $|\mathcal{N}(v, \hat{\mathcal{D}})| \geqslant 2$.

Next, we define design \mathcal{D}^{\prime} with the set of plants and products $A \backslash\{v\}$ and $B \backslash\{u\}$, respectively, such that $\mathcal{D}^{\prime}=\left\{\left(v^{\prime}, u^{\prime}\right) \mid\left(v^{\prime}, u^{\prime}\right) \in \hat{\mathcal{D}}, u^{\prime} \neq u, v^{\prime} \neq v\right\}$. Design \mathcal{D}^{\prime} is not necessarily connected. If \mathcal{D}^{\prime} has c components, then $|\mathcal{N}(v, \hat{\mathcal{D}})| \geqslant c+1$. By adding $c-1 \operatorname{arcs}$ to \mathcal{D}^{\prime} we can make it connected. Define $\mathcal{D}^{\prime \prime}$ as the arc set that contains \mathcal{D}^{\prime} and $c-1$ added arcs. Hence, $\mathcal{D}^{\prime \prime}$ is connected. It should be noted that $\mathcal{D}^{\prime \prime}$ is defined on a system with size $\hat{n}-1$ and $\left|\mathcal{D}^{\prime \prime}\right| \leqslant 2(\hat{n}-1)$.

Based on the minimality assumption on $\hat{n}, \delta^{\hat{k}, \hat{\ell}}\left(\mathbf{e}, \mathcal{D}^{\prime \prime}\right) \leqslant \hat{n}-\hat{k}-\left\lfloor\frac{\hat{\ell}}{2}\right\rfloor-1$. Thus, by Remark 3 part (vi), there exists some $S \subset B \backslash\{u\}, E \subset \mathcal{D}^{\prime \prime},|E|=\hat{\ell}$, and $|S|=\hat{n}-\hat{k}-1$ such that $\left|\mathcal{N}\left(S, \mathcal{D}^{\prime \prime} \backslash E\right)\right| \leqslant$ $\hat{n}-\hat{k}-\left\lfloor\frac{\hat{\ell}}{2}\right\rfloor-1$. This implies that $S \cup\{u\} \subseteq B,|S \cup\{u\}|=\hat{n}-\hat{k}$ and $|\mathcal{N}(S \cup\{u\}, \hat{\mathcal{D}} \backslash E)| \leqslant \hat{n}-\hat{k}-\left\lfloor\frac{\hat{\ell}}{2}\right\rfloor$. Hence, by Remark 3 part (vi) we have $\delta^{\hat{k}, \hat{\ell}}(\mathbf{e}, \hat{\mathcal{D}}) \leqslant \hat{n}-\hat{k}-\left\lfloor\frac{\hat{\ell}}{2}\right\rfloor$. This contradicts the assumption that $\delta^{\hat{k}, \hat{\ell}}(\mathbf{e}, \hat{\mathcal{D}})>\hat{n}-\hat{k}-\left\lfloor\frac{\hat{\ell}}{2}\right\rfloor$.

Proof of Lemma 5. Let $\{1, \ldots, c\}$ and z_{1}, \ldots, z_{c} represent the components of $\mathcal{S C}_{Q}$ and their sizes, respectively. For each of Relation (14) and Equation (15), we first derive $\delta^{k, \ell}\left(\mathbf{e}, \mathcal{S} \mathcal{C}_{Q}\right)$, that is PCID without plant disruptions or (under the assumption $\mathbf{c}^{(p)}=\mathbf{e}$) the minimum required number of plants to create a vertex cover along with k products after ignoring ℓ arcs. Then by applying Lemma 2 we obtain the desired results.

Before we proceed, similar to the proof of Lemma 3 part 1, we can demonstrate that

$$
\begin{equation*}
n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor \leqslant \delta^{k, \ell}\left(\mathbf{e}, \mathcal{S C}_{Q}\right) \tag{A13}
\end{equation*}
$$

for any $0 \leqslant k \leqslant n$ and $0 \leqslant \ell \leqslant n \cdot Q$.

Proof of Relation (14) for $\ell=0$. We consider two cases $k=\sum_{i \in I_{1}} z_{i}$ for some $I_{1} \subseteq\{1, \ldots, c\}$ and $k \neq \sum_{i \in I} z_{i}$ for any $I \subseteq\{1, \ldots, c\}$, separately, as follows.

Case 1: let $k=\sum_{i \in I_{1}} z_{i}$ for some $I_{1} \subseteq\{1, \ldots, c\}$; then we put all products of components in I_{1} in the vertex cover. Clearly, all arcs of components in I_{1} are covered. Thus, we need all plants of components in $\{1, \ldots, c\} \backslash I_{1}$ to create a vertex cover that is $n-\sum_{i \in I_{1}} z_{i}=n-k$. By Inequality (A13) we conclude that, for $\ell=0$, this constructed vertex cover is the minimum one. Hence, $\delta^{k, 0}\left(\mathbf{e}, \mathcal{S C}_{Q}\right)=n-k$. Additionally, by Equation (11) for $\mathcal{L C}{ }_{Q}$ we have $n-k \leqslant \delta^{k, 0}\left(\mathbf{e}, \mathcal{L C} \mathcal{C}_{Q}\right)$. Thus,

$$
\begin{equation*}
n-k=\delta^{k, 0}\left(\mathbf{e}, \mathcal{S C}_{Q}\right) \leqslant \delta^{k, 0}\left(\mathbf{e}, \mathcal{L C _ { Q }}\right) \tag{A14}
\end{equation*}
$$

Case 2: let $k \neq \sum_{i \in I} z_{i}$ for any $I \subseteq\{1, \ldots, c\}$, then let $I_{1} \subset\{1, \ldots, c\}$ be the largest subset of components such that $\sum_{i \in I_{1}} z_{i}<k$ and $k_{1}:=\sum_{i \in I_{1}} z_{i}$. Thus, there exists component $x \in\{1, \ldots, c\} \backslash I_{1}$ such that $z_{x}>k_{2}$, where $k_{2}:=k-k_{1}$. Now, we put all products of components of I_{1} and k_{2} products of component x into the vertex cover. Since component x is a Q-long chain, by Equation (12) we need $\min \left\{z_{x}, z_{x}-k_{2}+Q-1\right\}$ plants from component x for the vertex cover. Thus,

$$
\begin{equation*}
\delta^{k, 0}\left(\mathbf{e}, \mathcal{S C}_{Q}\right) \leqslant n-k_{1}-z_{x}+\min \left\{z_{x}, z_{x}-k_{2}+Q-1\right\}=\min \left\{n-k_{1}, n-k+Q-1\right\} \tag{A15}
\end{equation*}
$$

Moreover, by Equation (12) for $\mathcal{L C}{ }_{Q}$ we have

$$
\begin{equation*}
\delta^{k, 0}\left(\mathbf{e}, \mathcal{L} \mathcal{C}_{Q}\right)=\min \{n, n-k+Q-1\} . \tag{A16}
\end{equation*}
$$

By (A15) and (A16), we get

$$
\begin{equation*}
\delta^{k, 0}\left(\mathbf{e}, \mathcal{S C}_{Q}\right) \leqslant \delta^{k, 0}\left(\mathbf{e}, \mathcal{L C}_{Q}\right)=\min \{n, n-k+Q-1\} \tag{A17}
\end{equation*}
$$

Therefore, by (A13), (A14), (A17) and Lemma 2 for $\ell=0$ we have

$$
(n-k-\gamma)^{+} \leqslant \min _{g \in \mathcal{U}_{p}} \delta^{k, 0}\left(\boldsymbol{g}, \mathcal{S C}_{Q}\right) \leqslant \min _{g \in \mathcal{U}_{p}} \delta^{k, 0}\left(\boldsymbol{g}, \mathcal{L C}_{Q}\right)
$$

Proof of Relation (15) for $(Q-1)^{2} \leqslant \ell \leqslant n \cdot Q$. First, note that by Equation (13), we have $\min _{\boldsymbol{g} \in \mathcal{U}_{p}} \delta^{k, \ell}\left(\boldsymbol{g}, \mathcal{L C}_{Q}\right)=\left(n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor-\gamma\right)^{+}$. Hence, we only need to demonstrate that $\min _{\boldsymbol{g} \in \mathcal{U}_{p}} \delta^{k, \ell}\left(\boldsymbol{g}, \mathcal{S C}_{Q}\right)=$ $\left(n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor-\gamma\right)^{+}$, as well. The proof is trivial if $k Q+\ell \geqslant n Q$ because in this case, $\min _{\boldsymbol{g} \in \mathcal{U}_{p}} \delta^{k, \ell}(\boldsymbol{g}, \mathcal{D})=0$ for any design \mathcal{D}; thus, in the following we let $k Q+\ell<n Q$. Next, we consider two cases $k=\sum_{i \in I_{1}} z_{i}$ for some $I_{1} \subseteq\{1, \ldots, c\}$ and $k \neq \sum_{i \in I} z_{i}$ for any $I \subseteq\{1, \ldots, c\}$, separately, as follows.

Case 1: let $k=\sum_{i \in I_{1}} z_{i}$ for some $I_{1} \subseteq\{1, \ldots, c\}$; then we put all products of components in I_{1} in the vertex cover. Moreover, let I_{2} denote the largest subset in $\{1, \ldots, c\} \backslash I_{1}$ such that $Q \sum_{i \in I_{2}} z_{i}<\ell$; then ignore all arcs in I_{2}. Thus, all arcs of components in $I_{1} \cup I_{2}$ are either covered or ignored. Define $\ell_{y}=\ell-Q \sum_{i \in I_{2}} z_{i}$. Since $Q \sum_{i \in I_{2}} z_{i}<\ell$, we have $\ell_{y}>0$. Hence, there exists component $y \in\{1, \ldots, c\} \backslash\left(I_{1} \cup I_{2}\right)$ such that $z_{y} Q \geqslant \ell_{y}$. The minimum number of plants required from component y is $z_{y}-\left\lfloor\frac{\ell_{y}}{Q}\right\rfloor$. Because, no products of component y are included in the vertex cover and by ignoring each batch of Q arcs from y we can exclude only one plant of y from the vertex cover. Therefore, the total number of required plants is

$$
\begin{aligned}
& n-\sum_{i \in I_{1}} z_{i}-\sum_{i \in I_{2}} z_{i}-\left\lfloor\frac{\ell_{y}}{Q}\right\rfloor= \\
& n-k-\sum_{i \in I_{2}} z_{i}-\left\lfloor\frac{\ell-Q \sum_{i \in I_{2}} z_{i}}{Q}\right\rfloor=n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor .
\end{aligned}
$$

By Inequality (A13), we conclude that the aforementioned constructed vertex cover is the minimum one, and we get $\delta^{k, \ell}\left(\mathbf{e}, \mathcal{S C}_{Q}\right)=n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor$.

Case 2: let $k \neq \sum_{i \in I} z_{i}$ for any $I \subseteq\{1, \ldots, c\}$, then let $I_{1} \subset\{1, \ldots, c\}$ be the largest subset of components such that $\sum_{i \in I_{1}} z_{i}<k$ and define $k_{1}:=\sum_{i \in I_{1}} z_{i}$. Next, we create a vertex cover in the following manner. Put all products of components in I_{1} into the vertex cover (all arcs in I_{1} are covered by k_{1} products). There exists component $x \in\{1, \ldots, c\} \backslash I_{1}$ such that $z_{x}>k_{2}, k_{2}:=k-k_{1}$. We also put k_{2} products of x (with consecutive indices) in the vertex cover. Observe that $Q\left(z_{x}-k_{2}\right)$ arcs of competent x remain uncovered. Then consider the two following cases where either $\ell \leqslant Q\left(z_{x}-k_{2}\right)$ or $\ell>Q\left(z_{x}-k_{2}\right)$.

If $\ell \leqslant Q\left(z_{x}-k_{2}\right)$, then since component x is a Q-long chain and $(Q-1)^{2} \leqslant \ell$, by Equation (13), the number of plants required from x to put into the vertex cover is $z_{x}-k_{2}-\left\lfloor\frac{\ell}{Q}\right\rfloor$. In addition, we need all plants in components $i \in\{1, \ldots, c\} \backslash\left(I_{1} \cup\{x\}\right)$ for the vertex cover. Thus, we need
$\left(n-k_{1}-z_{x}\right)+\left(z_{x}-k_{2}-\left\lfloor\frac{\ell}{Q}\right\rfloor\right)=n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor$ plants along with the specified products to create a vertex cover. By Inequality (A13) we arrive at a minimum vertex cover. Therefore, $\delta^{k, \ell}\left(\mathbf{e}, \mathcal{S C}_{Q}\right)=n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor$.

If $\ell>Q\left(z_{x}-k_{2}\right)$, then ignore all uncovered arcs of x. Let I_{2} denote the largest subset in $\{1, \ldots, c\} \backslash\left(I_{1} \cup\{x\}\right)$ such that $Q \sum_{i \in I_{2}} z_{i}<\ell-Q\left(z_{x}-k_{2}\right)$. If so, we can ignore all arcs in I_{2}. Clearly, all arcs of components in $I_{1} \cup I_{2} \cup\{x\}$ are either covered or ignored.

Next, define $\ell_{y}:=\ell-Q \sum_{i \in I_{2}} z_{i}-Q\left(z_{x}-k_{2}\right)$. We observe that $\ell_{y}>0$ since $Q \sum_{i \in I_{2}} z_{i}<\ell-Q\left(z_{x}-k_{2}\right)$. Thus, there exists component $y \in\{1, \ldots, c\} \backslash\left(I_{1} \cup I_{2} \cup\{x\}\right)$ such that $z_{y} Q \geqslant \ell_{y}$. It should be noted that no product of component y is in the vertex cover. Moreover, by ignoring each batch of Q arcs connected to a plant only one plant of y is excluded from the vertex cover. Thus, the required number of plants from component y in the vertex cover is $z_{y}-\left\lfloor\frac{\ell_{y}}{Q}\right\rfloor$. Therefore, by (A13) the minimum number of plants required to create a vertex cover is

$$
\begin{aligned}
\delta^{k, \ell}\left(\mathbf{e}, \mathcal{S C}_{Q}\right) & =n-\sum_{i \in I_{1}} z_{i}-\sum_{i \in I_{2}} z_{i}-z_{x}-z_{y}+\left(z_{y}-\left\lfloor\frac{\ell_{y}}{Q}\right\rfloor\right) \\
& =n-k_{1}-\sum_{i \in I_{2}} z_{i}-z_{x}-\left\lfloor\frac{\ell-Q \sum_{i \in I_{2}} z_{i}-Q\left(z_{x}-k_{2}\right)}{Q}\right\rfloor=n-k-\left\lfloor\frac{\ell}{Q}\right\rfloor .
\end{aligned}
$$

Therefore, based on Equation (13) and applying Lemma 2 for $\delta^{k, \ell}\left(\mathbf{e}, \mathcal{S C}_{Q}\right)$ discussed above, we conclude that Equality (13) holds for any $0 \leqslant k \leqslant n$ and $(Q-1)^{2} \leqslant \ell \leqslant n \cdot Q$.

Proof of Proposition 3. If $\alpha=0$, then by Assumption 1 we have $\ell^{\star}=\alpha=0$ in Equation (10). Moreover, from Inequality (14) we have $\min _{\boldsymbol{g} \in \mathcal{U}_{p}} \delta^{k, 0}\left(\boldsymbol{g}, \mathcal{S C}_{Q}\right) \leqslant \min _{\boldsymbol{g} \in \mathcal{U}_{p}} \delta^{k, 0}\left(\boldsymbol{g}, \mathcal{L C}_{Q}\right)$ at any $0 \leqslant k \leqslant n$. Therefore, $R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{S C}_{Q}\right) \leqslant R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{L C}_{Q}\right)$ by Theorem 1.

Similarly, if $\alpha \geqslant(Q-1)^{2}$, then $\ell^{\star}=\alpha \geqslant(Q-1)^{2}$. Furthermore, $\min _{\boldsymbol{g} \in \mathcal{U}_{p}} \delta^{k, \alpha}\left(\boldsymbol{g}, \mathcal{S C}_{Q}\right)=$ $\min _{g \in \mathcal{U}_{p}} \delta^{k, \alpha}\left(\boldsymbol{g}, \mathcal{L C}_{Q}\right)$ by Equality (15). Consequently, from Theorem 1 we obtain $R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{S C}_{Q}\right)=$ $R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{L C}_{Q}\right)$ for any $(Q-1)^{2} \leqslant \alpha \leqslant n \cdot Q$.

Proof of Proposition 5. Under Assumption 1, we conclude that $\ell^{\star}=\alpha$ in Equation (10) for any design \mathcal{D}. Moreover, for $\alpha \geqslant(Q-1)^{2}$ based on Equation (15), we have

$$
\min _{\boldsymbol{g} \in \mathcal{U}_{p}} \delta^{k, \alpha}\left(\boldsymbol{g}, \mathcal{S C}_{Q}^{(1)}\right)=\min _{\boldsymbol{g} \in \mathcal{U}_{p}} \delta^{k, \alpha}\left(\boldsymbol{g}, \mathcal{S C}_{Q}^{(2)}\right) \quad \forall k \in\{1, \ldots, n\}
$$

the latter equation leads to $R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{S C}_{Q}^{(1)}\right)=R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{S C}_{Q}^{(2)}\right)$ by Theorem 1. Next, we ascertain the relationship between the performances without any disruptions, i.e., $R\left(\mathcal{U}_{d}, \mathcal{S C}_{Q}^{(1)}\right)$ and $R\left(\mathcal{U}_{d}, \mathcal{S C}_{Q}^{(2)}\right)$. To this end, if we demonstrate that $\delta^{k, 0}\left(\mathbf{e}, \mathcal{S C}_{Q}^{(1)}\right) \leqslant \delta^{k, 0}\left(\mathbf{e}, \mathcal{S C}{ }_{Q}^{(2)}\right)$ holds true for any $0 \leqslant k \leqslant n$, then we get $R\left(\mathcal{U}_{d}, \mathcal{S C}_{Q}^{(1)}\right) \leqslant R\left(\mathcal{U}_{d}, \mathcal{S C}_{Q}^{(2)}\right)$ according to Lemma 2 and Theorem 1 .

Recall that $\delta^{k, 0}(\mathbf{e}, \mathcal{D})$ is the minimum number of plants that is required to create a vertex cover along with k products on design \mathcal{D}. Notably, based on Inequality (14) and Lemma 2 we have $\delta^{k, 0}\left(\mathbf{e}, \mathcal{S C}_{Q}^{(t)}\right) \geqslant$ $n-k, t \in\{1,2\}$. It is clear that $\delta^{k, 0}\left(\mathbf{e}, \mathcal{S C}{ }_{Q}^{(1)}\right)=\delta^{k, 0}\left(\mathbf{e}, \mathcal{S C}{ }_{Q}^{(2)}\right)$ for $k \in\{0, n\}$. Additionally, let
$z_{1}^{(1)}, \ldots, z_{c_{(1)}}^{(1)}$ and $z_{1}^{(2)}, \ldots, z_{c_{(2)}}^{(2)}$, denote the component sizes of $\mathcal{S C}_{Q}^{(1)}$ and $\mathcal{S C}_{Q}^{(2)}$, respectively. In order to evaluate $\delta^{k, 0}\left(\mathbf{e}, \mathcal{S C}_{Q}^{(t)}\right), t \in\{1,2\}$ for $1 \leqslant k<n$, we consider the following four disjoint cases:

Case 1: there exist some $I_{1} \subset\left\{1, \ldots, c_{(1)}\right\}$ and $I_{2} \subset\left\{1, \ldots, c_{(2)}\right\}$, such that $\sum_{i \in I_{1}} z_{i}^{(1)}=\sum_{i \in I_{2}} z_{i}^{(2)}=$ k. Thus, in $\mathcal{S C}_{Q}^{(t)}, t \in\{1,2\}$, in addition to k products of components in I_{t}, we need $n-k$ plants of components in $\left\{1, \ldots, c_{(t)}\right\} \backslash I_{t}$ to create a vertex cover. This is the minimum vertex cover for a particular k since by Inequality (14), we have $\delta^{k, 0}\left(\mathbf{e}, \mathcal{S C}_{Q}^{(t)}\right) \geqslant n-k, t \in\{1,2\}$. Therefore, $\delta^{k, 0}\left(\mathbf{e}, \mathcal{S C}_{Q}^{(1)}\right)=$ $\delta^{k, 0}\left(\mathbf{e}, \mathcal{S C}_{Q}^{(2)}\right)=n-k$.

Case 2: there exists $I_{1} \subset\left\{1, \ldots, c_{(1)}\right\}$ such that $\sum_{i \in I_{1}} z_{i}^{(1)}=k$; however, there does not exist any $I_{2} \subset\left\{1, \ldots, c_{(2)}\right\}$ such that $\sum_{i \in I_{2}} z_{i}^{(2)}=k$. Thus, by the argument given in above, we have $\delta^{k, 0}\left(\mathbf{e}, \mathcal{S C}_{Q}^{(1)}\right)=n-k$. By Inequality (14) for any k, we have $\delta^{k, 0}\left(\mathbf{e}, \mathcal{S C}_{Q}^{(2)}\right) \geqslant n-k$. Therefore, $\delta^{k, 0}\left(\mathbf{e}, \mathcal{S C}_{Q}^{(1)}\right) \leqslant \delta^{k, 0}\left(\mathbf{e}, \mathcal{S C}_{Q}^{(2)}\right)$.

Case 3: the cases where there exists no $I_{1} \subset\left\{1, \ldots, c_{(1)}\right\}$ such that $k=\sum_{i \in I_{1}} z_{i}^{(1)}$, but there is $I_{2} \subset\left\{1, \ldots, c_{(2)}\right\}$ such that $k=\sum_{i \in I_{2}} z_{i}^{(2)}$, are not considered. These cases are impossible due to the fact that the components of $\mathcal{S C}_{Q}^{(1)}$ are decomposition of the components of $\mathcal{S C}_{Q}^{(2)}$.

Case 4: there does not exist any $I_{1} \subset\left\{1, \ldots, c_{(1)}\right\}$ such that $k=\sum_{i \in I_{1}} z_{i}^{(1)}$. Likewise, there is no $I_{2} \subset\left\{1, \ldots, c_{(2)}\right\}$ such that $k=\sum_{i \in I_{2}} z_{i}^{(2)}$.

Fact 1. Consider an arbitrary $\mathcal{S C}_{Q}$ in $\left\{\mathcal{S C}_{Q}\right\}$ with the set of components $\{1, \ldots, c\}$ and component sizes $\left\{z_{1}, \ldots, z_{c}\right\}$. For any given k, let $k_{i} \leqslant k$ represent the number of products of component $i \in\{1, \ldots, c\}$ in a vertex cover. Then we define J as the subset of components that have all of their products within the vertex cover $\left(k_{i}=z_{i}\right.$ for all $\left.i \in J\right)$, and $k_{J}:=$ $\sum_{i \in J} z_{i}=\sum_{i \in J} k_{i}$. By the definition of J, it is clear that we have $0 \leqslant k_{i}<z_{i}$ for all $i \in\{1, \ldots, c\} \backslash J$. It should also be noted that we must have $k_{J}+\sum_{i \in\{1, \ldots, c\} \backslash J} k_{i}=k$. By the assumption there does not exist any $I \subset\{1, \ldots, c\}$ such that $k=\sum_{i \in I} z_{i}$; it implies that $k_{J}<k$ and $\sum_{i \in\{1, \ldots, c\} \backslash J} k_{i}=k-k_{J}>0$.

We demonstrate that for any given k, a minimum vertex cover for $\mathcal{S C}_{Q}$ in $\left\{\mathcal{S C}_{Q}\right\}$ can be obtained when k_{J} has the maximum possible value and $\sum_{i \in\{1, \ldots, c\} \backslash J} \mathbb{1}_{\left\{0<k_{i}<z_{i}\right\}}=1$; i.e., exactly one component has at least one $\left(0<k_{i}\right)$, but not all of its products ($k_{i}<z_{i}$) within the vertex cover.

It is observed that all arcs of the components in J are covered by k_{J} products. On the other hand, since each component $i \in\{1, \ldots, c\} \backslash J$ is a Q-long chain, by Equation (12) we require $\min \left\{z_{i}, z_{i}-k_{i}+Q-1\right\}$ of its plants along with its k_{i} products to cover all its arcs. Thus, the total number of plants that are required to create a vertex cover is

$$
\begin{align*}
& \left(n-k_{J}\right)-\sum_{i \in\{1, \ldots, c\} \backslash J}\left(z_{i}-\min \left\{z_{i}, z_{i}-k_{i}+Q-1\right\}\right) \\
& =n-k_{J}+\sum_{i \in\{1, \ldots, c\} \backslash J} \min \left\{0,-k_{i}+Q-1\right\} . \tag{A18}
\end{align*}
$$

To obtain a minimum vertex cover we need to minimize the right-hand side of (A18) that is strictly decreasing in k_{J} and is non-increasing in k_{i} for each $i \in\{1, \ldots, c\} \backslash J$. In particular, the unit increase of k_{J} and k_{i} decreases the right-hand side of (A18) by exactly 1 unit and at the most 1 unit, respectively. Hence, we set k_{J} at its maximum possible value.

Recall that $\sum_{i \in\{1, \ldots, c\} \backslash J} k_{i}=k-k_{J}>0$. The minimum quantum of the right-hand side of (A18) is obtained when along with the largest value of k_{J}, for exactly one component, say $t \in\{1, \ldots, c\} \backslash J, 0<k_{t}<z_{t}$, i.e., $k_{t}=k-k_{J}$ and $k_{i}=0$ for all $i \in\{1, \ldots, c\} \backslash(J \cup\{t\})$. To elaborate it further, it should be observed that $\min \left\{0,-k_{i}+Q-1\right\}=-k_{i}+\min \left\{k_{i}, Q-1\right\}$. Then we get

$$
\begin{aligned}
\sum_{i \in\{1, \ldots, c\} \backslash J}\left(-k_{i}+\min \left\{k_{i}, Q-1\right\}\right) & =-\left(k-k_{J}\right)+\sum_{i \in\{1, \ldots, c\} \backslash J} \min \left\{k_{i}, Q-1\right\} \\
& \geqslant-k_{t}+\min \left\{k_{t}, Q-1\right\},
\end{aligned}
$$

or equivalently $\sum_{i \in\{1, \ldots, c\} \backslash J} \min \left\{k_{i}, Q-1\right\} \geqslant \min \left\{k_{t}, Q-1\right\}$ from the last inequality. This is true because if $k_{i} \leqslant Q-1$ for all $i \in\{1, \ldots, c\} \backslash J$, then $\sum_{i \in\{1, \ldots, c\} \backslash J} \min \left\{k_{i}, Q-1\right\}=$ $\sum_{i \in\{1, \ldots, c\} \backslash J} k_{i}=k-k_{J} \geqslant \min \left\{k_{t}, Q-1\right\}$. On the other hand, if $k_{i}>Q-1$ for $i \in I$ where $I \subseteq\{1, \ldots, c\} \backslash J$, then $|I| \cdot(Q-1)+\sum_{i \in\{1, \ldots, c\} \backslash(J \cup I)} \min \left\{k_{i}, Q-1\right\} \geqslant \min \left\{k_{t}, Q-1\right\}$. It should be noted that there may exist multiple minimum vertex covers; we can obtain one of them in this manner.

Now, by using Fact 1 , we create a minimum vertex cover in $\mathcal{S C}_{Q}^{(1)}$. Let J_{1} be the largest subset of $\left\{1, \ldots, c_{(1)}\right\}$ such that $\sum_{i \in J_{1}} z_{i}^{(1)} \leqslant k$ and $k_{J_{1}}:=\sum_{i \in J_{1}} z_{i}^{(1)}$. Next, select component $x \in\left\{1, \ldots, c_{(1)}\right\} \backslash J_{1}$ and $k_{x}:=k-k_{J_{1}}$. Put all products of J_{1} and k_{x} products of x within the vertex cover. By (A18), we can see that the minimum number of required plants is $\delta^{k, 0}\left(\mathbf{e}, \mathcal{S C}_{Q}^{(1)}\right)=n-k_{J_{1}}+\min \left\{0,-k_{x}+Q-1\right\}=$ $\min \left\{n-k_{J_{1}}, n-k+Q-1\right\}$.

Similarly, in $\mathcal{S C}_{Q}^{(2)}$ let J_{2} denote the largest subset of $\left\{1, \ldots, c_{(2)}\right\}$ such that $\sum_{i \in J_{2}} z_{i}^{(2)} \leqslant k$ and $k_{J_{2}}:=\sum_{i \in J_{2}} z_{i}^{(2)}$. Then we can select component $y \in\left\{1, \ldots, c_{(2)}\right\} \backslash J_{2}$ and $k_{y}:=k-k_{J_{2}}$. By (A18), the minimum number of required plants is $\delta^{k, 0}\left(\mathbf{e}, \mathcal{S C}{ }_{Q}^{(1)}\right)=n-k_{J_{2}}+\min \left\{0,-k_{y}+Q-1\right\}=\min \{n-$ $\left.k_{J_{2}}, n-k+Q-1\right\}$.

It should be noted that $k_{J_{1}} \geqslant k_{J_{2}}$ because by assumption, the components of $\mathcal{S} \mathcal{C}_{Q}^{(1)}$ are decomposition of $\mathcal{S C}_{Q}^{(2)}$ components. Thus, $\min \left\{n-k_{J_{1}}, n-k+Q-1\right\} \leqslant \min \left\{n-k_{J_{2}}, n-k+Q-1\right\}$. As a result, $\delta^{k, 0}\left(\mathbf{e}, \mathcal{S C}_{Q}^{(1)}\right) \leqslant \delta^{k, 0}\left(\mathbf{e}, \mathcal{S C}_{Q}^{(2)}\right)$.

Therefore base on the discussion provided above we have $\delta^{k, 0}\left(\mathbf{e}, \mathcal{S C}_{Q}^{(1)}\right) \leqslant \delta^{k, 0}\left(\mathbf{e}, \mathcal{S C} \mathcal{Q}_{Q}^{(2)}\right)$, for all $0 \leqslant k \leqslant n$, and by using Lemma 2 and Theorem 1 , we get $R\left(\mathcal{U}_{d}, \mathcal{S C}_{Q}^{(1)}\right) \leqslant R\left(\mathcal{U}_{d}, \mathcal{S C} \mathcal{C}_{Q}^{(2)}\right)$. Recalling that $R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{S C}_{Q}^{(1)}\right)=R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{S C}_{Q}^{(2)}\right)$, the proof is complete.

Proof of Proposition 6. For general design \mathcal{D}, let $\left(k_{\mathcal{D}}^{\circ}, \ell_{\mathcal{D}}^{\circ}, \mathbf{d}_{\mathcal{D}}^{\circ}\right)$ and $\left(k_{\mathcal{D}}^{\star}, \mathbf{d}_{\mathcal{D}}^{\star}\right)$ denote optimal solutions of the optimization problems (10) and (19) - which represent the worst-case performances with and without disruptions - respectively. Since there are no arc disruptions $(\alpha=0)$, by Assumption 1, we have $\ell_{\mathcal{D}}^{\circ}=0$. Next, we consider four disjoint cases on $k_{\mathcal{S} C_{Q}}^{\star}$ and $k_{\mathcal{L} C_{Q}}^{\star} \in\{0, \ldots, n\}$ including: $k_{\mathcal{S} C_{Q}}^{\star}, k_{\mathcal{L} C_{Q}}^{\star}<n$; $k_{\mathcal{S} \mathcal{C}_{Q}}^{\star}<k_{\mathcal{L} \mathcal{C}_{Q}}^{\star}=n ; k_{\mathcal{S} \mathcal{C}_{Q}}^{\star}=k_{\mathcal{L} \mathcal{C}_{Q}}^{\star}=n$; and $k_{\mathcal{L} \mathcal{C}_{Q}}^{\star}<k_{\mathcal{S} \mathcal{C}_{Q}}^{\star}=n$.

- Let $k_{\mathcal{S} \mathcal{C}_{Q}}^{\star}<n$ and $k_{\mathcal{L} C_{Q}}^{\star}<n$. Any vertex cover of general design \mathcal{D} can be represented by sets $S \subseteq B$ and $\mathcal{N}(B \backslash S, \mathcal{D})$. In addition, let $S^{\star} \subset B,\left|S^{\star}\right|=k_{\mathcal{S} \mathcal{C}_{Q}}^{\star}<n$ and $\mathcal{N}\left(B \backslash S^{\star}, \mathcal{S C}_{Q}\right)>0$ denote a minimum vertex cover of $\mathcal{S C}_{Q}$ without disruptions. Hence, by Remark 3 part (vi), we have $\delta^{k_{\mathcal{S}}^{\star} \mathcal{C}_{Q}, 0}\left(\mathbf{e}, \mathcal{S C}_{Q}\right)=\left|\mathcal{N}\left(B \backslash S^{\star}, \mathcal{S C}_{Q}\right)\right|$ and by Equation (19), we get

$$
\begin{equation*}
R\left(\mathcal{U}_{d}, \mathcal{S C}_{Q}\right)=\left|\mathcal{N}\left(B \backslash S^{\star}, \mathcal{S C}_{Q}\right)\right|+\sum_{j=1}^{k_{\mathcal{S} \mathcal{C}_{Q}}} \min ^{j}\left(\mathbf{d}_{\mathcal{S} \mathcal{C}_{Q}}^{\star}\right)=\left|\mathcal{N}\left(B \backslash S^{\star}, \mathcal{S C}_{Q}\right)\right|+\min _{\mathbf{d} \in \mathcal{U}_{d}}^{k_{\mathcal{S}}^{\star} \sum_{j=1}} d_{j} \tag{A19}
\end{equation*}
$$

The second equality in (A19) follows by fixing $k_{\mathcal{S} \mathcal{C}_{Q}}^{\star}$ in Equation (19). A single plant disruption makes the capacity of a plant zero. We claim that sets S^{\star} and $\mathcal{N}\left(B \backslash S^{\star}, \mathcal{S C}_{Q}\right)$ are also a minimum vertex cover of $\mathcal{S C}_{Q}$ with a plant disruption. If our claim holds true, then $\left|S^{\star}\right|=k_{\mathcal{S} \mathcal{C}_{Q}}^{\star}=k_{\mathcal{S C}_{Q}}^{\circ}$; as a consequence, by Equation (10) we have

$$
\begin{align*}
& R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{S C}_{Q}\right)=\left(\delta^{k_{\mathcal{S C}}^{\star}}, 0,0\right. \\
&\left.\left.\mathbf{e}, \mathcal{S C}_{Q}\right)-1\right)^{+}+\sum_{j=1}^{k_{\mathcal{S C}}^{\star}} \min ^{j}\left(\mathbf{d}_{\mathcal{S C}_{Q}}^{\circ}\right) \tag{A20}\\
&=\left|\mathcal{N}\left(B \backslash S^{\star}, \mathcal{S C}_{Q}\right)\right|-1+\min _{\mathbf{d} \in \mathcal{U}_{d}}^{k_{S}^{\star} \sum_{j=1}} d_{j} .
\end{align*}
$$

The second equality in (A20) is obtained by fixing $k_{\mathcal{S} C_{Q}}^{\star}$ in Equation (10), and due to the fact that $\delta^{k^{\star} \mathcal{S}_{Q}}{ }^{, 0}\left(\mathbf{e}, \mathcal{S C}_{Q}\right)=\left|\mathcal{N}\left(B \backslash S^{\star}, \mathcal{S C}_{Q}\right)\right|>0$. Thus, by considering (A19) and (A20), we get $\operatorname{Fr}\left(\mathcal{S C}_{Q}\right)=R\left(\mathcal{U}_{d}, \mathcal{S C}_{Q}\right)-R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{S C}_{Q}\right)=1$.

We prove the validity of our claim by contradiction. Suppose $S^{\star} \cup \mathcal{N}\left(B \backslash S^{\star}, \mathcal{S C}_{Q}\right)$ is the minimum vertex cover of $\mathcal{S C}_{Q}$ without the disruption, but it is not the minimum vertex cover of $\mathcal{S C}_{Q}$ with the disruption, and sets $\bar{S} \subseteq B,|\bar{S}|=k_{\mathcal{S C}_{Q}}^{\circ}$, and $\mathcal{N}\left(B \backslash \bar{S}, \mathcal{S C}_{Q}\right)$ corresponds to the minimum vertex cover of $\mathcal{S C}_{Q}$ with the disruption. In this case,

$$
R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{S C}_{Q}\right)=\left(\left|\mathcal{N}\left(B \backslash \bar{S}, \mathcal{S C}_{Q}\right)\right|-1\right)^{+}+\min _{\mathbf{d} \in \mathcal{U}_{d}}^{k_{s=1}^{\circ} \sum_{j=1}^{\circ}} d_{j}<\left|\mathcal{N}\left(B \backslash S^{\star}, \mathcal{S C}_{Q}\right)\right|-1+\min _{\mathbf{d} \in \mathcal{U}_{d}} \sum_{j=1}^{k_{\mathcal{S} \mathcal{C}_{Q}}} d_{j} .
$$

As a result, by (A19)

$$
\begin{equation*}
\left|\mathcal{N}\left(B \backslash \bar{S}, \mathcal{S C}_{Q}\right)\right|+\min _{\mathrm{d} \in \mathcal{U}_{d}} \sum_{j=1}^{k_{\mathcal{S}}^{\circ} \mathcal{C}_{Q}} d_{j}<R\left(\mathcal{U}_{d}, \mathcal{S C}_{Q}\right) \tag{A21}
\end{equation*}
$$

Both $S^{\star} \cup \mathcal{N}\left(B \backslash S^{\star}, \mathcal{S C}_{Q}\right)$ and $\bar{S} \cup \mathcal{N}\left(B \backslash \bar{S}, \mathcal{S C}_{Q}\right)$ represent vertex covers for $\mathcal{S C}_{Q}$. Thus, Relation (A21) contradicts the minimality of vertex cover $S^{\star} \cup \mathcal{N}\left(B \backslash S^{\star}, \mathcal{S C}_{Q}\right)$ for $\mathcal{S C}_{Q}$ without disruption.
Indeed, the proof above holds for any design \mathcal{D} (i.e., if $k_{\mathcal{D}}^{\star}<n$, then $\operatorname{Fr}(\mathcal{D})=1$) since we did not exploit the structure of $\mathcal{S C}_{Q}$. Therefore, $\operatorname{Fr}\left(\mathcal{L C}_{Q}\right)=\operatorname{Fr}\left(\mathcal{S C}_{Q}\right)=1$ when $k_{\mathcal{S} C_{Q}}^{\star}<n$ and $k_{\mathcal{L} C_{Q}}^{\star}<n$.

- Let $k_{\mathcal{S} \mathcal{C}_{Q}}^{\star}<k_{\mathcal{L} \mathcal{C}_{Q}}^{\star}=n$, then by the discussion above, we have $\operatorname{Fr}\left(\mathcal{S C}_{Q}\right)=1$ because $k_{\mathcal{S} \mathcal{C}_{Q}}^{\star}<n$. In addition, by Equation (19) we have $R\left(\mathcal{U}_{d}, \mathcal{L C}_{Q}\right)=\sum_{j=1}^{n} d_{j, \mathcal{L} \mathcal{C}_{Q}}^{\star}$. Next, we evaluate $\operatorname{Fr}\left(\mathcal{L C}_{Q}\right)$ to prove that $\operatorname{Fr}\left(\mathcal{L C}_{Q}\right) \leqslant 1$. Toward this goal, let B_{1} denote the set of products whose demands are larger than 1 in $\mathbf{d}_{\mathcal{L} C_{Q}}^{\circ}$, i.e., $B_{1}=\left\{j \in B \mid d_{j, \mathcal{L C}_{Q}}^{\circ}>1\right\}$ and $A_{1}:=\mathcal{N}\left(B_{1}, \mathcal{L C _ { Q }}\right)$. Clearly, $\left|B_{1}\right| \leqslant\left|A_{1}\right|$ and set $\left(B \backslash B_{1}\right) \cup A_{1}$ is a vertex cover for $\mathcal{L C}_{Q}$.

Fact 1. The inequality

$$
\begin{equation*}
\left|A_{1}\right|+\sum_{j=1}^{n-\left|B_{1}\right|} \min ^{j}\left(\mathbf{d}_{\mathcal{L} \mathcal{C}_{Q}}^{\circ}\right) \geqslant \sum_{j=1}^{n} d_{j, \mathcal{L C}}^{Q} \tag{A22}
\end{equation*}
$$

is true since $\left(B \backslash B_{1}\right) \cup A_{1}$ creates a vertex cover in $\mathcal{L C}_{Q}$ that corresponds to the feasible solution $\left(k=n-\left|B_{1}\right|, \mathbf{d}_{\mathcal{L} C_{Q}}^{\circ}\right)$ with the objective function value $\left|A_{1}\right|+\sum_{j=1}^{n-\left|B_{1}\right|} \min ^{j}\left(\mathbf{d}_{\mathcal{L} C_{Q}}^{\circ}\right)$ for Equation (19). If (A22) does not hold true, then for this feasible solution we have $\left|A_{1}\right|+\sum_{j=1}^{n-\left|B_{1}\right|} \min ^{j}\left(\mathbf{d}_{\mathcal{L} \mathcal{C}_{Q}}^{\circ}\right)<\sum_{j=1}^{n} d_{j, \mathcal{L C}}^{Q}=R\left(\mathcal{U}_{d}, \mathcal{L C}_{Q}\right)$, that contradicts the optimality of $\left(k_{\mathcal{L} \mathcal{C}_{Q}}^{\star}=n, \mathbf{d}_{\mathcal{L} \mathcal{C}_{Q}}^{\star}\right)$.

Fact 2. By Equation (10), we have $R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{L C}_{Q}\right)=\left(\delta^{k_{\mathcal{L C}}^{\circ}}{ }^{, 0}\left(\mathbf{e}, \mathcal{L C}_{Q}\right)-1\right)^{+}+$ $\sum_{j=1}^{k_{\mathcal{L C}}^{\circ}} \min ^{j}\left(\mathbf{d}_{\mathcal{L} C_{Q}}^{\circ}\right)$. For any $k \in\{0, \ldots, n\}$, we define $G(k)=G_{1}(k)+G_{2}(k)$, where $G_{1}(k)=$ $\left(\delta^{k, 0}\left(\mathbf{e}, \mathcal{L C}_{Q}\right)-1\right)^{+}$, and $G_{2}(k)=\sum_{j=1}^{k} \min ^{j}\left(\mathbf{d}_{\mathcal{L} \mathcal{C}_{Q}}^{\circ}\right)$. Observe that $R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{L C}_{Q}\right)=$ $\min _{0 \leqslant k \leqslant n} G(k)$.
Evidently, $G_{1}(k)$ and $G_{2}(k)$ are non-increasing and non-decreasing functions of k, respectively. Moreover, each value of k corresponds to a vertex cover that is associated with $G(k)$ with the total capacity $G_{1}(k)$ and the total demand $G_{2}(k)$, respectively. Note that $G_{1}(k)$ is minimized when products with consecutive indices are selected in the vertex cover; hence, without loss of generality, for each k we suppose that the vertex cover includes product set $S=\{1,2, \ldots, k\}$ and plant set $\mathcal{N}\left(B \backslash S, \mathcal{L C}_{Q}\right)$.
Next, we demonstrate that the value of any local minimum of $G(k)$ is the same as $G(\bar{k})$ at one of the points $\bar{k} \in\left\{0, n-\left|B_{1}\right|, n\right\}$. As a result, it is sufficient to compute $G(k)$ only at $k \in\left\{0, n-\left|B_{1}\right|, n\right\}$ and consider the minimum one as $R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{L C}_{Q}\right)$.
Specifically, define k^{\prime} as the largest value of k such that $G_{1}(k)=n-1$ for all $k \leqslant k^{\prime}$. If $k^{\prime} \leqslant n-\left|B_{1}\right|-1$, then we show that
(a) $G\left(n-\left|B_{1}\right|\right)<G\left(n-\left|B_{1}\right|+1\right)<\ldots<G(n-1)$
(b) $G\left(k^{\prime}\right) \geqslant \ldots \geqslant G\left(n-\left|B_{1}\right|-2\right) \geqslant G\left(n-\left|B_{1}\right|-1\right)$
(c) $G(0) \leqslant G(1) \leqslant \ldots \leqslant G\left(k^{\prime}\right)$

Hence, $k=0$ is a local minimum of $G(k)$. Moreover, if $G\left(n-\left|B_{1}\right|-1\right) \geqslant G\left(n-\left|B_{1}\right|\right)$, then $k=n-\left|B_{1}\right|$ is a also local minimum.

In case $k^{\prime} \geqslant n-\left|B_{1}\right|$, we only need to demonstrate that
(d) $G(0) \leqslant G(1) \leqslant \ldots \leqslant G\left(k^{\prime}\right)<\ldots<G(n-1)$

Thus, $k=0$ is a local minimum of $G(k)$. It should be noted that for $k=n$, if $G(n-1) \geqslant$ $G(n)$, then $k=n$ is also a local minimum. In the following, we prove Relations (a) to (d). Relation (a) holds true for any $k \in\left\{n-\left|B_{1}\right|+1, \ldots, n-1\right\}$ because $G_{1}(k-1)-G_{1}(k)=1$, and $G_{2}(k-1)-G_{2}(k)=-\min ^{k}\left(\mathbf{d}_{\mathcal{L} \mathcal{C}_{Q}}^{\circ}\right)<-1$; therefore, $G(k-1)-G(k)<0$. To elaborate further, utilizing the structure of $\mathcal{L C} C_{Q}$, product $k\left(k>k^{\prime}\right)$ has a different neighbor plant from product $k-1$; i.e., $G_{1}(k-1)-G_{1}(k)=\left|\mathcal{N}\left(k, \mathcal{L} \mathcal{C}_{Q}\right) \backslash \mathcal{N}\left(k-1, \mathcal{L C}_{Q}\right)\right|=1$. Furthermore, by the definition of set B_{1} we have $\min ^{k}\left(\mathbf{d}_{\mathcal{L} \mathcal{C}_{Q}}^{\circ}\right)>1$ for $n-\left|B_{1}\right|<k \leqslant n$. As a consequence, $G_{2}(k-1)-G_{2}(k)<-1$.

Relation (b) holds true for any $k \in\left\{k^{\prime}, \ldots, n-\left|B_{1}\right|\right\}$ because $G_{1}(k-1)-G_{1}(k)=1$ and $G_{2}(k-1)-G_{2}(k)=-\min ^{k}\left(\mathbf{d}_{\mathcal{L}_{Q}}^{\circ}\right) \geqslant-1$; therefore $G(k-1)-G(k) \geqslant 0$. By the structure of $\mathcal{L C}{ }_{Q}$, product $k\left(k>k^{\prime}\right)$ has one different neighbor plant from product $k-1$, i.e., $G_{1}(k-1)-G_{1}(k)=\left|\mathcal{N}\left(k, \mathcal{L C} \mathcal{C}_{Q}\right) \backslash \mathcal{N}\left(k-1, \mathcal{L C} \mathcal{C}_{Q}\right)\right|=1$. Furthermore, since $\min ^{k}\left(\mathbf{d}_{\mathcal{L} \mathcal{C}_{Q}}^{\circ}\right) \leqslant 1$ for $k \leqslant n-\left|B_{1}\right|$, we have $G_{2}(k-1)-G_{2}(k)=-\min ^{k}\left(\mathbf{d}_{\mathcal{L} C_{Q}}^{\circ}\right) \geqslant-1$.
Relation (c) holds true for any $k \in\left\{0, \ldots, k^{\prime}\right\}$ because $G_{1}(k-1)-G_{1}(k)=0$ and $G_{2}(k-1)-G_{2}(k)=-\min ^{k}\left(\mathbf{d}_{\mathcal{L C}_{Q}}^{\circ}\right) \leqslant 0$; therefore, $G(k-1)-G(k) \leqslant 0$. We get $G_{1}(k-1)-G_{1}(k)=0$ because $G_{1}(k)=n-1$ for all $k \leqslant k^{\prime}$. Since there are no negative demands, it follows that $G_{2}(k-1)-G_{2}(k) \leqslant 0$.

Relation (d) holds true since Relations (a) and (c) are true. If $k^{\prime} \geqslant n-\left|B_{1}\right|$, we have $G(k-1)<G(k)$ for $k \in\left\{k^{\prime}+1, \ldots, n-1\right\}$ by Relation (a) and $G(k-1) \leqslant G(k)$ for $k \in\left\{0, \ldots, k^{\prime}\right\}$ by Relation (c).

It should be noted that $G(k)$ may have local minimums other than set $\left\{0, n-\left|B_{1}\right|, n\right\}$. However, on the basis of Fact 2, any local minimum takes the value of $G(k)$ at one of the points $\left\{0, n-\left|B_{1}\right|, n\right\}$. By considering Fact 2 and since $R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{L C}_{Q}\right)=\min _{0 \leqslant k \leqslant n} G(k)$, in the following we evaluate $\operatorname{Fr}\left(\mathcal{L C}_{Q}\right)$ only for $k_{\mathcal{L} \mathcal{C}_{Q}}^{\circ} \in\left\{0, n-\left|B_{1}\right|, n\right\}$. Recall that it is supposed $k_{\mathcal{L} C_{Q}}^{\star}=n$.

Let $k_{\mathcal{L C} C_{Q}}^{\circ}=n$, then we have $k_{\mathcal{L} \mathcal{C}_{Q}}^{\star}=k_{\mathcal{L C}_{Q}}^{\circ}=n$. Using Equations (10) and (19), we obtain $R\left(\mathcal{U}_{d}, \mathcal{L C}_{Q}\right)=\sum_{j=1}^{n} d_{j, \mathcal{L C}}^{\star}{ }_{Q}^{\star}$ and $R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{L C}_{Q}\right)=\sum_{j=1}^{n} d_{j, \mathcal{L C}_{Q}}^{\circ}$, respectively. Thus, $R\left(\mathcal{U}_{d}, \mathcal{L C}_{Q}\right)=$ $R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{L C}_{Q}\right)$ because it is clear that $R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{L C}_{Q}\right) \leqslant R\left(\mathcal{U}_{d}, \mathcal{L C}_{Q}\right) \leqslant \sum_{j=1}^{n} d_{j, \mathcal{L C}_{Q}}^{\circ}$ and since $\left(k_{\mathcal{L} \mathcal{C}_{Q}}^{\star}=n, \mathbf{d}_{j, \mathcal{L C}_{Q}}^{\circ}\right)$ is a feasible solution for (19). Hence, $\operatorname{Fr}\left(\mathcal{L C}_{Q}\right)=0$. Recall that $\operatorname{Fr}\left(\mathcal{S C}_{Q}\right)=1$ because $k_{\mathcal{L} \mathcal{C}_{Q}}^{\star}<n$. Therefore, $\operatorname{Fr}\left(\mathcal{L C}_{Q}\right) \leqslant \operatorname{Fr}\left(\mathcal{S C}_{Q}\right)=1$.

Let $k_{\mathcal{L} \mathcal{C}_{Q}}^{\circ}=n-\left|B_{1}\right|$, then the corresponding minimum vertex cover for $k_{\mathcal{L} \mathcal{C}_{Q}}^{\circ}=n-\left|B_{1}\right|$ is $A_{1} \cup\left(B \backslash B_{1}\right)$. By Equation (10) we have $R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{L C}{ }_{Q}\right)=\left|A_{1}\right|-1+\sum_{j=1}^{n-\left|B_{1}\right|} \min ^{j}\left(\mathbf{d}_{\mathcal{L} \mathcal{C}_{Q}}^{\circ}\right)$. According to the definition of fragility coupled with Relation (A22) in Fact 1, we get

$$
\operatorname{Fr}\left(\mathcal{L C}_{Q}\right)=R\left(\mathcal{U}_{d}, \mathcal{L C} C_{Q}\right)-R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{L C} \mathcal{C}_{Q}\right)=\sum_{j=1}^{n} d_{j, \mathcal{L} \mathcal{C}_{Q}}^{\star}-\left(\left|A_{1}\right|-1+\sum_{j=1}^{n-\left|B_{1}\right|} \min ^{j}\left(\mathbf{d}_{\mathcal{L C}_{Q}}^{\circ}\right)\right) \leqslant 1 .
$$

Therefore, $\operatorname{Fr}\left(\mathcal{L C}_{Q}\right) \leqslant \operatorname{Fr}\left(\mathcal{S C}_{Q}\right)=1$.
Let $k_{\mathcal{L} \mathcal{C}_{Q}}^{\circ}=0$, then $R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{L C}_{Q}\right)=n-1$ by Equation (10). Importantly, $R\left(\mathcal{U}_{d}, \mathcal{L C}_{Q}\right)=$ $\sum_{j=1}^{n} d_{j, \mathcal{L C}}^{\star} \leqslant n$ because $k_{\mathcal{L C}}^{\star}{ }_{Q}=n$; otherwise, one can select all plants as the vertex cover and as a result $R\left(\mathcal{U}_{d}, \mathcal{L C}_{Q}\right)=n$. Hence,

$$
\operatorname{Fr}\left(\mathcal{L C}_{Q}\right)=\sum_{j=1}^{n} d_{j, \mathcal{L C}_{Q}}^{\star}-(n-1) \leqslant 1 .
$$

Therefore, $\operatorname{Fr}\left(\mathcal{L C}_{Q}\right) \leqslant \operatorname{Fr}\left(\mathcal{S C}_{Q}\right)=1$ when $k_{\mathcal{S} \mathcal{C}_{Q}}^{\star}<k_{\mathcal{L} \mathcal{C}_{Q}}^{\star}=n$.

- Let $k_{\mathcal{S} C_{Q}}^{\star}=k_{\mathcal{L} C_{Q}}^{\star}=n$, then $R\left(\mathcal{U}_{d}, \mathcal{S C}_{Q}\right)=R\left(\mathcal{U}_{d}, \mathcal{L C} C_{Q}\right)=\sum_{j=1}^{n} d_{j, \mathcal{S C}_{Q}}^{\star}=\sum_{j=1}^{n} d_{j, \mathcal{L C}_{Q}}^{\star}$. On the other hand, based on (16) we have $R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{S C}_{Q}\right) \leqslant R\left(\mathcal{U}_{d}, \mathcal{U}_{p}, \mathcal{U}_{a}, \mathcal{L C}_{Q}\right)$. Therefore, $\operatorname{Fr}\left(\mathcal{L C}_{Q}\right) \leqslant$ $\operatorname{Fr}\left(\mathcal{S C}_{Q}\right)$.
- Let $k_{\mathcal{L} \mathcal{C}_{Q}}^{\star}<k_{\mathcal{S} \mathcal{C}_{Q}}^{\star}=n$. Since $k_{\mathcal{S} \mathcal{C}_{Q}}^{\star}=n$, based on Equation (19), we get $R\left(\mathcal{U}_{d}, \mathcal{S C}_{Q}\right)=\sum_{j=1}^{n} d_{j, S \mathcal{S}_{Q}}^{\star}$. Then by considering Inequality (14) and Theorem 1 , we have $R\left(\mathcal{U}_{d}, \mathcal{S C}_{Q}\right) \leqslant R\left(\mathcal{U}_{d}, \mathcal{L C}_{Q}\right)$. Hence, $\sum_{j=1}^{n} d_{j, S \mathcal{S C}_{Q}}^{\star} \leqslant R\left(\mathcal{U}_{d}, \mathcal{L C _ { Q }}\right)$. Additionally, note that $\left(k=n, \mathbf{d}_{\mathcal{S} \mathcal{C}_{Q}}^{\star}\right)$ is a feasible solution of (19) for $\mathcal{L C}_{Q}$ with the objective function value of $\sum_{j=1}^{n} d_{j, \mathcal{S}}^{\star}{ }_{Q}$.
If $\sum_{j=1}^{n} d_{j, S \mathcal{S C}_{Q}}^{\star}<R\left(\mathcal{U}_{d}, \mathcal{L C}{ }_{Q}\right)$, then we have a feasible solution $\left(k=n, \mathbf{d}_{\mathcal{S} \mathcal{C}_{Q}}^{\star}\right)$ with the objective function value $\sum_{j=1}^{n} d_{j, \mathcal{S C}_{Q}}^{\star}$ being less than the optimal value $R\left(\mathcal{U}_{d}, \mathcal{L \mathcal { C } _ { Q }}\right)$; hence, $\sum_{j=1}^{n} d_{j, \mathcal{S C}_{Q}}^{\star}<$ $R\left(\mathcal{U}_{d}, \mathcal{L C} C_{Q}\right)$ cannot occur. If $\sum_{j=1}^{n} d_{j, S \mathcal{S C}_{Q}}^{\star}=R\left(\mathcal{U}_{d}, \mathcal{L C}{ }_{Q}\right)$, then $\left(k=n, \mathbf{d}_{\mathcal{S} C_{Q}}^{\star}\right)$ is an optimal solution for (19). Thus, $k_{\mathcal{L} \mathcal{C}_{Q}}^{\star}=k_{\mathcal{S} \mathcal{C}_{Q}}^{\star}=n$ and refer to the corresponding discussion above for this case.

Therefore, on the basis of the discussions above, Proposition 6 is proved.

